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Abstract In this article, we show that the Abel–Jacobi images of the Heegner cycles over the Shimura
curves constructed by Nekovar, Besser and the theta elements contructed by Chida–Hsieh form a
bipartite Euler system in the sense of Howard. As an application of this, we deduce a converse to
Gross–Zagier–Kolyvagin type theorem for higher weight modular forms generalising works of Wei Zhang
and Skinner for modular forms of weight 2. That is, we show that if the rank of certain residual
Selmer group is 1, then the Abel–Jacobi image of the Heegner cycle is nonzero in this residual Selmer
group.
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1. Introduction

In a seminal work of Bertolini–Darmon [1], the authors constructed an Euler–Kolyvagin

type system using Heegner points on various Shimura curves. The cohomology classes in
this system satisfy beautiful reciprocity laws that resemble the so-called Jochnowitz’s

congruences. More precisely, these reciprocity laws relate the theta elements of the

Gross points on the Shimura sets given by certain definite quaternion algebras to the

reductions of the Heegner points on the Shimura curves given by certain indefinite
quaternion algebras. These theta elements encode the algebraic part of the special values

of the L-functions of elliptic curves over an imaginary quadratic field, while the Heegner

points provide natural classes in the Galois cohomologies of the elliptic curves over such
an imaginary quadratic field. These reciprocity laws enabled the authors to construct

annihilators for elements in the Selmer groups attached to these elliptic curves over an

imaginary quadratic field. As an application of these constructions, the authors proved
the one-sided divisibility of the anticyclotomic Iwasawa main conjectures for these elliptic

curves. The method of Bertolini–Darmon is axiomatised in [14] where it is shown that

the theta elements and the Heegner points (almost) form a bipartite Euler system in his

sense. See also the recent work [5] for a refinement.
The present article addresses the question of constructing a bipartite Euler system for

higher weight modular forms over an imaginary quadratic field. On the analytic side, the

theta elements are constructed by Chida–Hsieh in [8]. On the geometric side, it is natural
to consider the Heegner cycles constructed by Nekovar [25] over the classical modular

curves and by Besser [2] and Iovita–Speiss [17] over the Shimura curves given by indefinite

quaternion algebras. In this article, we show that these Heegner cycles and theta elements
indeed form a bipartite Euler system. As an application of this, we prove a converse to

the Gross–Zaiger–Kolyvagin type theorem which can be seen as the Selmer rank 1 case of

a generalisation of the Kolyvagin conjecture for higher weight modular forms. We follow

the strategy of Wei Zhang in his proof of the original Kolyvagin conjecture for modular
forms of weight 2.

There are other attempts to generalise the work of Bertolini–Darmon [1] to a higher

weight case. Notably, in [9], the authors indeed proved the one-sided divisibility for
the anticyclotomic Iwasawa main conjecture for higher weight modular forms. Their

construction relies on a clever trick using congruences between values of weight 2 modular

forms and higher weight modular forms when evaluated at Gross points. This strategy
works well when the root number of the involved L-function is +1 but does not apply to

questions when the root number is −1, which is the case of interest in the present article.

We also remark that in [7], the author works directly with the Heegner cycles but still
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in the case when the root number is +1 and he is able to prove the first reciprocity law
and apply it to prove a version of the Bloch–Kato conjecture in the rank 0 case. In this

article, we prove the remaining second reciprocity law, which forms the main arithmetic

input to our proof of the converse to the Gross–Zagier–Kolyvagin type theorem.

1.1. Main results

To precisely describe our results, we first introduce some notations. Let f ∈ Snew
k (N)

be a newform of level Γ0(N) with even weight k ≥ 2 and K be an imaginary quadratic

field whose discriminant is given by −DK with DK > 0. We assume that N and DK are

relatively prime to each other. We also assume that N admits a factorisation N =N+N−

with N+ only divisible by primes that are split in K and N− only divisible by primes that
are inert in K. Throughout this article we assume that the following generalised Heegner

hypothesis is satisfied:

N− is square-free and consists of even number of prime factors that are inert in K.

(Heeg)

Let l be a distinguished rational prime such that l �NDK and k < l−1. Let E =Q(f) be

the Hecke field of f and we fix an embedding ιl :Q
ac ↪→Cl such that it induces a place λ

of E. Let Eλ be the completion of E at λ and O =OEλ
be the valuation ring of Eλ. We

fix a uniformiser � ∈ O and let Fλ be the residue field of O. If n≥ 1, then we will write

On = O/�n. Let T = T(N+,N−) be the l -adic completion of the Hecke algebra acting
faithfully on the subspace of Sk(N) consisting of forms that are new at primes dividing

N−. Let φf : T→O be the morphism corresponding to the Hecke eigensystem of f and

φf,n : T→On be the reduction of φf modulo �n. Let If,n be the kernel of φf,n and mf

be the unique maximal ideal containing If,n. We denote by

ρf,λ :GQ →GL2(Eλ)

the λ-adic Galois representation attached to f whose residual Galois representation is

denoted by ρ̄f,λ. In this article, we will mainly consider the twist ρf,λ(
2−k
2 ), which

we will denote by ρ∗f,λ, whose representation space is denoted by Vf,λ. We fix a GQ-

stable lattice Tf,λ in Vf,λ. The residual Galois representation of ρ∗f,λ will be denoted
by ρ̄∗f,λ. It is well-known that the representation ρ∗f,λ appears in the cohomology of a

certain Shimura curve with coefficient in the l -adic local system Lk−2 corresponding to

the representation Symk−2st⊗det
k−2
2 of GL2. Here, st is the standard representation of

GL2. To define these Shimura curves, we will introduce certain quaternion algebras. Let

B′ be the indefinite quaternion algebra of discriminant N− and OB′,N+ be an Eichler

order of level N+ contained in some maximal order OB′ of B′. These data define a

Shimura curve X = XB′

N+,N− which is a coarse moduli space of abelian surfaces with

quaternionic multiplications. We wish not to assume that N− > 1, in which case X is a

projective curve over Q. In the case when N− = 1, X will denote the compactification
of the classical modular curve over Q. However, we only give the constructions and

proofs for the more complicated case of N− > 1; the proof for the case of modular

curves is almost completely similar. We will rigidify the moduli problem of X by adding
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an auxiliary full level-d structure and denote the resulting fine moduli space by Xd.
Let Ad → Xd be universal abelian surface and πk,d : Wk,d → Xd be the Kuga–Sato

variety given by the k−2
2 -fold fibre product of Ad over Xd. One can construct certain

projectors εd and εk that cut out the Chow motive corresponding to the space of
modular forms in the Kuga–Sato variety Wk,d. Then the representation Tf,λ occurs in

εdεkH
k−1(Wk,d,Qac,O(k2 )) = H1(XQac,Lk−2(O)(1)). We will put the following assumption

on the residue Galois representation ρ̄f,λ.

Assumption 1 (CR�). The residual Galois representation ρ̄f,λ satisfies the following
assumptions:

(1) k < l−1 and |(F×
l )

k−1|> 5;

(2) ρ̄f,λ is absolutely irreducible when restricted to GQ(
√
p∗) where p∗ = (−1)

p−1
2 p;

(3) If q |N− and q ≡±1mod l, then ρ̄f,λ is ramified at q ;

(4) If q ||N+ and q ≡ 1mod l, then ρ̄f,λ is ramified at q ;

(5) The Artin conductor Nρ̄ of ρ̄f,λ is prime to N/Nρ̄;

(6) There is a place q ||N such that ρ̄f,λ is ramified at q.

We remark that our assumption (CR�) is essentially the assumption (CR+) in [9]. It

is used to invoke results in [8] and [9]. The assumption (CR�)(6) is needed to apply the
main result of [35]. In order to apply the main results of [9], we also assume the following

technical assumption on f :

al(f) �≡ 1mod l if k = 2. (PO)

Let Km be the ring class field over K of level m for some integer m≥ 1. In Subsection

3.1, we define a certain Heegner cycle εdYm,k ∈ εdεkCH
k
2 (Wk,d⊗Km)⊗Zl and an Abel–

Jacobi map for some n≥ 1

AJk,n : εdεkCH
k
2 (Wk,d⊗Km)⊗Zl →H1(Km,Tf,n).

The images of εdYm,k under the map AJk,n give the cohomology class

κn(m) := AJk,n(εdYm,k) ∈H1(Km,Tf,n)

and we define

κn := CorK1/Kκn(1) ∈H1(K,Tf,n).

Our main result concerns the element κ1. The element κ1 in fact lives in the residual

Selmer group

SelF(N−)(N
+,Tf,1)

defined by some Selmer structure F(N−) spelled out in (4.4). Our main result is the
following.

Theorem 2. Suppose (f,K) is a pair that satisfies the generalised Heegner hypothesis

(Heeg) and (PO). Suppose in addition that f is ordinary at l and that ρ̄f,λ satisfies
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the hypothesis (CR�). If dimFλ
SelF(N−)(K,Tf,1) = 1, then the class κ1 is nonzero in

SelF(N−)(K,Tf,1).

This theorem can be viewed as a converse to the Gross–Zagier–Kolyvagin theorem
for Heegner cycles. For the other direction, one can show that if κn is nonzero in

SelF(N−)(K,Tf,n), then the Selmer group SelF(N−)(K,Tf,n) is of rank 1. This follows

from the result of Nekovar [25] in the case when N− = 1 and its extension to the case
when N− > 1 in [13]. In these works, they follow the original method of Kolyvagin and

use the derivative classes of the Heegner cycles to construct annihilators for the Selmer

groups. We can recover their results by combining the first and second reciprocity laws

proved in this article. See [37] for an example of how to carry this out. We also have
the Gross–Zagier formula [39] for the Heegner cycles over the classical modular curves by

Shou–Wu Zhang. Suppose that height pairing is nondegenerate; then the Gross–Zagier

formula and Theorem 2 would allow us to conclude that if the rank of Selmer group is
1, then the analytic rank of the L-function L(f/K,s) at s = k

2 is 1. Next, we sketch the

proof of Theorem 2. First we recall the notion of an n-admissible prime for f.

Definition 1.1. We say a prime p is n-admissible for f if

(1) p �Nl;

(2) p is an inert prime in K ;

(3) l does not divide p2−1;

(4) �n divides p
k
2 +p

k−2
2 − εpap(f) with εp ∈ {±1}.

These primes are level-raising primes for f. This means that one can find a newform
f [p] ∈ Snew

k (pN) that is congruent to f modulo �n. Note that f [p] can be realised

in the space of quaternionic modular forms SB
k (N+,O) of weight k associated to the

definite quaternion algebra B of discriminant pN−. This is justified in the following
theorem, which we call the (unramified) arithmetic level-raising theorem for the Kuga–

Sato varieties. We consider the ordinary-supersingular excision exact sequence on X with

coefficients in Lk−2

0→H1(XFac
p
,Lk−2(O)(1))mf

→H1(Xord
Fac

p
,Lk−2(O)(1))mf

→H0(Xss
Fac

p
,Lk−2(O))mf

→ 0

where XFac
p

is the special fibre of X over Fac
p and Xord

Fac
p

(respectively Xss
Fac

p
) is its ordinary

locus (respectively supersingular locus). The coboundary map of the above exact sequence

induces the following map:

Φn : H0(Xss
Fac

p
,Lk−2(O))

GF
p2

/If,n
→H1(Fp2,H1(XFac

p
,Lk−2(O)(1))/If,n).

Theorem 3 (Unramified level raising). Let p be an n-admissible prime for f. We assume

that the residual Galois representation ρ̄f,λ satisfies (CR�). Then the following hold true:

(1) There exists a morphism φ
[p]
f,n : T[p] →On which agrees with φf,n : T→On on all of

the Hecke operators away from p and sends Up to εpp
k−2
2 .
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(2) Let I
[p]
f,n be the kernel of the morphism φ

[p]
f,n. We have a canonical isomorphism

Φn : H0(Xss
Fac

p
,Lk−2(O))

GF
p2

/If,n

∼=−→H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n)

which can be identified with an isomorphism

Φn : SB
k (N+,O)

/I
[p]
f,n

∼=−→H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n).

One can define a theta element Θ(f
[p]
π′ ) associated to the Jacquet–Langlands transfer

f
[p]
π′ of f [p] following Chida–Hsieh [8] that encodes the square root of the algebraic part of
the L-value L(f [p]/K, k2 ). Note that the global root number of the L-function L(f [p]/K,s)

at s= k
2 is +1. We have the following reciprocity formula relating the Heegner cycle class

κn to the theta element Θ(f
[p]
π′ ).

Theorem 4 (Second reciprocity law). Let p be an n-admissible prime for f and assume

that ρ̄f,λ satisfies assumption (CR�). Let f
[p]
n be a generator of SB

k (N+,O)[I
[p]
f,n]; then we

have the following relation between the class κn and the theta element Θ(f
[p]
π′ ):

〈locp(κn),f
[p]
n 〉B = u ·Θ(f

[p]
π′ )mod�n

for some unit u ∈ On.

Returning to the sketch of the proof of Theorem 2, we choose a 1-admissible prime

p for f and consider the residual Selmer group SelF(pN−)(K,Tf,1) associated to f [p].

The assumption that the residual Selmer group SelF(N−)(K,Tf,1) is of dimension 1
implies that the dimension of SelF(pN−)(K,Tf,1) drops to 0. As a consequence of the

anticyclotomic Iwasawa main conjectures for f [p] over K proved in [35] and [9], we show
that the algebraic part of the special value L(f [p]/K, k2 ) is indivisible by � and thus

Θ(f
[p]
π′ ) is indivisible by �. Here we will rely on the recent work of Kim–Ota [26] to

compare the canonical period Ωcan
f [p] and another period Ωf [p],pN− that show up in the

specialisation formula relating Θ(f
[p]
π′ ) to L(f [p]/K, k2 ). Finally, the second reciprocity law

implies that locp(κ1) is indivisible and therefore κ1 is nonzero.

We finish this introduction with a few remarks on the related works. First of all, in

[40], the author proves the Kolyvagin conjecture without assuming the rank of the Selmer
group is 1. It is reasonable to expect that one can formulate and prove an analogue of the

Kolyvagin conjecture for Heegner cycles using the results of the present article as the first

step of an induction process. In this article, the derived classes of the Heegner cycles are
completely untouched. As pointed out by Francesc Castella, our results should also shed

light on Perrin–Riou’s main conjecture for generalised Heegner cycles formulated by [23,

Conjecture 5.1]. Compare the proof of [5, Proposition 3.7] towards Perrin–Riou’s original
main conjecture for Heegner points. In an unpublished work of Castella and Skinner, the

authors carried out a similar program for the big Heegner point in the sense of Howard,

and it should be interesting to compare their results with the results in this article.
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1.2. Notations and conventions

We will use common notations and conventions in algebraic number theory and algebraic

geometry. The cohomologies in this article will be understood as the étale cohomologies.

For a field K, we denote by Kac the separable closure of K and let GK := Gal(Kac/K)

be the absolute Galois group of K. We let A be the ring of adèles over Q and A(∞) be
the subring of finite adèles. For a prime p, A(∞,p) denotes the prime-to-p part of A(∞).

Let F be a local field with ring of integers OF and residue field k. We let IF be the

inertia subgroup of GF . Suppose M is a GF -module. Then the finite part H1
fin(F,M) of

H1(F,M) is defined to be H1(k,MIF ) and the singular quotient H1
sing(F,M) of H1(F,M)

is defined to be the quotient of H1(F,M) by the image of H1
fin(F,M).

We provide a list of quaternion algebras appearing in this article. Recall that N− is
square-free with even number of prime divisors and p,p′ are n-admissible primes.

• B′ is the indefinite quaternion algebra of discriminant N−.
• B is the definite quaternion algebra of discriminant pN−.
• B′′ is the indefinite quaternion algebra of discriminant pp′N−

2. Arithmetic level raising on Kuga–Sato varieties

2.1. Shimura curves and local system

Let N be a positive integer with a factorisation N =N+N− with N+ and N− coprime to

each other. We assume that N− is square-free and is a product of even number of primes.

Let B′ be the indefinite quaternion algebra over Q with discriminant N−. Let OB′ be a
maximal order of B′ and let OB′,N+ be the Eichler order of level N+ in OB′ . We define

G′ to be the algebraic group over Q given by B′× and let K ′
N+ be the open compact

subgroup of G′(A(∞)) defined by Ô×
B′,N+ . Let X =XB′

N+,N− be the Shimura curve over Q

with level K ′ =K ′
N+ . The complex points of this curve are given by the following double

coset:

X(C) =G′(Q)\H±×G′(A(∞))/K ′.

We consider the functor X on schemes over Z[1/N ] which gives the following moduli

problem. Let S be a test scheme over Z[1/N ]; then X(S) classifies the triple (A,ι,C) up

to isomorphism where

(1) A is an S -abelian scheme of relative dimension 2;

(2) ι :OB′ ↪→ EndS(A) is an embedding;

(3) C is an OB′ -stable locally cyclic subgroup of A[N+] of order (N+)2.

It is well-known this moduli problem is coarsely representable by a projective scheme X

over Z[1/N ] of relative dimension 1. Let l be a distinguished rational prime such that
l �N and k < l−1. We let Λ = Z/ln for some n≥ 1 or a finite extension of Zl. Then we

define L′
k−2(Λ) to be the local system given by the composite map

πalg
1 (X)→K ′ →O×

B′,l
∼=GL2(Zl)→GLk+1(Zl). (2.1)

https://doi.org/10.1017/S1474748022000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000068


2304 H. Wang

To rigidify the moduli problem X, we choose an auxiliary square-free integer d ≥ 5 that
is prime to Nl and add a full level-d structure to the above moduli problem; that is, we

add the following data to the above moduli problem: let

νd : (OB′/d)S →A[d] (2.2)

be an isomorphism of OB′ -stable group schemes. By forgetting the data νd, we have a
natural map cd : Xd → X which is Galois with covering group Gd := (OB′/d)×/{±1}.
Then this new moduli problem is representable by a projective scheme Xd over Z[1/Nd]

of relative dimension 1. We will set

K ′
d = {g = (gv)v ∈K ′ : gv ≡

(
1 0
0 1

)
mod v for all v | d}.

We will denote by Xd the base change of Xd to Q. Then the C-point of Xd is given by

Xd(C) =G′(Q)\H±×G′(A∞)/K ′
d.

Let πd :Ad →Xd be the universal abelian surface. The sheaf R1πd∗Λ over Xd is equipped

with an action of OB′
l
=M2(Zl). We then define the following local system on Xd:

L′
k−2(Λ) := Symk−2e ·R1πd∗Λ, Lk−2(Λ) := Symk−2e ·R1πd∗Λ

(
k−2

2

)

where e is the idempotent given by the matrix

(
1 0

0 0

)
in M2(Zl). There is another

construction of this local system in [2] whose cohomology is tied more closely to the

Kuga–Sato variety that we will introduce below. We briefly review this construction.

Define

L′
2(Λ) = ∩b∈B′ ker[R2πd∗Λ

b−Nrd(b)−−−−−−→R2πd∗Λ]. (2.3)

We define the weight k−2 local system by

L′
k−2(Λ) := ker[Symm

L′
2(Λ)

Δm−−→ Symm−2
L′
2(Λ)(−2)]

where m= k−2
2 and Δm is the Laplace defined by

Δm(x1, . . . ,xm) =
∑

1≤i,j≤m

(xi,xj)x1 · · · x̂i · · · x̂j · · ·xm

where ( , ) is the nondegenerate pairing

( , ) : L′
2(Λ)×L′

2(Λ)→ Λ(−2)

induced by the Poincare duality

( , ) :R2πd∗Λ×R2πd∗Λ→ Λ(−2).

Lemma 2.1. We have an isomorphism

L′
k−2(Λ)

∼= L′
k−2(Λ).
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Proof. This result is contained in the proof of [2, Theorem 5.8]. We briefly outline the

construction. First of all, there is an isomorphism between the rank 3 local system

L′
2(Λ)

∼= Sym2e ·R1πd∗Λ.

Then it is an easy exercise to show that Symk−2e ·R1πd∗Λ is the kernel of the map

SymmSym2e ·R1πd∗Λ
Δm−−→ Symm−2Sym2e ·R1πd∗Λ

with m= k−2
2 . The result follows from this.

Let k ≥ 2 and let πk,d :Wk,d → Xd be the Kuga–Sato variety of weight k over Xd. This
is defined by the k−2

2 -fold fibre product of Ad over Xd,

Wk,d :=Ad×Xd
· · ·×Xd

Ad.

We will denote by Wk,d the scheme Wk,d⊗Q. We define εd to be the projector given by

εd =
1

|Gd|
∑
g∈Gd

g.

Then the following relation clearly holds:

εdH
1(Xd⊗Qac,L′

k−2(Λ))
∼=H1(X⊗Qac,L′

k−2(Λ)).

The cohomology of the Kuga–Sato variety and the cohomology of the local system

L′
k−2(Λ) are closely related.

Lemma 2.2. There is a projector εk on Wk,d such that

εkH
∗(Wk,d⊗Qac,Λ)∼= εkH

k−1(Wk,d⊗Qac,Λ)∼=H1(Xd⊗Qac,L′
k−2(Λ)).

Proof. This follows from the discussions in [17, (67), Lemma 10.1].

2.2. Shimura sets and quaternionic modular forms

Let k≥ 2 be an even integer such that k < l−1. If A is a ring, let Lk−2(A) = Symk−2(A2)

be the set of homogeneous polynomials of degree k−2 with coefficients in A. We present

Lk−2(A) as

Lk−2(A) =
⊕

2−k
2 ≤r≤ k−2

2

A ·vr (2.4)

with vr :=X
k−2
2 −rY

k−2
2 +r. It gives rise to a unitary representation

ρk : GL2(A)→AutA(Lk−2(A))

such that ρk(g)P (X,Y ) = det−
(k−2)

2 (g)P ((X,Y )g) for any P (X,Y ) ∈ Lk(A). Let A be a
Z(l)-algebra; we define a pairing

〈 , 〉 : Lk−2(A)×Lk−2(A)→A

https://doi.org/10.1017/S1474748022000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000068


2306 H. Wang

by the following formula:〈∑
i

aivi,
∑
j

bjvj

〉
k−2

=
∑

2−k
2 ≤r≤ k−2

2

arb−r · (−1)
k−2
2 +r Γ

(
k
2 + r

)
Γ
(
k
2 − r

)
Γ(k−1)

.

For P1,P2 ∈ Lk−2(A), the pairing above has the following property:

〈ρk(g)P1,ρk(g)P2〉= 〈P1,P2〉.

Let p �N be a prime. Let B be the definite quaternion algebra of discriminant pN−. We
let G be the algebraic group over Q defined by B×. If U ⊂G(A(∞)) is an open compact

subgroup and A is a Zl-algebra, we define the space SB
k (U,A) of l -adic quaternionic

modular forms of weight k with values in A by

SB
k (U,A) = {h :G(A)→ Lk−2(A) : h(agu)

= ρk(u
−1
l )h(g) for a ∈B× and u ∈ U ·Z(A(∞))}.

In the case U corresponds to an Eichler order OB,N+ of level N+ in a fixed maximal order
OB , we will simply write the space SB

k (U,A) as SB
k (N+,A). We define the Atkin–Lehner

involution at q to be

τq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 1

−N+ 0

)
for q |N+;

J for q | ∞N−;

1 for q �N.

(2.5)

Then we put τN
+

=
∏

q τq as an element in G′(A). We will define an inner product on
this space

〈 , 〉B : SB
k (N+,A)×SB

k (N+,A)→A (2.6)

by the following formula:

〈f1,f2〉B =
∑

g∈Cl(N+)

1

|Γg|
〈f1(g),f2(gτN

+

)〉k (2.7)

where Γg = (B×∩gÔ×
B,N+g

−1Z(A(∞)))/Q× and Cl(N+) is a set of representatives of the

finite set

B×\B̂×/Ô×
B,N+Q̂

×.

2.3. Reductions of Shimura curves

Let p be a prime away from N. We will consider the base change of Xd, X to Zp2 and we

will denote them by the same notations. The special fibre of Xd and X will be denoted by

Xd and X. Let x= (A,ι,η̄) ∈Xd(F
ac
p ) be an Fac

p -point. Then the p-divisible group A[p∞]
of A can be written as A[p∞] =E[p∞]×E[p∞] for a p-divisible group E[p∞] associated to

an elliptic curve E and OB′ acts naturally via OB′ ⊗Zp =M2(Zp). Depending on whether

E[p∞] is ordinary or supersingular, we will accordingly call x ordinary or supersingular.
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Let Xss
d be the closed subscheme of Xd given by those points that are supersingular and

let Xord
d =Xd−Xss

d be its complement. We will refer to Xss
d as the supersingular locus

and to Xord
d as the ordinary locus. Let B =BpN− be the definite quaternion algebra with

discriminant pN− and OB be a maximal order. Note that we can naturally viewK
′(p)
d , the

prime-to-p part of K ′
d, as an open compact subgroup of G(A(∞,p)) = B×(A(∞,p)). The

scheme Xss
d is given by a finite set of points, and we have the following parametrisation

of it.

Lemma 2.3. We have a bijection

Xss
d
∼=B×(Q)\B×(A(∞))/K

′(p)
d O×

Bp
.

Proof. The lemma is well-known and can be proved using essentially the same method

of the classical work Deuring and Serre. See [11, Lemma 9], for example.

We will write

XB
d =B×(Q)\B×(A(∞))/K

′(p)
d O×

Bp
(2.8)

and refer to it as the Shimura set associated to the definite quaternion algebra B with
level Γ0(N

+)∩Γ(d). Therefore, the above lemma can be rephrased as a natural bijection

Xss
d
∼=XB

d .

Let OB′,pN+ be an Eichler order of level pN+ and let K ′(p) be the associated open

compact subgroup in G′(A∞). Similar to (2.2), we define the open compact subgroup

K ′
d(p) of G′(A∞) by adding a full level d -structure to K ′(p). We have the curve Xd(p)

over Q whose complex points are given by

Xd(p)(C) =G′(Q)\H±×G′(A∞)/K ′
d(p).

We define an integral model Xd(p) over Z[1/dN ] which represents the following

functor. Let S be a test scheme over Z[1/dN ]. Then Xd(p)(S) classifies the tuples
(A1,A2,ι1,ι2,πA,C,νd) up to isomorphism where

(1) Ai for i= 1,2 is an S -abelian scheme of relative dimension 2;

(2) ιi :OB′ ↪→ EndS(Ai) is an action of OB′ on EndS(Ai) for i= 1,2;

(3) πA :A1 →A2 is an isogeny of degree p that commutes with the action of OB′ ;

(4) C is an OB′ -stable locally cyclic subgroup of A[N+] of order N+2;

(5) νd : (OB′/d)S →A1[d] is an isomorphism of OB′ -stable group schemes.

By forgetting the data given by νd, we have a natural map cd(p) : Xd(p)→ X0(p) where

X0(p) is the coarse moduli space representing the above functor without the data νd.
Note that the isogeny πA induces an isomorphism between γd :A1[d]

∼−→A2[d] and γN+ :

A1[N
+]

∼−→A2[N
+]. Again we consider the base change of Xd(p) to Zp2 and use the same

symbol for this base change and denote its special fibre by Xd(p). Let X0(p) be the image
of Xd(p) under the map cd(p). We have the following descriptions of Xd(p) and X0(p).

Similarly, let (X,Xord,Xss) be the image of (Xd,X
ord
d ,Xss

d ) under the map cd. We will

call (Xord,Xss) the ordinary and supersingular locus of X.
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Lemma 2.4. The scheme Xd(p) consists of two irreducible components both isomorphic
to Xd which cross transversally at the supersingular locus Xss

d (p) of Xd(p), which in turn

can be identified with the supersingular locus of Xd. A similar statement holds for X0(p).

Proof. This is proved in [6, Theorem 4.7(v)].

Let π1 : Xd(p) → Xd be the morphism given by sending (A1,A2,πA,ι1,ι2,C,νd) to

(A1,ι1,C,νd) and π2 :Xd(p)→Xd be the morphism given by sending (A1,A2,πA,ι1,ι2,C,νd)
to

(A2,ι2,γN+(C),γd ◦νd).

Then we can define two closed immersions i1 :Xd →Xd(p) and i2 :Xd →Xd(p) as in the
proof of [6, Theorem 4.7(v)] such that(

π1 ◦ i1 π1 ◦ i2
π2 ◦ i1 π2 ◦ i2

)
=

(
id Frobp

S−1
p Frobp id

)
, (2.9)

where Sp corresponds to the central element in the spherical Hecke algebra of GL2(Qp).

We will need the following important result known as the ‘Ihara’s lemma’. This is

proved for the case of classical modular curves by Ribet [29] and Diamond–Taylor [11]
for Shimura curves.

Theorem 2.5 ([11, Theorem 4]). We have the following statements:

(1) The kernel of the pullback map

(π∗
1 +π∗

2) : H
1(Xd⊗Qac,Lk−2(Fl))⊕H1(Xd⊗Qac,Lk−2(Fl))

→H1(Xd(p)⊗Qac,Lk−2(Fl))

is Eisenstein.

(2) The cokernel of the pushforward map

(π1∗,π2∗) : H
1(Xd(p)⊗Qac,Lk−2(Fl))

→H1(Xd⊗Qac,Lk−2(Fl))⊕H1(Xd⊗Qac,Lk−2(Fl))

is Eisenstein.

Remark 2.6. Here the restriction on weights in the original treatment of [11] can be

improved by using the recent work of [24]. However, we will rely on the freeness result on

the Hecke module of quaternionic modular forms [8, Proposition 6.8], and this result is
proved under the weight restriction in the Fontaine–Laffaille range.

2.4. Review of weight spectral sequence

Let K be a Henselian discrete valuation field with valuation ring OK and residue field k of
characteristic p. We fix a uniformiser π of OK . We set S =Spec(OK), s=Spec(k) and η=

Spec(K). Let Kac be a separable closure of K and Kur the maximal unramified extension

of K in Kac. We denote by kac the residue field of Kur. Let IK = Gal(Kac/Kur) ⊂
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GK = Gal(Kac/K) be the inertia subgroup. Let l be a prime different from p. We set

tl : IK → Zl(1) to be the canonical surjection given by

σ �→ (σ(π1/lm)/π1/lm)m

for every σ ∈ IK .

Let X be a strictly semi-stable scheme over S purely of relative dimension n, which we
also assume to be proper. This means that X is locally of finite presentation and Zariski

locally étale over

Spec(OK [X1, . . . ,Xn]/(X1 · · ·Xr−π))

for some integer 1≤ r≤ n. We let Xk be the special fibre of X and Xkac be its base change

to kac. Let X =Xη be the generic fibre of X and XKur
be its base change to Kur. We have

the following natural maps i :Xk →X, j :X →X, ī :Xkac →XOKur
and j̄ :XKur

→XOKur
.

We have the nearby cycle sheaf given by

RqΨ(Λ) = ī∗Rq j̄∗Λ

and the nearby cycle complex given by

RΨ(Λ) = ī∗Rj̄∗Λ.

By proper base change theorem, we have H∗(Xkac,RΨ(Λ)) =H∗(XKac,Λ). We can regard

RΨ(Λ) as an object in the derived category D+(Xkac,Λ[IK ]) of sheaves of Λ-modules
with continuous IK-actions. Let D1, . . . ,Dm be the set of irreducible components of Xk.

For each index set I ⊂ {1, . . . ,m} of cardinality p, we set XI,k = ∩i∈IDi. This is a smooth

scheme of dimension n−p. For 1≤ p≤m−1, we define

X
(p)
k =

⊔
I⊂{1,...,m},Card(I)=p+1

XI,k

and let ap :X
(p)
k →Xk be the natural map, so we have ap∗Λ = ∧p+1a0∗Λ.

Let T be an element in IK such that tl(T ) is a generator of Zl(1); then T induces a
nilpotent operator T − 1 on RΨ(Λ). Let N = (T − 1)⊗ T̆ where T̆ ∈ Zl(−1) is the dual

of tl(T ). Then with respect to this N, we have the monodromy filtration M•RΨ(Λ) on

RΨ(Λ) characterised by

(1) MnRΨ(Λ) =RΨ(Λ) and M−n−1RΨ(Λ) = 0;

(2) N :RΨ(Λ)(1)→RΨ(Λ) sends MrRΨ(Λ)(1) into Mr−2RΨ(Λ) for r ∈ Z;

(3) Nr :GrMr RΨ(Λ)(r)→GrM−rRΨ(Λ) is an isomorphism.

The monodromy filtration induces the weight spectral sequence

Ep,q
1 =Hp+q(X⊗kac,GrM−pRΨ(Λ))⇒Hp+q(X⊗kac,RΨ(Λ)) = Hp+q(X⊗Kac,Λ).

(2.10)
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The E1-term of this spectral sequence can be made explicit by

Hp+q(X⊗kac,GrM−pRΨ(Λ)) =
⊕

i−j=−p,i≥0,j≥0

Hp+q−(i+j)(X
(i+j)
kac ,Λ(−i))

=
⊕

i≥max(0,−p)

Hq−2i(X
(p+2i)
kac ,Λ(−i)).

This spectral sequence is first introduced by Rapoport–Zink in [28] and thus is also known

as the Rapoport–Zink spectral sequence.
Let X be a relative curve over OK . Then we can immediately calculate that

GrM−1RΨ(Λ) = a1∗Λ[−1],

GrM0 RΨ(Λ) = a0∗Λ,

GrM1 RΨ(Λ) = a1∗Λ[−1](−1).

The E1-page of the weight spectral sequence is thus given by

2 H0(X⊗kac,a1∗Λ(−1)) H2(X⊗kac,a0∗Λ)

1 H1(X⊗kac,a0∗Λ)

0 H0(X⊗kac,a0∗Λ) H0(X⊗kac,a1∗Λ)

−1 0 1

and it clearly degenerates at the E2-page. We therefore have the monodromy filtration

0⊂E1,0
2 M1H

1(X⊗Kac,Λ)⊂E0,1
2 M0H

1(X⊗Kac,Λ)⊂E−1,2
2 M−1H

1(X⊗Kac,Λ)

= H1(X⊗Kac,Λ)

with the graded pieces given by

GrM−1H
1(X⊗Kac,Λ) = ker[H0(X⊗kac,a1∗Λ(−1))

τ−→H2(X⊗kac,a0∗Λ)]

GrM0 H1(X⊗Kac,Λ) = H1(X⊗kac,a0∗Λ)

GrM1 H1(X⊗KacΛ) = coker[H0(X⊗kac,a0∗Λ)
ρ−→H0(X⊗kac,a1∗Λ)]

(2.11)

where τ is the Gysin morphism and ρ is the restriction morphism. Note that the mon-

odromy action on H1(X⊗Kac,Λ(1)) can be understood using the following commutative

diagram:

H1(X⊗Kac,Λ(1)) ker[H0(X⊗kac,a1∗Λ)
τ−→H2(X⊗kac,a0∗Λ(1))]

H1(X⊗Kac,Λ) coker[H0(X⊗kac,a0∗Λ)
ρ−→H0(X⊗kac,a1∗Λ)].

N N
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In this case, we recover the Picard–Lefschetz formula if we identify H0(X⊗kac,a1∗Λ) with

the vanishing cycles
⊕

xRΦ(Λ)x on Xkac where x runs through the singular points X
(1)
kac

on Xkac . Let M be a GK -module over Λ; then we have the following exact sequence of

Galois cohomology groups:

0→H1
fin(K,M)→H1(K,M)

∂p−→H1
sing(K,M)→ 0 (2.12)

where H1
fin(K,M) = H1(k,MIK ) is called the unramified or finite part of the cohomology

group H1(K,M) and H1
sing(K,M) defined as the quotient of H1(K,M) by its finite part

is called the singular quotient of H1(K,M). The natural quotient map H1(K,M)
∂p−→

H1
sing(K,M) will be referred to as the singular quotient map. The element ∂p(x) will be

referred to as the singular residue of x for x ∈H1(K,M). Let M =Hn(XKac,Λ(r)) be the

rth twist of the middle degree cohomology of XKac . We need the following elementary
lemma.

Lemma 2.7. Let M=Hn(XKac,Λ(r)); then we have

H1
fin(K,M)∼= MIK

(Frobp−1)
, H1

sing(K,M)∼=
(
M(−1)

NM

)Gk

.

Proof. This is well-known. The details can be found, for example, in [20, Lemma 2.6].

For M = H1(XKac,Λ(1)), we can use the Picard–Lefschetz formula to calculate
H1

sing(K,M); more precisely, we have

H1
sing(K,M)∼=

(
M(−1)

NM

)Gk

∼=
(

coker[H0(X⊗kac,a0∗Λ)
ρ−→H0(X⊗kac,a1∗Λ)]

N ker[H0(X⊗kac,a1∗Λ)
τ−→H2(X⊗kac,a0∗Λ(1))]

)Gk

.

(2.13)

Composing the isomorphism (2.13) with τ , we obtain

H1
sing(K,M)∼=

(
coker[H0(X⊗kac,a0∗Λ)

ρ−→H0(X⊗kac,a1∗Λ)]

N ker[H0(X⊗kac,a1∗Λ)
τ−→H2(X⊗kac,a0∗Λ(1)))]

)Gk

∼= coker[H0(X⊗kac,a0∗Λ)
ρ−→H0(X⊗kac,a1∗Λ)

τ−→H2(X⊗kac,a0∗Λ(1))]
Gk .

(2.14)

Next we consider the curve Xd(p) over Spec(Zp2). Let Ad(p)→ Xd(p) be the universal

abelian surface over Xd(p). Then we define the Kuga–Sato variety of weight k by the
k−2
2 -fold fibre product of Ad(p) over Xd(p); that is,

Wk,d(p) :=Ad(p)×Xd(p) · · ·×Xd(p)Ad(p). (2.15)

Then there is a semi-stable model W̃k,d(p) constructed in [32, Lemma 7.1] and the action

of the projector εk extends naturally to the semi-stable model W̃k,d(p). Moreover, the
first page of the weight spectral sequence converging to

εkH
k−1

(
W̃k,d(p)⊗Qac

p ,Λ

(
k−2

2

))
=H1(Xd(p)⊗Qac

p ,Lk−2(Λ))
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takes the following form by [32, (8.10)]:

2 H0(Xd(p)Fac
p
,a1∗Lk−2(Λ)(−1)) H2(Xd(p)Fac

p
,a0∗Lk−2(Λ))

1 H1(Xd(p)Fac
p
,a0∗Lk−2(Λ))

0 H0(Xd(p)Fac
p
,a0∗Lk−2(Λ)) H0(Xd(p)Fac

p
,a1∗Lk−2(Λ))

−1 0 1
.

This means that the weight spectral sequence of the Kuga–Sato variety agrees with the

weight spectral sequence of the base curve with certain nontrivial coefficients. We have

to remark that the author works with a different Shimura curve in [32], but his method
adapts to our situation easily and gives the same result. By further applying the projector

εd, we obtain the following first page of the weight spectral sequence converging to

H1(X0(p)⊗Qac
p ,Lk−2(Λ))

2 H0(X0(p)Fac
p
,a1∗Lk−2(Λ)(−1)) H2(X0(p)Fac

p
,a0∗Lk−2(Λ))

1 H1(X0(p)Fac
p
,a0∗Lk−2(Λ))

0 H0(X0(p)Fac
p
,a0∗Lk−2(Λ)) H0(X0(p)Fac

p
,a1∗Lk−2(Λ))

−1 0 1
.

Note that we can make it explicit for the terms in the above spectral sequence:

(1) H0(X0(p)Fac
p
,a1∗Lk−2(Λ)) = H0(Xss

Fac
p
,Lk−2(Λ));

(2) H1(X0(p)Fac
p
,a0∗Lk−2(Λ)) = H1(XFac

p
,Lk−2(Λ))⊕H1(XFac

p
,Lk−2(Λ));

(3) H2(X0(p)Fac
p
,a0∗Lk−2(Λ)) is Eisenstein;

(4) H0(X0(p)Fac
p
,a0∗Lk−2(Λ)) is Eisenstein.

2.5. Unramified level raising on the Kuga–Sato varities

Let f ∈ Snew
k (N) be a newform of level Γ0(N) with even weight k and with Fourier

expansion f =
∑

an(f)q
n. We denote by E =Q(f) the Hecke field of f. Let λ be a place

of E over l and Eλ be the completion of E at λ. Let � be a uniformiser of the ring of

integers O :=OEλ
of Eλ and Fλ be its residue field. We will set On =O/�n. Let K be
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an imaginary quadratic field whose discriminant is −DK with DK > 0. We assume that
N admits a factorisation N =N+N− where N+ consists of prime factors that are split

in K and N− consists of prime factors that are inert in K. Let ρf,λ :GQ →GL2(Eλ) be

the λ-adic Galois representation attached to the form f characterised by the fact that
the trace of Frobenius at p � N agrees with ap(f) and the determinant of ρf,λ is εk−1

l

where εl is the l -adic cyclotomic character. We shall consider the twist ρ∗f,λ = ρf,λ(
2−k
2 ).

Let Vf,λ be the representation space for ρ∗f,λ. We normalise the construction of ρf,λ such

that it occurs in the cohomology H1(XQac,Lk−2(Eλ)(
k
2 )) and therefore ρ∗f,λ occurs in the

cohomology H1(XQac,Lk−2(Eλ)(1)). Let T= T(N+,N−) be the l -adic completion of the

integral Hecke algebra that acts faithfully on the subspace of Sk(N) consisting of forms

that are new at N− and let T[p] = T(N+,pN−) be the l -adic completion of the integral
Hecke algebra that acts faithfully on the subspace of Sk(pN) consisting of modular forms

that are new at pN−. The modular form f gives rise to a homomorphism φf : T → O
corresponding to the Hecke eigensystem of f. For n≥ 1, we define φf,n : T→On :=O/�n

to be the natural reduction of φf by �n. We will define If,n to be the kernel of the
morphism φf,n and by mf the unique maximal ideal of T containing If,n. We fix a GQ-

stable lattice Tf,λ in Vf,λ and denote by Tf,n the reduction Tf,λmod�n. We will always

assume that the residual Galois representation ρ̄f,λ satisfies the following assumption.

Assumption 5 (CR�). The residual Galois representation ρ̄f,λ satisfies the following

assumptions:

(1) k < l−1 and |(F×
l )

k−1|> 5;

(2) ρ̄f,λ is absolutely irreducible when restricted to GQ(
√
p∗) where p∗ = (−1)

p−1
2 p;

(3) If q |N− and q ≡±1mod l, then ρ̄f,λ is ramified at q ;

(4) If q ||N+ and q ≡ 1mod l, then ρ̄f,λ is ramified at q ;

(5) The Artin conductor Nρ̄ of ρ̄f,λ is prime to N/Nρ̄;

(6) There is a place q ||N such that ρ̄f,λ is ramified at q.

We will now prove a level-raising result for the modular form f. First, we recall the

following notion of n-admissible prime for f.

Definition 2.8. We say a prime p is n-admissible for f if

(1) p �Nl;

(2) p is an inert prime in K ;

(3) l does not divide p2−1;

(4) �n divides p
k
2 +p

k−2
2 − εpap(f) with εp ∈ {±1}.

We consider the special fibre W k,d of Wk,d,Zp2
and define its supersingular locus

by W ss
k,d := π−1

k,d(X
ss
d ). Similarly, we define the supersingular locus of Wk,d(p) by

W ss
k,d(p) := π−1

k,d(p)(X
ss
d (p)). We will consider the following ordinary-supersingular excision

exact sequence
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H
k
2

(
W k,d,Fac

p
,Λ

(
k

2

))
→H

k
2

(
W k,d,Fac

p
−W ss

k,d,Fac
p
,Λ

(
k

2

))
→H

k
2+1

W ss
k,d,Fac

p

(
W k,d,Fac

p
,Λ

(
k

2

))
.

Apply the projector εk and localise at the maximal ideal mf ; we in fact obtain an exact
sequence

0→H1(Xd,Fac
p
,Lk−2(Λ)(1))mf

→H1(Xord
d,Fac

p
,Lk−2(Λ)(1))mf

→H0(Xss
d,Fac

p
,Lk−2(Λ))mf

→ 0.

This follows from Lemma 2.2 and the following equations:

(1) H
k
2+1

W ss
k,d

(Wk,d⊗Fac
p ,Λ(k2 ))

∼=
⊕

x∈Xss
d
H

k−2
2 (A

k−2
2

d,x ,Λ(k−2
2 ))

(2)
⊕

x∈Xss
d
εkH

k−2
2 (A

k−2
2

d,x ,Λ(k−2
2 ))∼=

⊕
x∈Xss

d
Lk−2(Λ)

by the definition of εk. Here Ad,x is the fibre of πd : Ad → Xd above x. The ordinary-
supersingular excision exact sequence induces the following connecting homomorphism:

Φd : H
0(Xss

d,Fac
p
,Lk−2(Λ))

GF
p2

mf
→H1(Fp2,H1(Xd,Fac

p
,Lk−2(Λ)(1))mf

).

By applying the projector εd to the above map, we have

Φ : H0(Xss
Fac

p
,Lk−2(Λ))

GF
p2

mf
→H1(Fp2,H1(XFac

p
,Lk−2(Λ)(1))mf

).

By further taking the quotient by If,n, we have

Φn : H0(Xss
Fac

p
,Lk−2(Λ))

GF
p2

/If,n
→H1(Fp2,H1(XFac

p
,Lk−2(Λ)(1))/If,n).

The following theorem is known as the arithmetic level raising for the Kuga–Sato variety.

Theorem 2.9. Let p be an n-admissible prime for f. We assume that the residual Galois
representation ρ̄f,λ satisfies (CR�). Then we have the following statements:

(1) There exists a morphism φ
[p]
f,n : T[p] →On which agrees with φf,n : T→On for all

of the Hecke operators away from p and sends Up to εpp
k−2
2 .

(2) Let I
[p]
f,n be the kernel of the morphism φ

[p]
f,n and m

[p]
f be the maximal ideal containing

If,n. When n = 1, there exists a modular form f [p] ∈ Snew
k (pN) such that the

morphism φ
[p]
f,1 lifts to f [p].

(3) The Hecke module H1(X⊗Qac,Lk−2(O)(1))mf
is free of rank 2 over Tmf

and the

Hecke module SB
k (N+,O)

m
[p]
f

is free of rank 1 over T
[p]

m
[p]
f

.

(4) We have a canonical isomorphism

Φn : H0(Xss
Fac

p
,Lk−2(O))

GF
p2

/If,n

∼=−→H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n) (2.16)

which can be identified with an isomorphism

Φn : SB
k (N+,O)

/I
[p]
f,n

∼=−→H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n). (2.17)
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Remark 2.10. We will refer to this theorem as the unramified arithmetic level raising
for the Kuga–Sato varieties. It addresses a question raised in the introduction of [9] about

the surjectivity of the Abel–Jacobi map restricted to the supersingular locus. The proof

is inspired by lectures of Liang Xiao [38] at the Morningside center; see also [21].

Proof of Theorem 2.9. We first proceed to show that Φn is surjective. We consider

the localised weight spectral sequence for H1(X0(p)⊗Qac
p ,Lk−2(O)(1))mf

and its induced

monodromy filtration:

0⊂E1,0
2,mf M1H

1(X0(p)⊗Qac,Lk−2(O)(1))mf
⊂E0,1

2,mf M0H
1(X0(p)⊗Qac,Lk−2(O)(1))mf

⊂E−1,2
2,mf M−1H

1(X0(p)⊗Qac,Lk−2(O)(1))mf
.

By (2.11), we have

E1,0
2,mf

= ker[H0(X0(p)Fac
p
,a1∗Lk−2(O))

τ−→H2(X0(p)Fac
p
,a0∗Lk−2(O)(1))]mf

=H0(Xss
Fac

p
,Lk−2(O)(1))mf

;

E0,1
2,mf

=H1(X0(p)Fac
p
,a0∗Lk−2(O)(1))mf

=H1(XFac
p
,Lk−2(O)(1))⊕2

mf
;

E−1,2
2,mf

= coker[H0(X0(p)Fac
p
,a0∗Lk−2(O)(1))

ρ−→H0(X0(p)Fac
p
,a1∗Lk−2(O)(1))]mf

=H0(Xss
Fac

p
,Lk−2(O))mf

.

Next we consider the pushforward map

H1(X0(p)⊗Qac
p ,Lk−2(O)(1))mf

(π1∗,π2∗)−−−−−−→H1(X⊗Qac
p ,Lk−2(O)(1))⊕2

mf
.

This is surjective by ‘Ihara’s lemma’, Theorem 2.5 and Nakayma’s lemma. It is well-known

that the composite

E1,0
2,mf

↪→H1(X0(p)⊗Qac
p ,Lk−2(O)(1))mf

(π1∗,π2∗)−−−−−−→H1(X⊗Qac
p ,Lk−2(O)(1))⊕2

mf

is zero. Therefore, we obtain the following commutative diagram where we have omitted

the coefficient Lk−2(O) in all of the terms:

H1(X⊗Fac
p )(1)⊕2

mf
H1(X0(p)⊗Qac

p )(1)mf
H0(Xss

Fac
p
)mf

H1(X⊗Qac
p )(1)⊕2

mf
H1(X⊗Qac

p )(1)⊕2
mf

coker(∇)

(i1∗,i2∗)

∼= (π1∗,π2∗) Φ′

∇

.

Here the top row of the diagram is the monodromy filtration of H1(X⊗Qac
p ,Lk−2(O)(1))mf

which is exact on the right. The map Φ′ is the one naturally induced by (π1∗,π2∗). The
map ∇ is by definition given by the composite of (π1∗,π2∗) and (i1∗,i2∗). By (2.9), the

map ∇ is given by the matrix (
id Frobp

Frobp id

)
,
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since the central element Sp has the trivial action. It then follows that we have an
isomorphism

coker(∇) = H1(Fp2,H1(X⊗Qac
p ,Lk−2(O)(1))mf

).

Since (π1∗,π2∗) is surjective, the map Φ′ is surjective as well. Let Φ′
n be the reduction

of Φ′ modulo If,n. Therefore, we are left to show that Φ′
n agrees with the map Φn. To

show this, we rely on some results proved in [16]. More precisely, the natural quotient

map induced by the monodromy filtration

H1(X0(p)⊗Qac
p ,Lk−2(O)(1))mf

→H0(Xss
Fac

p
,Lk−2(O))mf

factors through H1(Xord
Fac

p
,Lk−2(O)):

H1(X0(p)⊗Qac
p ,Lk−2(O)(1))mf

i∗1−→H1(Xord
Fac

p
,Lk−2(O)(1))mf

→H0(Xss
Fac

p
,Lk−2(O))mf

→ 0

where the map H1(Xord
Fac

p
,Lk−2(O)(1))mf

→H0(Xss
Fac

p
,Lk−2(O))mf

comes from the natural

excision exact sequence for H1(X⊗Fac
p ,Lk−2(O)(1))mf

and i∗1 is the pullback of the

cohomology of nearby cycles

H1(X0(p)Fac
p
,RΨ(Lk−2(O))(1))mf

i∗1−→H1(Xord
Fac

p
,RΨ(Lk−2(O))(1))mf

.

For the proof of these facts, see [16, Proposition 1.3], which extends to nontrivial

coefficients. Let x ∈ H0(Xss
Fac

p
,Lk−2(O))mf

and let x̃ be a preimage of x in

H1(Xord
Fac

p
,Lk−2(O)(1))mf

. Since i∗1i1∗ is the identity map, we can take i1∗(x̃) as a preimage

of x̃ in

H1(X0(p)Fac
p
,RΨ(Lk−2(O))(1))mf

.

Therefore, for x ∈ H0(Xss
Fac

p
,Lk−2(O)), we have Φ′(x) = (π1∗i1∗(x̃),π2∗i2∗(x̃)) =

(x̃,Frobp(x̃)). Since the natural quotient map

H1(X⊗Qac
p ,Lk−2(O)(1))mf

⊕H1(X⊗Qac
p ,Lk−2(O)(1))mf

→ coker(∇)

is given by sending

(x,y) ∈H1(X⊗Qac
p ,Lk−2(O)(1))mf

⊕H1(X⊗Qac
p ,Lk−2(O)(1))mf

to (x−Frobp(y)) in light of the definition of ∇, we have Φ′(x) = (1−Frob2p)x̃. But this is

precisely the definition of Φ(x). Note that we have an isomorphism

Tr
f,n

∼=H1(X⊗Qac,Lk−2(O)(1))/If,n

for some positive integer r. By Definition 2.8 (3), we have Tf,n|GQp
∼=On(1)⊕On. Then

it follows that

H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n)

∼=H1(Fp2,On(1)⊕On)
r.
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Therefore, Frobp acts by εp on H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n). By [30, Proposition

3.8], which also applies to our more general setting, we know that Frobp acts by Up on Xss

and thus by p
2−k
2 Up on H0(Xss,Lk−2(O)). From the above discussion and by identifying

SB
k (N+,O) with H0(Xss

Fac
p
,Lk−2(O)), we conclude that we have a surjective morphism

Φn : SB
k (N+,O)�H1(Fp2,H1(XFac

p
,Lk−2(O)(1))/If,n)

∼=H1(Fp2,On(1)⊕On)
r

∼=Or
n.

This gives us the desired morphism φ
[p]
f,n : T[p] →On by projecting to any copy of Or

n in

the above equation. This finishes the proof of (1).

The statement in (2) follows from the main results of [12, Theorem 2] with trivial
modification to cover the higher weight case. Note that when n ≥ 2, this lift may not

exist.

The statement in (3) follows from [8, Proposition 6.8] and the slight modifica-
tion in [7, Proposition 5.9], which replaces the ordinary local condition at l by

the more general local conditions given by Fontaine–Laffaille theory. It follows then

SB
k (N+,O)/I

[p]
f,n is of rank 1 over On. Since we have a surjective map Φn : SB

k (N+,O)�
H1(Fp2,H1(XFac

p
,Lk−2(O)(1))/If,n), the rank of H1(XFac

p
,Lk−2(O)(1))/If,n has to be 2.

The statement in (4) follows from the previous discussions. More precisely, by (3), the
module SB

k (N+,O)
/I

[p]
f,n

is free of rank 1 over On and we have a surjective map Φn. This

concludes the proof of this theorem.

2.6. Ramified level raising on Kuga–Sato varieties

Let B′′ be the indefinite quaternion algebra with discriminant pp′N−. Let OB′′,N+ be an

Eichler order of level N+ contained in a fixed maximal order OB′′ . Then we define the
Shimura curve X ′′ =XB′′

N+,pp′N− the same way as we define X =XB′

N+,N− . Then we define

an integral model X′′ of X ′′ over Zp′ . For a Zp′ -scheme S, X′′ is the set of triples (A,ι,C)

where

(1) A is an S -abelian scheme of relative dimension 2;

(2) ι :OB′′ ↪→EndS(A) is an embedding which is special in the sense of [4, pg. 131-132];

(3) C is an OB′′ -stable locally cyclic subgroup of A[N+] of order N+2.

This moduli problem is coarsely represented by a projective scheme X′′ of relative

dimension 1 over Zp′ . We can similarly rigidify the moduli problem by adding a full

level-d structure for a square-free positive integer d with (d,pp′N) = 1 as we did in (2.2).
Then we will write the resulting moduli problem by X′′

d . The formal completion of X′′
d

along the special fibre at p′ admits the Cerednick–Drinfeld uniformisation after base

change to Zp′2 . The Cerednick–Drinfeld uniformisation theorem asserts that the X′′∧
d can

be uniformised by the formal scheme M, which is a disjoint union of the Drinfeld upper

half-planes

X′′∧
d

∼−→G(Q)\M×G(A(∞,p′))/Kp′

d . (2.18)
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Here K is the open compact subgroup given by the Eichler order OB,N+ and Kd is given
by

Kd = {g = (gv)v ∈K : gv ≡
(
1 0

0 1

)
mod v for all v | d}.

Let X
′′
d be the special fibre of X′′

d . Then we have the following proposition.

Proposition 2.11. We have the following descriptions of the scheme X
′′
d :

(1) The scheme X
′′
d is a union of P1-bundles over Shimura sets

X
′′
d =P1(XB

+ )∪P1(XB
− )

where both XB
+ and XB

− are isomorphic to the Shimura set XB
d as in (2.8).

(2) The intersection points of the two P1-bundles P1(XB
+ ) and P1(XB

− ) are given by

P1(XB
+ )∩P1(XB

− ) =XB
d (p).

This also can be identified with the set of singular points on X
′′
d . A similar statement

holds for the curve X
′′
replacing XB

d by XB and XB
d (p) by XB

0 (p).

Proof. This is well-known. See [36, Proposition 3.2] for an exposition of this result.

Let π′′
k,d : W ′′

k,d → X′′
d be the Kuga–Sato variety defined similarly as in (2.15). Then

there is a semi-stable model W̃ ′′
k,d constructed in [32, Lemma 7.1] and the action of the

projector εk extends naturally to the semi-stable model W̃ ′′
k,d. Moreover, the first page of

the weight spectral sequence converges to εkH
k−1(W̃ ′′

k,d⊗Qac
p′ ,Λ)=H1(X′′

d⊗Qac
p′ ,Lk−2(Λ))

and takes the following form by [32, (8.10)]

2 H0(X′′
d ⊗Fac

p′ ,a1∗Lk−2(Λ)(−1)) H2(X′′
d ⊗Fac

p′ ,a0∗Lk−2(Λ))

1 H1(X′′
d ⊗Fac

p′ ,a0∗Lk−2(Λ))

0 H0(X′′
d ⊗Fac

p′ ,a0∗Lk−2(Λ)) H0(X′′
d ⊗Fac

p′ ,a1∗Lk−2(Λ))

−1 0 1
.

This means that the weight spectral sequence of the Kuga–Sato variety agrees with

the weight spectral sequence of the base curve with certain nontrivial coefficients. By

further applying the projector εd, we obtain the first page of the weight spectral sequence
converging to

H1(X′′⊗Qac
p′ ,Lk−2(Λ)) (2.19)
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2 H0(X′′⊗Fac
p′ ,a1∗Lk−2(Λ)(−1)) H2(X′′⊗Fac

p′ ,a0∗Lk−2(Λ))

1 H1(X′′⊗Fac
p′ ,a0∗Lk−2(Λ))

0 H0(X′′⊗Fac
p′ ,a0∗Lk−2(Λ)) H0(X′′⊗Fac

p′ ,a1∗Lk−2(Λ))

−1 0 1
.

Note that we can make it explicit for the terms in the above spectral sequence:

(1) H0(X′′⊗Fac
p′ ,a1∗Lk−2(Λ)) = H0(XB

0 (p)Fac
p′
,Lk−2(Λ));

(2) H1(X′′⊗Fac
p′ ,a0∗Lk−2(Λ)) = 0;

(3) H0(X′′⊗Fac
p′ ,a0∗Lk−2(Λ)) = H0(XB

Fac
p′
,Lk−2(Λ))

⊕2.

Let T[pp′] be the l -adic completion of the integral Hecke algebra that acts faithfully on

the subspace of Sk(pp
′N) consisting of forms that are new at pp′N−.

Theorem 2.12. Let (p,p′) be a pair of distinct n-admissible primes for f. We assume
that the residual Galois representation ρ̄f,λ satisfies the assumption (CR�). Then we have

the following statements:

(1) There exists a surjective homomorphism φ
[pp′]
f,n : T[pp′] → On such that φ

[pp′]
f,n

agrees with φf,n at all Hecke operators away from pp′ and sends (Up,Up′) to

(εpp
k−2
2 ,εp′p′

k−2
2 ). We will denote by I

[pp′]
f,n the kernel of φ

[pp′]
f,n .

(2) We have an isomorphism of On-modules of rank 1

Ξn : SB
k (N+,O)/I

[p]
f,n

∼=−→H1
sing(Qp′2,H1(X′′⊗Qac

p′ ,Lk−2(O)(1))/I
[pp′]
f,n ).

Proof. Following the formulas proved in (2.14), we have that

H1
sing(Qp′2,H1(X′′⊗Qac

p′ ,Lk−2(O)(1))) (2.20)

is isomorphic to

coker[H0(X ′′
Fac

p′
,a0∗Lk−2(O))

ρ−→H0(X ′′
Fac

p′
,a1∗Lk−2(O))

τ−→H2(X ′′
Fac

p′
,a0∗Lk−2(O(1)))]

GF
p′2 .

(2.21)

Here we have

H0(X ′′
Fac

p′
,a0∗Lk−2(O)) = H0(XB

Fac
p′
,Lk−2(O))⊕2

and we can identify it with the space SB
k (N+,O)⊕2. Similarly, under the Poincare duality,

we can also identify

H2(X ′′
Fac

p′
,a0∗Lk−2(O)(1)) = H2(P1(XB

Fac
p′
),Lk−2(O)(1))⊕2
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with SB
k (N+,O)⊕2. The space H0(X ′′

Fac
p′
,a1∗Lk−2(O)) can be identified with SB

k (pN+,O).

Under these identifications, the composition

H0(X ′′
Fac

p′
,a0∗Lk−2(O))

ρ−→H0(X ′′
Fac

p′
,a1∗Lk−2(O))

τ−→H2(X ′′
Fac

p′
,a0∗Lk−2(O(1)))

is given by the intersection matrix(
−p′

k−2
2 (p′+1) Tp′

Tp′ −p′
k−2
2 (p′+1)

)
,

which we will also denote by ∇. Since p,p′ are n-admissible for f, the module

coker

[
SB
k (N+,O)⊕2

/I
[p]
f,n

∇−→ SB
k (N+,O)⊕2

/I
[p]
f,n)

]
is of rank 1 over On and is isomorphic to SB

k (N+,O)
/I

[p]
f,n

. Note here the isomorphism

between

coker

[
SB
k (N+,O)⊕2

/I
[p]
f,n

∇−→ SB
k (N+,O)⊕2

/I
[p]
f,n)

]
and SB

k (N+,O)⊕2

/I
[p]
f,n

is induced by the map (x,y) �→ 1
2 (x+εp′y) for (x,y)∈SB

k (N+,O)⊕2

/I
[p]
f,n

.

By [1, Theorem 5.8] and [9, §3.5] adapted to the higher weight case, the natural Up-action

on

H2(X ′′
Fac

p′
,a0∗Lk−2(O)(1))∼= SB

k (N+,O)⊕2

is given by (x,y) �→ (−p′
k
2 y,p′

k−2
2 x+Tp′y). We consider the automorphism

δ : SB
k (N+,O)⊕2 → SB

k (N+,O)⊕2

given by (x,y) �→ (p′
k−2
2 x+Tp′y,p′

k−2
2 y). Then a quick calculation gives us that ∇◦ δ =

p′−(k−2)U2
p′ −1. This means that the quotient

SB
k (N+,O)⊕2

(I
[p]
f,n,U

2
p′ −p′k−2)

∼= coker

[
SB
k (N+,O)⊕2

/I
[p]
f,n

∇−→ SB
k (N+,O)⊕2

/I
[p]
f,n)

]

is of rank 1. Since p′ is n-admissible for f, we see immediately that Up′ + εp′p′
k−2
2 is

invertible on SB
k (N+,O)⊕2

/I
[p′]
f,n

. Therefore, we have

SB
k (N+,O)⊕2

(I
[p]
f,n,U

2
p′ −p′k−2)

∼= SB
k (N+,O)⊕2

(I
[p]
f,n,Up′ − εp′p′

k−2
2 )

and the latter quotient is of rank 1 over On. Then the action of T[pp′] on this rank 1

quotient gives the desired morphism φ
[pp′]
f,n : T[pp′] → On. This finishes the proof of the

part (1). Part (2) follows directly from part (1) using the isomorphism between (2.20)

and (2.21).
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Remark 2.13. We remark that a similar ramified arithmetic level-raising theorem was
first proved by Chida in [7, Theorem 5.11].

3. Heegner cycles over Shimura curves

3.1. Heegner cycles over Shimura curves

Let K be an imaginary quadratic field with discriminant −DK < 0 and set δK =
√
−DK .

Let z �→ z̄ be the complex conjugate action on K. We define θ by

θ =
D′+ δK

2
, D′ =

{
DK if 2 �DK ;

DK/2 if 2 |DK .

We always fix a positive integer N such that N = N+N− with N+ consists of prime
factors that are split in K, while N− consists of prime factors that are inert in K. We will

assume the following generalised Heegner hypothesis:

N− is square-free and consists of even number of prime factors that are inert in K.
(Heeg)

Let B′ be the indefinite quaternion algebra of discriminant N−. We can regard K as a

subalgebra of B′ via an embedding ι : K ↪→ B′. Let m be a positive integer such that

(m,Nl) = 1. We will chose an element J such that

B′ =K⊕K ·J (3.1)

and satisfies the following properties:

(1) J2 = β ∈Q× with β < 0 and Jt= t̄J for all t ∈K;

(2) β ∈ (Z×
q )

2 for all q |N+ and β ∈ Z×
q for q |DK .

We define ςq ∈G′(Qq) as follows:

ςq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if q �mN+;

δ−1

(
θ θ̄

1 1

)
if q = qq̄ is split with q |N+;(

qn 0

0 1

)
if q |m and q is inert in K with n= ordq(m);(

1 q−n

0 1

)
if q |m and q is split in K with n= ordq(m),

(3.2)

and we define the element ς ∈G′(A(∞)) by ς =
∏

q ςq.
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Recall that we have defined the Atkin–Lehner involution at q to be

τq =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
0 1

−N+ 0

)
for q |N+;

J for q | ∞N−;

1 for q �N.

(3.3)

We abuse the notation and put τN
+

=
∏

q finite τq as an element in G′(A(∞)). Next we

define the set of CM points on X. We define z′ to be the fixed point in H± by ι∞(K)⊂
GL2(R). We define the set of CM points on the Shimura curve X by

CMK(X) = {[z′,b′]C : b′ ∈G′(A(∞))}.

Let recK : K̂× → Gal(Kab/K) be the geometrically normalised reciprocity law. The

Shimura reciprocity law says that

recK(a)[z′,b′] = [z′,ι(a)b′].

Let m be a positive integer that is prime to N. Let OK,m = Z+mOK be the order of K

with conductor m. Let Gm =K×\K̂×/Ô×
K,m be the Galois group of the ring class field

Km of conductor m over K. Let a ∈ K̂× and p be a prime which is inert in K ; then we

define the CM point of level m on X by

Pm(a) = [z′,a(p)ςτN
+

]C ∈X(C). (3.4)

We set Pm := Pm(1) and call this the Heegner point of level m. By definition, this gives a

point in X(Km) which has the following moduli interpretation. The point Pm corresponds

to a triple (Am,ιm,Cm) such that End(Am,ιm) is isomorphic to OK,m. We let (P̃m(a),P̃m)
be an arbitrary lift of (Pm(a),Pm) in Xd(Km).

We define Heegner cycles over Xd and X following [25] in the classical modular curve

case and [17], [7] in the Shimura curve case. Consider the point P̃m = (Am,ιm,Cm,νm) and
the Neron–Severi group NS(Am) of Am. There is a natural action of B′× on NS(Am)Q
given by L · b = ιm(b)∗L. Since Am admits an action of OB′ ⊗OK,m

∼= M2(OK,m), it is

clear that Am is isomorphic to a product Em×Em with Em an elliptic curve with CM

by OK,m. Let Γm be the graph of m
√
−DK in Am = Em×Em. Then we define Zm to

be the image of the divisor given by [Γm]− [Em× 0]−mDK [0×Em] in NS(Am). It lies

in the rank 1 submodule of NS(Am) generated by 〈[0×Em],[Em× 0],Δm〉 where Δm is

the diagonal. Let ym ∈NS(Am)⊗Zl be the class representing m−1Zm. This is the unique
class up to sign satisfying

(1) ιm(b)∗(ym) = Nrd(b)ym for any b ∈B′;

(2) The self-intersection number of ym is 2DK .

Taking the k−2
2 th exterior product of the element ε2ym ∈ ε2NS(Am)⊗Zl

∼= ε2CH
1(Am)⊗

Zl, we obtain an element εky
k−2
2

m ∈ εkCH
k−2
2 (A

k−2
2

m )⊗Zl. Denote by the embedding jk,d :
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A
k−2
2

m ↪→Wk,d which is of codimension 1. We have the pushforward map

εkCH
k−2
2 (A

k−2
2

m )⊗Zl
jk,d∗−−−→ εkCH

k
2 (Wk,d)⊗Zl. (3.5)

Then we define the Heegner cycle Ym,k in εkCH
k
2 (Wk,d⊗Km)⊗Zl by

Ym,k := jk,d∗(εky
k−2
2

m ). (3.6)

Next we consider the Abel–Jacobi map for Xd and the local system Lk−2:

AJk,d : εkCH
k
2 (Wk,d⊗Km)⊗Zl →H1

(
Km,εkH

k−1

(
Wk,d⊗Qac,Zl

(
k

2

)))
∼=H1(Km,H1(Xd⊗Qac,Lk−2(Zl)(1))).

We can further apply the projector εd, and it induces the following Abel–Jacobi map for

X and the local system Lk−2:

AJk : εdεkCH
k
2 (Wk,d⊗Km)⊗Zl →H1(Km,H1(X⊗Qac,Lk−2(Zl)(1))).

Finally, we compose this map with the canonical map from H1(X⊗Qac,Lk−2(Zl)(1)) to

H1(X⊗Qac,Lk−2(Zl)(1))mf
⊗Tmf

O ∼=Tf,λ

where the tensor product is induced by φf : Tmf
→O. We therefore have the following

Abel–Jacobi map for the representation Tf,λ:

AJf,k : εdεkCH
k
2 (Wk,d⊗Km)⊗Zl →H1(Km,Tf,λ). (3.7)

We will define the level m Heegner cycle class by

κ(m) := AJf,k(εdεkYm,k) ∈H1(Km,Tf,λ).

We will refer to the following class simply as the Heegner cycle class :

κ := CorK1/Kκ(1) ∈H1(K,Tf,λ). (3.8)

For n≥ 1, we define similarly the Abel–Jacobi map for the representation Tf,n:

AJk,n : εdεkCH
k
2 (Wk,d⊗Km)⊗Zl →H1(Km,Tf,n). (3.9)

Reducing the classes κ(m) and κ modulo �n, we define

κn(m) ∈H1(Km,Tf,n);

κn ∈H1(K,Tf,n).
(3.10)

3.2. Theta element and special value formula

Let p be a prime away from N and consider the definite quaternion algebra B over Q

with discriminant pN−. We denote by G the algebraic group over Q given by B×. We
will choose the element J ′ as in (3.1) such that B =K⊕K ·J ′. For each a ∈ K̂, we define

the Gross points of conductor m associated to K by

xm(a) := a · ς ∈G(A). (3.11)
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Recall that we have the fixed embedding ιl :Q
ac ↪→Cl and it induces the place l of K

and the place λ of Qac. We define an embedding

iK :B →M2(K), a+ bJ ′ �→
(
a bβ

b̄ ā

)
, a,b ∈K (3.12)

and let iC := ι∞ ◦ iK and iKl
= ιl ◦ iKbe the composition. Let ρk,∞ be the representation

ρk,∞ :G(R)
iC−→GL2(C)→AutCLk−2(C). (3.13)

Then C ·vr is the line on which ρk,∞(t) acts by (t̄/t)r for t ∈ (K⊗C)×. For a K -algebra

A we define the space SB
k (U,A) of modular forms on B of weight k and level U to be

{h :G(A(∞))→ Lk−2(A) : h(αgu) = ρk,∞(α)h(g) for α ∈G(Q) and u ∈ U}.

Let SB
k (C) = lim−→U

SB
k (U,C) and A(G) be the space of automorphic forms on G(A). We

define a morphism

Ψ : Lk−2(C)⊗SB
k (C)→A(G)

by the following recipe:

Ψ(v⊗f)(g) := 〈ρk,∞(g∞)v,f(g∞)〉k−2

for v ∈ Lk−2(C). Let π be the automorphic representation of GL2(A) corresponding to
f [p] and π′ be the automorphic representation of G(A) that corresponds to π via the

Jacquet–Langlands correspondence. Let f
[p]
π′ be a generator of SB(N+,C)[π′

f ]. We define

an automorphic form in A(G) by

ϕ
[p]
π′ := Ψ(v∗

0 ⊗f
[p]
π′ ) for v

∗
0 =D

k−2
2

K v0. (3.14)

Let ρk,l to be the representation defined by

ρk,l :G(Q)
iKl−−→GL2(Cl)→AutCl

Lk−2(Cl). (3.15)

It is easy to check that ρk and ρk,l are compatible in the sense that

ρk,l(g) = ρk(γlil(g)γ
−1
l

), where γl :=

(√
β −

√
βθ̄

−1 θ

)
∈GL2(Kl). (3.16)

If l is invertible in A, then we in fact have an isomorphism

SB
k (N

+,A)
∼=−→ SB

k (N+,A), h �→ ĥ(g) := ρk(γ
−1
l

)ρk,l(g
−1
l )h(g) (3.17)

and we say ĥ is an l-adic avatar of h. We will say f
[p]
π′ is l -adically normalised if f̂

[p]
π′ is a

generator of the rank 1 module SB
k (N,O)[π′

f ] := SB
k (N,O)∩SB

k (N,Cl)[π
′
f ]. We can now

define the theta element associated to f and K. Let f
[p]
π′ be λ-adically normalised. We

define the theta element Θm(f
[p]
π′ ) ∈ O[Gm] by

Θm(f
[p]
π′ ) =

∑
σ∈Gm

ϕ
[p]
π′ (σ ·xm(1))[σ]. (3.18)
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We will denote the theta element simply by Θ(f
[p]
π′ ) if m = 1. The following theorem

relates the central critical value of the L-function of f [p] over K twisted by a ring class
character χ of Gm to the theta element above.

Theorem 3.1 (Chida–Hsieh, Hung). Let χ be character of Gm and N+ =N+ ·N+. Then

we have

χ(Θm(f
[p]
π′ )

2) = Γ(k/2)2 · L(f
[p]/K,χ,k/2)

Ωπ′,N−
· (−1)k/2 ·m ·Dk−1

K · |O
×
K |2
8

·
√
−DK

−1
·χ(N+)

where Ωf [p],pN− is the l-adically normalised period for f [p] given by

Ωf [p],pN− :=
4k−1πk||f [p]||Γ0(pN)

〈f [p]
π′ ,f

[p]
π′ 〉B

.

Proof. This follows from the main result of [15] generalising [8] to ramified characters.

Note here the period Ωf [p],pN− is not the canonical period Ωcan
f [p] of Hida defined by

Ωcan
f [p] :=

4k−1πk||f [p]||Γ0(pN)

ηf [p](pN)

where ηf [p](pN) is the congruence number of f [p] in Sk(pN). We record the following

result comparing these two periods, which we will use at a later occasion. Let q be a

prime and recall the local Tamagawa ideal Tamq(Tf,λ) at q is defined by

Tamq(Tf,λ) = FittO(H
1(Kur

q ,Tf,λ)tor)

and the local Tamagawa exponent at q is defined by the number tq(f) such that

Tamq(Tf,λ) = (�tq(f)).

Proposition 3.2 (Kim-Ota). The following equation holds under the assumption (CR�):

v


(
Ωf [p],pN−

Ωcan
f [p]

)
=

∑
q|pN−

tq(f
[p]).

Proof. This follows from [26, Corollary 5.8] generalising the work of Pollack–Weston [27]
in weight 2.

3.3. Explicit reciprocity laws for Heegner cycles

Recall that we have the modular form f ∈ Snew
k (N) with N = N+N− such that N− is

square-free with even number of prime divisors. Let n≥ 1; we consider the Abel–Jacobi
map for Tf,n,

AJk,n : εdεkCH
k
2 (Wk,d⊗Km)⊗Zl →H1(Km,Tf,n).
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We have the Heegner cycle class εdYm,k ∈ εdεkCH
k
2 (Wk,d⊗Km)⊗Zl with Ym,k = εky

k−2
2

m

for an element ym ∈NS(Am) satisfying

(1) ιm(b)∗(ym) = Nrd(b)ym for any b ∈B′;

(2) The self-intersection number of ym is 2DK .

Here Am is given by the Heegner point Pm = (Am,ιm,Cm) on X. Let p be an n-admissible

prime for f. We consider the following composite map:

εdεkCH
k
2 (Wk,d⊗Km)

AJk,n−−−−→H1(Km,Tf,n)
locp−−→H1(Km,p,Tf,n).

The image of εdYm,k ∈ εdεkCH
k
2 (Wk,d⊗Km)⊗Zl under the above map is by definition

given by locp(κn(m)) and it lands in H1
fin(Km,p,Tf,n) as Wk,d has good reduction at p.

Note that there is an isomorphism

H1
fin(Km,p,Tf,n)∼=H1

fin(Kp,Tf,n)⊗On[Gm] (3.19)

by [1, Lemma 2.4 and 2.5] and [9, Lemma 1.4]. Therefore, Theorem 2.9 implies the

following isomorphism:

Φn : SB
k (N+,O)

/I
[p]
f,n

⊗On[Gm]
∼=−→H1(Fp2,H1(X⊗Fac

p ,Lk−2(O)(1))/If,n)⊗On[Gm]

∼=−→H1
fin(Km,p,Tf,n).

(3.20)

It follows then that locp(κn(m)) can be regarded as an element in SB
k (N+,O)

/I
[p]
f,n

⊗
On[Gm]. Recall that P̃m = (Am,ιm,Cm,νm) ∈Xd(Km) is a lift of the Heegner point Pm =

(Am,ιm,Cm) ∈ X(Km) and Am
∼= Em ×Em for a CM elliptic curve Em. We have the

following commutative diagram:

εdεkCH
k−2
2 (A

k−2
2

m ⊗Km)⊗Zl εdεkH
k−2

(
A

k−2
2

m ⊗Km,Zl

(
k−2
2

))

εdεkCH
k
2 (Wk−2,d⊗Km)⊗Zl εdεkH

k
(
Wk,d⊗Km,Zl

(
k
2

))
.

cl

jk,d∗ jk,d∗

cl

On the first line of the diagram, we have the following isomorphism:

εdεkH
k−2

(
A

k−2
2

m ⊗Km,Zl

(
k−2

2

))
= εdεkH

k−2

(
Ek−2

m ⊗Km,Zl

(
k−2

2

))
= Symk−2H1

(
Em⊗Km,Zl

(
k−2

2

))
∼= Lk−2(Zl),
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while on the second line, we have

εdεkH
k

(
Wk,d⊗Km,Zl

(
k

2

))
mf

∼=H1

(
Km,εdεkH

k−1

(
Wk,d⊗Qac,Zl

(
k

2

))
mf

)
∼=H1(Km,H1(X⊗Qac,Lk−2(Zl)(1))mf

).

Here the first isomorphism follows from the Hochschild–Serre spectral sequence and the
fact that outside of the middle degree k−1, εdεkH

∗(Wk,d⊗Qac,Zl(
k
2 )) is Eisenstein and

hence vanishes after localising at mf .

Lemma 3.3. The image of the element εdεky
k−2
2

m ∈ εdεkCH
k−2
2 (A

k−2
2

m ⊗Km)⊗Zl under

the cycle class map to Lk−2(Zl) can be identified with the vector v∗
0 up to sign.

Proof. This follows from the fact that

(1) v∗
0 and εdεkcl(y

k−2
2

m ) are the eigenvector of the action by K with eigenvalue 1;

(2) 〈εdεkcl(y
k−2
2

m ),εdεkcl(y
k−2
2

m )〉= 〈v∗
0,v

∗
0〉=Dk−2

K .

These properties characterise an element in Lk−2(Zl) up to sign. See [7, Lemma 7.2].

We recall the class κ(m) is given by the extension class obtained by pulling back the

exact sequence

0→ εdεkH
k−1

(
Wk,d⊗Qac,Zl

(
k

2

))
mf

→ εdεkH
k−1

(
(Wk,d−Ym,k)⊗Qac,Zl

(
k

2

))
mf

→ εdεkH
k
Ym,k⊗Qac

(
Wk,d⊗Qac,Zl

(
k

2

))
mf

→ 0

(3.21)

along the map Zl → εdεkH
k
Ym,k⊗Qac(Wk,d ⊗Qac,Zl(

k
2 ))mf

sending 1 ∈ Zl to the funda-

mental class of Ym,k⊗Qac. The above exact sequence is equivalent to

0→H1(X⊗Qac,Lk−2(Zl)(1))mf
→H1(X⊗Qac−Pm⊗Qac,Lk−2(Zl)(1))mf

→H2
Pm⊗Qac(X⊗Qac,Lk−2(Zl)(1))mf

→ 0
(3.22)

and the last term is the same as εdεkH
k−2(A

k−2
2

m ⊗Qac,Zl(
k−2
2 ))mf

∼= Lk−2(Zl), as

explained in the paragraph after [7, Lemma 8.1]. Therefore, Lemma 3.3 implies that the
class κ(m) is the extension class obtained by pulling back (3.22) along the map sending

1 ∈ Zl to the vector v∗
0 ∈ Lk−2(Zl) up to sign. The class locp(κ(m)) is obtained similarly

by considering the special fibre of X ; that is, we pull back the following exact sequence:

0→H1(X⊗Fac
p ,Lk−2(Zl)(1))mf

→H1(X⊗Fac
p −Pm⊗Fac

p ,Lk−2(Zl)(1))mf

→H2
Pm⊗Fac

p
(X⊗Fac

p ,Lk−2(Zl)(1))mf
→ 0

(3.23)

along the map sending 1 ∈ Zl to v∗
0 ∈ Lk−2(Zl) up to sign.

Recall the pairing

〈 , 〉B : SB
k (N+,O)×SB

k (N+,O)→O
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defined as in (2.6). It induces a pairing

〈 , 〉B : SB
k (N+,O)/I

[p]
f,n×SB

k (N+,O)[I
[p]
f,n]→On.

Theorem 3.4 (Second reciprocity law). Let p be an n-admissible prime for f and assume

that ρ̄f,λ satisfies the assumption (CR�). Let f
[p]
π′ be l-adically normalised and f̂

[p]
π′,n be a

generator of SB
k (N+,O)[I

[p]
f,n]. Then we have the following relation between the Heegner

cycle class of level mκn(m) and the theta element Θm(f
[p]
π′ ):∑

σ∈Gm

〈locp(σ ·κn(m)),f̂
[p]
π′,n〉B = u ·Θm(f

[p]
π′ )mod�n

where u ∈ On is a unit.

Proof. Let σ ∈ Gm. We define 1
[v∗

0 ]

σ(xm(1))·τN+ to be the function on XB supported on the

point σ(xm(1)) · τN+

with its value given by the vector v∗
0. Note that 1

[v∗
0 ]

σ(xm(1))·τN+ can

be considered as an element of SB
k (N+,O). By the definition of Φn and Theorem 2.9, all

classes of

H1(Fp2,H1(XFac
p
,Lk−2(O)(1))/If,n)

are obtained by pulling back the exact sequence below:

0→H1(XFac
p
,Lk−2(O)(1))/If,n →H1(Xord

Fac
p
,Lk−2(O)(1))/If,n

→H0(Xss
Fac

p
,Lk−2(O))/If,n → 0. (3.24)

Since p is n-admissible and in particular inert in K, the point Pm which is represented

by a product of CM elliptic curves has supersingular reduction. Moreover, by our

parametrisation (3.11) and (3.4), the reduction of Pm is given by xm(1)τN
+

when we

identify Xss
Fac

p
with the Shimura set XB . It follows that the element locp(σ ·κn(m)) as the

pullback of (3.24) factors through the exact sequence (3.23) modulo If,n and is therefore

given by the element 1
[v∗

0 ]

σ(xm(1))·τN+ [σ] up to a sign. Therefore, we have the following

equation: ∑
σ∈Gm

〈
locp(σ ·κn(m)),f̂

[p]
π′,n

〉
B
=±

∑
σ∈Gm

〈
1
[v∗

0 ]

σ(xm(1))·τN+ ,f̂
[p]
π′,n

〉
B
[σ]

=±
∑

σ∈Gm

〈
v∗
0,f̂

[p]
π′,n(σ ·xm(1))

〉
k
[σ]

= u ·Θm(f
[p]
π′ )mod�n.

Next, let (p,p′) be a pair of distinct n-admissible primes for f. Then we can consider the

Shimura curves X ′′ and X ′′
d and the corresponding Kuga–Sato varieties W ′′

k,d defined in

Subsection 2.6. Note that they correspond to the indefinite quaternion algebra B′′ with
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discriminant pp′N−. We can define in the same manner as in (3.4) the Heegner point

P [pp′]
m (a) = [z′,a(p

′)ςτN
+

]C ∈X ′′(Km) (3.25)

for a ∈ K̂×. We again write P
[pp′]
m for P

[pp′]
m (1). Using these points, we can define Heegner

cycles

εdY
[pp′]
m,k ∈ εdεkCH

k
2 (W ′′

k,d⊗Km)⊗Zl (3.26)

similarly as in (3.6).

Since (p,p′) are n-admissible primes for f, there is a homomorphism φ
[pp′]
f,n : T[pp′] →On

such that φ
[pp′]
f,n agrees with φf,n at all Hecke operators away from pp′ and sends (Up,Up′)

to (εpp
k−2
2 ,εp′p′

k−2
2 ). Recall that I

[pp′]
f,n is the kernel of φ

[pp′]
f,n .

Lemma 3.5. We have the following statements:

(1) The morphism φ
[pp′]
f,n can be lifted to a genuine modular form f [pp′] ∈ Snew

k (pp′N)

when n= 1.

(2) There is an isomorphism H1(X ′′
Qac,Lk−2(O)(1))/I

[pp′]
f,n

∼=Tf,n.

Proof. It again follows from the main results of [11] and [12] that the morphism φ
[pp′]
f,1

can be lifted to a genuine modular form, which we will denote as f [pp′].

To prove the second statement, it follows from the main result of [3] that

H1(X ′′
Qac,Lk−2(O)(1))/I

[pp′]
f,n

∼=Tr
f,n

for some integer r. Then one can consider the weight spectral sequence converges to (2.19)

and use the fact that SB
k (N+,O)

/I
[p]
f,n

is of rank 1 to conclude that r = 1.

Using the above lemma, we can define the Abel–Jacobi map

AJ
[pp′]
k,n : εdεkCH

k
2 (W ′′

k,d⊗Km)⊗Zl →H1(Km,Tf,n) (3.27)

following the same recipe for defining (3.7). We can define the corresponding Heegner

cycle class of level m,

κ[pp′]
n (m) = AJ

[pp′]
k,n (εdY

[pp′]
k,d ) ∈H1(Km,Tf,n). (3.28)

Similarly, we define the class

κ[pp′]
n =CorK1/Kκ[pp′]

n (1) ∈H1(K,Tf,n). (3.29)

By [1, Lemma 2.4 and 2.5] and [9, Lemma 1.4], we have an isomorphism

H1
sing(Km,p,Tf,n)∼=H1

sing(Kp,Tf,n)⊗On[Gm].

The element ∂p′ locp′(κ[pp′](m)) ∈H1
sing(Kp′,Tf,n)⊗On[Gm] under the composite below

H1(Km,Tf,n)
locp′−−−→H1(Km,p′,Tf,n)

∂p′−−→H1
sing(Km,p′,Tf,n)
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can be considered as an element in SB(N+,O)/I
[p]
f,n⊗On[Gm] using the map Ξn given by

Theorem 2.12.

Theorem 3.6 (First reciprocity law). Let (p,p′) be a pair of n-admissible prime for f

and assume that ρ̄f,λ satisfies assumption (CR�). Let f
[p]
π′ be l-adically normalised and

f̂
[p]
π′,n be a generator of SB

k (N+,O)[I
[p]
f,n]. Then we have the following relation between the

Heegner cycle class κ
[pp′]
n (m) and the theta element Θm(f

[p]
π′ ):∑

σ∈Gm

〈
∂p′ locp′(σ ·κ[pp′]

n (m)),f̂
[p]
π′,n

〉
B
= u ·Θm(f

[p]
π′ )mod�n (3.30)

where u ∈ O×
n is a unit.

Remark 3.7. This theorem is proved by [7] in a slightly different setup with a different

method, but for completeness we give a proof.

Proof. We will use the formula given by [20, Theorem 2.18] and [20, Proposition 2.19],

which are proved for trivial coefficients. In our case, we will apply these results to the

cohomology of the Kuga–Sato variety W ′′
k,d with trivial coefficient. As noted in the

discussion above Theorem 2.12, the weight spectral sequence of the Kuga–Sato variety

agrees with the weight spectral sequence of the base curve with nontrivial coefficients.

Moreover, the Heegner cycle is fibered over the Heegner point over the base Shimura
curve; therefore, we can adapt these results in our setting with obvious modifications.

First we would like to apply [20, Proposition 2.19]; therefore, we are led to consider the

cycle class

Y
[pp′],#
m,k ×

˜W′′
k,d

W̃ ′′(0)
k,d,Fac

p′

in the cohomology group εkH
k(W̃ ′′(0)

k,d,Fac
p′
,O(k2 )) where Y

[pp′],#
m,k is defined as in the

paragraph below [20, (2.4.2)]. By applying the projector εd to it, we can identify this

cycle class with an element in

H2(X ′′
Fac

p′
,a0∗Lk−2(O)(1)) = H2(P1(XB

Fac
p′
),Lk−2(O)(1))⊕2

supported on X
′′(0)
Fac

p′
×X′′ P

[pp′],#
m . This follows from Saito’s computation of the weight

spectral sequences of the Kuga–Sato varieties as we discussed in the paragraph of (2.19).

Note the latter space can be identified with SB
k (N+,O)⊕2. Again, by our parametrisation

in (3.11) and (3.25) along with Lemma 3.3, this cycle class is given up to sign by a pair
of functions on XB supported on xm(1)τN

+

sending xm(1)τN
+

to v∗
0 in the first copy

and sending xm(1)τN
+

to εp′v∗
0 on the second copy. By the proof of Theorem 2.12 and

[20, Theorem 2.18], ∂p′ locp′(σ ·κ[pp′]
n (m)) is thus given by 1

[v∗
0 ]

σ(xm(1))·τN+ [σ] as an element
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in SB(N+,O)/I
[p]
f,n⊗On[Gm]. Therefore, we have the following equation:∑

σ∈Gm

〈∂p′ locp′(σ ·κ[pp′]
n (m)),f̂

[p]
π′,n〉B =±

∑
σ∈Gm

〈1[v∗
0 ]

σ(xm(1))·τN+ ,f̂
[p]
π′,n〉B [σ]

=±
∑

σ∈Gm

〈v∗
0,f̂

[p]
π′,n(σ ·xm(1))〉k[σ]

= u ·Θm(f
[p]
π′ )mod�n.

4. Converse to Gross–Zagier–Kolyvagin type theorem

4.1. Selmer groups of modular forms

Recall that f is a modular form of weight k level Γ0(N) such that N =N+N−. We assume
the following generalised Heegner hypothesis:

N− is square-free and consists of even number of prime factors that are inert in K.
(Heeg)

Let K be an imaginary quadratic field with discriminant −DK such that (DK,N) = 1.

Let l > 2 be a prime such that l �NDK . Recall ρf,λ :GQ →GL2(Eλ) is the λ-adic Galois
representation attached to the form f, which is characterised by the fact that the trace of

Frobenius at p �N agrees with ap(f) and the determinant of ρf,λ is εk−1
l where εl is the

l -adic cyclotomic character. Recall that we are interested in the twist ρ∗f,λ = ρf,λ(
2−k
2 ).

Let Vf,λ be the representation space for ρ∗f,λ. We have normalised the construction of

ρf,λ such that it occurs in the cohomology H1(XQac,Lk−2(Eλ)(
k
2 )) and therefore ρ∗f,λ

occurs in the cohomology H1(XQac,Lk−2(Eλ)(1)). The modular form f gives rise to a

homomorphism φf : T→O corresponding to the Hecke eigen-system of f. Let n ≥ 1; we
take φf,n : T → On to be the natural reduction of φf by �n. We define If,n to be the

kernel of the morphism φf,n and mf the unique maximal ideal of T containing If,n.

We choose a GQ-stable lattice Tf,λ in Vf,λ and denote by Tf,n the reduction Tf,λ/�
n.

We also recall that the residual Galois representation ρ̄f,λ satisfies the assumption (CR�).

In light of this assumption and Theorem 2.9 (3), we can choose the lattice Tf,λ to be

H1(XQac,Lk−2(O))mf
. We denote by Af,λ the divisible module given by Vf,λ/Tf,λ. We

will set

Af,n = ker[Af,λ

n

−−→Af,λ]. (4.1)

Note that Af,n is the Kummer dual of Tf,n.

Let M = Tf,n or Af,n. For v | N−, we set F+
v M to be the unique line of M such that

GQv
acts by εvτv with τv the nontrivial unramified character of GQv

. Then we define the
ordinary part of H1(Kv,M) to be

H1
ord(Kv,M) = ker[H1(Kv,M)→H1(Kv,M/F+

v M)].
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Let p � N be an n-admissible prime for f ; then we set F+
p M to be the unique line such

that Frobp acts by εpp and F−
p M is the line such that Frobp acts by εp. Then

H1(Kp,M) = H1(Kp,F
−
p M)⊕H1(Kp,F

+
p M)

∼=H1
fin(Kp,M)⊕H1

ord(Kp,M).
(4.2)

In order to apply the results from Iwasawa theory, we assume that f is l-ordinary. For a

place v | l in K, let F+
v M be the unique line of M such that GQl

acts by ε
k
2

l . We define

H1
ord(Kv,M) = ker[H1(Kv,M)→H1(Kv,M/F+

v M)]. (4.3)

Following the notation in [14], we define the local conditions Fc
b (a) for a triple of integers

(a,b,c) and l by

H1
Fa

b (c)(Kv,M) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H1
fin(Kv,M) if v � abcl;

H1(Kv,M) if v | a;
0 if v | b;
H1

ord(Kv,M) if v | c;
H1

ord(Kv,M) if v | l.

(4.4)

In other words, at places dividing a, we use the relaxed local condition; at places dividing b,

we use the strict local condition; at places dividing cl, we use the ordinary local condition.

If any of (a,b,c) is 1, then we omit it from the notation. We define the Selmer group for

M by

SelFa
b (c)(K,M) = {s ∈H1(K,M) : locv(s) ∈H1

Fa
b (c)(Kv,M) for all v}.

In this article, we will be mainly concerned with the Selmer group SelF(N−)(K,M). Notice

that the Abel–Jacobi map

AJk,n : εdεkCH
k
2 (Wk,d⊗K)⊗Zl →H1(K,Tf,n)

factors through SelF(N−)(K,Tf,n). This is well-known except for a justification for primes
dividing N−. Suppose that v | N− and that ρ̄f,λ is ramified at v. Then it follows from

our assumption (CR�) that v �≡ 1mod l and a simple calculation using [10, Theorem 2.17]

shows that |H1(Kv,Tf,n)| = |TGKv

f,n |2 = 0. Next, suppose that v | N− and that ρ̄f,λ is

unramified at v ; then we have a decomposition

H1(Kv,Tf,n) = H1
ord(Kv,Tf,n)⊕H1

fin(Kv,Tf,n).

Then our claim follows from the proof of the ramified level raising in Theorem 2.12.

Recall the definition of a bipartite Euler system of odd type in [14, Definition 2.3.2].
The following result follows from the first reciprocity law in Theorem 3.6 and the second

reciprocity law in Theorem 3.4 proved before.

Corollary 4.1. The theta elements of Chida–Hsieh defined in (3.18) and the Heegner

cycle classes defined in (3.8) form a bipartite Euler system of odd type for the Selmer

structures given by F(N−) over K.

https://doi.org/10.1017/S1474748022000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000068


Indivisibility of Heegner Cycles Over Shimura Curves and Selmer Groups 2333

4.2. The proof of the main result

Now we can state and prove the main result of this article.

Theorem 4.2. Suppose (f,K) is a pair that satisfies the generalised Heegner hypoth-

esis (Heeg) and f is ordinary at l. Assume that ρ̄f,λ satisfies the hypothesis (CR�).
If SelF(N−)(K,Tf,1) is of dimension 1 over Fλ, then the class κ1 is nonzero in

SelF(N−)(K,Tf,1).

Remark 4.3. The above theorem can be considered as a generalisation of the converse

to Gross–Zagier–Kolyvagin type theorem proved by Wei Zhang [40] and Skinner [34] to

the higher weight case.

Let p be a 1-admissible prime for f and let f [p] be the level raising of the modular

form f constructed in Theorem 2.9. Since the residual representations of f [p] and f are

isomorphic, we can regard SelF(pN−)(K,Tf,1) as the residual Selmer group for f [p]. Then

we have the following result comparing the rank of the Selmer group of f and that of f [p].

Proposition 4.4. Suppose that locp : SelF(N−)(K,Tf,1) → H1
fin(Kp,Tf,1) is surjective

(equivalently nontrivial). Then we have

dimk SelF(N−)(K,Tf,1) = dimk SelF(pN−)(K,Tf,1)+1.

Moreover, we have in this case

SelF(N−)(K,Tf,1) = SelFp(N−)(K,Tf,1), SelF(pN−)(K,Tf,1) = SelFp(N−)(K,Tf,1).

Proof. This follows from [14, Proposition 2.2.9, Corollary 2.2.10]. More precisely, we have
the following Cartesian diagram of Selmer structures:

SelFp(N−) SelF(N−)

SelF(pN−) SelFp(N−).

x

y

x

y (4.5)

Here, the labels x and y on the arrows stand for the length of the respective quotients.

We have x+y = 1 by [14, Proposition 2.2.9]. Since p is 1-admissible, the local conditions

H1
ord(Kp,Tf,1) and H1

fin(Kp,Tf,1) are dual to each other under the local Tate duality.
Therefore, if

locp : SelF(N−)(K,Tf,1)→H1
fin(Kp,Tf,1)

is surjective, then y = 1 and x= 0.

Next we combine results from [9] and [35] to deduce a special value formula for the

modular form f [p]. For this, let Sel(K,Af [p]) = lim−→n
Sel(K,Af [p],n) be the minimal Selmer

group of f [p] defined as in [9, Introduction]. Here Af [p] and Af [p],n are defined the exact

same way as in (4.1). We will also use the Selmer group SelpN−(K,Af [p],n) defined in

[9, Definition 1.2], which consists of classes in H1(K,Af [p],n) that are ordinary at primes
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dividing pN−l and unramified at other places. Also, we recall the following technical

assumption imposed on the main result of [9]:

al(f) �≡ 1mod l if k = 2. (PO)

Theorem 4.5. Suppose (f,K) is a pair that satisfies the generalised Heegner hypothesis

(Heeg) and (PO). Assume that ρ̄f,λ satisfies the hypothesis (CR�) and, in addition,
assume that f is l-ordinary. Then L(f [p]/K,1) �= 0 if and only if Sel(K,Af [p]) is finite

and we have

v


(
L(f [p]/K,1)

Ωcan
f [p]

)
= lengOSel(K,Af [p])+

∑
q|pN

tq(f
[p]).

Proof. Since ρ̄f,λ satisfies the hypothesis (CR�), the form f [p] satisfies the hypothesis

(CR+) of [9]. Since f satisfies (PO), f [p] also satisfies (PO). Therefore, we can combine
[9, Corollary 2] and the main result of [35] to obtain the following equation:

v


(
L(f [p]/K,1)

Ωf [p],pN−

)
= lengOSel(K,Af [p])+

∑
q|N+

tq(f
[p]).

It follows from [26, Corollary 5.8] that

v


(
Ωf [p],pN−

Ωcan
f [p]

)
=

∑
q|pN−

tq(f
[p]).

The result follows.

Remark 4.6. Instead of using the one-sided divisibility of Chida–Hsieh [9], one can apply

the main result of [18] to f and its quadratic twist fK to get the same result. This is the
approach used in [40], and one can then avoid the assumption (PO).

Proof of Theorem 4.2. Suppose c is a generator of SelF(N−)(K,Tf,1). Then we can

find a 1-admissible prime p for f such that locp(c) ∈ H1
fin(Kp,Tf,1) is nonzero by using

the same proof of [9, Theorem 6.3]. Then Proposition 4.4 implies that

dimk SelF(pN−)(K,Tf,1) = dimk SelF(N−)(K,Tf,1)−1 = 0.

Since SelpN−(K,Tf [p],1) can be regarded as a subspace of SelF(N−)(K,Tf,1), we know

that

SelpN−(K,Af [p],1) = 0.

Then by the control theorem of [9, Proposition 1.9 (2)], we have SelpN−(K,Af [p]) = 0.

Therefore, Sel(K,Af [p]) = 0 and
∑

q|N+ tq(f
[p]) =

∑
q|N+ tq(f) = 0, by the proof of [9,

Corollary 6.15]. Then we can apply Theorem 4.5 and conclude that

v


(
L(f [p]/K,1)

Ωf [p],pN−

)
= 0.
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The second reciprocity law in Theorem 3.4 and the specialisation formula for the theta
element in Theorem 3.1 allow us to conclude that locp(κ1) is nonzero in H1

fin(Kp,Tf,1).

Therefore, κ1 is nonzero in SelF(N−)(K,Tf,1) and we are done.
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