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Abstract. For the family of double standard maps fa,b = 2x + a + (b/π) sin 2πx(mod 1)

we investigate the structure of the space of parameters a when b = 1 and when b ∈ [0, 1).
In the first case the maps have a critical point, but for a set of parameters E1 of positive
Lebesgue measure there is an invariant absolutely continuous measure for fa,1. In the
second case there is an open non-empty set Eb of parameters for which the map fa,b is
expanding. We show that as b ↗ 1, the set Eb accumulates on many points of E1 in a
regular way from the measure point of view.
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1. Introduction
In one-dimensional dynamics, a lot is known about the families of smooth maps with a
critical point, such as quadratic maps, and about the maps that have no critical points (local
diffeomorphisms of the circle). Here we start to investigate what happens at the interface
of those two cases.

Consider the family of double standard maps of the circle onto itself, given by

fa,b = 2x + a + b

π
sin 2πx(mod 1), (1.1)

where the parameters a, b are real, a ∈ [0, 1) and b ∈ [0, 1]. In fact, we consider a from
the circle R/Z, but since we are mostly working locally (and far from a = 0), considering
a real is simpler. This family of maps was introduced in [19].

For b = 1, maps of the family (1.1) have a unique cubic critical point (at c = 1/2)
and negative Schwarzian derivative. Thus, they behave similarly to quadratic maps. In
particular, there is a set of parameters a for which there is an invariant probability measure,
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absolutely continuous with respect to the Lebesgue measure. For b < 1, there is no critical
point, so the maps are local diffeomorphisms. Complexification of the maps, obtained by
conjugacy via e2πix , gives the family

ga,b(z) = e2πiaz2eb(z−1/z).

Those maps are symmetric with respect to the unit circle, and factored by this symmetry,
they have only one critical point and no asymptotic values in C \ {0}. Therefore a map fa,b

has at most one attracting or neutral periodic orbit (see [9, 10, 19]).
One can also look at the family of double standard maps as a hybrid between the

family of standard maps, studied by Arnold (see [1]) and important in the creation of
the Kolmogorov–Arnold–Moser theory, and expanding maps of the circle (see [23]). Of
course instead of maps of degree 2 one can take maps of higher degrees and the results
will be practically the same (but we would introduce one more parameter and lose the nice
name of the family).

Some recent work has been done for classes of families that include double standard
maps. Misiurewicz and Rodrigues studied them in [19, 20]. Benedicks and Rodrigues [4]
investigated symbolic dynamics for this family. Universality for critical circle covers was
studied by Levin and Świątek [14]. Levin and van Strien [15] proved complex bounds,
quasisymmetric rigidity and density of hyperbolicity for a class of real analytic maps which
includes the double standard maps. Fagella and Garijo [10] studied a class of complex
maps containing the maps ga,b. Dezotti [9] also considered maps ga,b and, using complex
methods, obtained important results on the real case.

As for the Arnold family, for the double standard family we call the sets for which there
is an attracting periodic orbit of a given type (period plus combinatorics) tongues. Dezotti
[9] proved that tongues are connected. The lowest tongue tip is at b = 1/2, for the period-1
tongue. If 0 < b < 1/2, the map fa,b is expanding. At higher b-levels there may be finitely
or infinitely many tongues (see [19]). In particular, at the critical level b = 1 all tongues
are present, and it is easy to prove that they are dense at this level (see [15]). We show (in
Theorem A) that at the lower levels fa,b can have an attracting or neutral periodic orbit, and
otherwise it is expanding. Moreover, the set of expanding maps is dense in the complement
of the tongues.

For simplicity, we will be using the notation fa for fa,1. A parameter a0 will be called
an MT parameter (for Misiurewicz–Thurston) if the trajectory of the critical point c = 1/2
is preperiodic (but not periodic).

In this case fa0 has an absolutely continuous invariant measure [17], and it is also true
that the critical value fa0(

1
2 ) satisfies the Collet–Eckmann condition, that is, that there

exist CCE > 0 and κ1 > 0 such that for a = a0,

(f n
a )′(fa(c)) ≥ CCEeκ1n for all n ≥ 0, (1.2)

which implies the existence of an absolutely continuous invariant measure [22, 25].
Using the methods of [2] it is possible to prove the following proposition.

PROPOSITION 1.1. There is a set of positive Lebesgue measure Ẽ1 so that for all a ∈ Ẽ1

there is n0(a) such that

(f n
a )′(fa(c)) ≥ en2/3

for all n ≥ n0(a), (1.3)
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Here 2
3 can be replaced by any constant σ < 1.

A parameter exclusion requiring

dist(f j
a (c), c) ≥ e−√

j , j ≥ 1, (1.4)

will be sufficient to prove (1.3) and then Jacobson’s theorem also follows.
Using the methods of Large deviations of [3] it is possible to prove the following result.

PROPOSITION 1.2. There is a set of positive Lebesgue measure E1 and some κ > 0 such
that for all a ∈ E1,

(f n
a )′(fa(c)) ≥ Ceκn for all n ≥ 0. (1.5)

For a similar result, see [24].
In the present paper we will consider the non-critical case 0 < b < 1 and use more

elementary methods based on [2], which give stretched exponential growth of the type

(f n
a,b)

′(fa,b(c)) ≥ en2/3
, n0 ≤ n ≤ N̂(a, b), (1.6)

for all a ∈ Ẽb for a set Ẽb, which is a finite union of intervals. To obtain this it is sufficient
to carry out parameter exclusions of the type

dist(f j
a,b(c), c) ≥ C1e

−√
j , j ≥ 1, (1.7)

and then prove exponential expansion in §8. The proof is discussed further at the end of
this section.

We will outline the proof of Proposition 1.1 after the proof of Theorem A.
By the results of [5, 6], if fa(c) satisfies the Collet–Eckmann condition, then fa has an

absolutely continuous invariant measure. This is the analogue of Jakobson’s theorem [11]
in this case.

It is also possible to prove (1.2) for a in a set E1 of positive Lebesgue measure, but with
the present setup this would require the method of large deviations of [3], and this is not
required when 0 < b < 1.

Let us introduce some notation. For a fixed b, let us denote the sets of those parameters
a for which fa,b has an attracting (respectively, neutral) orbit Tb (respectively, T Nb).
Moreover, let Eb be the set of those parameters a for which fa,b is expanding, that is,
there exist C > 0 and κ > 0 such that

(f n
a,b)

′(x) ≥ Ceκn for all n ≥ 0, for all x ∈ T. (1.8)

By the result of Mañé [16], if a does not belong to Tb or T Nb, then it belongs to Eb.
Observe that by the definition, a small perturbation of an expanding map is also expanding,
so Eb is open. In fact, the set E = {(a, b) : a ∈ Eb, 0 ≤ b < 1} is open in [0, 1) × [0, 1).

Note that our definition of E1 or Ẽ1 is quite different from the non-critical case, that is,
the case of Eb for b < 1. Nevertheless, there are some common features of the non-critical
case, because if fa,b is expanding, then by the results of Krzyżewski and Szlenk [12], or by
the Lasota–Yorke theorem [13], there exists an absolutely continuous invariant measure.

Extending the methods of the proof of (1.3), we prove the following theorem.
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THEOREM A. Let a0 be an MT parameter for the family {fa}. Denote ω(ε) = (a0 − ε,
a0 + ε). Then for some ε0 > 0 there is a function b0 : (0, ε0) → (0, 1) such that

lim
ε→0

inf{|Eb ∩ ω(ε)| : b ∈ (b0(ε), 1]}
|ω(ε)| = 1.

Here |A| denotes the Lebesgue measure of the set A.

This can be considered as the main result of the paper. It gives a quantitative relation
between the behavior of the system for b < 1, where the maps are local diffeomorphisms,
and for b = 1, the critical case.

Finally, we prove a topological result, using very different methods.

THEOREM B. For each b < 1, the set Eb is dense in the complement of Tb. In particular,
every interval of the parameters a either is contained in a closure of one tongue or
intersects Eb.

The above theorem in some sense complements Theorem A. Locally it says less about
the set Eb, but it applies to all b < 1, not only to b sufficiently close to 1 (moreover, this
closeness in Theorem A depends on a0).

This paper is organized as follows. In §2 we introduce notation and some definitions
that we will use throughout the paper. In §3 we prove the transversality condition for maps
of the family (1.1). In §4 we prove that we have exponential growth of the derivative for
an orbit of a map fa,b that moves outside an open interval containing the critical point
when (a, b) is a small perturbation of an MT parameter (a0, 1). In §5 we describe the
induction including its startup and prove that the conditions on the induction statement are
satisfied for the first free return time. Furthermore, we define the bound period and prove
some results concerning the derivative growth during the bound period. In §6 we prove the
global distortion lemma and in §7 we start the proof of Theorem A. In §8 we finish this
proof. Finally, in §9 we prove Theorem B.

Let us indicate what is technically new in this paper compared to previous work. The
proof of Theorem A is based on techniques in [2, 3].

The main strategy of the proof of Theorem A is the inductive proof of

(f n
a,b)

′(fa,b(c)) ≥ C2e
n2/3

, (1.9)

up to a certain time N̂ .
The set Ẽ1 in the critical case b = 1 is a Cantor set of positive measure represented as

E1 =
∞⋂

n=0

An,

where each An is a disjoint union of intervals {I j
n }. Here An+1 ⊂ An and the set An+1 are

defined by removing subintervals of each I
j
n according to two rules. First those subintervals

that do not satisfy an approach rate condition (1.4) for the critical point (or inflexion point)
c = 1

2 are deleted. This replaces the basic assumption (BA) in [2, 3]. In the non-critical
case 0 < b < 1 this condition corresponds to (1.7).
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The proof of Theorem A is different from that of Proposition 1.1 in the critical case due
to the fact that the behavior at the inflexion point c = 1

2 is given by the Taylor series

fa,b(x) = a + (2 − 2b)

(
x − 1

2

)
+

∞∑
k=1

a2k+1

(
x − 1

2

)2k+1

= a + (2 − 2b)

(
x − 1

2

)
+ g(x).

Here g(x)/(x − 1
2 )3 is bounded above and below by strictly numerical positive constants,

depending only on the MT map fa0 . Furthermore, g′(x)/(x − 1
2 )2 has similar bounds from

above and below.
This means that when a point y = f n

a,b(x) is close to c = 1
2 , the derivative f ′

a,b(y) will
be dominated either by 2 − 2b or by the quadratic term g′(y) and these two cases will be
treated differently.

The induction in the non-critical case b < 1 can actually be terminated at the time N̂

defined by the condition that the constant term in the derivative 2 − 2b can be of size
comparable to g′(x), which is quadratic, that is,

2 − 2b ∼ (e−
√

N̂ )2, (1.10)

where ∼ means that the two sides are comparable within fixed constants, which depend
only on fa0 . Defining N̂ this way, we can stop the induction at time N̂ and the remaining

set Eb = ⋂N̂
n=0 An(b) is a finite union of intervals.

Another new aspect of the present paper is that for b < 1 the condition of
Collet–Eckmann type (again with c = 1

2 )

(f n
a,b)

′(fa,b(c)) ≥ Ceκn for all n ≥ 0, (1.11)

is no longer sufficient for the existence of absolutely continuous invariant measures for
fa,b. There is, however, another argument given in §8 which uses (1.11) together with
bound period estimates (see §4) which prove uniform hyperbolicity (1.8). As general
references for the theory of one-dimensional maps we mention [7, 8, 18, 21].

2. Notation
Throughout this paper, C is a general numeric constant. For a set A ⊂ R we will denote by
|A| its Lebesgue measure.

Consider the family of double standard maps given by (1.1) with b = 1. Throughout
this paper we write fa(x) = fa,1(x) and denote by ξj (a) the orbit of the critical point:
ξj (a) = f

j
a (c).

For a general b ≤ 1, we also use the notation ξj (a, b) = f
j
a,b(c). It is clear that when

b < 1, the point c = 1
2 is an inflexion point. Sometimes we also use the notation f (x, a, b)

for fa,b(x) and f (x, a) for fa(x).
By ∂af

j
a,b(x) we denote the partial derivative of f

j
a,b(x) with respect to a and by

∂af
j
a (x) the partial derivative of f

j
a (x) with respect to a.
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Definition 2.1. A parameter a = a0 will be called an MT parameter (for Misiurewicz–
Thurston), if there exist an integer m and a period length 	 such that ξm(a0) is a periodic
point of fa0 of period 	 and the multiplier 
 := (f 	

a0
)′(ξm(a0)) is greater than 1.

As in [2, 3], we define a partition Q = {Ir ,l} of the return interval I ∗ = (c − δ, c + δ),
where δ = e−rδ . We first divide I ∗,

I ∗ =
∞⋃

r=rδ

Ir ∪
∞⋃

r=rδ

I−r ,

where Ir is the interval (c + e−r−1, c + e−r ) for rδ ≤ r < ∞, and I−r is the interval
(c − e−r , c − e−r−1).

We then subdivide Ir into r2 intervals of equal length with disjoint interiors as follows:

Ir =
r2−1⋃
	=0

Ir ,	.

For convenience we also use the convention that Ir ,r2 = Ir−1,0, r > 0, and the analogous
convention for r < 0.

Note that we have |Ir ,l | = e−r/r2(1 − e−1) and |Ir | = e−r (1 − e−1). We will also need
the extended interval

I+
r ,	 = Ir ,	−1 ∪ Ir ,	 ∪ Ir ,	+1.

For technical reasons we will also need a partition Q′ = {Ir ,l}, |r| ≥ r1
δ , of an interval

I ∗∗ = (c − δ1, c + δ1), where |r| ≥ r1
δ , for some r1

δ < rδ , that is, δ1 = e−r1
δ > δ.

An important tool in this paper is a sequence of partitions Pn, n = 0, 1, 2, . . . , of the
parameter space which is induced by the phase space partition. We define

En =
⋃

ω∈Pn

ω.

We call a time n a free return if there is a parameter interval ω belonging to a partition
Pn such that

ξn(ω) = Ir ,	.

Similarly, if we fix b < 1, we will have

ξn(ω, b) = Ir ,	.

(In some cases, for technical reasons, these two conditions will have to be replaced by
Ir ,	 ⊂ ξn(ω) ⊂ I+

r ,	 or Ir ,	 ⊂ ξn(ω, b) ⊂ I+
r ,	.)

3. Transversality
In this section we prove the transversality condition for maps belonging to the family (1.1).
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LEMMA 3.1. The following formula holds:

∂af
n
a,b(x) =

n−1∑
k=0

(f k
a,b)

′(f n−k
a,b (x)) = (f n−1

a,b )′(fa,b(x))

n−1∑
k=0

1
(f k

a,b)
′(fa,b(x))

. (3.1)

Proof. We have

∂af
n+1
a,b (x) = 1 + f ′

a,b(f
n
a,b(x)) · ∂af

n
a,b(x) (3.2)

(note that ∂af
0
a,b(x) = 0 and ∂af

1
a,b(x) = 1). Using this formula, we prove by induction

that

∂af
n
a,b(x) =

n−1∑
k=0

(f k
a,b)

′(f n−k
a,b (x)). (3.3)

If n = 0, then both sides of (3.3) are 0. Assume now that (3.3) holds for some n and
prove it for n + 1 instead:

∂af
n+1
a,b (x) = 1 + f ′

a,b(f
n
a,b(x)) ·

n−1∑
k=0

(f k
a,b)

′(f n−k
a,b (x)) = 1 +

n−1∑
k=0

(f k+1
a,b )′(f n−k

a,b (x))

= 1 +
n∑

k=1

(f k
a,b)

′(f n−(k−1)
a,b (x)) =

n∑
k=0

(f k
a,b)

′(f (n+1)−k
a,b (x)).

Thus, by induction, (3.3) holds for every n.
Now we have

(f n−k−1
a,b )′(fa,b(x)) · (f k

a,b)
′(f n−k

a,b (a)) = (f n−1
a,b )′(fa,b(x)).

From this and (3.3) we get

∂af
n
a,b(x) = (f n−1

a,b )′(fa,b(x))

n−1∑
k=0

1

(f n−k−1
a,b )′(fa,b(x))

= (f n−1
a,b )′(fa,b(x))

n−1∑
k=0

1
(f k

a,b)
′(fa,b(x))

.

We get the following immediate corollary.

COROLLARY 3.2. We have ∂afa,b(x) ≡ 1 and if n > 0 then ∂af
n
a,b(x) ≥ 1. Moreover,

∂aξn(a, b)

(f n−1
a,b )′(fa,b(c))

=
n−1∑
k=0

1
(f k

a,b)
′(fa,b(c))

, (3.4)

so, in particular,

∂aξn(a, b) ≥ (f n−1
a,b )′(fa,b(c)). (3.5)

In a special case, when there is a constant C2 such that

(f ν
a,b)

′(fa,b(c)) ≥ C2e
ν2/3

, ν = 0, 1, 2, . . . , n − 1, (3.6)
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then for all ν ≤ n we obtain, by combining the inequality with the lower bound (3.5),

1 ≤ ∂aξn(a, b)

(f n−1
a,b )′(fa,b(c))

≤ q∗, (3.7)

where

q∗ =
∞∑
i=0

C−1
2 e−i2/3

.

Remark 3.3. We would like to emphasize the central role that Corollary 3.2 plays in this
paper. We prove the estimate (3.6) successively by induction on ν. We can then conclude
that (3.7) holds with n replaced by ν for a given ν. From this estimate we conclude that
the x- and a-derivative are comparable at a given time ν. It is important that we prove the
x-expansion first and then verify the comparison. The constant q∗ will be fixed, that is, it
only depends on fa0 .

We will also need the following lemma which can be viewed as a lower bound for the
Radon–Nikodym derivative of ξν(a, b) �→ ξμ(a, b), ν < μ (with respect to a ∈ ω).

LEMMA 3.4. Suppose that ω is a parameter interval and ν < μ. Assume further that there
is a constant q ′ such that for all t ∈ ω,

(f ν−1
t ,b )′(ft ,b(c)) ≥ 1

q ′ ∂aξν(t , b). (3.8)

Then

|ξμ(ω, b)| ≥ 1
q ′ inf

a∈ω
(f

μ−ν
a,b )′(f ν

a,b(c)) · |ξν(ω, b)|.

Proof. By Corollary 3.2,

|ξμ(ω, b)| =
∫

ω

∂aξμ(t , b) dt ≥
∫

ω

(f
μ−1
t ,b )′(ft ,b(c)) dt . (3.9)

However, by (3.8) we have

(f
μ−1
t ,b )′(ft ,b(c)) = (f

μ−ν
t ,b )′(f ν

t ,b(c)) · (f ν−1
t ,b )′(ft ,b(c))

≥ inf
a∈ω

(f
μ−ν
a,b )′(f ν

a,b(c)) · 1
q ′ ∂aξν(t , b).

Together with (3.9), we get

|ξμ(ω, b)| ≥ 1
q ′ inf

a∈ω
(f

μ−ν
a,b )′(f ν

a,b(c)) ·
∫

ω

∂aξν(t , b) dt

= 1
q ′ inf

a∈ω
(f

μ−ν
a,b )′(f ν

a,b(c)) · |ξν(ω, b)|.

4. The outside expansion
The aim of this section is to prove that we have exponential growth of the derivative for an
orbit of a map fa,b that moves outside an open interval I containing c, when (a, b) is a small
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perturbation of an MT parameter (a0, 1). We consider the parameter space R/Z × (0, 1],
and when we speak of a neighborhood of (a0, 1), we mean its neighborhood in this space.

By |x − y| we denote the distance between x and y on the circle. Since the points x and
y will be usually close to each other, this makes perfect sense. Denote

d = min
j≥1

|c − f
j
a0(c)|. (4.1)

By the definition of an MT parameter, we have d > 0.
Since fa0 has negative Schwarzian derivative, the following lemma follows immediately

from Theorem 1.3 of [17] (in a general case one could use also the result of Mañé (see
[16])).

LEMMA 4.1. Let I be an open interval containing c. Then there exist a neighborhoodN of
(a0, 1), positive constants C3, κ2, and an integer M1 such that if (a, b) ∈ N then:
(i) if x, fa,b(x), . . . , f n−1

a,b (x) /∈ I , then

(f n
a,b)

′(x) > C3e
κ2n;

(ii) if x, fa,b(x) . . . , f n−1
a,b (x) /∈ I and n ≥ M1, then

(f n
a,b)

′(x) > eκ2n.

Proof. By Theorem 1.3 of [17] (or a result of Mañé [16]), there exist L > 0 and
κ ′

2 > 0 such that if x, fa0(x), . . . , f L−1
a0

(x) /∈ I , then (f L
a0

)′(x) > eκ ′
2L. Therefore, if N

is a sufficiently small neighborhood of (a0, 1), then for all (a, b) ∈ N and x such that
x, fa,b(x), . . . , f L−1

a,b (x) /∈ I , we have (f L
a,b)

′(x) > eκ ′
2L. Since the infimum of (f i

a,b)
′(x)

over (a, b) ∈ N, x /∈ I and i = 0, 1, . . . , L − 1 is positive, there exists a positive constant
C3 such that (i) holds with κ2 = κ ′

2. Thus it also holds with κ2 = κ ′
2/2, and then (ii) holds

with any

M1 >
− log C3

κ2
.

Now we fix a positive constant β > 0. It will depend only on the unperturbed map fa0

and can be chosen as, say 1
100 min(κ̃ , κ3). Here κ̃ = (1/	) log 
, where 
 is the multiplier

of the repelling periodic point of the MT point, and κ3 is the Lyapunov exponent in Lemma
4.6.

Definition 4.2. Let x ∈ I ∗∗ = (c − δ1, c + δ1). We say that x is β-bound to the critical
point c up to time p for fa,b if p is the maximal integer such that

|f j
a,b(x) − f

j
a,b(c)| ≤ e−βj for all j ≤ p. (4.2)

Observe that for every a, b (where b ≤ 1) and every x we have

f ′
a,b(x) ≤ 4 and |f ′′

a,b(x)| ≤ 4π < 13. (4.3)

Let us state a version of the bound distortion lemma (see [2, 3]).
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LEMMA 4.3. If δ1 is sufficiently small, then there is a constant C4(δ1) > 1, which
converges to 1 as δ1 → 0, such that for every x ∈ I ∗∗ = (c − δ1, c + δ1) if x is β-bound
to c up to time p for fa0 , then

1
C4

<
(f k

a0
)′(fa0(x))

(f k
a0

)′(fa0(c))
< C4 (4.4)

for all k ≤ p. Moreover, there is a constant C5 = C5(δ1) > 0, which converges to 0 as
δ1 → 0, such that

|f k
a0

(x) − f k
a0

(c)| < C5 (4.5)

for all k ≤ p.

Proof. Assume that x is bound to c up to time p. Now choose p1 = 1
10 log(1/δ1). Then by

(4.3) we can estimate

|f j
a0(x) − f

j
a0(c)| ≤ δ14j ≤ δ14p1

if j ≤ p1 and

|f j
a0(x) − f

j
a0(c)| ≤ e−βj ≤ e−βp1

if p1 < j ≤ p. Thus, if δ1 is sufficiently small then |f j
a0(x) − f

j
a0(c)| ≤ d/2 and therefore

|f j
a0(x) − c| ≥ d

2
(4.6)

for all j ≤ p.
This also proves the last statement of the lemma.
We have

(f k
a0

)′(fa0(x))

(f k
a0

)′(fa0(c))
=

k∏
j=1

(
1 + f ′

a0
(f

j
a0(x)) − f ′

a0
(f

j
a0(c))

f ′
a0

(f
j
a0(c))

)

≤ exp
( k∑

j=1

13|f j
a0(x) − f

j
a0(c)|

f ′
a0

(f
j
a0(c))

)
(4.7)

≤ exp
{
K1

(
δ1p14p1 +

k∑
j=p1+1

e−βj

)}
.

The last sum in the exponential may be empty.
Similarly, using (4.6), we get

(f k
a0

)′(fa0(c))

(f k
a0

)′(fa0(x))
≤ exp

{
K2

(
δ1p14p1 +

k∑
j=p1+1

e−βj

)}
. (4.8)

The sums in (4.7) and (4.8) are bounded by a constant, which only depends on δ1, so
we get (4.4). Moreover, by (4.7) and (4.8), C4 > 1 converges to 1 as δ1 → 0.
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Set κ̃ = (1/	) log 
. Then there is a constant C6 = C6(a0) such that

(f
j
a0)

′(fa0(c)) ≥ C6e
κ̃j (4.9)

for all j ≥ 1.
At c, the first two derivatives of fa vanish, but the third one does not. Therefore, there

are positive constants C7, C8 such that for all a sufficiently close to a0,

C7|x − c|3 < |fa(x) − fa(c)| < C8|x − c|3 (4.10)

whenever x ∈ I ∗∗. If δ1 is small, the constants C7 and C8 can be made close to each other.
Similarly, for some positive constants C9

′ and C10
′,

C′
9(x − c)2 < f ′

a(x) < C′
10(x − c)2 (4.11)

whenever x ∈ I ∗∗. If instead of fa we consider fa,b with b sufficiently close to 1, we
similarly obtain

|x − c|(2 − 2b + C7(x − c)2) < |fa,b(x) − fa,b(c)| < |x − c|(2 − 2b + C8(x − c)2)

(4.12)

and

2 − 2b + C9(x − c)2 < f ′
a,b(x) < 2 − 2b + C10(x − c)2, (4.13)

and we chose C9 and C10 so that these estimates are valid for all b ≤ 1. Moreover, we have

|f ′′
a,b(x)| ≤ 8π2|x − c| < 80|x − c|. (4.14)

In the following lemma we estimate the length of the bound period.

LEMMA 4.4. If δ1 is sufficiently small, x is β-bound to c up to time p for fa0 , and x ∈
I ∗∗ \ {c}, then

p < − 4
κ̃

log |x − c|. (4.15)

In the particular case when x ∈ I±r we obtain

p ≤ 4r

κ̃
. (4.16)

Proof. By Lemma 4.3, we have

|f p
a0(x) − f

p
a0(c)| >

(f
p
a0)

′(fa0(c))

C4
|fa0(x) − fa0(c)|.

Taking into account (4.9) and (4.10), we get

1 > |f p
a0(x) − f

p
a0(c)| >

C6C7

C4
eκ̃p|x − c|3.

If δ1 is small, then C4 < 2, so taking logarithms gives us

log
C6C7

2
+ κ̃p + 3 log |x − c| < 0.
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If δ1 is small, then − log |x − c| is large, so we get − log(C6C7/2) < − log |x − c|, and
therefore κ̃p < −4 log |x − c|.

We need a derivative estimate for an orbit of fa0 that moves completely outside I ∗ =
(c − δ, c + δ) or I ∗∗ = (c − δ1, c + δ1) but returns to one of these intervals at time n.

In the proof of the next lemma we will use the fact that fa has negative Schwarzian
derivative. This result can be generalized to the C2 case (see van Strien [25]).

LEMMA 4.5. Let d be as in (4.1). For every δ1 ∈ (0, d/2) and for every n ≥ 1, if x is such
that f

j
a0(x) /∈ I ∗∗ for j = 0, . . . , n − 1, and f n

a0
(x) ∈ I ∗∗, then (f n

a0
)′(x) > d/2.

Proof. On each side of x there are the two closest preimages of c of order less than
n: η1 < x and η2 > x. Then f n

a0
has positive derivative on (η1, η2) and has negative

Schwarzian derivative on that interval. Therefore on one of the intervals [η1, x] and [x, η2]
the maximum of the derivative (f n

a0
)′ is attained at x. We may assume that this is the

interval [η1, x]. Then f n
a0

(η1) = f k
a0

(c) for some k > 0, so

|f n
a0

(η1) − f n
a0

(x)| ≥ d − δ1 > d/2.

By the mean value theorem,

|f n
a0

(η1) − f n
a0

(x)| = (f n
a0

)′(t)|η1 − x| ≤ (f n
a0

)′(t)

for some t ∈ (η1, x), and thus,

(f n
a0

)′(x) ≥ (f n
a0

)′(t) > d/2.

In the following lemma we consider what we call a free period.

LEMMA 4.6. Given δ1 sufficiently small, there exist a neighborhood N of (a0, 1) in
the parameter space and positive constants C∗ and κ3, such that if (a, b) ∈ N, then if
x, fa,b(x), . . . , f

q−1
a,b (x) �∈ I ∗∗ and f

q
a,b(x) ∈ I ∗∗ then

(f
q
a,b)

′(x) ≥ C∗eκ3q . (4.17)

Here the constant C∗ depends only on the unperturbed map fa0 , while κ3 depends on δ1.

Proof. By Lemma 4.1, (f
M1
a,b )′(x) ≥ eκ2 M1 . For a general q write q = kM1 + 	, 0 ≤ 	 <

M1. Choose κ ′
3 so that eκ ′

3M1 ≤ 2.
Since 	 < M1, we have (f 	

a,b)
′(f kM1

a,b (x)) > d/4 by Lemma 4.5 (here we can extend the
estimate to a neighborhood ofN2 of (a0, 1) because we consider only finitely many iterates
of the map). Then for (a, b) ∈ N = N1 ∩N2,

(f
q
a,b)

′(x) = (f
kM1
a,b )′(x)(f 	

a.b)
′(f kM1

a,b (x)) ≥ eκ2kM1 · d

4

≥ eκ2kM1
d

8
· eκ ′

3M1 ≥ d

8
eκ2kM1+κ ′

3	,

so (4.17) follows with C∗ = d/8 and κ3 = min(κ2, κ ′
3). Note that, as required, C∗ only

depends on the unperturbed map fa0 , while κ3 depends on δ1.
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We will also need an estimate of the derivative during the bound period.

LEMMA 4.7. Assume that 9β ≤ κ̃ . Let C∗ be the constant from Lemma 4.6. Then there is
an arbitrarily small δ1 such that if x is β-bound to c up to time p for fa0 and x ∈ I ∗∗ =
(c − δ1, c + δ1) then

(f
p
a0)

′(x) >
1

C∗ e(κ̃/4)p. (4.18)

Proof. By the mean value theorem, there is a y between fa0(x) and fa0(c) such that

|f p
a0(x) − f

p
a0(c)| = (f

p−1
a0 )′(y)|fa0(x) − fa0(c)|.

By this, Lemma 4.3 and (4.10), there exists a constant K3 such that if δ1 is sufficiently
small then

|f p
a0(x) − f

p
a0(c)| < K3e

κ̃p|x − c|3.

Similarly, since (f
p
a0)

′(x) = f ′
a0

(x) · (f p−1
a0 )′(fa0(x)), we get by Lemma 4.3 and (4.11) that

there exists a constant K4 such that if δ1 is sufficiently small then

(f
p
a0)

′(x) > K4e
κ̃p|x − c|2.

By the definition of p we have

|f p+1
a0 (x) − f

p+1
a0 (c)| > e−β(p+1),

and therefore for some constant K5,

|f p
a0(x) − f

p
a0(c)| > K5e

−βp.

Thus,

K3e
κ̃p|x − c|3 > K5e

−βp,

so

|x − c|2 > K
2/3
5 K

−2/3
3 e(2/3)(−β−κ̃)p.

Together with an earlier estimate, this gives us

(f
p
a0)

′(x) > K4e
κ̃pK

2/3
5 K

−2/3
3 e(2/3)(−β−κ̃)p = K4K

2/3
5 K

−2/3
3 e(1/3)(κ̃−2β)p.

Since 9β ≤ κ̃ , we have

1
3
(κ̃ − 2β) >

7
27

κ̃ ,

and therefore (4.18) holds if

C∗ > K−1
4 K

−2/3
5 K

2/3
3 e−(κ̃/108)p(δ1), (4.19)

where p(δ1) is the bound period associated with δ1. Since p(δ1) → ∞ as δ1 → 0, and C∗
is independent of δ1, the above inequality holds if δ1 is sufficiently small.

Remark 4.8. If in (4.18) we replace (on both sides of the inequality) p by p − 1 or p + 1,
then at the right-hand side of in (4.19) there will be one more multiplicative constant. Since
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it was irrelevant in the proof what constant is there, Lemma 4.7 still holds with a suitably
modified inequality (4.18).

The following lemma is very similar to Lemma 4.1, but the exponent in the estimate
does not depend on the size of the neighborhood of c that we consider. In this lemma we
assume that δ1 is sufficiently small (so that the lemmas that we use in the proof hold) but
fixed.

LEMMA 4.9. Let I be an open symmetric interval around c, whose closure is contained in
I ∗∗. Fix a sufficiently small neighborhood N of (a0, 1) (depending on I). Then there are
constants C11 > 0 and κ4 > 0, (independent of I) and an integer M (depending on I) such
that for (a, b) ∈ N:
(i) if x, fa,b(x), . . . , f n−1

a,b (x) /∈ I and f n
a,b(x) ∈ I ∗∗, then

(f n
a,b)

′(x) ≥ C11e
κ4n;

(ii) if x, fa,b(x), . . . , f n−1
a,b (x) /∈ I and n ≥ M , then

(f n
a,b)

′(x) ≥ eκ4n.

Remark. Note that we state (i) with the weaker assumption f n
a,b(x) ∈ I ∗∗ instead of the

more natural f n
a,b(x) ∈ I . This slightly stronger statement will be used in the proof of (ii).

Proof. Let 0 = t0 < t1 < t2 < · · · < tS < tS+1 = n, where ti for i ∈ {1, 2, . . . , S} are
the times when f

ti
a,b(x) ∈ I ∗∗ \ I . We want to estimate

(f n
a,b)

′(x) =
S∏

j=0

(f
tj+1−tj
a,b )′(f tj

a,b(x)).

The times from [t0, t1) form a free period; let t1 − t0 = q0. Hence, by Lemma 4.6,

(f
q0
a,b)

′(x) ≥ C∗eκ3q0 .

Consider now times from [tj , tj+1), where j > 0. We can write this interval as a union
of a bound period [tj , tj + pj ) and a free period [tj + pj , tj+1), and we write its length
as tj+1 − tj = pj + qj . For the bound periods [tj , tj + pj ) we can use the estimate from
Lemma 4.7 if N is sufficiently small, because by Lemma 4.4 we work only with the finite
number of iterates (for I fixed; this is why N depends on I). Although p may depend on
the map that we are using, ifN is sufficiently small, it may only change to p ± 1, and then
by Remark 4.8 we can still use Lemma 4.7.

Thus, for the bound periods [tj , tj + pj ) we get

(f
pj

a,b)
′(f tj

a,b(x)) ≥ 1
C∗ e(κ̃/4)pj (4.20)

and for the free period, as before, the estimate from Lemma 4.6 gives us

(f
qj

a,b)
′(f tj +pj

a,b (x)) ≥ C∗eκ3qj .
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Combining these estimates, we get

(f n
a,b)

′(x) ≥ C∗eκ3q0

S∏
j=1

1
C∗ e(κ̃/4)pj · C∗eκ3qj ≥ C∗eκ ′

4n,

with κ ′
4 = min(κ3, κ̃/4). This completes the proof of (i).

Under the assumptions of (ii) instead of (i) we make the same construction and
estimates. The only difference is that we do not know that f n

a,b(x) ∈ I ∗∗, so we lose
information about the last period. There are two cases.

Case 1. f n
a,b(x) is still in bound state to the last return to I ∗∗ at time tS . At time tS we

can use the estimate of (i),

(f
tS
a,b)

′(x) ≥ C11e
κ ′

4tS .

The derivative contribution at time tS is

f ′
a,b(f

tS
a,b(x)) ≥ C′

9δ
2.

Then there is a derivative contribution from the time [tS + 1, tS + j ], j = n − tS . Since
1 ≤ j ≤ pS we can use the Collet–Eckmann condition (1.2) and the distortion estimate
Lemma 4.3, combined with continuity in a for a ∈ A, and the fact that pS is bounded to
conclude that, say

(f
j
a,b)

′(f tS+1
a,b (x)) ≥ 1

2CCEeκ1j .

Combining these estimates and using the chain rule, we get that

(f n
a,b)

′(x) ≥ C11e
κ4tS · C′

9δ
2 · 1

2CCEe(κ̃/4)j ,

and since n ≥ M , where M is allowed to depend on δ, this gives estimate (ii) with a suitable
κ ′′

4 < κ ′
4.

Case 2. n ≥ tS + pS . In this case we can use (4.20) with j = S to obtain

(f
pS

a,b)′(f tj
a,b(x)) ≥ 1

C∗ e(κ̃/4)pS . (4.21)

Then

(f n
a,b)

′(x) ≥ (f
tS
a,b)

′(x)(f
pS

a,b)′(f tS
a,b(x))((f

qS

a,b)
′(f tS+pS

a,b (x)),

where qS = n − (tS + pS). Using Lemma 4.1 and the simple estimate (fa,b)
′(x) ≥ C′

9δ
2
1

for |x − c| ≥ δ1, we get that

(f
qS

a,b)
′(f tS+pS

a,b (x)) ≥
{

eκ2q , qS ≥ M1,

(C′
9δ

2
1)qS , qS < M1.

Using that the constants δ1, C′
9, κ2 and M1 only depend on fa0 , we conclude that (ii)

holds with κ4 = κ ′′′
4 for n ≥ M , if M is sufficiently large. The final κ4 is then chosen as

κ4 = min(κ ′
4, κ ′′

4 , κ ′′′
4 ).
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Remark 4.10. Note that we in this setting will have an analogue of Lemma 4.4 and the
estimate

p ≤ 4r

κ4
(4.22)

holds.

Remark 4.11. We will on several occasions need a distortion estimate in the situation of
Lemma 4.9, that is, for orbits located outside of I. We need the estimate for parameter
dynamics, that is, we have a parameter interval ω in the space of a-parameters, and
we consider ξj (ω, b) for j satisfying ν ≤ j < μ = n, where ξj (ω, b) ∩ I = ∅ for j =
ν, . . . , n − 1 and ξn(ω, b) ∩ I �= ∅. Let ω′ ⊂ ω be the interval that is mapped onto I.
Then Lemma 4.9(i) implies that

inf
a∈ω′(f

n−ν
a,b )′(f ν

a,b(c)) ≥ C11e
κ4(n−ν). (4.23)

We also assume that (3.6) holds at time ν, that is, for a ∈ ω,

(f
j
a,b)

′(fa,b(c)) ≥ C2e
j2/3

, 1 ≤ j ≤ ν − 1, (4.24)

Then by Corollary 3.2,

1 ≤ ∂aξν(a, b)

(f ν−1
a,b )′(fa,b(c))

≤ q∗. (4.25)

Then we conclude from Lemma 3.4 that

|ξn(ω
′, b)| ≥ 1

q∗ inf
a∈ω′(f

n−ν
a,b )′(f ν

a,b(c)) · |ξν(ω
′, b)|. (4.26)

LEMMA 4.12. There exists a constant C12 such that in the situation of Remark 4.11, if
a′, a′′ ∈ ω′ then

(f n−ν
a′,b )′(f ν

a′,b(c))

(f n−ν
a′′,b )′(f ν

a′′,b(c))
≤ exp

(
C12

|f n
a′,b(c) − f n

a′′,b(c)|
δ

)
. (4.27)

Proof. Set xk = f ν+k
a′,b (c) and yk = f ν+k

a′′,b (c). Note that f ′
a,b(x) is independent of a.

Therefore,

log
(f n−ν

a′,b )′(x0)

(f n−ν
a′′,b )′(y0)

=
n−ν−1∑

k=0

(log f ′
a′,b(xk) − log f ′

a′,b(yk))

≤
n−ν−1∑

k=0

( |f ′′
a′,b(ηk)|

f ′
a′,b(ηk)

· |xk − yk|
)

for some ηk between xk and yk . Since ηk /∈ I ∗ for k = 0, . . . , n − ν − 1, we get, by (4.13)
and (4.14),

|f ′′
a′,b(ηk)|

f ′
a′,b(ηk)

<
80
C9δ

. (4.28)
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Therefore,

log
(f n−ν

a′,b )′(x0)

(f n−ν
a′′,b )′(y0)

≤ 80
C9δ

n−ν−1∑
k=0

|xk − yk|. (4.29)

We have xk = ξν+k(a
′, b) and yk = ξν+k(a

′′, b). Therefore, by Remark 4.11,

|xk − yk| ≤ q∗
C11

eκ4(n−ν−k)|xn−ν − yn−ν |.

Thus,

n−ν−1∑
k=0

|xk − yk| ≤ q∗
C11

∞∑
m=0

e−κ4m|xn−ν − yn−ν | = q∗
C11(1 − e−κ4)

|xn−ν − yn−ν |.

Together with (4.29), we get

log
(f n−ν

a′,b )′(x0)

(f n−ν
a′′,b )′(y0)

≤ 80q∗
C9C11(1 − e−κ4)δ

|xn−ν − yn−ν |.

and we have proved (4.27) with

C12 = 160q∗
C9C11(1 − e−κ4)

.

Remark 4.13. We note that the distortion in Lemma 4.12 is uniformly bounded since
|f n

a,b(c) − f n
a′,b(c)| ≤ 2δ.

We will need a distortion estimate of the same type as Lemma 4.12 in the situation when
we only assume estimates such as (4.23) for all ν < n and with another Lyapunov exponent
κ5 > 0, together with (4.24). This is the case of hyperbolic times in the sense of Alves.

LEMMA 4.14. Assume that ξj (ω, b), j = ν, . . . , n, is located in U = S1 \ I ∗∗, and

inf
a∈ω

(f
n−j
a,b )′(f j

a,b(c)) ≥ C11e
κ5(n−j) for all j , ν ≤ j < n. (4.30)

Furthermore, assume that (4.24) is satisfied. Then

(f n−ν
a′,b )′(f ν

a′,b(c))

(f n−ν
a′′,b )′(f ν

a′′,b(c))
≤ exp(C13|f n

a′,b(c) − f n
a′′,b(c)|). (4.31)

Here the constant C13 can be chosen as C13 = C′
13N(fN, U)/(1 − e−κ5), where

N(fN, U) is the maximal nonlinearity

N(fN, U) = sup
(a,b)∈N

max
x∈U

|f ′′
a,b(x)|

f ′
a,b(x)

.

N(fN, U) depends only on fa0 and hence not on δ, and C′
13 is a constant that only depends

on fa0 .
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Proof. We will not give the proof since it is virtually word for word the same as that of
Lemma 4.12. The only difference that the upper bound 80/(C9δ) in (4.28) is replaced by
N(N, U).

5. Induction
Recall that the partition of the return interval I ∗ = (c − δ, c + δ) was introduced in §2.

Recall also that we defined ξn(a, b) = f n
a,b(c).

The next lemma will be used to start the induction.

LEMMA 5.1. Assume that δ1 is sufficiently small and the neighborhood N of (a0, 1) is
sufficiently small. Then there are constants C1, C2, κ6 > 0 such that for every ε = 2−J0

sufficiently small, there is a function b0(ε) such that for every b0(ε) ≤ b < 1 one can
partition (a0 − ε, a0 − ε2) into a partition Q of countable number of parameter intervals
ω and an exceptional set E of measure o(ε), such that for all ω ∈ Q there is an n0 = n0(ω)

such that for some (r , 	), with r ≤ √
n0 (or equivalently e−r ≥ e−√

n0),

Ir ,	 ⊂ ξn0(ω, b) ⊂ I+
r ,	,

and such that for every a ∈ ω:
(a) (f

j
a,b)

′(fa,b(c)) ≥ C2e
κ6j for 0 ≤ j ≤ n0 − 1;

(b) ∂af
j
a,b(c) ≥ C2e

κ6(j−1) for 1 ≤ j ≤ n0;

(c) |ξj (a, b) − c| > C1e
−√

j for 1 ≤ j < n0;
(d) (f

n0−1
a,b )′(fa,b(c)) ≥ e2(n0−1)2/3

;
(e) |ξn0(a, b) − c| ≥ e−√

n0 .
The corresponding statement holds also for the interval (a0 + ε2, a0 + ε).

Proof. We partition (a0 − ε, a0 − ε2) into subintervals ηj = (a0 − 2−j , a0 − 2−j−1) =
(a′

j , a′′
j ), j = J0, . . . , 2J0 − 1. The critical point c of unperturbed map fa0 is mapped to

a repelling periodic point P in m iterates. Let U0 be a symmetric interval contained in the
linearization domain of P such that

(f 	
a,b)

′(x) ≥ λ	
1 = 
1 > 1 for x ∈ U0.

Let η̃j = (a0 − 2−j , a0). Then there is a constant C14 so that

(f i
a,b)

′(ξm(a, b)) ≥ C14λ
i
1 for all a ∈ η̃j ,

as long as ξm+i (η̃j , b) ⊂ U0. We now state a version of Lemma 4.12 which will be used in
the startup construction.

LEMMA 5.2. Suppose that for a ∈ ω there is a constant C̃ = 1
2 , say, such that

|ξm(ω′, b)| ≥ 1
q∗ inf

a∈ω′(f
m−ν
a,b )′(f ν

a,b(c)) · |ξν(ω
′, b)| (5.1)

and

(f
j
a,b)

′(fa,b(c)) ≥ C̃eκ̂/4,, 1 ≤ j ≤ ν − 1. (5.2)
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Then there is a constant C12 such that

(f m−ν
a′,b )′(f ν

a′,b(c))

(f m−ν
a′′,b )′(f ν

a′′,b(c))
≤ exp

(
C12

|f m
a′,b(c) − f n

a′′,b(c)|
δ

)
. (5.3)

We will not give the proof of this lemma since it is identical to that of Lemma 4.12. We
conclude that

|ξm+i (η̃j , b)| ≥ C14

q∗
λi

1 · |ξm(η̃j , b)|

and q∗ has a uniform control by Corollary 3.2.
We also get a uniform distortion control of ∂af

ν
a,b(ξj (a, b)), that is, there is a constant

C̃ depending only on a0 such that for all a, a′ in η̃j ,

1

C̃
≤ ∂af

ν
a,b(ξj (a, b))

∂af
ν
a′,b(ξj (a′, b))

≤ C̃, ν = 1, 2, . . . , (5.4)

as long as ξm+ν(η̃j , b) ⊂ U0.
It follows that there is a first time L such that ξm+L+1(η̃j , b) �⊂ U0. We write η̃j as the

disjoint union (except for an endpoint)

η̃j = ηj ∪ η′
j .

By (5.4) it follows that ξm+L(ηj , b) and ξm+L(η′
j , b) are comparable within a fixed

constant C15, which only depends on fa0 .
We continue to iterate ξm+L+i (ηj , b) for i = 1, 2, . . . . By Lemmas 4.9, 3.4 and the

control of the constant q∗ it follows that at the first time J such that ξm+L+J (ηj , b) ∩
I ∗ �= ∅,

|ξm+L+J (η̃j , b)| ≥ C11

q∗
eκ4J |ξm+L(η̃j , b)|.

Then κ6 = min(log λ1, κ4) is the required Lyapunov exponent in (a). It follows by Lemmas
4.9(ii), 3.4 and the control of q∗ that the time J will be finite. At time N0 = m + L + J ,
we partition

(c − δ, c + δ) ∩ ξN0(ηj , b)

into preimages {ω} under the map a �→ ξN0(a, b) of the partition Q = {Ir ,l} and define
n0 = N0 for these ωs. In the special case when ξN0(ηj , b) only intersects partially
an end interval of Q = {Ir ,l}, we just keep iterating until we cover complete intervals
of Q. In other special case when ξN0(ηj , b) only partially covers an Ir ,l interval we
adjoin the corresponding preimage to the adjacent interval. Simultaneously we delete
the part of ηj that is mapped to (c − e−√

n0 , c + e−√
n0). By the uniform distortion

of both the x-derivative and a-derivative which follows from Lemmas 4.9, 4.12 and
Corollary 3.2 a proportion of at most C16e

−√
n0/δ of the piece of ηj is mapped into

(c − e−√
n0 , c + e−√

n0). Here C16 is a constant only depending on fa0 . We continue to
iterate ξN0(ηj , b) \ (c − δ, c + δ), still using Lemmas 4.9, 4.12 and Corollary 3.2. For
the new returning interval ω formed in this way n0(ω) > N0 and still only a quantity
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proportional to e−√
n0/δ is deleted. Conclusions (a)–(e) of Lemma 5.1 are immediately

verified.

Remark 5.3. The startup argument is essentially the same as the free period argument
in the main induction and the argument in Lemma 4.9 in §4. See the main induction
below in this section for a more thorough discussion. The only difference is the initial
period that is spent close to the repelling periodic point which in some sense replaces
the bound period. The expansive behavior close to the repelling periodic point allows
us to avoid inessential free returns and gives the initial exclusion ratio of at most
C16e

−√
n0/δ.

Let us now fix b, 0 < b0(ε) ≤ b < 1. Note that for every positive integer n we have
a family Pn of subintervals of (a0 − ε, a0 + ε) (as in Lemma 5.1) with pairwise disjoint
interiors, such that each element of Pn+1 is contained in some element of Pn. In the set of
pairs (n, ω) such that ω ∈ Pn there is a natural structure of a combinatorial tree that goes
down with its branches. Pairs (n, ω) are vertices of this tree; n is the level on which the
vertex lies; there is an edge from (n, ω) to (n + 1, ω′) if and only if ω′ ⊂ ω.

Certain pairs with the property ξn(ω, b) ⊂ I ∗ will be called free return pairs.
The induction will be separate on every branch of the tree. Fixing the branch results in

considering a descending sequence of intervals ωn ∈ Pn. If (n, ωn) is a free return pair,
then we will call n a free return time. An important feature of the construction is that if
n is not a free return time then ωn = ωn−1. The main induction step will be from a free
return time to the next free return time. The constants C2 and C1 are as in Lemma 5.1.
Throughout the entire induction they will stay the same.

Our induction statement is as follows. If n is a free return time and a ∈ ω, then:
(i) we have

(f n−1
a,b )′(fa,b(c)) ≥ e2(n−1)2/3

; (5.5)

(ii) for every ν ∈ [n0, n),

(f ν
a,b)

′(fa,b(c)) ≥ eν2/3
; (5.6)

(iii) for every ν ∈ [1, n),

(f ν
a,b)

′(fa,b(c)) ≥ C2e
ν2/3

; (5.7)

(iv) if ν < n is also a free return time, then

(f n−ν
a,b )′(f ν

a,b(c)) ≥ C(δ) � 1; (5.8)

(v) for every ν ∈ [n0, n],

|ξν(a, b) − c| ≥ e−√
ν ; (5.9)

(vi) for every ν ∈ [0, n],

|ξν(a, b) − c| ≥ C1e
−√

ν . (5.10)

In [2, 3] statements (v) and (vi) are called the basic assumption (BA).
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Remember that b sufficiently close to 1 is fixed. We set Pn = {ωb} for n =
1, 2, . . . , N0. Thus, this is the beginning of every branch. Then we declare n0 = n0(ω) to
be the first free return time according to the startup construction. Thus, for every branch we
have to start induction by checking that the above conditions are satisfied for n = n0(ω).

LEMMA 5.4. The induction statement conditions (i)–(vi) are satisfied for n = n0.

This is a consequence of the startup construction, Lemma 5.1.
Now we make a small modification to Definition 4.2.

Definition 5.5. Let a′ be the midpoint of the interval ω such that

ξn(ω, b) ⊂ I+
r ,l = Ir ,l−1 ∪ Ir ,l ∪ Ir ,l+1

for some n, r , l. We define the bound period as the maximal integer p such that for all
j ≤ p, a ∈ ω, and x ∈ ξn(ω, b),

|f j
a,b(x) − f

j

a′,b(c)| ≤ e−4
√

j . (5.11)

By (4.3) and Lemma 3.1, we get for every n, a, b, x,

∂af
n
a,b(x) ≤

n−1∑
k=0

4k = 4n − 1
3

< 4n. (5.12)

In the next several lemmas we will be using the same set of assumptions. We formalize
these in the following definition.

Definition 5.6. We say that condition (*) is satisfied if:
• ω, n, r , l, p and a′ are as in Definition 5.5,
• conditions (iii), (v) and (vi) of the induction statement hold.

Next we formulate another version of the bound distortion lemma.

LEMMA 5.7. There is a constant C17 such that if condition (*) holds, then

1
C17

≤ (f k
a,b)

′(fa,b(y))

(f k
a,b)

′(fa,b(c))
≤ C17 (5.13)

and

1
C17

≤ (f k
a,b)

′(fa,b(y))

(f k
a′,b)

′(fa′,b(c))
≤ C17 (5.14)

for every x ∈ Ir ,l , y between x and c, a ∈ ω, and k ≤ max(p, n). By making δ sufficiently
small, the constant C17 = C17(δ) > 1 can be chosen arbitrarily close to 1.

Proof. The proof will proceed by induction on k. Using (4.3), we get, in the same way as
in the proof of Lemma 4.3,

(f k
a,b)

′(fa,b(y))

(f k
a,b)

′(fa,b(c))
≤ exp

( k∑
j=1

13|f j
a,b(y) − f

j
a,b(c)|

f ′
a,b(f

j
a,b(c))

)
. (5.15)
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Furthermore,

|f j
a,b(y) − f

j
a,b(c)| ≤ |f j

a,b(x) − f
j
a,b(c)| ≤ |f j

a,b(x) − f
j

a′,b(c)| + |f j

a′,b(c) − f
j
a,b(c)|,

(5.16)

and by (5.11) we have

|f j
a,b(x) − f

j

a′,b(c)| ≤ e−4
√

j . (5.17)

Thus, we need to estimate |f j

a′,b(c) − f
j
a,b(c)|. Note that by the mean value theorem there

is a′′ between a and a′ such that

|f j

a′,b(c) − f
j
a,b(c)| = ∂af

j

a′′,b(c) · |a − a′|. (5.18)

Note that |a − a′| can be interpreted as |ξ1(a, b) − ξ1(a
′, b)|. By Lemma 3.4,

|ξn(a, b) − ξn(a
′, b)| ≥ 1

q∗
inf

ã∈[a,a′]
(f n−1

ã,b )′(fã,b(c)) · |ξ1(a, b) − ξ1(a
′, b)|.

By induction statement (iii), (f n−1
ã,b )′(fã,b(c)) ≥ C2e

(n−1)2/3
. We may therefore conclude

that |a − a′| ≤ C−1
2 q∗e−(n−1)2/3 · |ξn(a, b) − ξn(a

′, b)|. But by the mean value theorem,

|f j
a,b(x) − f

j

a′,b(c)| = |f j−1
a,b (fa,b(x)) − f

j−1
a,b (fa,b(c))|

= (f
j−1
a,b )′(fa,b(y)) · |fa,b(c) − fa,b(x)|. (5.19)

However, since |ξn(a, b) − ξn(a
′, b)| ≤ e−r , we have

|fa,b(c) − fa,b(x)| ≥ C7 · |x − c|3 ≥ C7e
2(−r−1) · e−1 · |ξn(a, b) − ξn(a

′, b)|. (5.20)

By the basic assumption e−r ≥ C1e
−√

n. Note also that by Corollary 3.2, ∂af
j

a′′,b(c)

is comparable within the multiplicative constant q∗ to (f
j−1
a′′,b )′(fa′′,b(c)). But this

quantity is in itself by induction comparable within a multiplicative constant C17 to
infã∈[a,a′](f

n−1
ã,b )′(fã,b(c)). We use the statement of our result for k = j − 1.

We use (5.18) and note that |a − a′| can also be written as |ξ(a, b) − ξ1(a
′, b)|. By

Lemma 3.4,

|ξn(a, b) − ξn(a
′b)| ≥ 1

q∗
inf

ã∈[a,a′]
(f n−1)′(fã,b(c)). (5.21)

By combining (5.19), (5.20) and (5.21), we obtain

|f j
a,b(x) − f

j
a,b(c)|

= |f j−1
a,b (fa,b(x)) − f

j−1
a,b (fa,b(c))| ≥ (f j−1)′(fa,b(y))|fa,b(x) − fa,b(c)|

≥ inf
y∈Ir

(f
j−1
a,b )′(fa,b(y)) |fa,b(x) − fa,b(c)|

≥ C7e
−3r inf

y∈Ir

(f
j−1
a,b )′(fa,b(y))

≥ C7e
−2r inf

y∈Ir

(f
j−1
a,b )′(fa,b(y))|ξn(a, b) − ξn(a

′, b)|
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≥ C7e
−2r inf

y∈Ir

(f
j−1
a,b )′(fa,b(y))( inf

ã∈[a,a′]
∂af

n
a′′,b(c))|ξ1(a, b) − ξ1(a

′, b)|

≥ C7e
−2r

infy∈Ir (f
j−1
a,b )′(fa,b(y))

supz∈Ir
(f

j−1
a,b )′(fa,b(z))

( inf
ã∈[a,a′]

∂af
n
a′′,b(c))|) |ξj (a, b) − ξj (a

′, b)|.

Now supz∈Ir
(f

j−1
a,b )′(fa,b(z)) and infy∈Ir (f

j−1
a,b )′(fa,b(y)) are comparable within constant

C2
17, by the statement of Lemma 5.7 with k = j − 1. This is where the inductive step

is used. Moreover, by Corollary 3.2 and induction statement (i), we have ∂af
n
a,b(c) ≥

q−1∗ e2(n−1)2/3
. Furthermore e−2r ≥ e−2

√
n, by induction statement (v). Combining these

estimates, we get

|ξj (a, b) − ξj (a
′, b)| ≤ 1

2 |f j
a,b(x) − f

j
a,b(c)|

since n ≥ n0(a) and n0(a) can be chosen arbitrarily large.
When inserting this estimate in (5.16) we conclude that

|f j
a,b(y) − f

j
a,b(c)| ≤ 2e−4

√
j . (5.22)

To estimate f ′
a,b(f

j
a,b(c)) from below, we use induction statement (vi) and (4.13). We

get

f ′
a,b(f

j
a,b(c)) ≥ C9C

2
1e−2

√
j . (5.23)

Putting together (5.15), (5.22) and (5.23), we obtain

(f k
a,b)

′(fa,b(y))

(f k
a,b)

′(fa,b(c))
< exp

(
13 · 2

C9 · C2
1

k∑
j=1

e−4
√

j

e−2
√

j

)
. (5.24)

For the lower bound, we obtain, in a similar way to (5.15),

(f k
a,b)

′(fa,b(c))

(f k
a,b)

′(fa,b(y))
≤ exp

( k∑
j=1

13|f j
a,b(y) − f

j
a,b(c)|

(fa,b)′(f j
a,b(y))

)
.

Note, however, that

(fa,b)
′(f j

a,b(y)) ≥ C9(f
j
a,b(y) − c)2 ≥ C9(|c − f

j
a,b(c)| − |f j

a,b(c) − f
j
a,b(y)|)2,

and, using (5.9) and (5.22), we get

f ′
a,b(f

j
a,b(y)) > C9(C1e

−√
j − 2e−4

√
j )2

whenever C1e
−√

j > 2e−4
√

j . Now C1 is fixed, and thus there is a positive integer Ñ such
that if j ≥ Ñ then C1e

−√
j > 2 × 2e−4

√
j , and then

f ′
a,b(f

j
a,b(y)) >

C9C
2
1

4
e−2

√
j .

By making N and I ∗ sufficiently small, we can make |f j
a,b(c) − f

j
a,b(y)| smaller than

C1e
−4

√
j instead of 2e−4

√
j , and then we get

f ′
a,b(f

j
a,b(x)) ≥ C9C

2
1K6e

−2
√

j
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for some constant K6 depending only on a0. Thus, in the same way as we obtained (5.24),
we get a similar estimate for the reciprocal ratio, but with a different constant. We choose
the larger of those constants as C17 and we get (5.13). The proof of (5.14) is completely
analogous and will be omitted. As for the statement that C17 can be chosen arbitrarily close
to 1 (but larger than 1), we refer to the argument in Lemma 4.3.

LEMMA 5.8. Assume that condition (*) holds. Then the bound period p in the sense of
Definition 5.5 satisfies

p ≤ 8r3/2.

Proof. We claim that p ≤ 8r3/2. Note that 8r3/2 ≤ 8n3/4 < n. We argue by contradiction.
Assume that there is k > 8r3/2 such that f

j
a,b(fa.b(z) is still bound to f

j
a,b(fa.b(c) for all

x ∈ Ir ,l and all z between x and c. By the mean value theorem, there is a point y between x
and c such that

|f k
a,b(x) − f k

a,b(c)| = |fa,b(x) − fa,b(c)| · (f k−1
a,b )′(fa,b(y)).

By Lemma 5.7 and induction statement (iii),

(f k−1
a,b )′(fa,b(y)) ≥ 1

C17
(f k−1

a,b )′(fa,b(c)) ≥ C2

C17
e(k−1)2/3

.

Since |x − c| ≥ e−r−1, by (4.13) we get

|fa,b(x) − fa,b(c)| ≥ C9

3
e−3r−3.

Putting the last three inequalities together, we get

|f k
a,b(x) − f k

a,b(c)| ≥ C2

C17
e(k−1)2/3 · C9

3
e−3r−3.

Taking into account (5.22) (which is valid also for y = x), we get

2 > 2e−√
k >

C2C9

3C17
e(k−1)2/3

e−3r−3.

Therefore,

(k − 1)2/3 < 3r − log K7

where K7 is a constant only depending on a0.
If δ is sufficiently small, then 1

2 r > − log K7, and we get k2/3 < (k − 1)2/3 +
2
3k−1/3 < 4r . We conclude that k ≤ 8r3/2 and this gives a contradiction.

Let us prove an elementary lemma about our family.

LEMMA 5.9. For the family of double standard maps, if 0 < |x − c| < 1
2 then

f ′
a,b(x) >

|fa,b(x) − fa,b(c)|
|x − c| . (5.25)
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Proof. We have c = 1
2 and f ′′

a,b(t) = −4πb sin(2πt). Therefore fa,b is strictly convex in
(c, c + 1

2 ), and thus for x ∈ (c, c + 1
2 ) we get (5.25). Similarly, in (c − 1

2 , c) the function
fa,b is strictly concave, and (5.25) follows.

LEMMA 5.10. There exists a positive constant C18 such that if condition (*) holds, then

(f
p+1
a,b )′(x) > C18e

r · e−4
√

p. (5.26)

Proof. By Definition 5.5, there exists a ∈ ω such that

|f p+1
a,b (x) − f

p+1
a′,b (c)| ≥ e−4

√
p+1. (5.27)

We have

|f p+1
a,b (x) − f

p+1
a′,b (c)| ≤ |f p+1

a,b (x) − f
p+1
a,b (c)| + |f p+1

a,b (c) − f
p+1
a′,b (c)|. (5.28)

By the mean value theorem, there is a point y between x and c such that

|f p+1
a,b (x) − f

p+1
a,b (c)| = |fa,b(x) − fa,b(c)| · (f p

a,b)
′(fa,b(y)). (5.29)

Now we estimate the second summand in (5.28). As in the proof of Lemma 5.7, we can
prove that

|f p+1
a,b (c) − f

p+1
a′,b (c)| ≤ 1

2 |f p+1
a′,b (c) − f

p+1
a,b (x)|.

Therefore

|f p+1
a,b (x) − f

p+1
a,b (c)| ≥ 1

2 |f p+1
a,b (x) − f

p+1
a′,b (c)| ≥ 1

2e−4
√

p+1.

From Lemma 5.7 we get

(f
p
a,b)

′(fa,b(x)) ≥ 1
C2

17
(f

p
a,b)

′(fa,b(y)),

so

(f
p
a,b)

′(fa,b(x)) >
1

2C2
17

· e−4
√

p+1 · 1
|fa,b(x) − fa,b(c)| .

By the chain rule and Lemma 5.9 we get, from this inequality,

(f
p+1
a,b )′(x) >

1
2C2

17
· e−4

√
p+1 · 1

|x − c| .

Since x ∈ Ir , we have |x − c| ≤ e−r , and we get (5.26) with a suitable choice of C18.

Let (n, ω) be a free return pair. Consider the intervals ξn+p+1+s(ω, b), s = 0, . . . ,
s0 − 1, where s0 is the smallest non-negative integer such that

ξn+p+1+s0(ω, b) ∩ I ∗ �= ∅.

For 0 ≤ s < s0, we say that ξn+p+1+s(ω, b) is in free orbit and the length of this orbit is
s0. We also use the notation n′ = n + p + 1 + s0 and it is our new free return time.

At the first free return there are different cases that can occur.
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Case 1. �n′ = ξn′(ω, b) is completely contained in I ∗ but does not contain a complete
interval Ir ,	. Then either ξn+p+1+s0(ω, b) is contained in an interval Ir ,l or it is contained
in the union of two adjacent intervals Ir ,l ∪ Ir ,l+1.

This is called an inessential free return. In this case ω ∈ Pn′ , and we just continue to
iterate. This also applies if �n′ intersects the boundary of I ∗ but does not contain any of
the end intervals.

Case 2. �n′ contains at least one of the partition intervals Ir ,	. This is the case of an
essential free return. We then proceed to define a new partition on a subset of ω according
to the following algorithm.

• We do not include the preimage of (c − e−√
n′ , c + e−√

n′
) under a �→ ξn′(a, b) in⋃

ω′∈Pn′ ω′, in order that (BA) should be satisfied.
• The intervals ωr ,	 and ω′

r ,	 are defined as the preimages of Ir ,	 under ω � a �→
ξn′(a, b). Because of the double covering property of fa,b, there could be no, one
or two such intervals. These will be new partition intervals of Pn′ . At the two ends of
ω we could have the property that some intervals only partially cover Ir ,	. In that case
we use the special rule that we adjoin the corresponding subintervals to the adjacent
intervals of Pn′ .

• There may be at most three subintervals of ω (call them ω1, ω2 and ω3) that are
mapped outside I ∗ by ω � a �→ ξn′(a, b). At the beginning of the procedure there
are at most two intervals mapped outside, but at later stages, because of the double
covering property of fa,b, there can be three. In this case these intervals are long,
that is, they are not contained in intervals adjacent to the end intervals in the partition
of (c − e−rδ+1, c + e−rδ+1), they are considered to be still free, and the free period
continues for these intervals. If one or more of the intervals ω1, ω2 or ω3 are short,
rather than long, they are adjoined to their adjacent neighbor.

Let XBA be the set that is mapped to (c − e−√
n′ , c + e−√

n′
). Then we define the

partition Pn′ |(ω \ XBA) as the intervals {ωr ,	}, {ω′
r ,	} and ωi , i = 1, 2, 3. Some of these

intervals may be empty.
Later we will see that deletions because of (BA) do not happen in Case 1, because the

interval �n′ is too long.
In order to proceed, we need to verify, at least partially, the induction step from time

n to time n′. Here n′ is interpreted as the first free return to I ∗ after n. There may be
previous returns ν, where another partition element of Pν has a free return, while the
present parameter interval does not return.

LEMMA 5.11. Assume induction statements (i)–(vi). Then induction statement conditions
(i), (ii), (iii) and (iv) hold for any free return pair (n′, ω′), where n′ is as above.

Proof. Let η be the distance from ξn(ω, b) to c. Therefore, by induction statement (i) and
(4.13),

(f n
a,b)

′(fa,b(c)) > C9η
2e2(n−1)2/3

.

However, by (v), η ≥ C1e
−√

n, so we get

(f n
a,b)

′(fa,b(c)) > C9C
2
1e2(n−1)2/3

e−2
√

n. (5.30)
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After time n there follows the bound period p, and by Lemma 5.7 and (iii) we get

(f k
a,b)

′(f n+1
a,b (c)) ≥ C−1

17 (f k
a,b)

′(fa,b(c)) ≥ C−1
17 C2e

k2/3
(5.31)

for all k ≤ p. Combining (5.30) and (5.31), we conclude that

(f n+k
a,b )′(fa,b(c)) = (f n

a,b)
′(fa,b(c)) · (f k

a,b)
′(f n+1

a,b (c)) > C9C
2
1C−1

17 C2e
2(n−1)2/3−4

√
n+k2/3

.
(5.32)

For k ≤ p ≤ 8r3/2 ≤ 8n3/4, we conclude that

(f n+k
a,b )′(fa,b(c)) ≥ e(n+k)2/3

At time n + p + 1 the bound period has expired and we have for all a ∈ ω,

(f
p
a,b)

′(f n
a,b(c))e

−3r ≥ C19e
−4

√
p+1, (5.33)

where C19 is a constant only depending on fa0 .
For the total derivative we obtain

(f n+p)′(f n
a,b(c)) ≥ C19e

2n2/3
e−2r (f

p
a,b)

′(f n−1
a,b (c)). (5.34)

After raising (5.33) to the power 2
3 we obtain

(f n+p)′(f n
a,b(c)) ≥ C

2/3
19 e2n2/3

(f
p
a,b)

′(f n
a,b(c))

1/3e−8/3
√

p+1. (5.35)

Looking at the exponents, we get, using (5.7), the lower bound

2n2/3 + 1
3
p2/3 − 8

3

√
p + 1 ≥ 2(n + p)2/3 + 1

10
p2/3.

Here we have used the information from Lemma 5.8, p ≤ 8n3/4 and that if p ≤ 1/100n

then

2n2/3 + 1
3p2/3 ≥ 2(n + p)2/3 + 1

5p2/3.

Now, if k = p + s and 0 < s ≤ s0, then we can use Lemma 4.9(ii). If s ≥ M then

(f s
a,b)

′(f n+p+1
a,b (c)) ≥ eκ4s .

If s < M we use Lemma 4.5, which allows a perturbation to (a, b) ∈ N with a worse
constant d/4 instead of d/2 and we get

(f s
a,b)

′(f n+p+1
a,b (c)) ≥ d

4
.

Thus, independently of whether s ≥ M or s < M , we have

(f s
a,b)

′(f n+p+1
a,b (c)) ≥ d

4
e(s−M)κ4 .

Together with (5.32) (where we substitute k = p + s), we get

(f n+k
a,b )′(fa,b(c)) = (f

n+p
a,b )′(fa,b(c)) · (f s

a,b)
′(f n+p+1

a,b (c))

> C9C
2
1C−1

17 C2
d

4
e2(n−1)2/3−4

√
n+1/10p2/3+(s−M)κ4 .
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Note that since the constants C3, C1, C17, C2 are absolute constants, p can be made
arbitrarily large by making δ sufficiently small. Doing this, we conclude that induction
statements (ii) and (iii) hold for ν satisfying n + p < ν < n′ where n′ is the next free
return time.

We now turn to verifying (i) at the next free return time n′. Using the previous derivative
estimates and (i) of Lemma 4.9, we get, after writing n′ = n + p + 1 + q, that

(f n′−1
a,b )′(fa,b)(c) ≥ e2(n−1)2/3+1/10p2/3−8/3

√
p+1C11e

κ4(q−1),

where C11 is an absolute constant only depending on a0. Arguing in different cases
depending on the relative sizes of n and q, one can verify that induction statement (i)
with n replaced by n′ holds.

Since C11 and C18 do not depend on δ, while by making δ sufficiently small we can
make p as large as we want, we conclude using Lemma 5.8 that

C11C18e
r · e−√

p+1 ≥ C11C18 exp
{ 1

2p2/3 − 4
√

p + 1
} ≥ 1.

This proves (iv) for n′.

We now delete the parameters that are mapped to

(c − C2
∗e−√

n′
, c + C2

∗e−√
n′

),

where C2
∗ = max(C2, 1). We conclude that induction statements (v) and (vi) also hold.

This completes the proof of the induction step.
We note that the proof also gives the information

(f n′−n
a,b )′(f n

a,b(c)) ≥ e
1
6 (n′−n)2/3

. (5.36)

Remark 5.12. From (5.36) it immediately follows that

(f n′−1
a,b )′(fa,b(c)) ≥ (f n−1

a,b )′(fa,b(c)) · e
1
6 p3

, (5.37)

which will be used later. We will also later use (5.36).

Remark 5.13. Clearly, in Lemma 3.4, ω can be replaced by any subinterval ω′ ⊂ ω.
If we choose μ = n′ and if ξn′(ω′, b) ⊂ I ∗, and n + p + 1 ≤ ν < μ = n′, we can use
Lemma 4.9(i) to estimate infa∈ω(f n′−ν

a,b )′(f ν
a,b(c)) from below by C11e

κ4(n
′−ν). Moreover,

by Lemma 5.11 we know that induction statement (iii) holds for ν < n′. Therefore, we
conclude from (3.7) that (3.8) holds with q ′ = q∗. We thus get

|ξn′(ω′, b)| ≥ C11

q∗
eκ4(n

′−ν)|ξν(ω
′, b)|.

6. The global distortion lemma
LEMMA 6.1. There exists a constant C13, such that if a and a′ are two parameter points,
so that a, a′ ∈ ω ∈ Pn, where n is a free return time and the induction statement for n (and
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all smaller free return times) holds, then

(f k
a,b)

′(fa,b(c))

(f k
a′,b)

′(fa′,b(c))
≤ C13 (6.1)

for all k ≤ n − 1.

Proof. Let us fix k ≤ n − 1. Set t0 = 1 and let {tj }mj=1 be the free return times arranged
in increasing order. Here m is defined by the condition tm−1 < k ≤ tm − 1, and we
can assume that tm = n. Observe that for all free returns tj there is rj such that
ξtj (a, b), ξtj (a

′, b) ∈ Irj .
Note that f ′

a,b(x) = f ′
a′,b(x). Thus, using the mean value theorem, we can write the

logarithm of the left-hand side of (6.1) as

log
(f k

a,b)
′(fa,b(c))

(f k
a′,b)

′(fa′,b(c))
= log

∏k
j=1 f ′

a,b(ξj (a, b))∏k
j=1 f ′

a,b(ξj (a′, b))

≤
m−1∑
i=0

( ti+pi∑
j=ti

∣∣∣∣f
′′
a,b(ηj )

f ′
a,b(ηj )

∣∣∣∣|ξj (a, b) − ξj (a
′, b)| + log

(f
ti+1−ti−pi−1
a,b )′(ξti+pi+1(a, b))

(f
ti+1−ti−pi−1
a′,b )′(ξti+pi+1(a′, b))

)

for some ηj between ξj (a, b) and ξj (a
′, b), where pi is the corresponding bound time and

p0 = −1. We will denote the first sum in the parentheses above by S ′
i and the second term

in the parentheses by S′′
i . Note that the sum S′

0 is empty.
By (4.13) and (4.14) we get ∣∣∣∣f

′′
a,b(ηj )

f ′
a,b(ηj )

∣∣∣∣ ≤ 80
C9|ηj − c| . (6.2)

Set σi = |ξti (a, b) − ξti (a
′, b)|. We claim that the sum S′

i can be estimated from above
by a constant times σie

ri .
First we note that by (6.2), the first term of S′

i can be estimated by 80σi/(C9e
−ri ).

For the remaining terms we introduce the reference interval �ti = Iri+1 and intervals
�ti+ν = f ν

a,b(�ti ), ν = 0, 1, 2, . . . , pi . We have

ξti+1(a, b) − ξti+1(a
′, b) = (fa,b(ξti (a, b)) − fa,b(ξti (a

′, b))

+ (fa,b(ξti (a
′, b) − fa′,b(ξti (a

′, b))

= f ′
a,b(y)(ξti (a, b) − ξti (a

′, b)) + (a − a′)

for some y between ξti (a, b) and ξti (a
′, b). Furthermore, |�ti+1| = f ′

a,b(y
′)|�ti | for some

y′ ∈ �ti .
We get

|ξti+1(a, b) − ξti+1(a
′, b)|

|�ti+1| = f ′
a,b(y)

f ′
a,b(y

′)
· σi

|�ti |
± |a − a′|

f ′
a,b(y

′)|�ti |
. (6.3)

By the mean value theorem,

|a − a′|
f ′

a,b(y)σi

= 1
f ′

a,b(y)∂aξti (a
′′, b)

https://doi.org/10.1017/etds.2022.45 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.45


2578 M. Benedicks et al

for some a′′ between a and a′. By (3.5) and induction statement (iii),

∂aξti (a
′′, b) ≥ (f

ti−1
a′′,b )′(fa′′,b(c)) ≥ C2e

√
ti−1.

By (4.13) and induction statement (v),

f ′
a,b(y) ≥ C9C

2
1e−2

√
ti .

Therefore, we get

|a − a′|
f ′

a,b(y)σi

≤ e

C9C
2
1C2

e(2
√

ti−(ti )
2/3).

Since ti can be made as large as we want (because ti ≥ n0), we get |a − a′| < f ′
a,b(y)σi/2.

Therefore, from (6.3) we get

1
2

f ′
a,b(y)

f ′
a,b(y

′)
· σi

|�ti |
<

|ξti+1(a, b) − ξti+1(a
′, b)|

|�ti+1| < 2
f ′

a,b(y)

f ′
a,b(y

′)
· σi

|�ti |
.

Since y, y′ ∈ Iri ∪ Iri+1, we have |y − c| ∈ [e−ri−2, e−ri ], and the same holds for y′.
Therefore, by (4.13), we get

f ′
a,b(y)

f ′
a,b(y

′)
≤ 2 − 2b + C10e

−2r

2 − 2b + C9e−2r−4 .

The right-hand side above is a weighted average between (2 − 2b)/(2 − 2b) = 1 and
(C10e

−2r )/(C9e
−2r−4) = C10e

4/C9 > 1, so it is smaller than C10e
4/C9. Since we can

switch y and y′, we get

C9

C10e4 <
f ′

a,b(y)

f ′
a,b(y

′)
<

C10e
4

C9
.

Thus, we get the following inequality with C20 = 2C10e
4/C9:

C−1
20

σi

|�ti |
≤ |ξti+1(a, b) − ξti+1(a

′, b)|
|�ti+1| ≤ C20

σi

|�ti |
. (6.4)

Now we want to estimate

|ξti+ν(a, b) − ξti+ν(a
′, b)|

|�ti+ν |
from above. The numerator can be estimated as follows:

|ξti+ν(a, b) − ξti+ν
(a′, b)| ≤ |f ν−1

a,b (f
ti+1
a,b (c)) − f ν−1

a,b (f
ti+1
a′,b (c))| (6.5)

+ |f ν
a,b(f

ti
a′,b(c)) − f ν

a′,b(f
ti
a′,b(c))|.

By a similar argument to the proof of Lemma 5.8, in particular estimating |a − a′| as in
that lemma, we obtain that

|f ν
a,b(f

ti
a′,b(c)) − f ν

a′,b(f
ti
a′,b(c))| ≤ 1

2 |ξti+ν(a, b) − ξti+ν
(a′, b)|.
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Therefore, we get the estimate

|ξti+ν(a, b) − ξti+ν
(a′, b)| ≤ 2|f ν−1

a,b (f
ti+1
a,b (c)) − f ν−1

a,b (f
ti+1
a′,b (c))| (6.6)

= 2(f ν−1
a,b )′(y)|ξti+1(a, b) − ξti+1(a

′, b)|,
where y is between ξti+1(a, b) and ξti+1(a

′, b) (using the mean value theorem). Again by
the same theorem there is y′′ ∈ �ti+1 such that

|�ti+ν | = (f ν−1
a,b )′(y′′)|�ti+1|.

By Lemma 5.7, (f ν−1
a,b )′(y)/(f ν−1

a,b )′(y′′) ≤ C2
17, so we get

|ξti+ν(a, b) − ξti+ν(a
′, b)|

|�ti+ν | ≤ 2C2
17

|ξti+1(a, b) − ξti+1(a
′, b)|

|�ti+1| . (6.7)

Let us consider the interval ωi ∈ Pti containing ω and denote its midpoint by âi . Then
by (5.11),

|ξti+ν(ã, b) − ξν(âi , b)| ≤ e−4
√

ν (6.8)

for all ã ∈ ωi and ν ≤ pi .
We claim that for all ã ∈ ωi and ν ≤ pi we have

|ξti+ν(ã, b) − c| ≥ 1
2 |ξν(âi , b) − c|. (6.9)

There is an integer ν0 such that

1
2 · C1e

−√
ν ≥ e−4

√
ν (6.10)

for all ν ≥ ν0. Note that ν0 depends only on C1, which is independent of δ. Therefore, we
may assume that δ is so small that

2δ · 4ν0 ≤ 1
2 · C1e

−√
ν0 . (6.11)

Moreover, by induction statement (v),

|ξν(âi , b) − c| ≥ C1e
−√

ν . (6.12)

Consider ν ≤ pi . If ν ≥ ν0, then by (6.8), (6.10) and (6.12), we get

|ξti+ν(ã, b) − ξν(âi , b)| ≤ 1
2 |ξν(âi , b) − c|. (6.13)

Therefore,

|ξti+ν(ã, b) − c| ≥ |ξν(âi , b) − c| − |ξti+ν(ã, b) − ξν(âi , b)| ≥ 1
2 |ξν(âi , b) − c|

and (6.9) follows.
If ν < ν0 then by (4.3) and (5.12),

|ξti+ν(ã, b) − ξν(âi , b)| ≤ |ξti+ν(ã, b) − ξν(ã, b)| + |ξν(ã, b) − ξν(âi , b)|
≤ 4ν |ξti (ã, b) − c| + 4ν |ã − âi | ≤ 4ν(δ + |ωi |).
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By Lemma 5.1(b) for j = n0 and by making n0 sufficiently large, we get ∂aξj (a, b) ≥ 1.
Therefore,

|ω| ≤ |ξn0(ω, b)| ≤ δ.

Thus, |ωi | ≤ δ, and we get

|ξti+ν(ã, b) − ξν(âi , b)| ≤ 2δ · 4ν .

Together with (6.11) and (6.12) in this case we also get (6.13), and (6.9) follows.
Now for each ν we choose ãν between a and a′, so that ξti+ν(ãν , b) = ηti+ν . Thus, by

(6.9) and (6.12),

|ηti+ν − c| = |ξti+ν(ãν) − c| ≥ 1
2 |ξν(âi , b) − c| ≥ 1

2C1e
−√

ν . (6.14)

By (6.2) we have

ti+pi∑
j=ti+1

∣∣∣∣f
′′
a,b(ηj )

f ′
a,b(ηj )

∣∣∣∣|ξj (a, b) − ξj (a
′, b)| (6.15)

≤
pi∑

ν=1

80
C9

· |�ti+ν |
|ηti+ν − c| · |ξti+ν(a, b) − ξti+ν(a

′, b)|
|�ti+ν | .

By the definition of bound periods and the definition of �ti+ν , we have

|�ti+ν | ≤ e−4
√

ν .

Moreover,

|�ti | = e−ri−1 − e−ri−2.

Substituting those two inequalities, (6.14), (6.7) and (6.4) into the right-hand side of (6.15),
we get

ti+pi∑
j=ti+1

∣∣∣∣f
′′
a,b(ηj )

f ′
a,b(ηj )

∣∣∣∣|ξj (a, b) − ξj (a
′, b)| ≤

pi∑
ν=1

C21 · e−4
√

ν

e−√
ν

· σi

e−ri

for some constant C21. This implies that there is a constant C22 such that

ti+pi∑
j=ti+1

∣∣∣∣f
′′
a,b(ηj )

f ′
a,b(ηj )

∣∣∣∣|ξj (a, b) − ξj (a
′, b)| ≤ C22

σi

e−ri
.

Together with the estimate on the first term of S ′
i , that we obtained long ago, we get a

constant C23 such that

S′
i ≤ C23

σi

e−ri
. (6.16)

Note that C23 depends on κ2, but not on δ.
To estimate S′′

i , we use Lemma 4.12, and immediately get

S′′
i ≤ C12

σi+1

δ
.
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However, δ > e−ri+1 , so

S′′
i ≤ C12

σi+1

e−ri+1
. (6.17)

This estimate also applies to S′′
0 .

By Lemma 3.4 applied to a subinterval ω′ = [a, a′] (or [a′, a]) of ω (made possible by
Remark 5.13) and (5.36) (see Remark 5.12), we get

σi+1 ≥ 1
q∗

inf
ã∈ω′(f

ti+1−ti
ã,b )′(f ti

ã,b(c)) · σi ≥ C11C18

q∗
e(p

2/3
i −4

√
pi+1) · σi .

As we already noticed in the proof of Lemma 5.11, by taking δ sufficiently small we can
make pi as large as we need and we may assume that

C11C18

q∗
exp{p2/3

i − 4
√

pi + 1} ≥ 2,

and therefore we get

σi+1 ≥ 2σi . (6.18)

We are now ready to estimate the logarithm of the left-hand side of (6.1), which is less
then or equal to

∑m−1
i=0 (S′

i + S′′
i ). By (6.16) and (6.17), we get

m−1∑
i=0

(S′
i + S′′

i ) ≤ (C23 + C12)

m∑
i=0

σi

e−ri
.

Rearrange the sum
∑m

i=0 σi/e
−ri and group it according to the values of ri . Set Wk = {i ∈

[1, m] : ri = k}. Consider k such that Wk is non-empty. Then we can write Wk = {is <

is−1 < · · · < i0}, and by (6.18) we have σij ≤ σi0/2j . Thus,∑
i∈Wk

σi

e−ri
≤ 2

σμk

e−k
,

where μk is the largest element of Wk . However, σμk
is the length of an interval which

is contained in the union of three subintervals of Ik , and the length of each of those
subintervals is |Ik|/k2. Moreover, |Ik| < e−k . Thus,∑

i∈Wk

σi

e−ri
≤ 6

k2 . (6.19)

If Wk is empty, then of course (6.19) also holds. In this way we get

m−1∑
i=0

(S′
i + S′′

i ) ≤ 6(C23 + C12)

∞∑
k=1

1
k2 .

The right-hand side of the above inequality is finite, so we can denote its exponential by
C13 and then (6.1) holds.

LEMMA 6.2. There exists a constant C24, such that if a and a′ are two parameter points,
so that a, a′ ∈ ω ∈ Pn, where n is a free return time and the induction statement for n (and
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all smaller free return times) holds, then

∂af
k
a,b(c)

∂af
k
a′,b(c)

≤ C24 (6.20)

for all k ≤ n.

Proof. The lemma follows immediately from Lemma 6.1, Corollary 3.2 and induction
statement (iii).

7. Part I of the proof of Theorem A
In this section we prove a proposition which is an essential part of the proof of Theorem A
and is stated as follows.

PROPOSITION 7.1. Let a = a0 be an MT parameter for fa and let ε > 0 be given. There
exist a function η(ε) → 0 and a function b0(ε) → 1 as ε → 0 such that if b0(ε) < b < 1,
if ω0 is a parameter interval such that

ω0 ⊂ (a0 − ε, a0 − ε2) ∪ (a0 + ε2, a0 + ε), (7.1)

such that Ir ,	 ⊂ ξn0(ω0, b) ⊂ I+
r ,	 and such that induction assumptions (i)–(vi) are satisfied

for n = n0, then there is a set Ẽb ⊂ ω0 such that |Ẽb| ≥ (1 − η(ε))|ω0|, C = C(a0) and
κ̂ = κ̂(a0) > 0 so that

(f n
a,b)

′(fa,b(c)) ≥ Ceκ̂n for all n ≥ 0, for all a ∈ Ẽb. (7.2)

Note that the assumptions of Proposition 7.1 are satisfied by Lemma 5.1.
This, together with Proposition 8.1 in §8, immediately leads to the following corollary.

COROLLARY 7.2. The set E of parameters for which the double standard map is uniformly
expanding accumulates on the MT points (a0, 1) in the parameter space.

However, we will need a more general formulation of the propositions given above in
order to prove Theorem A.

The proofs will be based on the induction formulated in §5. In the critical case b = 1,
which we are not treating in detail, the remaining parameter set is of positive measure,
while in the non-critical case b < 1 the remaining parameter set is a finite union of
intervals.

We first discuss the parameter deletion due to the (BA) assumption.
If n is a free essential return time for a partition element ω = (a, a′) of a partition Pn′′ ,

let n′′ be the essential free return immediately before n.
At each time we may have to omit a fraction of the parameter interval because of (BA).

Assume that the previous free return occurred in the interval Ir ′′,	. Its length is c/r ′′2|Ir ′′ |,
1 ≤ c ≤ 3. By the (BA) assumption applied to time n′′, we have

e−r ′′ ≥ e−√
n′′

.
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Observe that the minimal length of n − n′′ has a lower bound n − n′′ ≥ C log(1/δ), where
C is a constant only depending on fa0 . Note also that r ′′ ≤ √

n.
During the bound period the interval Kr ′′+1 = (c, c + e−r ′′−1)) of size e−r ′′−1 is

increased to size e−√
p′′+1, where p′′ ≤ 8(r ′′)3/2 by Lemma 5.8. Our present interval is of

length c′/r ′′2|Ir ′′ |, 1 ≤ c′ ≤ 3.
For a = a′ the size of fa′,b(Kr ′′+1) can be estimated by formula (4.12) as follows:

|x − c|(2 − 2b + C9(x − c)2) ≤ |fa′,b(x) − fa′,b(c)| ≤ |x − c|(2 − 2b + C10(x − c)2).

By inserting x = c + e−r ′′−1 we obtain an estimate for |fa,b(Kr ′′+1)| as follows:

e−r ′′−1(2 − 2b + C7e
−2r ′′−2) ≤ |fa,b(Kr ′′+1)| ≤ e−r ′′−1(2 − 2b + C8e

−2r ′′−2). (7.3)

For the image of ω at time n′′ + 1 we obtain the estimate

|ξn′′+1(a, b) − ξn′′+1(a
′, b)| = f ′

a,b(y) · |ξn′′(a, b) − ξn′′(a′, b)| ± |a − a′|. (7.4)

Here y ∈ Ir so it follows from (4.13) that |a − a′| can be estimated by the first term as in
the estimate of (6.3) and we obtain

2 − 2b + C9e
−2r ′′−2 < f ′

a,b(y) < 2 − 2b + C10e
−2r ′′

.

By the definition of a free return we also have the estimate

1
r ′′2 e−r ′′ ≤ |ξn′′(a, b) − ξn′′(a′, b)| ≤ 3

r ′′2 e−r ′′
.

By Lemma 5.7 (the bound distortion lemma) and comparison with the orbit ofKr ′′ the size
of |ξn′′+p′′+1(a, b) − ξn′′+p′′+1(a

′, b)| has the lower bound

1
C17

· 1
r ′′2 e−4

√
p′′+1 ≥ 1

C′
17

· 1
r ′′2 e−(

√
8(r ′′)3/2 ≥ 1

C′
17

e−83/2·n3/8
.

We have again used that δ may be chosen arbitrarily small. Using (6.18) and Lemmas 4.9
and 3.4, it follows that the relative fraction to be deleted is at most

C′−1
17 C11

1
q∗

e−√
n

e−83/2·n3/8 < e−1/2
√

n, (7.5)

since n ≥ n0; at each time n we may in principle to have to do such a deletion. The
remaining fraction of the parameter interval can then be estimated from below as

≥
∞∏

n=N0

(1 − e−1/2
√

n). (7.6)

Note that this is arbitrarily close to 1 as N0(ε) → ∞ as ε → 0.

Outline of proof of Proposition 7.1. The proof of Proposition 7.1 is based on induction.
Note that the Cantor set construction can be stopped at a finite stage N̂ , which is defined
by the relation

2 − 2b ≥ C9e
−2

√
N̂ .
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After this time the term 2 − 2b of equation (4.12) dominates in the derivative and we
conclude that for all a ∈ Ẽb there is a constant C > 0 such that

(f n
a,b)

′(fa,b(c)) ≥ Ceκ̃n for all n ≥ 0. (7.7)

A more general result with a more detailed proof is given in Proposition 8.1.

Outline of the proof of Proposition 1.1. We proceed as in the proof of Theorem A.
In this case the time N̂ , after which the linear term 2 − 2b dominates in the derivative,
does not exist and the induction proceeds to infinite time. We now have to use the large
deviation argument of [3]. The main idea is that you delete parameters for which the critical
orbits spend too large fractions of the time recovering the derivative loss from returns to
(c − δ2, c + δ2). However, an estimate similar to (7.6) is still valid. We do not give the full
details.

8. Part II of the proof of Theorem A: the uniform expansion
In this section we consider b < 1, and we construct a non-empty union of open intervals
Êb ⊃ Ẽb so that for a ∈ Êb there is an integer N such that f N

a,b is uniformly expanding.
This is formulated in Proposition 8.1. The set Êb is obtained by stopping the construction
of the parameter set Ẽb of Proposition 7.1 at a finite stage.

Let us outline the main idea of the proof of the uniform expansion. We will heavily use
that the fact that d = 2 − 2b > 0, that is, that the inflexion point is non-critical. In the case
where the starting point x is outside the return interval I ∗ we can use (i) of Lemma 4.9 to
conclude that if x, fa,b(x), . . . , f n−1

a,b (x) /∈ I ∗, and f n
a,b(x) ∈ I ∗ then

(f n
a,b)

′(x) ≥ C11e
κ4n.

Here it is important that the constant C11 does not depend on δ.
At the return time n we have a derivative loss but this derivative loss is compensated

during the bound period by Lemma 4.7. Since p → ∞ as δ → 0, we can make the factor
ep2/3

compensate C2/C
∗ by making δ sufficiently small. We also use that the derivative of

fa,b is bounded below by f ′
a,b(

1
2 ) = 2 − 2b, and we will also denote this number by d.

We state this result as follows.

PROPOSITION 8.1. Let a = a0 be an MT parameter. Then if b0 = b0(a0) < 1 is sufficiently
close to 1 then for all b ∈ (b0, 1) there is a set Êb which is a finite union of intervals
{ωj }J0

j=0 such that, for a ∈ ωj , there is an integer Mj such that for all x ∈ T,

(f
Mj

a,b )′(x) ≥ λj > 1. (8.1)

Proof. The proof is initially the same as the proof of Proposition 7.1 .
As before, we carry out the construction only until time N̂ . Here N̂ is the smallest

integer satisfying

e−
√

N̂ ≤ d .

At time N̂ we have a partition P
N̂

consisting of finitely many intervals {ωj }MN̂

j=1.
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We now aim to prove that the hyperbolicity statement (8.1) is true.
We first recall the two outside expansion statements of Lemma 4.9. Suppose that

(a, b) ∈ N and chose I = I ∗ = (c − δ, c + δ) in that lemma. Then the following asser-
tions hold.
(1) If x, fa,bx, . . . , f n−1

a,b x �∈ I ∗ and f n
a,bx ∈ I ∗, then

(fa,b)
′(x) ≥ C11e

κ4n.

(2) There is an integer M such that if x, fa,bx, . . . , f M−1
a,b x �∈ I ∗ then

(f M
a,b)

′(x) ≥ eκ4M .

Let us define R0 as the smallest integer satisfying e−2R0 ≤ e−
√

N̂ , that is, R0 corre-
sponds to the r where the square term in the expression for the derivative is of the same
size as the constant term d = 2 − 2b. The bound period p(x), x ∈ (c − e−R0 , c + e−R0),
is chosen to be the infimum of the bound period for y ∈ I±R0 .

We also know by (5.6) and Lemma 5.7 that

(f
p
a,b)

′(x) ≥ 1
C17

ep2/3
, x ∈ I±r ,

and we also have that

(f
p
a,b)

′(x) ≥ 1
C17

ep2/3
, x ∈ (c − e−R0 , c + e−R0).

Introducing κ7 as

κ7 = 1
2

min
rδ≤|r|≤R0

min
x∈Ir

1
p(x)1/3 ,

we can in all cases write these estimates as

(f
p
a,b)

′(x) ≥ eκ7p. (8.2)

The factor 1
2 is here used to absorb the constant C17.

Let us in the following use the notation ÎR0 for the union of (c − e−R0−1, c + e−R0−1)

and the previously defined I−R0 and IR0 . The idea is that the derivative recovery has the
same estimate for these three (original) intervals since (fa,b)

′(x) ∼ d = 2 − 2b in ÎR0 and
the bound period is defined in terms of IR0 .

Divide the set T \ I ∗ into several pieces.
We first consider the set

XM = {x : x, fa,bx, . . . , f M
a,bx �∈ I ∗}.

For x ∈ XM , hyperbolicity is valid by Lemma 4.9(ii):

(f M
a,b)

′(x) ≥ eκ4M .

We also introduce the sets

Xk = {x : x, . . . , f k−1
a,b x �∈ I ∗ but f k

a,bx ∈ I ∗}, 1 ≤ k ≤ M − 1.
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Pick a k ≥ 1. Now write the set

Xk =
⋃

rδ≤|r|≤R0

Xk,r ,

where Xk,r = {x ∈ Xk : f k
a,bx ∈ Ir}, |rδ| ≤ |r| < R0 and

Xk,±R0 = {x ∈ Xk : f k
a,bx ∈ (c − e−R0 , c + e−R0}.

Then we know that for x ∈ Xk,r ,

(f
k+p
a,b )′(x) ≥ C11e

κ4keκ7p ≥ eκ8(k+p),

where κ8 = min(κ4, κ7/2).
Here we have used the fact that also for the minimal possible p the factor eκ7/2p always

compensates the constant C11 of Lemma 4.9, and this constant is independent of δ.
Hence, we know that the entire set T can be written as a disjoint union of sets {Yj }Jj=1

so that for some κ9 and all x ∈ Yj ,

(f
nj

a,b)
′(x) ≥ eκ9nj .

We start with an x ∈ Yj0 . After nj0 steps we will end up in Yj1 and after another nj1 steps
we will end up in Yj2 , and so on. The total time will be nj0 + nj1 + nj2 + · · · + njs and

(f
njs +···+nj0
a,b )′(x) ≥ eκ9(njs +···+nj0 ),

where

njs + · · · + nj0 =
m∑

i=1

kini .

Let nmax = max1≤j≤J nj and pick an integer N very large so that

eκ9N · d
nmax
1 ≥ eκ10N . (8.3)

Here d1 = 1/B, where B = 4 ≥ maxx∈T |f ′
a,b(x)|.

For each point x there is an n = n(x) = nj0 + nj1 + nj2 + · · · + njs such that

N ≤ n ≤ N + nmax.

We claim that

(f N
a,b)

′(x) ≥ eκ10N .
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This follows since

(f N
a,b)

′(x) = (f n
a,b)

′(x)/(f n−N
a,b )′(f N

a,b(x)) ≥ eκ9Nd
nmax
1 ≥ eκ10N ,

for a suitably κ10. We conclude that the statement of Proposition 8.1 holds. �

We now have all ingredients for the proof of Theorem A.
Let ω0 be an interval as defined in Proposition 7.1 satisfying (7.1) and let Ẽb be the set

defined in this proposition. Let Êb = ÊN̂
b ⊃ Ẽb be the set corresponding to the N̂ th-order

construction of Proposition 8.1. Here N̂ is determined as the smallest integer satisfying
e−N̂ ≤ d as in the proof of Proposition 8.1. By (8.1) it then follows that the conclusion of
Theorem A holds.

9. Proof of Theorem B
In this section we prove our last result. The methods of its proof will be completely different
than the ones used in the rest of the paper. We will use the term ‘countable’ in the sense of
‘at most countable’. For the definitions, see the Introduction.

Proof of Theorem B. Fix b < 1. Each tongue is open, so the set Tb is open. Therefore,
it is the union of countably many components, each of them an open interval. Since the
points on the boundary of a tongue belong to T N , and the sets T and T N are disjoint, each
component is contained in one tongue.

We claim that the intersection of the closures of two distinct components A1 and A2 is
empty. Suppose it is not and that a belongs to this intersection. Then (a, b) ∈ T N , so it
has its type. This type must be the same as the type of each of the tongues containing A1

and A2, so those types are the same, that is, A1 and A2 are contained in the same tongue.
If n is the period of the neutral periodic orbit of fa,b, the map f n

a,b has an interval on which
it looks like one of Cases 1, 2 or 4 of Lemma 4.1 of [19]. By Theorem 4.1 and Lemma 2.6
of [20], this cannot be Case 4 (a neutral periodic point repelling from both sides), and by
Lemma 4.2 of [19] it cannot be Case 1 or 2 (a neutral periodic point repelling from one
side). This proves our claim.

If a parameter a ∈ T Nb does not belong to a boundary of a component of Tb, then by
Lemma 4.2 of [19] the neutral periodic orbit of fa,b is repelling from both sides (Case 4),
so by Theorem 4.1 and Lemma 2.6 of [20] a is isolated in the set of elements of Tb ∪ T Nb

which have type of the same period. This proves that there are only countably many such
values of a.

By the claim, the complement of Tb is a closed set without isolated points. The set T Nb

is countable. Therefore Eb (which is the complement of Tb minus T Nb) is dense in the
complement of Tb.

The second part of the statement follows from the first and the fact that each component
of Tb is contained in one tongue.
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