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In this work, we numerically investigate heat transfer in low-Prandtl-number drop-
laden wall-bounded turbulence. These flows are characteristic of nuclear and fusion
technologies, where liquid metals – known for their high thermal conductivity –
are laden with drops or bubbles of another liquid or pressurised gas. To this end,
we consider forced convection turbulence between two differentially heated parallel
plates. The carrier phase (i.e. liquid metal) is characterised by a low Prandtl number
Prc = 0.013, while for the dispersed phase, we explore a range of Prandtl numbers from
Prd = 0.013 (matched case) to Prd = 7 (super-unitary Prandtl number in the dispersed
phase). Simulations are conducted at constant friction Reynolds number Reτ = 300, and
for each dispersed phase Prandtl number, two volume fractions are examined: α = 5.4 %
and α = 10.6 %. The simulation framework relies on direct numerical simulation of the
Navier–Stokes equations, coupled with a phase-field method and the energy equation.
Results show that an increase of the dispersed phase Prandtl number reduces heat transfer,
leading to a lower Nusselt number for both volume fractions. To explain this behaviour, we
analyse how the drops modify the temperature field, and demonstrate that the heat transfer
reduction stems from a decreased diffusive heat flux within the dispersed phase. Finally,
we propose a phenomenological model to predict the Nusselt number as a function of both
the dispersed phase volume fraction and Prandtl number.
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1. Introduction
Multiphase flows are fundamental in numerous natural and industrial processes, ranging
from atmospheric phenomena to chemical reactors and heat exchangers (Tryggvason,
Scardovelli & Zaleski 2011; Kure, Jakobsen & Solsvik 2024). Of particular interest are
fluids such as molten salts and liquid metals (e.g. liquid lead and sodium) that are
characterised by low Prandtl number Pr (Bricteux et al. 2012) – where the Prandtl
number represents the ratio of momentum diffusivity to thermal diffusivity. These
fluids play an important role in different disciplines. In astrophysical fluid dynamics,
laboratory experiments with liquid metals replicate the magnetohydrodynamic processes
governing angular momentum transport in accretion disks (Schindler et al. 2022; Vernet,
Fauve & Gissinger 2022). In industrial contexts, such as converter steelmaking, high-
velocity oxygen jets are injected into molten steel to oxidise impurities such as carbon
and silicon. This process generates intense turbulence, gas–liquid slag interactions, and
thermal gradients that dictate process efficiency and final alloy properties (Wang et al.
2020; Chang et al. 2021). Similarly, the production of metallic foams relies on injecting
gas bubbles into molten metal column reactors, where the interplay between bubble
coalescence, drainage and solidification governs foam porosity (Banhart 2001). In energy
storage systems, liquid metal batteries – such as sodium-zinc (Na–Zn) systems – leverage
stratified layers of immiscible molten metals to achieve high current densities and rapid
charge–discharge cycles (Kelley & Weier 2018; Davidson et al. 2022; Duczek et al.
2024). Likewise, in fusion and nuclear technologies, liquid metal divertors face complex
multiphase interactions with plasma particles (Mirnov, Dem’yanenko & Murav’ev 1992;
Fisher, Sun & Kolemen 2020), and in nuclear reactors, liquid metals and molten salts
serve as coolants due to their excellent heat transfer properties (Jeltsov 2018; Bhushan
et al. 2022; Tai et al. 2024).

Due to the complexity that a multiphase flow adds to the problem, previous works
have mostly focused on canonical single-phase configurations. The pioneering study by
Kim & Moin (1989) was the first to perform direct numerical simulations (DNS) of
a channel flow considering also the evolution of the thermal field and investigating
Pr = 0.1, 0.7, 2. Building on this seminal work, subsequent studies expanded the
parameter range, examining both higher and lower Pr values (Kasagi, Tomita & Kuroda
1993; Kawamura et al. 1998; Na, Papavassiliou & Hanratty 1999; Piller, Nobile & Hanratty
2002; Abe, Kawamura & Matsuo 2004; Orlandi & Leonardi 2004; Pirozzoli, Bernardini &
Orlandi 2016; Scheel & Schumacher 2016; Lluesma-Rodríguez et al. 2018; Alcántara-
Ávila & Hoyas 2021). These simulations highlighted that for Pr ≈ 1, the velocity and
temperature profiles are strongly correlated. Conversely, for simulations at Pr � 1, where
thermal diffusion dominates over viscous effects, the thermal boundary layer becomes
thicker than the viscous boundary layer. Laminar-like thermal boundary layers, extending
across the entire channel width, have been reported in numerical simulations, with
experimental results confirming these findings (Lefhalm et al. 2004; Schulenberg &
Stieglitz 2010; Razuvanov et al. 2019, 2020; Kim et al. 2024).

In recent years, thanks to the increased computational power available and the
development of accurate numerical methodologies, heat transfer in multiphase flows has
attracted more attention and has been investigated using the DNS approach. Drops/bubbles
with a sub-Kolmogorov diameter size can be investigated using the point-particle
assumption (Elghobashi 2019). In this framework, the dispersed phase is tracked with a
Lagrangian approach, while the temperature is solved with an Eulerian approach (Russo
et al. 2014; Kuerten & Vreman 2015; Ardekani et al. 2018). On the contrary, when
the diameter of the drops/bubbles is larger than the Kolmogorov scale, the finite size
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effect of the drop/bubble, its deformability and the topological changes of the interface –
coalescence and breakage – cannot be neglected. As a consequence, recently considerable
effort has been put into analysing heat transport in multiphase flows using interface-
resolved simulations (Zhong, Funfschilling & Ahlers 2009; Dabiri & Tryggvason 2015;
Soligo, Roccon & Soldati 2021; Liu et al. 2022a, b; Dung et al. 2023; Hidman et al. 2023;
Bilondi et al. 2024; Mangani et al. 2024).

Despite recent works, research on low-Pr multiphase systems remains scarce. In this
work, we perform DNS to investigate how the injection of a swarm of large and deformable
drops into a turbulent channel flow modifies the heat transfer process. The carrier phase
is characterised by fixed Prandtl number Prc = 0.013, representative of realistic low-
Pr fluids such as liquid metals. The dispersed phase, however, spans a range of Prd
values from 0.013 up to 7. Using these simulations, we investigate the impact of droplets
on temperature statistics, highlighting the interplay between carrier and dispersed phase
thermal dynamics. By analysing global heat transfer, we assess how droplet introduction
influences heat transfer dynamics in both phases. In addition, we identify the governing
physical mechanisms, and propose a phenomenological model that accurately describes
heat transfer performance as a function of the dispersed phase Prandtl number and volume
fraction.

The paper is organised as follows. Section 2 presents the governing equations, numerical
methodology and simulation set-up. In § 3, we begin with qualitative observations before
delving into the statistical characterisation of temperature fields, both globally and within
the carrier and dispersed phases. Then we provide a detailed analysis of the heat flux in
the wall-normal direction, introducing and validating the proposed scaling law. Finally, § 4
concludes with a summary of the findings and their implications.

2. Methodology
We perform DNS of channel flow between two differentially heated walls. The coordinate
origin is located in the channel centre, with the x-, y- and z-axes oriented along the
streamwise, spanwise and wall-normal directions, respectively. Denoting the channel half-
height as h, the reference domain dimensions are Lx × L y × Lz = 4πh × 2πh × 2h. The
flow of two immiscible fluids is modelled using the one-fluid formulation (Prosperetti &
Tryggvason 2007; Elghobashi 2019), where a single set of continuity, Navier–Stokes and
energy equations describes the system hydrodynamics and temperature field. The interface
dynamics is captured using a phase-field method. Further details on the numerical
framework are provided below.

2.1. Phase-field method
The phase-field method is an interface-capturing approach (Cahn & Hilliard 1958;
Jacqmin 1999; Badalassi, Ceniceros & Banerjee 2003; Roccon, Zonta & Soldati 2023) that
employs an order parameter, known as the phase-field variable φ, to distinguish between
the two phases. This variable, also referred to as the order parameter, characterises the
local concentration of the respective phases. It assumes constant values φ = −1 in the
carrier phase and φ = +1 in the droplets while it undergoes a smooth transition across the
interface. The Cahn–Hilliard equation describes the temporal evolution of the phase-field
variable. This equation, in dimensionless form, reads as

∂φ

∂t
+ u · ∇φ = 1

Pe
∇2μφ + fP , (2.1)
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where u = (u, v, w) is the velocity vector, Pe is the Péclet number, μφ is the chemical
potential, and fP is the penalty flux of the profile-corrected formulation of the phase-
field method. The Péclet number Pe represents the ratio between the diffusive time scale
h2/(Mβ2) and the convective time scale, h/uτ :

Pe = uτ h

Mβ
, (2.2)

where uτ = √
τw/ρc indicates the friction velocity (τw being the wall-shear stress, and ρc

the density of the carrier fluid), M is the mobility, and β is a positive constant.
The chemical potential μφ is the variational derivative of the Ginzburg–Landau free-

energy functional F[φ, ∇φ]. In a system of two immiscible fluids, two terms contribute
to the free-energy functional (Ding, Spelt & Shu 2007; Soligo, Roccon & Soldati 2019b;
Schenk et al. 2024):

F[φ, ∇φ] =
∫

Ω

( f0 + fmix ) dΩ, (2.3)

where Ω is the domain considered, and the local term f0 describes the phobic behaviour
of the two fluids that tend to separate into two pure stable phases. Instead, the non-local
term, fmix , accounts for the energy stored at the interface (surface tension). The resulting
expression of the chemical potential is

μφ = δF[φ, ∇φ]
δφ

= φ3 − φ − Ch2 ∇2φ, (2.4)

where Ch = ξ/h is the Cahn number, which represents the characteristic length scale
of the transition layer (ξ being its dimensional value). For a flat interface, it is possible
to obtain an analytical solution for the equilibrium profile of the phase-field variable by
imposing that the chemical potential is uniform in the system (i.e. ∇μφ = 0). The resulting
equilibrium profile is

φeq = tanh
(

s√
2 Ch

)
, (2.5)

where s indicates the coordinate normal to the interface (located at s = 0).
Finally, the last term of (2.1) is the penalty flux, whose mathematical expression

reads as

fP = λ

Pe

[
∇2φ − 1√

2 Ch
∇ ·

((
1 − φ2

) ∇φ

|∇φ|
)]

, (2.6)

with λ= 0.0625/Ch (Soligo et al. 2019b). This modification of the phase-field method
(Yue, Zhou & Feng 2007; Chiu & Lin 2011; Li, Choi & Kim 2016) allows us to better
conserve the hyperbolic tangent profile during the computation with respect to the classic
formulation. This also mitigates some drawbacks of the method, such as the mass leakage
between phases that can occur in high-curvature regions.

2.2. Hydrodynamics
In the context of the one-fluid approach, a single set of mass conservation and Navier–
Stokes equations is used to describe the flow field in the entire system. The presence of a
deformable interface is taken into account by introducing an additional source term that
accounts for the action of surface tension forces. This term allows us to recover the Laplace
pressure jump, and it ensures continuity of velocity and stresses across the interface
(slip conditions) (Landau & Lifshitz 1987). Therefore, the continuity and Navier–Stokes
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equations for a binary system with matched density (ρc = ρd = ρ, where the subscript
c identifies the carrier phase, and d the dispersed phase) and viscosity (μc = μd = μ)
read as

∇ · u = 0 , (2.7)
∂u
∂t

+ ∇ · (u ⊗ u) = −∇ p + 1
Reτ

∇2u + 3 Ch√
8 We

∇ · τ c, (2.8)

where ∇ p is the pressure gradient. This latter term can be decomposed into two
contributions: a mean component that drives the flow along the streamwise direction, and a
fluctuating part. The last term on the right-hand side of (2.8) represents the surface tension
forces, which are here computed using a geometrical approach (Yun, Li & Kim 2014).
Namely, the interface curvature is computed from the phase field using the Korteweg stress
tensor (Korteweg 1901), defined as

τ c = |∇φ|2 I − ∇φ ⊗ ∇φ, (2.9)

with I the identity matrix, and ⊗ the dyadic product.
The dimensionless numbers appearing in (2.8) are the friction Reynolds number

Reτ = ρuτ h/μ, which represents the ratio between inertial and viscous forces, and the
Weber number W e = ρu2

τ h/σ (where σ is the surface tension), defined as the ratio
between inertial and surface tension forces.

2.3. Energy equation
The temperature in the two phases is described using a one-scalar model equation
(Zheng et al. 2015; Mirjalili, Jain & Mani 2022). Phase-change phenomena are here not
considered, and we solve for the temperature variable, which is continuous across the
interface. It is worth highlighting that the total enthalpy of the system is not conserved
as the two walls are differentially heated and the respective heat flux may change over
time. We assume that the temperature difference between the two walls is small, thus
thermophysical properties such as density ρ, viscosity μ, heat capacity cp and thermal
conductivity κ can be considered constant. Specifically, the density, viscosity and heat
capacity are equal in the two phases, while the thermal conductivity is different between
the two phases. The resulting dimensionless transport equation reads as

∂θ

∂t
+ u · ∇θ = 1

Reτ Prc
∇ · [

a(φ) ∇θ
]
, (2.10)

where θ is the temperature, and Prc is the Prandtl number of the carrier phase – computed
using the properties of the carrier as reference – and the diffusive term has been properly
modified to account for the different thermal conductivities of the two phases. The carrier
phase Prandtl number is defined as

Prc = μcp

κc
= ν

ac
, (2.11)

where ν = μ/ρ is the kinematic viscosity (i.e. momentum diffusivity). The Prandtl number
represents the relative importance of the momentum diffusivity with respect to thermal
diffusivity. Here, we assume that the thermal diffusivity is different in the two phases, and
we modify it by changing solely the thermal conductivity. Specifically, the conductivity
is expressed as a linear function of the phase field variable, as is customarily done for
other thermophysical properties (Roccon et al. 2023). The resulting dimensionless thermal
diffusivity map is defined as
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a(φ) = 1 + (ar − 1)
φ + 1

2
, (2.12)

where ar = ad/ac is the thermal diffusivity ratio between the two phases, which also
corresponds to the ratio between the thermal conductivities of the two phases. Once the
ratio ar is defined, the dispersed phase Prandtl number can be computed as Prd = ar/Prc.

2.4. Numerical method
The governing equations (2.1), (2.7), (2.8) and (2.10) are solved using FLOW36, an in-
house code that relies on a pseudo-spectral method (Roccon, Soligo & Soldati 2025). The
five Eulerian variables (u, v, w, φ, θ ) are transformed into the wavenumber space through
the Fourier transform in the periodic directions x and y, and Chebyshev polynomials in
the wall-normal direction z. These variables are collocated on a Cartesian grid, which is
equally spaced in the x-, y-directions, and stretched in the z-direction, where it follows the
Chebyshev–Gauss–Lobatto point distribution.

The Navier–Stokes equation (2.8) is solved using the so-called wall-normal velocity–
vorticity formulation to avoid the costly computation of the pressure field (Kim, Moin
& Moser 1987; Speziale 1987), resulting in a second-order equation for the wall-normal
component of the vorticity ωz , and a fourth-order equation for the wall-normal component
of the velocity w. The phase-field equation (2.1) is split into two second-order equations
as done by Badalassi et al. (2003). Finally, the energy equation is solved directly in its
original form, being a second-order equation. All the nonlinear terms in the governing
equations are recast as a sum of a linear and nonlinear contribution. The nonlinear terms
are first computed in physical space and then de-aliased using the 2/3 rule when back-
transformed in the wavenumber space. The spatial derivatives are then evaluated in the
wavenumber space to preserve spectral accuracy.

The governing equations are time advanced using an implicit–explicit scheme (Moin &
Kim 1980). Specifically, the linear terms are advanced with an implicit scheme, while the
nonlinear parts are discretised with an explicit scheme (Adams–Bashforth). The implicit
scheme employed depends on the equation considered: a Crank–Nicolson scheme is
employed for the Navier–Stokes equation, and an Euler method for the Cahn–Hilliard and
energy equations (Badalassi et al. 2003; Yue et al. 2004).

2.5. Boundary conditions
Periodic boundary conditions are automatically applied along the two homogeneous
directions (x and y) where Fourier transforms are used. At the walls, no-slip boundary
conditions are enforced (z/h = ±1) for the flow field:

u(z/h = ±1) = 0 . (2.13)

As a wall-normal velocity–vorticity formulation is used, the corresponding boundary
conditions on the wall-normal component of velocity and vorticity can be obtained by
exploiting mass conservation. Therefore, for the wall-normal velocity, we impose

w(z/h = ±1) = 0,
∂w

∂z
(z/h = ±1) = 0, (2.14)

while for the wall-normal vorticity, the following boundary conditions are applied at the
two walls:

ωz(z/h = ±1) = ∂v

∂x

∣∣∣∣z/h=±1 − ∂u

∂y

∣∣∣∣
z/h=±1

= 0. (2.15)
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For the energy equation, the walls are set at two different temperatures: the bottom
wall is maintained at a constant high temperature, while the top wall is at a constant low
temperature, i.e.

θ(z = ±1) = ±1. (2.16)

For the phase-field and the corresponding chemical potential, no-flux boundary
conditions are applied at both walls,

∂φ

∂z
(z/h = ±1) = 0,

∂μφ

∂z
(z/h = ±1) = 0, (2.17)

which are equivalent to this set of boundary conditions on the phase variable:

∂φ

∂z
(z/h = ±1) = 0,

∂3φ

∂z3 (z/h = ±1) = 0. (2.18)

The use of these boundary conditions strictly enforces the conservation of the order
parameter φ over time:

∂

∂t

∫
Ω

φ dΩ = 0, (2.19)

where Ω is the domain considered. It is worth highlighting that the two phases are not
conserved separately, but only globally. Indeed, small mass leakage between the phases
may occur (Yue et al. 2007; Soligo et al. 2019b; Kwakkel, Fernandino & Dorao 2020). In
the present simulations, this leakage – quantified as the ratio between the initial and final
masses (or volumes) of the dispersed phase – is observed only during the initial stages,
when an array of droplets is suddenly introduced into a turbulent flow. Specifically, the
leakage amounts to approximately 10 % for α = 5.4 %, and 5 % for α = 10.6 %. After this
initial transient, the mass of the dispersed phase remains constant.

2.6. Simulation set-up
The simulations have been performed in a channel flow configuration (see figure 1)
at constant friction Reynolds number Reτ = 300. The channel dimensions in outer
units are Lx × L y × Lz = 4πh × 2πh × 2h corresponding to L+

x × L+
y × L+

z = 3770 ×
1885 × 600 wall units (w.u.). An imposed pressure gradient in the streamwise direction
drives the flow. Surface tension is set via the Weber number and corresponds to that
of a liquid/liquid system; the resulting Weber number is W e = 3.0. The carrier phase is
characterised by Prandtl number Prc = 0.013, representative of liquid lead at 700−900 K
with viscosity μ = 1.70 × 10−3 Pa s, thermal conductivity κc = 18.24 W m−1 K−1, and
heat capacity cp = 133.54 J kg−1 K−1 (Fazio et al. 2015). For the droplets, the Prandtl
number is varied within a range from Prd = 0.013 (same as the carrier) to Prd = 7
(approximately 500 times larger than that of the carrier phase). To isolate the effect
of thermal diffusivity on the system, we maintain a unitary density and viscosity ratio
between the carrier phase and the droplets. This simplification ensures that the observed
variations in heat transfer are solely due to differences in thermal diffusivity (specifically
thermal conductivity), allowing for a better understanding of its influence on heat transfer.

The grid is uniform in the periodic streamwise and spanwise directions (Fourier
transforms), while the Chebyshev–Gauss–Lobatto point distribution is employed in the
wall-normal direction (Chebyshev polynomials). The governing equations are discretised
using Nx × Ny × Nz = 512 × 256 × 513 grid points for the cases with Prd < 1, while a
grid Nx × Ny × Nz = 1024 × 512 × 513 is employed for the super-unitary droplet Prandtl
number cases. Indeed, as the two phases can have different Prandtl numbers, the smallest
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Case Reτ W e α Prc Prd Prr = Prd/Prc Nx × Ny × Nz

Single-phase 300 – – 0.013 – – 512 × 256 × 513
Drop-laden 300 3.0 5.4 % 0.013 0.013 1.0 512 × 256 × 513
Drop-laden 300 3.0 5.4 % 0.013 0.070 5.4 512 × 256 × 513
Drop-laden 300 3.0 5.4 % 0.013 0.700 54.0 512 × 256 × 513
Drop-laden 300 3.0 5.4 % 0.013 7.000 540.0 1024 × 512 × 513
Drop-laden 300 3.0 10.6 % 0.013 0.013 1.0 512 × 256 × 513
Drop-laden 300 3.0 10.6 % 0.013 0.070 5.4 512 × 256 × 513
Drop-laden 300 3.0 10.6 % 0.013 0.700 54.0 512 × 256 × 513
Drop-laden 300 3.0 10.6 % 0.013 7.000 540.0 1024 × 512 × 513

Table 1. Overview of the simulation parameters. For fixed friction Reynolds number Reτ = 300 and Weber
number We = 3, we consider a single-phase flow case, two volume fractions and four non-isothermal drop-
laden flows characterised by different dispersed phase Prandtl numbers. The grid resolution is set so as to
satisfy DNS requirements.

temperature length scale – the Batchelor scale – becomes smaller as Prd is increased
(Batchelor 1971). Specifically, the Batchelor scale ηθ is related to the smallest flow scale –
the Kolmogorov length scale ηk – via the relation ηθ = ηk/

√
Pr . The Cahn number is set

to Ch = 0.02 for all cases, and the Péclet number is set via the scaling Pe = 1/Ch = 50
(Magaletti et al. 2013). The chosen grid resolution and Cahn number ensure that the
thermal boundary layer at the interface is always discretised with a minimum of four grid
points, and that its thickness is larger than that of the thin interfacial layer. An overview of
the simulation parameters is provided in table 1.

To generate a suitable initial condition for the multiphase cases, we perform a precursor
simulation of a single-phase turbulent channel flow with a linear temperature profile as
an initial condition. Once the simulation reaches the steady state, we let it run for an
additional t+ = 4000. Then we initialise 256 spherical droplets with diameters d = 0.4h
and d = 0.5h corresponding to volume fractions α = 5.4 % and 10.6 %, respectively. The
volume fraction is α = Vd/(Vc + Vd), where Vd is the volume of the drops, and Vc is the
volume of the carrier phase. To guarantee that the results are independent of the initial
flow field condition, each case is initialised with a different realisation of the flow field.
However, the fields are statistically equivalent, as they are all derived from a statistically
steady turbulent channel flow.

3. Results
This section presents and discusses the simulation results. We begin with a qualitative
analysis, followed by a characterisation of the dispersed phase topology and an
examination of the temperature field in both phases. Finally, based on these findings, we
introduce a phenomenological model to predict the Nusselt number as a function of the
dispersed phase Prandtl number and volume fraction.

3.1. Qualitative discussion
At the beginning of the simulations (t+ = 0), droplets are injected into the turbulent flow.
Immediately, turbulence starts to deform the interface of the droplets (Lu & Tryggvason
2018; Soligo et al. 2019a; Cannon, Soligo & Rosti 2024; Crialesi-Esposito et al. 2024).
The interaction between the turbulent eddies and the droplets leads to coalescence and
breakage events, which continue dynamically throughout the simulation. After an initial
transient phase, a statistical equilibrium is reached, wherein the rate of droplet breakage
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Cold top wall

Wall
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Prr = Prd/Prc

Prc

Heat flux

Lz = 2h

L y =
 2π

h

Lx = 4πh

Temperature

−1.0 −0.5 0 0.5 1.0

Figure 1. Sketch of the computational set-up employed in the present work. The flow of two immiscible
phases (carrier and dispersed) between two differentially heated walls is considered. The bottom wall has a
constant high temperature, while the top wall is cold. The carrier flow is characterised by a low Prandtl number
Prc = 0.013, while different values of the dispersed phase Prandtl number have been considered, from
Prd = 0.013 up to Prd = 7. The close-up view shows the temperature field in a plane crossing one droplet,
and refers to Prd/Prc = 540, thus Prd = 7.0.

balances out with the coalescence events. This equilibrium determines the average droplet
count, and results in a statistically steady droplet size distribution (DSD). Simultaneously,
the temperature field is significantly altered by the presence of the droplets, which
not only disrupt the turbulent structures but are also characterised by different thermal
properties (Prr �= 1) with respect to the carrier phase. These differences result in distinct
heat conduction behaviours inside and outside the droplets. This complex dynamic is
represented in figure 1: the droplets are identified by the iso-contour φ = 0, while the
volume rendering shows the temperature distribution in the domain. The close-up view
highlights the temperature modifications inside and in the proximity of a droplet, which
is characterised by a different Prandtl number (the case shown refers to Prr = 540,
corresponding to Prd = 7). Within the droplets, the temperature field exhibits noticeable
fluctuations, whereas in the carrier phase, it follows an approximately linear profile from
top to bottom. Regarding the dispersed phase, although the imposed pressure gradient
establishes a primary flow direction, the turbulent shear stresses induce local velocity
fluctuations in all three components. As a result, the drops experience secondary motions
in the spanwise and wall-normal directions. In particular, the wall-normal fluctuations
advect the droplets from the bottom (hot) to the top (cold) region of the channel, and vice
versa.

From the Prandtl number definition, we know that the thermal diffusivity decreases for
increasing values of Pr as the viscosity in the system is uniform. This decreased thermal
diffusivity implies that drops characterised by a larger Prd (i.e. larger Prr ) would need
more time to relax to the thermal equilibrium with their surroundings. Consequently, when
advected by the turbulent flow, these droplets cannot immediately adjust their temperature
to match the local temperature of the carrier fluid. With these theoretical insights in mind,
we analyse figure 2, which presents the temperature distribution in a slice parallel to the
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Figure 2. Instantaneous top-down views of the temperature fields θ in the wall-normal direction (z = 0) at
statistically steady state (t+ = 2505). Black solid lines indicate droplet interfaces (φ = 0), with flow direction
from left to right. Increasing the Prandtl ratio Prr enhances temperature modifications both within the droplets
and in the carrier. Here, the volume fraction is α = 5.4 %.

wall at the centre of the channel (z = 0) for different cases with volume fraction α = 5.4 %.
First, we consider the single-phase reference case (figure 2a) where only one phase is
present (Prc = 0.013). The turbulent flow generates temperature fluctuations, though they
remain small, approximately 2 % of the imposed temperature difference. Moving to the
drop-laden cases, we first consider the scenario where the carrier and dispersed phases
share the same thermophysical properties (Prd = Prc = 0.013, figure 2b). Here, the
temperature field remains similar to the single-phase case as the larger thermal diffusivity
allows the drops to adjust their internal temperature to that of the carrier fluid. In contrast,
when the drops have a higher Prandtl number than the carrier phase (Prr > 1, figure 2c–e),
the temperature distribution becomes more irregular, with distinct hot and cold spots.
As Prr increases from Prr = 5.4 to Prr = 540, temperature fluctuations intensify, and
complex temperature patterns emerge. The characteristic temperature length scales also
become smaller, as expected from theoretical arguments (Batchelor 1971). Notably, the
increased Prandtl number of the dispersed phase also influences the carrier fluid, leading
to a slight amplification of temperature fluctuations, as evident from the red and blue
regions. These modifications can be better appreciated by considering a cross-section of
the channel. Figure 3 shows the heat-flux lines in a y–z plane for different Prr . Heat-flux
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Figure 3. Phase-field variable (blue for carrier, red for droplets) and heat-flux lines (tangential to ∇θ ) coloured
according to the local temperature (blue for cold, red for hot) in a subsection of a y−z plane. The Prandtl
number of the carrier phase is fixed, and moving from left to right, the droplet Prandtl number increases.
As Prd/Prc is increased (via a reduction of the dispersed phase thermal diffusivity), convective phenomena
become more important inside the droplets, and the dissipation takes place at smaller scales, increasing
the thermal inertia. As a consequence, the heat flux is deflected, favouring pathways with higher thermal
conductivity. It is worth noting that smaller droplets offer lower thermal resistance since they experience less
intense temperature gradients.

lines are tangent to the temperature gradient and thus perpendicular to the iso-temperature
contours. The background depicts the phase topology, with drops in red and carrier phase
in blue, while the heat-flux lines are colour-coded according to the local temperature,
transitioning from red (hot bottom wall) to blue (cold top wall). As Prd increases, the heat-
flux lines become increasingly deflected by the drops, eventually bypassing the dispersed
phase entirely (Prr = 540, rightmost panel). This effect arises from the enhanced thermal
inertia and reduced conductivity of the drops when Prr is studied. A similar trend has been
observed in other flow configurations involving larger conductivity differences between
the two phases, e.g. melting problems (Shangguan, Ahuja & Stefanescu 1992; van Buuren
et al. 2024). These initial observations suggest that drops create a series of gaps in the path
of heat from the hot bottom wall to the cold top wall, thus reducing the area available for
the heat exchange.

3.2. Dispersed phase topology
We start to quantify these observations by characterising the dispersed phase topology. To
this aim, we consider the DSD obtained at steady state. The DSD is an important result for
the modelling of multiphase flows and will be useful in the final part of the paper where
the heat transfer performance will be modelled. Indeed, once the distribution is known,
important parameters such as the amount of interfacial area, which has an important role
in heat and transfer problems, can be evaluated. The most important length scale to analyse
the DSD is the Kolmogorov–Hinze diameter (Hinze 1955; Kolmogorov 1991). This scale
represents the maximum stable diameter for a non-breaking droplet. This diameter can
be calculated from the balance between the destabilising forces that act on the droplet
surface (e.g. turbulence-induced stresses) and the stabilising action of surface tension
forces, which try to minimise the droplet surface and restore the spherical shape, thus
avoiding droplet breakage. For the present configuration (turbulent channel flow), this
diameter can be estimated as (Soligo et al. 2019a)

d+
H = 0.725

(
W e

Reτ

)−3/5

|εc|−2/5 , (3.1)
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Figure 4. Probability density function of droplet equivalent diameter d+
eq normalised by the Kolmogorov–

Hinze scale. Results at low volume fraction (α = 5.4 %) are reported with empty symbols, while those at high
volume fraction (α = 10.6 %) are reported with full symbols. The analytic scaling laws for the coalescence-
and breakage-dominated regimes, d+−3/2 and d+−10/3, are also reported for reference. Good agreement is
obtained in the breakage-dominated regime (drops larger than the Kolmogorov–Hinze scale).

where εc is the turbulent dissipation evaluated at the channel centre, where droplets
preferentially accumulate. For a fixed Reynolds number, higher Weber numbers
correspond to weaker surface tension forces, leading to smaller maximum stable droplet
diameters.

Figure 4 shows the distributions obtained from the different cases. The DSDs have been
computed from t+ = 1000 up to t+ = 4500. Results at low volume fraction (α = 5.4 %)
are reported with empty symbols, while those at high volume fraction (α = 10.6 %) are
reported with full symbols. The simulated cases are reported using different colours:
Prr = 1 dark violet, Prr = 5.4 violet, Prr = 54.0 light violet, and Prr = 540.0 orange.
The analytic scaling laws for the coalescence- and breakage-dominated regimes, d+−3/2

and d+−10/3, are also reported for reference (Garrett, Li & Farmer 2000). Diameters are
reported normalised by the Kolmogorov–Hinze scale, which for W e = 3.0 and Reτ = 300
is d+

H ≈ 125 w.u. Present results are also compared with archival literature data on DSD
obtained in previous works that investigated the breakage of drops/bubbles in turbulent
flows. In particular, the following results are reported: breakage of surfactant-laden drop in
homogeneous isotropic turbulence (Mukherjee et al. 2019; Cannon et al. 2024), breakage
of surfactant-laden drop in turbulent channel flow (Soligo et al. 2019a), and breakage
of clean drops in homogeneous isotropic turbulence (Crialesi-Esposito, Chibbaro &
Brandt 2023).

By analysing figure 4, it is possible to identify two distinct regimes based on
droplet diameter. For droplets smaller than the Kolmogorov–Hinze scale, a coalescence-
dominated regime is observed. In this regime, drop breakage is unlikely, as the droplets
remain below the critical scale. Instead, they primarily grow by coalescing with other
drops. For droplets larger than the Kolmogorov–Hinze scale, a breakage-dominated
regime emerges, where droplet size changes predominantly through breakage. Across
all simulated cases, the results align with the expected scaling law in this regime. In
the coalescence regime, identifying a clear trend is challenging. However, satisfactory
agreement is observed for droplets exceeding 50 w.u., corresponding to d+

eq/d+
H > 0.4.

The dispersed phase Prandtl number does not influence the DSD, as temperature acts as a
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Figure 5. Temporal evolution of the Nusselt number Nu averaged between the two walls and normalised by
the single-phase value Nus : (a) α = 5.4 %, and (b) α = 10.6 %. The grey box highlights the transient required
before the simulations reach the new steady-state configuration.

passive scalar. Conversely, volume fraction affects the distribution: for α = 10.6 %, there
is a slightly higher probability of smaller drops compared to α = 5.4 %. Additionally, the
solid markers (α = 10.6 %) on the right-hand side of figure 4 span a broader diameter
range, indicating the presence of larger droplets within the channel.

3.3. Characterisation of the temperature field
The presence of a swarm of large and deformable droplets has a negligible effect on
macroscopic flow parameters such as the flow rate and required pressure gradient (Cannon
et al. 2021; Mangani et al. 2022). For this reason, we focus on the characterisation of the
temperature field and heat transfer performance of the multiphase system. All the statistics
presented in the following are computed when the system reaches the new steady-state
configuration in terms of heat transfer and dispersed phase topology. To verify that the
simulations have reached this condition, we analyse the time evolution of the Nusselt
number defined as the dimensionless heat flux at the walls:

Nu = 2qwh

κc�θ
, (3.2)

where qw is the heat flux evaluated at the wall, κc, is the carrier phase thermal conductivity,
�θ is the temperature difference between the two walls, and h is the half-height of the
channel.

The time evolution of the Nusselt number is shown in figure 5. The different cases are
reported using different colours: Prr = 1 dark violet, Prr = 5.4 violet, Prr = 54.0 light
violet, and Prr = 540 orange. The results are shown normalised by the single-phase value
(Nus ≈ 1.1). We observe that after approximately t+ = 1000, a steady-state condition is
achieved for both volume fractions. This observation aligns with the previous finding of
Mangani et al. (2022), who showed that for the same set of parameters considered in this
study (Reynolds and Weber numbers), the rates of breakage and coalescence converge to
a statistical equilibrium. Consequently, once the droplets reach a dynamic steady state,
the average heat flux at the wall also stabilises. When examining the steady-state values
for each case, we note that increasing the Prandtl number ratio (i.e. the dispersed phase
Prandtl number) leads to a decrease in both the Nusselt number and the corresponding
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Figure 6. Mean temperature profiles in the wall-normal direction, for volume fractions (a) α = 5.4 % and (b)
α = 10.6 %. The black dash-dotted line represents the linear law of the thermal diffusive sublayer. The insets
highlight the differences among the different cases.

heat transfer at the wall. This trend is more pronounced for the higher volume fractions,
where the Nusselt number decreases by nearly 15 % for the higher Prr .

To obtain further insights into the modifications on the temperature field induced
by varying the Prandtl number of the dispersed phase, we consider the behaviour
of temperature statistics along the wall-normal direction. Figure 6 shows the mean
temperature profiles, averaged in time and along the two homogeneous directions (x and y).
The temperature expressed in outer units, denoted by the superscript −, is defined as

θ
− = θ − θm

�θm
, (3.3)

where the overline (·) represents the averaging operator, θm = (θH + θC )/2 is the mean
temperature at channel centre, and �θm = (θH − θC )/2 is the temperature difference
between the two walls.

Considering that θm = 0 and �θm = 1, hereafter we drop the superscript −, implying
that all quantities are expressed in outer units unless stated otherwise. The statistics
are presented as functions of the distance from the wall z − zw made dimensionless by
the channel half-width h; only half of the channel height is reported, as statistics are
symmetrised. For a laminar flow, the temperature profile would exhibit a perfectly linear
trend, as only diffusive and streamwise convective contributions are present. Therefore,
heat transfer between the walls is purely governed by conduction in the absence of
turbulence. The laminar profile is shown in figure 6 using a black dash-dotted line
as a reference. In turbulent conditions, the temperature profile retains a laminar-like
behaviour for low-Prandtl-number flows, as demonstrated in previous studies (Kasagi
et al. 1993; Kawamura et al. 1998, 1999; Pirozzoli 2023). Following the procedure of
Piller et al. (2002), we found that the ratio between molecular and turbulent diffusivity
is approximately 8.5 at the centre of the channel. This indicates that turbulent mixing
is less effective in redistributing temperature compared to momentum, leading to an
extended conductive sublayer that spans the entire channel width. The presence of drops
slightly modifies the mean temperature profiles despite remaining approximately linear.
The main effect is visible at z/h = 0.5, where the difference with the single-phase case is
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Figure 7. The RMS of the temperature at different Prr as a function of the wall-normal distance in outer
units: (a) lower volume fraction considered (α = 5.4 %), (b) larger volume fraction (α = 10.6 %).

approximately 5 % for the lower volume fraction case, and approximately 11 % for the high
volume fraction case. From the inset of figure 6(a), we can see that the mean temperature
profiles of Prr = 5.4, 54, 540 are almost superposed on each other. On the other hand,
the inset of figure 6(b) shows that the effect of Prr is more important, and that only the
profiles of Prr = 54 and 540 are superposed. This suggests that there is a saturation in the
effect of Prr , and that this effect also depends on the volume fraction.

We now analyse the effect of the dispersed phase Prandtl number on higher-order
statistics. Figure 7 shows the root mean square (RMS) of the temperature as a function
of the wall-normal distance for α = 5.4 % (figure 7a) and α = 10.6 % (figure 7b). Here,
results are obtained by averaging temperature in both phases. The RMS exhibits a
monotonic trend: starting from zero at the wall, it increases and peaks at the channel centre.
This behaviour is driven by the production term (proportional to the mean temperature
gradient), which remains non-zero at the channel centre (Kawamura, Abe & Shingai 2000).
The presence of drops enhances the peak value attained at the channel centre, depending
on both Prr and the volume fraction. An increase of the dispersed phase Prandtl number
(i.e. a decrease in thermal conductivity) does not significantly influence the temperature
RMS as the mean temperature profile is only slightly modified (and thus the production
term). However, the dissipation reduces within the dispersed phase (Piller et al. 2002),
leading to an overall increase in the RMS. The volume fraction further amplifies the effect
of Prr for two main reasons: (i) a lower conductivity characterises a wider portion of
the domain; (ii) larger drops are present in the channel. While the first argument may seem
trivial, the second may not. Every fluid opposes a thermal resistance to the heat flux, which
depends on the temperature gradient. Thus a droplet with a larger diameter experiences
higher gradients than a smaller drop, leading to higher thermal resistance. Consequently,
for α = 10.6 %, where larger droplets are present, the RMS is larger. The only exception
occurs for the matched conductivity case (Prr = 1). Indeed, the RMS remains comparable
to the single-phase for α = 5.4 %, and is slightly lower when α = 10.6 %. We trace this
difference back to the influence of the surface tension forces that slightly damp the
convective terms in the proximity of the interface. It is also important to note that the
main modifications of the RMS profiles occur in the central part of the channel, whereas
all cases exhibit similar trends near the walls. This is because deformable drops gather
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Figure 8. (a,b) The temperature RMS at different Prr , computed only in the carrier phase (solid lines) against
that considering the entire domain (dashed-crossed lines) presented in figure 7. (c,d) The ratio of the peak RMS
of the multiphase (mp) over the single-phase (sp) case as a function of Prr . Solid circles refer to the statistics
in the carrier phase only, while the open circles are the global RMS. (a,c) The lower volume fraction case; (b,d)
the higher volume fraction case.

in the central part of the channel (Mangani et al. 2022). In this regard, the only notable
difference between the two volume fractions is that for α = 10.6 %, the RMS profiles begin
to diverge slightly closer to the wall than for α = 5.4 %.

So far, we have discussed the turbulent statistics without distinguishing between the
dispersed and carrier phases. Figure 8(a,b) show the RMS of the temperature field
computed only in the carrier phase as a function of the wall-normal distance in outer
units. For comparison, the global RMS values are also shown as dashed-crossed lines.
Figure 8(c,d) illustrate the RMS peak at various Prr normalised by the RMS peak of the
single-phase case, for both carrier (empty symbols) and global (filled symbols) statistics.
Figures 8(a,c) and 8(b,d) correspond to volume fractions α = 5.4 % and α = 10.6 %,
respectively. The RMS in the carrier follows a trend similar to that of the global RMS,
starting from zero at the wall, and reaching a local maximum at the channel centre.
Increasing Prr leads to higher peaks. The case Prr = 1 is not different from the single-
phase case of α = 5.4 %, whereas it has a lower peak when α = 10.6 %. This reduction can
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d,i for each Prr considered: (a) the lower

volume fraction; (b) the higher volume fraction. The fluctuations are computed using as a reference the mean
temperature of each droplet. As a reference, the Gaussian distribution is reported with a black dash-dotted line.

be attributed to the influence of the surface tension forces, which become more significant
at higher volume fractions due to the increased interfacial area, thereby dampening
convective fluctuations. We can observe that the RMS peaks in the carrier phase are less
pronounced than the global RMS, though some clear differences can be observed with
respect to the single-phase case. These differences can be traced back to the presence
of droplets with different thermal diffusivity that generates large temperature gradients –
which in turn increases temperature fluctuations – not only in the droplets but also in the
carrier. The increased fluctuations observed in the carrier phase can also be linked to the
deflection of the heat-flux lines observed in figure 3. Indeed, this effect becomes more
pronounced as Prr is increased, and such deflections identify temperature fluctuations.
An argument in favour of this reasoning is that only in the central part of the channel
– where the droplets gather – the RMS of the carrier differs from the single-phase one.
The effect of the volume fraction is to further enhance this behaviour as a larger part of
the domain is occupied by droplets, thus larger deflections of the heat-flux lines occur.
From figure 8(a,b), we also observe that the effect of Prr is nonlinear and tends to a
plateau. Indeed, the RMS in the carrier for Prr = 54 and 540 for the lower volume fraction,
shows almost no differences. In contrast, for the higher volume fraction, the plateau is not
reached, although the relative difference between the peaks reduces by increasing Prr .

Finally, we analyse the temperature fluctuations inside the droplets. To better
characterise these fluctuations, we consider the probability density function (PDFs) of
the temperature fluctuations. Figure 9 shows the resulting PDFs as functions of Prr
(distinguished by different colours) and volume fraction (α = 5.4 % and 10.6 %), where
the black dash-dotted line is the Gaussian distribution, which serves as a reference. We
define the fluctuation inside the drop as

θ ′
d,i = θd,i − θd,i , (3.4)

where θd,i is the instantaneous temperature, and θd,i is the mean temperature of the i th
droplet. Since turbulence advects the droplets, they can have a different mean temperature
than in the carrier phase. Thus we first identify each drop and compute the temperature
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Figure 10. (a,b) Scatter plots of the mean temperature of each drop θd,i against its equivalent diameter
normalised by the Kolmogorov–Hinze scale d+

eq/d+
H . (c,d) Scatter plots of the RMS of the temperature of

each drop against its normalised equivalent diameter. The scatter plots are computed from a single time step at
t+ = 3000. Each dot identifies a single droplet, while the colours are used to distinguish among the different
Prr . Here, (a,c) α = 5.4 %, and (b,d) α = 10.6 %.

fluctuations relative to their own mean temperature. Droplet identification is performed
using the algorithm developed by Herrmann (2010) that allows us to recognise any
contiguous liquid structure. While this method is computationally slower than some
recursive approaches, its ability to be parallelised improves performance. The resulting
PDFs are symmetric around zero, indicating an equal probability of positive and negative
fluctuations. It is worth noticing that despite the symmetric behaviour, the PDFs do not
follow the normal distribution. The flatness of the PDFs increases with Prr , implying
a greater likelihood of extreme temperature deviations from the mean value. At higher
volume fractions, the range of θ ′

d,i values increases further, confirming that the intensity
of temperature fluctuations depends on both Prr (i.e. the dissipative time scales) and the
volume fraction.

While figure 9 provides insights into the statistical distribution of temperature
fluctuations, it does not account for the influence of droplet size. To address this, figure 10
presents scatter plots that shows the effect of the droplet size on the temperature. Figure
10(a,b) show the mean temperature of each droplet as a function of the equivalent diameter
normalised by the Kolmogorov–Hinze scale, while figure 10(c,d) display the RMS of
temperature over the same normalised diameter. Figure 10(a,c) correspond to the lower
volume fraction, α = 5.4 %, whereas figure 10(b,d) represent the higher volume fraction,
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α = 10.6 %. Different colours denote different Prr values. Each point in these plots
corresponds to an individual droplet at t+ = 3000, indicating that the statistics are derived
from an instantaneous snapshot rather than time-averaged data.

Examining figure 10(a,b), we observe that smaller droplets span the entire temperature
range, whereas larger drops tend to cluster around a mean temperature closer to zero.
This behaviour is corroborated by a previous study of Mangani et al. (2022), where it
was shown that small droplets tend to disperse more along the wall-normal direction, i.e.
experiencing the whole range of temperature. In contrast, larger drops tend to cluster at
the channel centre, where the mean temperature is approximately zero. Notably, Prr does
not appear to influence the mean temperature distribution. Similarly, the volume fraction
has only a marginal effect, primarily by altering the maximum droplet size. On the other
hand, larger droplets consistently exhibit higher RMS values across all considered Prr , as
shown in figure 10(c,d). This explains the differences observed in figures 7 and 8, where
the RMS increases with volume fraction. The Prr value increases the RMS value for the
whole range of diameters (as shown by the arrow in figure 10c,d), with more pronounced
effects on larger drops. Indeed, a layering of the points as a function of the Prr value
considered can be appreciated.

3.4. Heat-flux budget
To characterise the physical mechanisms governing the heat transfer process, we
decompose the global heat flux into carrier and dispersed phase contributions. We follow
the approach used by Marchioro, Tanksley & Prosperetti (1999), Zhang & Prosperetti
(2010) and Picano, Breugem & Brandt (2015) for the total stress balance in suspensions
of rigid spherical particles, and by Ardekani et al. (2018) and Bilondi et al. (2024) for
heat transfer in laminar Couette flow with particle suspensions and two-phase turbulent
Rayleigh–Bénard convection, respectively. We express the total heat flux as

q ′′
tot = q ′′

C + q ′′
D, (3.5)

where q ′′
C = Cc + Cd represents the convective heat flux, given by the sum of the

carrier phase Cc and dispersed phase Cd contributions, while q ′′
D = Dc + Dd represents

the diffusive heat flux, similarly decomposed into carrier Dc and dispersed phase Dd
contributions. The contributions from each phase are computed as follows:

Cc = −
(

1 − Ad

A0

)
w′

cθ
′
c , (3.6a)

Cd = − Ad

A0
w′

dθ ′
d , (3.6b)

Dc = 1
Reτ Prc

(
1 − Ad

A0

)
∂θc

∂z
, (3.6c)

Dd = 1
Reτ Prd

Ad

A0

∂θd

∂z
, (3.6d)

where the subscripts c and d denote the carrier and dispersed phases, respectively. Here,
Ad represents the average area distribution of the drops, while A0 is the area of a cross-
section parallel to the channel walls.

Figure 11 depicts the wall-normal profiles of the convective contribution q ′′
C and

diffusive contribution q ′′
D , normalised by the total heat flux of the single-phase case

q ′′
tot,sp for the two volume fractions considered, α = 5.4 % and 10.6 %. At the walls,

both velocity and temperature fluctuations are zero, meaning that diffusion is the sole
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Figure 11. Heat-flux budget in the wall-normal direction for the different Prr considered in this work. The
heat fluxes are the sum of the carrier and dispersed phase contributions normalised by the total heat flux of the
single-phase case. Each colour refers to a different Prr , for volume fractions (a) α = 5.4 % and (b) α = 10.6 %.

heat transfer mechanism. Moving away from the wall, a reduction of the diffusive heat
fluxes is followed by a growth of the convective heat fluxes. However, it is evident that for
all Prr considered, diffusion dominates convection, confirming the previous observation
of a conductive thermal sublayer spanning the entire channel width. It is worth noting
that the diffusive heat transfer is non-zero at the channel centre due to the presence of
a temperature gradient. Normalising by q ′′

tot,sp highlights the overall reduction of the
total heat flux when the dispersed phase is introduced, as also observed from the time
evolution of the Nusselt number (figure 5). The convective heat fluxes (bottom) are almost
not affected by the volume fraction or by Prr . As a matter of fact, the turbulent heat fluxes
q ′′

C depend on both the turbulence intensity and the temperature fluctuations. Although
increasing the Prr enhances the temperature fluctuations at the channel centre (in both
phases), velocity fluctuations remain one order of magnitude larger, making the effect of
Prr almost negligible. Analysing the diffusive contributions (top), a clear effect of the
volume fraction and Prr is observed. For both volume fractions, an increase of Prr leads
to a reduction of the diffusive heat flux. This modification is visible for α = 5.4 % and
becomes more pronounced for α = 10.6 %. This change tends to saturate for Prr > 5.4,
where results collapse on top of each other for Prr = 54 and Prr = 540.

To quantify the impact of these modifications on the global heat-flux performance, we
present their integrals normalised by the total heat flux of the single-phase case q ′′

tot,sp in
figure 12. In particular, the plots illustrate the contributions of the different terms presented
in (3.6a)–(3.6d). Figure 12(a,b) show the convective heat flux of the dispersed phase (dark
orange) and carrier (light orange). Similarly, figure 12(c,d) represent the diffusive heat flux
for the dispersed phase (dark violet) and carrier (light violet). Figure 12(a,c) correspond
to α = 5.4 %, while figure 12(b,d) correspond to α = 10.6 %.

We start by analysing the convective contributions (figure 12a,b). As Prr increases,
local temperature gradients generate stronger fluctuations in both the carrier and droplets
(as shown in figures 7 and 8). However, the increased temperature fluctuations (higher
RMS) do not translate into a higher global convective heat flux. Statistically, the combined
contributions of the carrier and dispersed phases remain lower than in the single-phase
case and show no significant dependence on Prr . On the other hand, for each value of
Prr , the average convective heat flux associated with the dispersed phase increases with
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Figure 12. The wall-normal integrals of (a,b) the convective heat fluxes, and (c,d) the diffusive heat fluxes. All
the heat fluxes are reported normalised by the single-phase value. Plots (a,b) show the convective contributions
of the carrier (light orange) and dispersed (dark orange) phases. Plots (c,d) show the diffusive contributions of
the carrier (light violet) and dispersed (dark violet) phases. Here, (a,c) α = 5.4 %, and (b,d) α = 10.6 %.

volume fraction. Further discussion of the statistical analysis and uncertainty estimation is
provided in Appendix B. It is important to observe that the convective heat fluxes account
for less than 7 % of the global heat flux.

Moving to the diffusive contributions (figure 12c,d), diffusion in the carrier phase
decreases for all the multiphase cases. For Prr = 1, the reduction is balanced by an
increase in diffusion within the dispersed phase, resulting in a minimal net effect. As
Prr increases, diffusion in the carrier phase decreases further without a corresponding
compensation in the dispersed phase. As a consequence, the overall diffusive heat flux
decreases with both Prr and volume fraction.

3.5. Phenomenological model for the Nusselt number
Having identified the physical mechanism governing heat transfer, we can try to model
the corresponding process. In particular, we want to build a one-dimensional model that
predicts the global heat transfer of low-Prandtl-number drop-laden flows. To this aim, we
recall the time evolution of the Nusselt number presented in figure 5, and we focus on the
steady values attained by the different cases for t+ > 1000, which are reported in figure 13.
The results for volume fractions α = 5.4 % and 10.6 % are represented by solid triangles
and solid circles, respectively. We observe that for both volume fractions considered, Nu
decreases with a nonlinear trend, eventually reaching a plateau for Prr > 54. Likewise, an
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Figure 13. Mean Nusselt number Nu normalised with the average value of the single phase Nus as a function
of Prr for two distinct volume fractions, α = 5.4 % and 10.6 %. The filled symbols represent the DNS data,
while the black dashed lines report the predictions obtained from the proposed model (3.13). The error bars
represent the RMS of the Nusselt number.

increase in the the volume fraction leads to a drop of the Nusselt number. For instance,
the case with α = 5.4 % (Prr = 540) exhibits a higher total heat flux than the case with
α = 10.6 % (Prr = 5.4).

To develop the model, we start by integrating the right-hand side of (2.10) over the entire
channel, and normalising it by the single-phase value:

qtot,mp

qtot,sp
=

∫
Ω

(
−∇ · (uθ) + 1

Reτ Prc
∇ · (

a(φ) ∇θ
))

dΩ

∫
Ω

(
− ∇· (uθ) + 1

Reτ Pr
∇2θ

)
dΩ

, (3.7)

where dΩ is the elemental volume within the control volume Ω . Since both Prr and
α have a minor effect on the convective heat fluxes – and these fluxes account for less
than 7 % of the total heat transfer, as discussed in figures 11 and 12 – we assume that
the convective heat fluxes are negligible. Applying this assumption and applying Gauss’
theorem to (3.7), we obtain

qtot,mp

qtot,sp
≈

∫
A0

1
Pr∗(z)

∂θ

∂z
dA0

1
Pr

∫
A0

∂θ

∂z
dA0

≈ Pr

Pr∗(z)
, (3.8)

where Pr∗(z) = Prc/a(φ) is function of the wall-normal elevation. We further simplify
(3.8) considering that ∂θ/∂z ≈ 1 for all the cases under scrutiny. It is important to note
that due to Gauss’ theorem, only the heat-flux component normal to the oriented area A0
contributes to the total heat flux. Hence reducing the conductivity efficiency inside the
dispersed phase corresponds to reducing the area of effective heat transport. Based on
this, it is reasonable to model Pr∗(z) as a function of the area occupied by the carrier and
the dispersed phase, namely a function of the wall-normal distance. We take advantage of
the analogy with the conduction in layered media presented in Appendix A, and write
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Figure 14. (a) The average area distribution of the drops Ad in the wall-normal direction normalised by the
area of a channel section A0 for two volume fractions. (b) The average area distribution of the drops rescaled
by their respective maximum value Ad,max. The dashed black lines represent a Gaussian function.

1
Pr∗(z)

= 1 − Ad(z)

Prc
+ Ad(z)

Prd
. (3.9)

Figure 14 shows the wall-normal distribution of the dispersed area for volume fractions
α = 5.4 % (solid triangles) and 10.6 % (solid circles). Figure 14(a) shows the drop area
normalised by the total area, while figure 14(b) presents the drop area normalised by its
maximum value. The plotted data represent an average over all simulations. As expected,
increasing the volume fraction leads to a larger dispersed phase area. The droplets are
gathered at the channel centre (Mangani et al. 2022). Rescaling the drop area by its
maximum value reveals a self-similar behaviour across the volume fractions considered
in this study. Hence both distributions can be described using an analytical function with
Ad,max as a scaling parameter. After systematically evaluating candidate functions, we find
that the Gaussian function provides the best description of Ad :

Ad(z) ≈ a exp
(

−(z − b)2

2c2

)
, (3.10)

where a = max(Ad) = Ad,max, b = 0 is the mean value of Ad/Ad,max, and c =
std(Ad/Ad,max ) ≈ 0.37 is the standard deviation of Ad/Ad,max. The Gaussian fit is
reported in figure 14 with a dashed line. Notice that the area distribution is well represented
throughout the channel width, with minor discrepancies near the wall. However, these
deviations occur in regions where small droplets appear intermittently. As already
discussed for figure 10, small droplets have little to no influence on the heat-flux budget.

An equivalent global thermal resistance of the multiphase system – i.e. the equivalent
Prandtl number Preqv – can be determined by averaging 1/Pr∗ between the two walls:

1
Preqv

= 1
2h

∫ +h

−h

[
1

Prc
+ Ad(z)

(
1

Prd
− 1

Prc

)]
dz, (3.11)

where Ad(z) is explicitly factored out. Substituting (3.10) into (3.11) yields

1
Preqv

= 1
Prc

+ a

h

√
πc erf

(
h

2c2

) (
1

Prd
− 1

Prc

)
, (3.12)
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Figure 15. Normalised Nusselt number rescaled by the maximum value of the drops area as a function of
Prd . The black dashed line represents the proposed model.

where erf(h/(2c2)) ∼ 1 is the error function. With Preqv now representing the average
conductivity of the two-phase system, we estimate (3.8) at the wall. Recalling that the
non-dimensional heat flux at the wall is the Nusselt number Nu, the final model is

Nu

Nusp
≈ 1 + Ad,max

h

√
πc

(
1

Prr
− 1

)
, (3.13)

where we substitute a = Ad,max . This equation shows that the normalised Nusselt number
depends on the maximum dispersed phase area and the Prandtl ratio. The model
predictions (represented by dashed lines in figure 13) accurately capture the observed trend
of Nu/Nusp, confirming its validity in predicting the heat transfer behaviour in multiphase
systems. In particular, (3.13) shows that the asymptote observed at high Pr arises from
both physical and geometrical effects. Physically, when the dispersed phase becomes
sufficiently insulating, further reductions in its conductivity have minimal impact on the
total heat flux. Geometrically, the drop distribution influences the relative importance of
the drop conductivity in determining the equivalent thermal conductivity of the system.

Figure 15 shows the DNS results rescaled by Ad,max . The collapse of the different cases
confirms the self-similar behaviour observed for the dispersed phase area. The model
slightly underestimates the Nusselt number, primarily due to the assumption that Prr
and Ad have a negligible impact on the convective terms. As discussed in § 3.4, these
contributions increase slightly, leading to a minor discrepancy between the model and
the DNS results. Quantitative comparison reveals remarkable agreement between model
predictions and DNS results, with relative errors below 1.1 % across all tested conditions
(error range between 0.017 % and 1.1 %). Overall, the proposed model is capable of
predicting the heat transfer performance of a complex multiphase system for a wide range
of Prr as well as different values of the dispersed phase volume fraction.

4. Conclusions
In this work, we investigated the modifications to heat transfer induced by a swarm of
deformable droplets in the turbulent flow of low-Prandtl-number fluid (Prc = 0.013).
The study was conducted using direct numerical simulations (DNS) of Navier–Stokes
equations coupled with a phase-field method. The energy equation was one-way coupled,
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Case α Prc Prd Prr = Prd/Prc Nu θ
pk

rms,g θ
pk

rms,c

Single-phase – 0.013 – – 1.0948 0.8364 × 10−1 –
Drop-laden 5.4 % 0.013 0.013 1.00 1.0896 0.8290 × 10−1 0.8343 × 10−1

Drop-laden 5.4 % 0.013 0.070 5.40 1.0425 0.9601 × 10−1 0.9202 × 10−1

Drop-laden 5.4 % 0.013 0.700 54.0 1.0265 1.0363 × 10−1 0.9382 × 10−1

Drop-laden 5.4 % 0.013 7.000 540.0 1.0253 1.0732 × 10−1 0.9443 × 10−1

Drop-laden 10.6 % 0.013 0.013 1.00 1.0831 0.8039 × 10−1 0.8157 × 10−1

Drop-laden 10.6 % 0.013 0.070 5.40 0.9751 1.0692 × 10−1 0.9607 × 10−1

Drop-laden 10.6 % 0.013 0.700 54.0 0.9378 1.2987 × 10−1 1.0214 × 10−1

Drop-laden 10.6 % 0.013 7.000 540.0 0.9392 1.4085 × 10−1 1.0857 × 10−1

Table 2. Overview of the main results. We report, for each case studied, the average Nusselt
number Nu, the maximum value of the global RMS (θ

pk
rms,g) and the maximum value of the RMS in the carrier

only (θ
pk

rms,c).

with the Cahn–Hilliard equation to account for the different thermal conductivities of
the two phases. We considered a fixed friction Reynolds number (Reτ = 300) and Weber
number (W e = 3), while varying both the Prandtl ratio and volume fraction. Specifically,
we examined four different conductivity ratios, corresponding to Prr = 1, 5.4, 54, 540,
along with two volume fractions, α = 5.4 % and 10.6 %.

First, we characterised the topology of the dispersed phase by analysing the droplet size
distribution (DSD). After an initial transient phase (up to t+ = 1000), the DSD remains
statistically unchanged, revealing two distinct regimes: a breakage-dominated regime (for
drops larger than the Kolmogorov–Hinze scale), which follows the scaling d−10/3; and,
a coalescence-dominated regime (for drops smaller than the Kolmogorov–Hinze scale),
exhibiting a d−3/2 scaling. For the higher volume fraction, we observe both a slightly
larger presence of larger drops and an increased number of small droplets compared to the
lower volume fraction case.

Then we analysed the temperature field from a global perspective and within the two
phases. We observed that the global heat transfer, represented by the average Nusselt
number (see table 2), reaches a steady-state value once the DSD also stabilised. The
presence of a dispersed phase with higher Prd (i.e. smaller thermal conductivity) than
the carrier phase leads to a reduction in Nu. Similarly, an increase of the volume fraction
leads to a decrease of the Nusselt number. Interestingly, while the mean temperature is
slightly affected by Prr , the combined effect of Prr and volume fraction leads to more
pronounced differences between the mean temperature of the multiphase and single-phase
cases. This is confirmed by the temperature RMS, where the presence of the dispersed
phase increases fluctuation intensity. Counterintuitively, also the RMS in the carrier phase
increases, meaning that local temperature gradients – enhanced by the presence of the
dispersed phase – generate larger temperature fluctuations even within the carrier.

Finally, we analysed the heat-flux budgets, and we observed that the presence of a
dispersed phase with different conductivity in a low-Pr carrier reduces the diffusive
heat fluxes, while the convective heat fluxes remain mostly unchanged. Building on these
observations, we developed a physically grounded model to predict changes in Nu for
varying Prr and volume fractions. The model expresses the variation in Nu as a function
of the maximum area occupied by the dispersed phase and the Prandtl ratio Prr . Model
predictions closely match DNS results, and uncover a self-similar behaviour between the
two volume fractions considered.
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Appendix A. On the analogy with the conduction in layered systems
In this appendix, we analyse the analogy between the conduction problem in layered
systems and the heat transfer in multiphase low-Prandtl-number media.

In layered systems (e.g. alternating materials with different conductivities κi ), the layer
thermal conductivity κ∗ depends on the direction of the heat flux. In particular, when the
heat flux is parallel to the layering, we have

κ∗ =
N∑
i

Aiκi , (A1)

where Ai is the area fractions the i th material layer (Murakami et al. 1980, 1981; Baker-
Jarvis & Inguva 1984). It is important to note that this relation is valid in the pure
conductive limit. However, in our case, the convection accounts for a maximum of 7 %
of the total heat transfer. Therefore, our case is conduction-dominated. Moreover, the
presence of drops with different Pr from the carrier does not significantly affect the
convection. Thus we can assume that the variation of the total heat flux depends only
on the conductive heat-flux reduction.

With these assumptions, and considering the steady-state condition, we can think of our
system as a channel where each cross-section has a property distribution. This case is very
similar to the case of heat flux parallel to the layering, as shown in figure 16. Therefore,
considering the analogy with the layered systems and that κi ∝ 1/Pri , we can write

1
Pr∗(z)

= Ad(z)

Prd
+ 1 − Ad(z)

Prc
, (A2)

where Pr∗ can be interpreted as the average Prandtl number of the infinitesimal layer
parallel to the walls.

Appendix B. Statistical convergence and uncertainty estimation
To ensure the statistical reliability of the reported heat-flux components, all quantities were
computed over the statistically steady portion of the simulations. Each DNS was run for
a total duration of 4500 t+. The initial 1000 t+ were discarded to eliminate the transient
phase, and the remaining 3500 t+ were used for statistical analysis. Data were sampled
every 15 t+, yielding 233 time samples per case.

Due to the turbulent nature of the flow, the instantaneous heat-flux contributions exhibit
temporal fluctuations. To account for this, we estimate the statistical uncertainty using
the standard error of the mean value, corrected for time correlation via the integral
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dq

Prc Prd

dz

Figure 16. Schematic configuration of an infinitesimal portion of the channel. The grey region represents the
volume occupied by the drop. The carrier and drop are characterised by different conductivities, i.e. Prc �= Prd .
The infinitesimal heat flux dq is parallel to the layered system (carrier-drop).
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Figure 17. Autocorrelation function of the Nusselt number, ρ(Nu), as a function of the time lag δt+ for the
different cases considered. The autocorrelation has been computed starting from t+ = 1000, i.e. when the
simulations reach the steady state. Here, (a) α = 5.4 %, and (b) α = 10.6 %.

autocorrelation time. Specifically, we compute the autocorrelation function (see figure 17)
of the total wall-normal heat flux over the steady-state window. The autocorrelation decays
smoothly and crosses zero at a lag of approximately 240 t+ for all the cases. By integrating
the positive portion of the autocorrelation using the trapezoidal rule, we obtain an integral
autocorrelation time τ+ that slightly differs in the different cases. Therefore, we choose
the most conservative case where τ+ ≈ 121.37. Given the total duration T + = 3500, this
corresponds to an effective number of independent samples given by

Neff = T +

2τ+ ≈ 14. (B1)

The estimated standard errors for the convective heat-flux components (carrier and
dispersed phases) were computed using the effective sample size. Results are presented
in table 3. While the total convective heat flux exhibits limited sensitivity to Prr , in
many cases, the variation is comparable to the magnitude of the statistical uncertainty.
These trends should therefore be interpreted with appropriate caution. However, as shown
in figure 18, a consistent and statistically robust increase in the convective heat-flux
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Prr Cc Cd

Single-phase 6.566 × 10−2 ± 1.65 × 10−3 –
α = 5.4 % 1.0 5.894 × 10−2 ± 1.42 × 10−3 1.03 × 10−3 ± 1.0 × 10−4

5.4 6.027 × 10−2 ± 1.63 × 10−3 1.43 × 10−3 ± 1.4 × 10−4

54.0 6.002 × 10−2 ± 1.43 × 10−3 2.10 × 10−3 ± 2.1 × 10−4

540.0 5.887 × 10−2 ± 1.73 × 10−3 2.31 × 10−3 ± 2.0 × 10−4

α = 10.6 % 1.0 5.254 × 10−2 ± 1.14 × 10−3 2.66 × 10−3 ± 1.2 × 10−4

5.4 5.230 × 10−2 ± 1.07 × 10−3 3.77 × 10−3 ± 2.7 × 10−4

54.0 5.183 × 10−2 ± 1.64 × 10−3 5.34 × 10−3 ± 3.7 × 10−4

540.0 5.130 × 10−2 ± 1.17 × 10−3 5.05 × 10−3 ± 3.2 × 10−4

Table 3. Mean values and standard error for the convective heat-flux contributions of the carrier (Cc) and
dispersed (Cd ) phases, computed using effective sample size Neff = 14.

0
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10−1 103102101100
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Figure 18. Contribution to the convective terms of the drops. The error bars represent the 95 % confidence
interval.

contribution from the dispersed phase is observed with increasing volume fraction, for
all values of Prr .
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