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Poznań, Poland
7Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Straße 8, D-10623, Berlin,
Germany

(Received 23 September 2020; revised 29 September 2021; accepted 1 November 2021)

We address a challenge of active flow control: the optimization of many actuation
parameters guaranteeing fast convergence and avoiding suboptimal local minima. This
challenge is addressed by a new optimizer, called the explorative gradient method (EGM).
EGM alternatively performs one exploitive downhill simplex step and an explorative
Latin hypercube sampling iteration. Thus, the convergence rate of a gradient based
method is guaranteed while, at the same time, better minima are explored. For an
analytical multi-modal test function, EGM is shown to significantly outperform the
downhill simplex method, the random restart simplex, Latin hypercube sampling, Monte
Carlo sampling and the genetic algorithm. EGM is applied to minimize the net drag
power of the two-dimensional fluidic pinball benchmark with three cylinder rotations as
actuation parameters. The net drag power is reduced by 29 % employing direct numerical
simulations at a Reynolds number of 100 based on the cylinder diameter. This optimal
actuation leads to 52 % drag reduction employing Coanda forcing for boat tailing and
partial stabilization of vortex shedding. The price is an actuation energy corresponding
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to 23 % of the unforced parasitic drag power. EGM is also used to minimize drag of
the 35◦ slanted Ahmed body employing distributed steady blowing with 10 inputs. 17 %
drag reduction are achieved using Reynolds-averaged Navier–Stokes simulations at the
Reynolds number ReH = 1.9 × 105 based on the height of the Ahmed body. The wake
is controlled with seven local jet-slot actuators at all trailing edges. Symmetric operation
corresponds to five independent actuator groups at top, middle, bottom, top sides and
bottom sides. Each slot actuator produces a uniform jet with the velocity and angle as
free parameters, yielding 10 actuation parameters as free inputs. The optimal actuation
emulates boat tailing by inward-directed blowing with velocities which are comparable
to the oncoming velocity. We expect that EGM will be employed as efficient optimizer
in many future active flow control plants as alternative or augmentation to pure gradient
search or explorative methods.

Key words: aerodynamics, flow control, wakes/jets

1. Introduction

In this study, we propose an optimizer for active flow control focusing on multi-actuator
bluff-body drag reduction. This optimizer combines the convergence rate of a gradient
search method with an explorative method for identifying the global minimum. Actuators
and sensors are becoming increasingly cheaper, powerful and reliable. This trend makes
active flow control of increasing interest to industry. In addition, distributed actuation can
give rise to performance benefits over single actuator solutions. Here, we focus on the
simple case of open-loop control with steady or periodic operation of multiple actuators.

Even for this simple case, the optimization of actuation constitutes an algorithmic
challenge. Often the budget for optimization is limited to O(100) high fidelity simulations,
like direct numerical simulations (DNS) or large-eddy simulations (LES) or O(100) water
tunnel experiments, or O(1000) Reynolds-averaged Navier–Stokes (RANS) simulations,
or a similar amount of wind-tunnel experiments. Moreover, the optimization may need to
be performed for multiple operating conditions.

Evidently, efficient optimizers are of large practical importance. Gradient-based
optimizers, like the downhill simplex method (DSM) have the advantage of rapid
convergence against a cost minimum, but this minimum may easily be a suboptimal local
one, particularly for high-dimensional search spaces. Random restart variants have a larger
probability of finding the global minimum but come with a dramatic increase of testing.
In contrast to gradient-based approaches, Latin hypercube sampling (LHS) performs
an ideal exploration by guaranteeing a close geometric coverage of the search space –
obviously with a poor associated convergence rate and the price of extensive evaluations
of unpromising territories. Monte Carlo sampling (MCS) has similar advantages and
disadvantages. Genetic algorithms (GA) elegantly combine exploration with mutation
and exploitation with crossover operations. These are routinely used optimizers and the
focus of our study. These optimizers are superbly described in Press et al. (2007). Myriad
of other optimizers have been invented for different niche applications. Deterministic
gradient-based optimizers may be augmented by estimators for the gradient. These
estimators become particularly challenging for sparse data. This challenge is addressed by
stochastic gradient methods which aim at navigating through a high-dimensional search
space with insufficient derivative information. Many biologically inspired optimization
methods, like ant colony and participle swarm optimization, also aim at balancing
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exploitation and exploration, like GA. A new avenue is opened by including the learning
of the response model from actuation to cost function during the optimization process
and using this model for identifying promising actuation parameters. Another new path is
ridgeline inter- or extrapolation (Fernex et al. 2020), exploiting the topology of the control
landscape. In this study, these extensions are not included in the comparative analysis, as
the additional complexity of these methods with many additional tuning parameters can
hardly be objectively performed.

Our first flow control benchmark is the fluidic pinball (Ishar et al. 2019; Deng
et al. 2020). This two-dimensional flow around three equal, parallel, equidistantly
placed cylinders can be changed by the three rotation velocities of the cylinders.
The dynamics is rich in nonlinear behaviour, yet geometrically simple and physically
interpretable. With suitable rotation of the cylinders many known wake stabilizing and
drag-reducing mechanisms can be realized: (i) Coanda actuation (Geropp 1995; Geropp
& Odenthal 2000), (ii) circulation control (Magnus effect), (iii) base bleed (Wood 1964),
(iv) high-frequency forcing (Thiria, Goujon-Durand & Wesfreid 2006), (v) low-frequency
forcing (Glezer, Amitay & Honohan 2005) and (vi) phasor control (Protas 2004). In this
study, constant rotations are optimized for net drag power reduction accounting for the
actuation energy. This search space implies the first three mechanisms. The fluidic pinball
study will foreshadow key results of the Ahmed body. This includes the drag-reducing
actuation mechanism and the visualization tools for high-dimensional search spaces.

The main application focus of this study is on active drag reduction behind a generic
car model using RANS simulations. Aerodynamic drag is a major contribution of
traffic-related costs, from airborne to ground and marine traffic. A small drag reduction
would have a dramatic economic effect considering that transportation accounts for
approximately 20 % of global energy consumption (Gad-el-Hak 2007; Kim 2011; Choi,
Lee & Park 2014). While the drag of airplanes and ships is largely caused by skin friction,
the resistance of cars and trucks is mainly caused by pressure or bluff-body drag (Seifert
et al. 2009). Hucho (2011) defines bodies with a pressure drag exceeding the skin-friction
contribution as bluff and as streamlined otherwise.

The pressure drag of cars and trucks originates from the excess pressure at the front
scaling with the dynamic pressure and a low-pressure region at the rear. The reduction
of the pressure contribution from the front often requires significant changes of the
aerodynamic design. Few active control solutions for the front drag reduction have been
suggested (Minelli et al. 2020). In contrast, the contribution at the rearward side can be
significantly changed with passive or active means. Drag reductions of 10 %–20 % are
common, Pfeiffer & King (2014) have even achieved 25 % drag reduction with active
blowing in the wind tunnel. For a car at a speed of 120 km h−1, this would reduce
consumption by approximately 1.8 l per 100 km. The economic impact of drag reduction
is significant for trucking fleets with a profit margin of only 2 %–3 %. Two thirds of
the operating costs are from fuel consumption (Brunton & Noack 2015). Hence, a 5 %
reduction of fuel costs from aerodynamic drag corresponds to over 100 % increase of the
profit margin.

Car and truck design is largely determined by practical and aesthetic considerations. In
this study, we focus on drag reduction by active means at the rearward side. Intriguingly,
most drag reductions of a bluff body fall into the categories of Kirchhoff solution and
aerodynamic boat tailing. The first strategy may be idealized by the Kirchhoff solution
(Pastoor et al. 2008), i.e. potential flow around the car with infinitely thin shear layers
from the rearward separation lines, separating the oncoming flow and dead-fluid region.
The low-pressure region due to curved shear layers is replaced by an elongated, ideally
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infinitely long wake with small, ideally vanishing curvature of the shear layer. Thus, the
pressure of the dead-water region is elevated to the outer pressure, i.e. the wake does
not contribute to the drag. This wake elongation is achieved by reducing entrainment
through the shear layer, e.g. by phasor control mitigating vortex shedding (Pastoor et al.
2008) or by energization of the shear layer with high-frequency actuation (Barros et al.
2016). Wake disrupters also decrease drag by energizing the shear layer (Park et al. 2006)
or delaying separation (Aider, Beaudoin & Wesfreid 2010). Arguably, the drag of the
Kirchhoff solution can be considered as an achievable limit with small actuation energy.

The second strategy targets drag reduction by aerodynamic boat tailing. Geropp (1995)
and Geropp & Odenthal (2000) have pioneered this approach by Coanda blowing.
Here, the shear layer originating at the bluff body is vectored inward and thus gives
rise to a more streamlined wake shape. Barros et al. (2016) have achieved 20 % drag
reduction of a square-back Ahmed body with high-frequency Coanda blowing in a
high-Reynolds-number experiment. A similar drag reduction was achieved with steady
blowing but at higher flow coefficients.

This study focuses on drag reduction of the low-drag Ahmed body with rear slant angle
of 35◦. This Ahmed body simplifies the shape of many cars. Bideaux et al. (2011) and
Gilliéron & Kourta (2013) have achieved 20 % drag reduction for this configuration in an
experiment. High-frequency blowing was applied orthogonal to the upper corner of the
slanted rear surface. Intriguingly, the maximum drag reduction was achieved in a narrow
range of frequencies and actuation velocities and its effect rapidly deteriorated for slightly
changed parameters. In addition, the actuation is neither Coanda blowing nor an ideal
candidate for shear-layer energization, as the authors noted.

The literature on active drag reduction of the Ahmed body indicates that small changes
of actuation can significantly change its effectiveness. Actuators have been applied with
beneficial effects at all rearward edges (Barros et al. 2016), thus further complicating
the optimization task. A systematic optimization of the actuation at all edges, including
amplitudes and angles of blowing, is beyond reach of current experiments. In this study,
a systematic RANS optimization is performed in a rich parametric space comprising
the angles and amplitudes of steady blowing of five actuator groups: one on the top,
middle and bottom edge and two symmetric actuators at the corners of the slanted and
vertical surfaces. High-frequency forcing is not considered, as the RANS tends to be overly
dissipative to the actuation response.

The manuscript is organized as follows. The employed optimization algorithms are
introduced in § 2 and compared in § 3. § 4 optimizes the net drag power for the
fluidic pinball, which features two-dimensional flow controlled in a three-dimensional
actuation space based on DNS. A simulation-based optimization of actuation for the
three-dimensional low-drag Ahmed body is given in § 5. Here, up to 10 actuation
commands controlling the velocity and direction of five rearward slot actuator groups are
optimized. Our results are summarized in § 6. Future directions are indicated in § 7.

2. Optimization algorithms

In this section, the employed optimization algorithms for the actuation parameters are
described. Let J(b) be the cost function – here the drag coefficient – depending on N
actuation parameters b = [b1, . . . , bN]T in the domain Ω ,

b = [b1, . . . , bN]T ∈ Ω ⊂ RN, (2.1)
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Figure 1. Sketch of the explorative gradient method. For details, see text.

where the superscript ‘T’ denotes the transpose. Permissible values of each parameter
define an interval, bi ∈ [bi,min, bi,max], i = 1, . . . , N. In other words, optimization is
performed in rectangular search space,

Ω = [b1,min, b1,max] × . . . × [bN,min, bN,max]. (2.2)

The optimization goal is to find the global minimum of J in Ω ,

b� = arg min
b∈Ω

J(b). (2.3)

Several common optimization methods are investigated. Benchmark is the DSM (see,
e.g. Press et al. 2007) as a robust data-driven representative of gradient search methods
(§ 2.4). This algorithm exploits gradient information from neighbouring points to descend
to a local minimum. Note that DSM is referred to as a gradient-free method in numerical
textbooks because it does not require explicitly the gradient vector as input nor an
estimation thereof.

Depending on the initial condition, this search may yield any local minimum. In random
restart simplex (RRS), the chance of finding a global minimum is increased by multiple
runs with random initial conditions. The geometric coverage of the search space is the
focus of LHS (see, again, Press et al. 2007), which optimally explores the whole domain
Ω independently of the cost values, i.e. ignores any gradient information. Evidently, LHS
has a larger chance of getting close to the global minimum while DSM is more efficient
descending to a minimum, potentially a suboptimal one. MCS (see, again, Press et al.
2007), is a simpler and more common exploration strategy by taking random values for
each argument, again, ignoring any cost value information. GA starts with a MCS in the
first generation but then employs genetic operations to combine explorative and exploitive
features in the following generations (see, e.g. Wahde 2008).

Sections 2.1–2.3 outline the non-gradient-based explorative methods from the most
explorative LHS, to MCS and the partially exploitive GA. Sections 2.4 and 2.5 recapitulate
DSM and its random restart variant. These are commonly used methods for data-driven
optimization with an unknown analytical cost function.

In § 2.6, we combine the advantages of DSM in exploiting a local minimum and of the
LHS in exploring the global one in a new method, the explorative gradient method (EGM),
by an alternative execution (see figure 1). § 2.7 discusses auxiliary accelerators which are
specific to the performed computational fluid dynamics optimization.
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2.1. LHS – deterministic exploration
While our DSM benchmark exploits neighbourhood information to slide down to a local
minimum, LHS (McKay, Beckman & Conover 1979) aims to explore the parameter space
irrespective of the cost values. We employ a space-filling variant which effectively covers
the whole permissible domain of parameters. This explorative strategy (‘maximin’ criterion
in Mathematica) minimizes the maximum minimal distance between the points

{bm}M
m=1 = arg max

bm∈Ω
min

i=1,...,M−1,
j=i+1,...,M

∥∥bi − bj
∥∥ . (2.4)

In other words, there is no other sampling of M parameters with a larger minimum
distance; M can be any positive integral number.

For better comparison with DSM, we employ an iterative variant. Note that, once
M sample points are created, they cannot be augmented anymore, for instance when
learning by LHS was not satisfactory. We create a large number of LHS candidates b�

j ,
j = 1, . . . , M� for a dense coverage of the parameter space Ω at the beginning, typically
M� = 106. As first sample b1, the centre of the initial simplex is taken. The second
parameter is taken from b�

j , j = 1, . . . , M� maximizing the distance to b1,

b2 = arg max
j=1,...,M�

‖b�
j − b1‖. (2.5)

The third parameter b3 is taken from the same set so that the minimal distance to b1 and
b2 is maximized, and so on. This procedure allows us to recursively refine sample points
and to start with an initial set of parameters.

2.2. MCS – stochastic exploration
The employed space-filling variant of LHS requires the solution of an optimization
problem guaranteeing a uniform geometric coverage of the domain. In high-dimensional
domains, this coverage may not be achievable. A much easier and far more commonly used
exploration strategy is MCS. Here, the mth sample bm = [b1,m, . . . , bN,m]T is given by

bi,m = bi,min + ζi,m(bi,max − bi,min), (2.6)

where ζi,m ∈ [0, 1] are random numbers with uniform probability distribution in the unit
domain. The relative performance of LHS and MCS is a debated topic. We will wait for
the results of an analytical problem in § 3.

2.3. GA – biologically inspired exploration and exploitation
GA mimics the natural selection process. We refer to Wahde (2008) as excellent reference.
In the following, the method is briefly outlined to highlight the specific version we use and
the chosen parameters.

Any parameter vector b = [b1, b2, . . . , bN]T ∈ Ω ⊂ RN comprises the real values bi,
also called alleles. This real value is encoded as a binary number and called the gene. The
chromosome comprises alle genes and represents the parameter vector (Wright 1991).

GA evolves one generation of I parameters, also called individuals, into a new generation
with the same number of parameters using biologically inspired genetic operations.
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The first generation is based on MCS, i.e. represents completely random genoms. The
individuals J1

i , i = 1, . . . , I are evaluated and sorted by their costs

J1
1 ≤ J1

2 ≤ . . . ≤ J1
I . (2.7)

The next generation is computed with elitism and two genetic operations. Elitism copies
the Ne best performing individuals in the new generation; Pe = Ne/I denotes the relative
quota. The two genetic operations include mutation, which randomly changes parts of the
genom, and crossover, which randomly exchanges parts of the genoms of two individuals.
Mutation serves explorative purposes and crossover has the tendency to breed better
individuals. In an outer loop, the genetic operations are randomly chosen with probabilities
Pm and Pc for mutation and crossover, respectively. Note that Pe + Pm + Pc = 1 by design.

In the inner loop, i.e. after the genetic operation is determined, individuals from the
current generation are chosen. Higher performing individuals have higher probability of
being chosen. Following the Matlab routine, this probability is proportional to the inverse
square root of its relative rank p ∝ 1/

√
i.

GA terminates according to a predetermined stop criterion, a maximum number of
generations L or corresponding number of evaluations M = IL. For reasons of comparison,
we renumber the individuals in the order of their evaluation, i.e. m ∈ {1, . . . , I} belongs to
the first generation, m ∈ {I + 1, . . . , 2I} to the second generation, etc.

The chosen parameters are the default values of Matlab, e.g. Pr = 0.05 Pc = 0.8, Pm =
0.15, Ne = 3. Further details are provided in Appendix A.

2.4. DSM – a robust gradient method
DSM proposed by Nelder & Mead (1965) is a very simple, robust and widely used
gradient method. This method does not require any gradient information and is well suited
for expensive function evaluations, like the considered RANS simulation for the drag
coefficients, and for experimental optimizations with inevitable noise. The price is a slow
convergence for the minimization of smooth functions as compared with algorithms which
can exploit gradient and curvature information.

We briefly outline the employed downhill simplex algorithm, as there are many variants.
First, N + 1 vertices bm, m = 1, . . . , N + 1 in Ω are initialized as detailed in the respective
sections. Commonly, bN+1 is placed somewhere in the middle of the domain and the
other vertices explore steps in all directions, bm = bN+1 + h em, m = 1, . . . , N. Here,
ei = [δi1, . . . , δiN]T is a unit vector in the ith direction and h is a step size which is small
compared with the domain. Evidently, all vertices must remain in the domain bm ∈ Ω .

The goal of the simplex transformation iteration is to replace the worst argument bh of
the considered simplex by a new better one bN+2. This is archived in following steps:

(i) Ordering: without loss of generality, we assume that the vertices are sorted in terms
of the cost values Jm = J(bm): J1 ≤ J2 ≤ . . . ≤ JN+1.

(ii) Centroid: in the second step, the centroid of the best side opposite to the worst vertex
bN+1 is computed:

c = 1
N

N∑
m=1

bm. (2.8)
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(iii) Reflection: reflect the worst simplex bN+1 at the best side,

br = c + (c − bN+1) (2.9)

and compute the new cost Jr = J(br). Take br as new vertex, if J1 ≤ Jr ≤ JN . bm,
m = 1 . . . , N and br define the new simplex for the next iteration. Renumber the
indices to the 1 . . . N + 1 range. Now, the cost is better than the second worst value
JN , but not as good as the best one J1. Start a new iteration with step i.

(iv) Expansion: if Jr < J1, expand in this direction further by a factor 2,

be = c + 2 (c − bN+1) . (2.10)

Take the best vertex of br and be as bN+1 replacement and start a new iteration.
(v) Single contraction: at this stage, Jr ≥ JN . Contract the worst vertex half-way towards

centroid,

bc = c + 1
2 (bN+1 − c) . (2.11)

Take bc as the new vertex (bN+1 replacement), if it is better than the worst one, i.e.
Jc ≤ JN+1. In this case, start the next iteration.

(vi) Shrink/multiple contraction: at this stage, none of the above operations was
successful. Shrink the whole simplex by a factor 1/2 towards the best vertex, i.e.
replace all vertices by

bm 
→ b1 + 1
2 (bm − b1) , m = 2, . . . , N + 1. (2.12)

This shrunken simplex represents the one for the next iteration. It should be noted
that this shrinking operation is the last resort as it is very expensive with N function
evaluations. The rationale behind this shrinking is that a smaller simplex may better
follow local gradients.

2.5. RRS – preparing for multiple minima
DSM of the previous section may be equipped with a random restart initialization
(Humphrey & Wilson 2000). Maehara & Shimoda (2013) proposed a hybrid method of GA
and DSM, which shared a similar idea, for the optimization of the chiller configuration.
This method selects the elite gene with the lowest cost by GA as the starting point for the
downhill simplex iteration.

As the random initial condition, we chose a MCS as main vertex of the simplex and
explore all coordinate directions by a positive shift of 10 % of the domain size. It is
secured that all vertices are inside the domain Ω . These initial simplexes attribute the
same probability to the whole search space. The chosen small edge length makes a locally
smooth behaviour probable – in the absence of any other information. The downhill
search is stopped after a fixed number of evaluations. We chose 50 evaluations as the
safe upper bound for convergence. It should be noted that the number of simplex iterations
is noticeably smaller, as one iteration implies one to N + 2 evaluations.

Evidently, the random restart algorithm may be improved by appreciating the many
recommendations of the literature, e.g. avoiding closeness to explored parameters.
We trade these improvements in all optimization strategies for simplicity of the
algorithms.
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2.6. EGM – combining exploration and gradient method
In this section, we combine the advantages of the exploitive DSM and the explorative
LHS in a single algorithm. The source code is freely available at https://github.com/
YiqingLiAnne/egm.

Step 0 – Initialize. First, bm, m = 1, . . . , M + 1 are initialized for the DSM.
Step 1 – DSM. Perform one simplex iteration (§ 2.4) with the best M + 1 parameters
discovered so far.
Step 2 – LHS. Compute the cost J of a new LHS parameter b. As described above,
we take a parameter from a precomputed list which is the furthest away from all
hitherto employed parameters.
Step 3 – Loop. Continue with step 1 until a convergence criterion is met.

Sometimes, the simplex may degenerate to one with small volume, for instance, when it
crawls through a narrow valley. In this case, the vertices lie in a subspace and valuable
gradient information is lost. This degeneration is diagnosed and cured after step 1 as
follows. Let bc be the geometric centre of the simplex. Compute the distance D between
each vertex and their geometric centre point. If the minimum Dmin is smaller than half
the maximum distance Dmax/2, the simplex is deemed degenerated. This degeneration
is removed as follows. Draw a sphere with Dmax around the simplex centre. This sphere
contains all vertices by construction. Obtain 1000 random points in this sphere. Replace
the vertex with the highest cost Jmax with one of these point to create the simplex with the
largest volume. Of course, the cost of this changed point needs to be evaluated.

The algorithm is intuitively appealing. If the LHS discovers a parameter with a cost
J in the top M + 1 values, this parameter is included in the new simplex and the
corresponding iteration may slide down to another better minimum. It should be noted that
LHS exploration does not come with the toll of having to evaluate the cost at N + 1 vertices
and subsequent iterations. The downside of a single evaluation is that we miss potentially
important gradient information pointing to an unexplored much better minimum. Relative
to random restart gradients searches requiring many evaluations for a converging iteration,
LHS exploration becomes increasingly better in rougher landscapes, i.e. more complex
multi-modal behaviour.

2.7. Computational accelerators
The RANS-based optimization may be accelerated by enablers which are specific to the
chosen flow control problem. The computation time for each RANS simulation is based
on the choice of the initial condition, as it affects the convergence time for the steady
solution. The first simulation of an optimization starts with the unforced flow as initial
condition. The next iterations exploit that the averaged velocity field ū(x) is a function
of the actuation parameter b. The initial condition of the mth simulation is obtained
with the 1-nearest-neighbour approach: the velocity field associated with the closest
hitherto computed actuation vector is taken as initial condition for the RANS simulation.
This simple choice of initial condition saves approximately 60 % CPU time in reduced
convergence time.

Another 30 % reduction of the CPU time is achieved by avoiding RANS computations
with very similar actuations. This is achieved by a quantization of the b vector: the
actuation velocities are quantized with respect to integral m s−1 values. This corresponds
to increments of U∞/30 with U∞ = 30 m s−1. All actuation vectors are rounded with
respect to this quantization. If the optimization algorithm yields a rounded actuation vector
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which has already been investigated, the drag is taken from the corresponding simulation
and no new RANS simulation is performed. Similarly, the angles are discretized into
integral degrees.

3. Comparative optimization study

In this section, the six optimization methods of § 2 are compared for an analytical function
with 4 local minima.

§ 3.1 describes this function. In § 3.2, the optimization methods with corresponding
parameters are discussed. § 3.3 shows the tested individuals. The learning rates are detailed
in § 3.4. Finally, the results are summarized (§ 3.5).

3.1. Analytical function
The considered analytical cost function

J(b1, b2) = 1 − e−2(b1−1)2−2(b2−1)2 − 1
2 e−2(b1+1)2−2(b2−1)2

− 1
3 e−2(b1−1)2−2(b2+1)2 − 1

4 e−2(b1+1)2−2(b2+1)2
(3.1)

is characterized by a global minimum near [1, 1]T and three local minima separately near
[1, −1]T, [−1, 1]T and [−1, −1]T. The cost reaches a plateau J = 1 far away from the
origin. The investigated parameter domain is Ω = [−3, 3] × [−3, 3].

3.2. Optimization methods and their parameters
LHS is performed as described in § 2.1. We take M� = 103 random points for the
optimization of the coverage. MCS is uniformly distributed over the parameter domain Ω .

The most important parameters of GA are summarized from Appendix A: the generation
size is I = 50 and the iterations are terminated with generation L = 20. The crossover and
mutation probabilities are Pc = 0.80 and Pm = 0.15, respectively. The number of elite
individuals Ne = 3 corresponds to the complementary probability Pe = 5 %.

DSM follows exactly the description of § 2.4 with an expansion rate of 2, single
contraction rate of 1/2 and a shrink rate of 1/2. RRS (§ 2.5) has an evaluation limit of
50 for 20 random restarts. The step size for each initial simplex is h = 0.35. EGM builds
on the LHS and downhill simplex iterations discussed above.

3.3. Tested individuals in the parameter space
Figure 2 illustrates the iteration of all six algorithms in the parameter space. LHS
shows a uniform coverage of the domain. In contrast, MCS leads to local ‘lumping’ of
close individuals, i.e. indications of redundant testing, and local untested regions, both
undesirable features. Thus, LHS is clearly seen to perform better than MCS. GA is seen
to sparsely test the plateau while densely populating the best minima. This is clearly a
desirable feature over LHS and MCS.

The standard DSM converges to a local minimum in this realization, while RRS finds
all minima, including the global optimal one. Clearly, the random restart initialization is a
security policy against sliding into a suboptimal minimum. The proposed EGM finds all
four minima and converges against the global one. By contrast, the exploration is less dense
in LHS. The 1000 iterations comprise approximately 250 LHS steps and approximately
250 downhill simplex iterations with an average of three evaluations for each.
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Figure 2. Comparison of all optimizers for the analytical function (3.1). Tested individuals of (a) LHS, (b)
DSM, (c) MCS, (d) RRS, (e) GA and ( f ) EGM from a typical optimization with 1000 individuals. The red
solid circles mark new local minima during the iteration while the blue open circles represent suboptimal
tested parameters.

Arguably, the EGM is seen to be superior to all downhill simplex variant with more
dense exploration and convergence to the global optimum. EGM also performs better than
LHS, MCS and GA, as it invests in a more dense coverage of the parameter domain while
approximately 75 % of the evaluations serve the convergence.

The conclusions are practically independent of the chosen realization of the optimization
algorithm, except that the DSM slides into the global minimum in approximately 27 % of
the cases.

We note that some of our conclusions are tied to the low dimension of the parameter
space. In a cubical domain of 10 dimensions, the first 210 = 1024 LHS individuals would
populate the corners before the interior is explored. A geometric coverage of higher
dimensions is incompatible with a budget of 1000 evaluations.
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Figure 3. Comparison of all optimizers for the analytical function (3.1). Learning curve of (a) LHS, (b) DSM,
(c) MCS, (d) RRS, (e) GA and ( f ) EGM in 100 runs. The 10th, 50th, and 90th percentiles indicate the J value
below which 10, 40 and 90 per cent of runs at current evaluation fall.

3.4. The learning curve
In figure 3, we investigate the learning curve of each algorithm for 100 realizations with
randomly chosen initial conditions. The learning curve shows the best cost value found
with m evaluations. In this statistical analysis, the 10, 50 and 90 % percentiles of the
learning curves are displayed. The 10 % percentile at m evaluations implies that 10 % of the
realizations yield better and 90 % yield worse cost values. The 50 % and 90 % percentiles
are defined analogously.

The gradient-free algorithms (LHS, MC, GA) in the left column show smooth learning
curves. All iterations eventually converge against the global optimum as seen from the
upper envelope. The 10 % and 50 % percentile curves are comparable. Focusing on the
bad case (90 % percentile) and worst case performance (upper envelope), LHS is seen to
beat both MCS and GA. MCS has the worst outliers, because it neither exploits the cost
function, like the GA, nor comes with advantage of guaranteed good geometric coverage,
like LHS.

The gradient-based algorithms reveal other features. The DSM can arrive at the global
optimum much faster than any of the gradient-free algorithms. But it has also a 73 %
probability terminating in one of the suboptimal local minima. The random restart version
mitigates this risk to practically zero. In RRS, 50 % of the runs reach the minimum before
300 evaluations.

The learning curve of all gradient-based algorithms have jumps. Once the initial
condition is in the attractive basin of one minimum, the convergence to that minimum
is very fast, leading to a step decline of the learning curve. We notice that the worst case
scenario does not exactly converge to zero. The reason is the degeneration of the simplex
to points on a line which does not go through the global minimum. Only the EGM takes
care of this degeneration with a geometric correction after step 1 as described in § 2.6.
Expectedly, EGM also outperforms all other optimizers with respect to 50 % percentile,
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Evaluation

Method 20th 100th 500th 1000th Failure rate

LHS 0.5163 0.1456 0.0218 0.0129 0.55
MCS 0.4810 0.1863 0.0441 0.0221 0.61
GA 0.4269 0.1441 0.0065 0.0002 0
DSM 0.4893 0.4675 0.4673 0.4673 0.73
RRS 0.4893 0.3208 0.0211 0.0003 0.01
EGM 0.5121 0.0621 0.0000 0.0000 0

Table 1. Comparison of all optimizers for the analytical function (3.1). Average cost of different algorithms
during m = 20, 100, 500 and 1000 evaluations in 100 runs.

90 % percentile and the worst case scenario. The global minimum is consistently found in
less than 200 evaluations. It is much more efficient to invest 50 points in LHS exploration
than to iterate into a suboptimal minimum. The gradient descent slowed down from the
distraction by 25 % LHS evaluations as an insurance policy.

3.5. Discussion
The relative strengths and weaknesses of the different optimizers are summarized in table 1
for the average performance after m = 20, 100, 500 and 1000 evaluations. The averaging
is performed over the costs of all 100 realizations after m evaluations. The iteration is
considered as failed if the value is 1 %, i.e. 0.01 above the global minimum.

First, we observe that DSM has the worst failure rate with 73 %, followed by 61 %
of MCS and 55 % of LHS. The failures of the DSM are more severe as the converged
parameters significantly depart from the global minimum in 73 % of the runs. In case of
LHS and MCS, the failure is only the result of pure convergence against the right global
minimum.

Second, after 20 evaluations, the average cost of all algorithms is close to 0.50, i.e. very
similar.

After 100 evaluations, algorithms with explorative steps, i.e. LHS, MCS, GA and
EGM have a distinct advantage over the DSM and even over the random restart version.
Approximately four restarts are necessary to avoid the convergence to a suboptimal
minimum in 99 % of the cases. EGM is already better than the other algorithms by a
large factor.

After 500 evaluations, EGM corroborates its distinct superiority over the other
algorithms, followed by the RRS and GA. Intriguingly, GA with its exploitive crossover
operation performs better than all other optimizers after 500 evaluations, except for EGM.
LHS and MCS keep a significant error, lacking gradient-based optimization.

Summarizing, algorithms combining exploration and exploitation, i.e. EGM, GA and
RRS, perform better than purely explorative or purely exploitive algorithms (LHS, MCS
and DSM). For the ‘pure’ algorithms, LHS has the fastest decrease of cost function while
DSM has the fastest convergence. EGM turns out to be the best combined algorithm by
making a balance of exploration and exploitation from LHS and DSM, respectively. This
superiority is already apparent after 100 evaluations.

We note that the conclusions have been drawn for a single analytical example for
an optimization in a low-dimensional parameter space with few minima. From many
randomly created analytical functions, we observe that EGM tends to outperform other
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(b)(a)

Figure 4. Sketch of the extreme landscapes with (a) one minimum and (b) many minima. The black dots
denote the tested location. The red dots show the global minimum.

optimizers in the case of few smooth minima and for low-dimensional search spaces.
Yet, in higher-dimensional search spaces, LHS becomes increasingly inefficient and MCS
may turn out to perform better. The number of minima also has an impact on the
performance. For a single minimum with parabolic growth, the DSM can be expected to
outperform the other algorithms. In the case of many local shallow minima, the advantage
of gradient-based approaches will become smaller and exploration will correspondingly
increase in importance.

The control landscape may have from one single minimum to many minima. Exploration
is often inefficient in the former scenario (figure 4a), while exploitation is likely to invest
a large number of tests to descend into suboptimal minima or even be trapped in one
(figure 4b). An unknown problem is more likely to have a landscape with characteristics
between the two worst case scenarios for explorative and exploitive methods. The strict
alternation proposed by EGM aims to minimize unnecessary evaluations in the worst case
scenario to 50 % of the iterations and guarantee a gradient-based converge rate in case of
an identified minimum.

The following rules of thumb can be formulated for the choice and design of the
optimizers. First, the larger the number of local minima, the more effective exploration
becomes over exploitation. Second, gradient search becomes more effective when the
global minimum has a large domain of attraction for gradient-based descent in comparison
with the search space. The volume ratio between domain of attraction and search space
determines the likelihood that EGM finds the global minimum with given budget for
evaluations. Third, large plateaus, e.g. from asymptotic behaviour, make gradient search
inefficient. Fourth, long ‘valleys’ make gradient search inefficient, too. Fifth, space-filling
exploration, like LHS or MCS, will become inefficient with increasing dimension. Ten
dimensions might be considered as a upper threshold, as just the exploration of the corners
of a ten-dimensional cube requires 210 = 1024 individuals. A good discretization, e.g.
with 10 points per dimension is evidently impossible. Numerous other rules may be added
for different control landscapes. Given the richness of possible landscapes, explorative
methods come without practical and mathematically provable performance estimates.

4. Drag optimization of fluidic pinball with three actuators

As the first flow control example, EGM is applied to the two-dimensional fluidic pinball
(Cornejo Maceda et al. 2019; Deng et al. 2020), the wake behind a cluster of three
rotating cylinders. In § 4.1, the benchmark problem is described: minimize the net drag
power with the cylinder rotations as input parameters. In § 4.2, EGM yields a surprising
non-symmetric result, consistent with other fluidic pinball simulations (Cornejo Maceda
et al. 2019) and experiments (Raibaudo et al. 2020). The learning process of DSM and
LHS are investigated in §§ 4.3 and 4.4,
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Figure 5. Fluidic pinball: (a) configuration and (b) grid.

4.1. Configuration
The fluidic pinball is a benchmark configuration for wake control which is geometrically
simple yet rich in nonlinear dynamics behaviours. This two-dimensional configuration
consists of a cluster of three equal, parallel and equidistantly spaced cylinders pointing
in opposite to uniform flow. The wake can be controlled by the cylinder rotation. The
fluidic pinball comprises most known wake stabilization mechanisms, like phasor control,
circulation control, Coanda forcing, base bleed as well as high- and low-frequency forcing.
In this study, we focus on steady open-loop forcing minimizing the drag power corrected
by actuation energy.

The viscous incompressible two-dimensional flow has uniform oncoming flow with
speed U∞ and a fluid with constant density ρ and kinematic viscosity ν. The three equal
circular cylinders have radius R and their centres form an equilateral triangle with side
length 3R pointing upstream. Thus, the transverse dimension of the cluster reads L = 5R.

In figure 5(a), the flow is described in Cartesian coordinate system where the x-axis
points in the direction of the flow, the z-axis is aligned with the cylinder axes and the
y-axis is orthogonal to both. The origin 0 is placed in the centre of the rightmost top and
bottom cylinders. Thus, the centres of the cylinders are described by

x1 = xF = −3R cos 30◦, y1 = yF = 0,

x2 = xB = 0, y2 = yB = −3R/2,

x3 = xT = 0, y3 = yT = +3R/2.

⎫⎬
⎭ (4.1)

Here, the subscripts ‘F’, ‘B’ and ‘T’ refer to the front, bottom and top cylinder.
Alternatively, the subscripts ’1’, ’2’ and ’3’ are used for these cylinders starting with the
front cylinder and continuing in mathematically positive orientation.

The location is denoted by x = (x, y) = x ex + y ey, where ex and ey are the unit vectors
in the x- and y-directions. The flow velocity is represented by u = (u, v) = u ex + v ey.
The pressure and time symbols are p and t, respectively. In the following, all quantities
are non-dimensionalized with cylinder diameter D = 2R, the velocity U∞ and the fluid
density ρ.

The corresponding Reynolds number reads ReD = U∞D/ν = 100. This Reynolds
number corresponds to asymmetric periodic vortex shedding. Deng et al. (2020) have
investigated the transition scenario for increasing Reynolds number. At Re1 ≈ 18, the
steady flow becomes unstable in a Hopf bifurcation leading to periodic vortex shedding. At
Re2 ≈ 68, both the steady Navier–Stokes solutions and the limit cycles bifurcate into two
mirror-symmetric states. Chen et al. (2020) performed a careful parametric analysis of the
gap width between the cylinders and associated this behaviour with the ‘deflected regime’,
where base bleed through the rightmost cylinder are deflected upward or downward.
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At Re3 ≈ 104 another Hopf bifurcation leads to quasi-periodic flow. After Re4 ≈ 115, a
chaotic state emerges.

The flow properties can be changed by the rotation of cylinders. The corresponding
actuation commands are denoted by

b1 = UF, b2 = UB, b3 = UT . (4.2a–c)

Here, positive value denotes the anti-clockwise direction.
Following Cornejo Maceda et al. (2019), we aim to minimize of the averaged parasitic

drag power J̄a penalizing the averaged actuation power J̄b. The resulting cost function
reads

J̄ = J̄a + J̄b. (4.3)

The first contribution J̄a = cD corresponds to drag coefficient

cD = F̄D

(1/2)ρDU2∞
(4.4)

for the chosen non-dimensionalization. Here, F̄D denotes total averaged drag force on all
cylinders per unit spanwise length. The second contribution arises from the necessary
actuation torque to overcome the skin-friction resistance.

Following Deng et al. (2020), the flow is computed with direct numerical solution in the
computational domain

D = {(x, y) : −6 ≤ x ≤ 20 ∧ |y| ≤ 6 ∧ (x − xi)
2 + ( y − yi)

2 ≥ 1/4, i = 1, 2, 3}. (4.5)

We use an in-house implicit finite-element method solver ‘UNS3’ which is of third-order
accuracy in space and time. The unstructured grid in figure 5(b) contains 4225 triangles
and 8633 vertices. An earlier grid convergence study identified this resolution sufficient
for up to 2 per cent error in drag, lift and Strouhal number.

4.2. Optimized actuation
In the subsequent study, the actuation commands b1 = UF, b2 = UB and b3 = UT are
bounded by 5, i.e. the search space reads

Ω := {[b1, b2, b3]T ∈ R3 : |bi| ≤ 5 for i = 1, 2, 3}. (4.6)

Previous symmetric parametric studies have identified symmetric Coanda forcing b1 = 0,
b2 = −b3 around 2 as optimal for net drag reduction, both in low-Reynolds-number
direct numerical simulations (Cornejo Maceda et al. 2019) and in high-Reynolds-number
unsteady Reynolds-averaged Navier–Stokes simulations (Raibaudo et al. 2020). The
chosen bound of 5 adds a large safety factor to these values, i.e. the optimum can be
expected to be in the chosen range. Steady bleed into the wake region is reported as another
means for wake stabilization by suppressing the communication between the upper and
lower shear layers. This study starts from the base-bleeding control in search of a different
actuation from boat tailing.

LHS, DSM and EGM are applied to minimize the net drag power (4.3) with steady
actuation in the three-dimensional domain (4.6). Following §§ 2.4 and 2.6, the initial
simplex comprises four vertices: the individual controlled by base-bleeding actuation
(b1 = 0, b2 = −4.5, b3 = 4.5), the other three individuals are positively shifted by 0.1 for
each actuation. The individuals and their corresponding costs are listed in table 2. All the
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m b1 b2 b3 J

1 0 −4.5 4.5 11.8282
2 0.1 −4.5 4.5 11.8304
3 0 −4.4 4.5 11.6017
4 0 −4.5 4.6 12.0758

Table 2. Fluidic pinball: initial simplex (m = 1, 2, 3, 4) for the three-dimensional DSM optimization; bi
denotes the circumferential velocity of the cylinders and J corresponds to the net drag power (4.3).

individuals have a larger cost than the unforced benchmark J = 1.8235. The increase of
the actuation amplitude from the strong base-bleeding forcing indicates higher cost. Thus,
the initial condition seems to pose a challenge for optimization.

In this section, the optimization process of EGM is investigated. Figure 6(a) shows the
best cost found with m simulations. EGM is quickly and practically converged after m = 22
evaluations and yields the near-optimal actuation at the 78th test

b�
1 = −0.0763, b�

2 = 1.1301, b�
3 = −1.1533, J�=1.3. (4.7a–d)

The cost function J� = 1.3 reveals a net drag power saving of 29 % with respect to the
unforced value Ju = 1.8235. The large amount of suboptimal testing is indicative of a
complex control landscape. The drag coefficient falls from 2.8824 for unforced flow to
1.3902 for the actuation (4.7a–d) within a few convective time units. This near-optimal
actuation corresponds to 52 % drag reduction. This 52 % reduction of drag power requires
23 % investment in actuation energy.

The best actuation mimics nearly symmetric Coanda forcing with a circumferential
velocity of 1. This actuation deflects the flow towards the positive x-axis and effectively
removes the dead-water region with reversal flow. The slight asymmetry of the actuation is
not a bug but a feature of the optimal actuation after the pitchfork bifurcation at Re2 ≈ 68.
This achieved performance and actuation is similar to the optimization feedback control
achieved by machine learning control (Cornejo Maceda et al. 2019), comprising a slightly
asymmetric Coanda actuation with small phasor control from the front cylinder. Also,
the optimized experimental stabilization of the high-Reynolds-number regime leads to
asymmetric steady actuation (Raibaudo et al. 2020). The asymmetric forcing may be
linked to the fact that the unstable asymmetric steady Navier–Stokes solutions have a lower
drag than the unstable symmetric solution.

Figure 6(b) shows the control landscape, i.e. two-dimensional proximity map of
the three-dimensional actuation parameters. Neighbouring points in the proximity map
correspond similar actuation vectors. The proximity map is computed with classical
multi-dimensional scaling (Cox & Cox 2000). This map shows all performed simulations
for figure 6(a) as solid red circles, when the evaluation improves the cost with respect to
the iteration history and as open blue circles otherwise. Select new minima are highlighted
with yellow circles: the first run m = 1 on the right side, the converged run m = 78 on
the left and the intermediate run m = 9 when the explorative step jumps in new better
territories. The colour bar represents interpolated values of the cost (4.3).

The meaning of the feature coordinates γ1 and γ2 will be revealed by the following
analysis. Ten of the individuals of the control landscape are selected along the coordinates
and marked with letters between A and J:

(A) unforced flow in the centre;
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Figure 6. Optimization of the fluidic pinball actuation with EGM. The actuation parameters and cost are
visualized as in figures 2 and 3. For enhanced interpretability, select new minima are displayed as solid yellow
circles in the learning curve (a) and in the control landscape (b) the corresponding m index. Here, m counts the
DNS for net drag power computation. The marked flows A–J are explained in the text.

(B) base-bleeding flow m = 1 as the initial individual;
(C) optimal actuation after m = 78 evaluations;
(D,E,J) strong asymmetric actuations ] at the boundary of the control landscape
m = 7, m = 24, m = 11, showing a strong overall actuation;
(F–I) random actuations along the coordinates γ2 in the centre the control landscape
corresponding to m = 10, m = 19, m = 60, m = 51, respectively.

The flows corresponding to actuations A–J in figure 6(b) are depicted in figure 7.
The optimized actuation (C) yields a partially stabilized flow, like the machine learning
feedback control by Cornejo Maceda et al. (2019). Actuation C corresponds to complete
stabilization with strong Coanda forcing, located near γ2 ≈ 0 for small γ1. In contrast,
flow B on the opposite side of the control landscapes represents strong base bleeding.
Actuations J, G and H, located at the top and bottom of the control landscapes correspond
to Magnus effects. Large positive (negative) feature coordinates γ2 are associated with
large positive (negative) total circulations and associated lift forces. Summarizing, the
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(e)

(b)(a)

(c)

( j)(i)

(g)

(d )

(h)

( f )

Figure 7. Fluidic pinball flows of different actuations of the control landscape (figure 6b). Panels correspond
to actuations with letters A–J, respectively, and display the vorticity of the post-transient snapshot. Positive
(negative) vorticity is colour coded in red (blue). The dashed lines correspond to iso-contour lines of vorticity.
The orientation of the cylinder rotations is indicated by the arrows. The cylinder rotation is proportional to the
angle of the black sector inside.

analysis of these points reveals that the feature coordinate γ1 corresponds to the strength
of the Coanda forcing and is hence related to the drag. In contrast, γ2 is correlated with the
total circulation of the cylinder rotations and thus with the lift. Ishar et al. (2019) arrives
at a similar interpretation of the proximity map for differently actuated fluidic pinball
simulations.

4.3. Downhill simplex method
Figure 8(a) shows the optimization process of DSM. After step-by-step descends in
the former 23 simulations, the net drag cost decreases slowly during the following

932 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.974


Y. Li and others

15(a)

10

J
5

0 20 40 60
m

80 100

8

4

0γ2

γ1

–4

–8 –4 0 4 8

(b) J
16

11

6

1

23
98

1

Unchanged optimum

New optimum

EGM curve

Figure 8. Same as figure 6, but with DSM.

77 % computation. The optimal actuation after 100 simulations is b1 = −0.0721, b2 =
1.0127, b3 = −1.3250) with cost J = 1.3026.

Figure 8(b) reveals the optimization from a broad slope to a tortuous valley after the 23th
test. In face of the complex landscape on the way to global optimum (from γ = [6, 0]T to
γ = [−1, 0]T), DSM consumes relatively high computation resources. EGM is seen to
outperform DSM at m ≥ 9 because of an explorative step. For random initial conditions,
DSM often performs better than EGM, because the exploration as insurance policy brings
less returns for this comparatively simple control landscape.

4.4. Latin hypercube sampling
Figure 9(a) shows the performance of LHS. The algorithm is of low efficiency during
most computations with only 2 new optima found. The jump at the 6th DNS does not
bring significant improvement. The new optimum at 10th simulation reduces the cost by
more than 85 %, with the actuation b1 = −0.3649, b2 = 1.4649, b3 = −0.1458 which is
kept for the following 90 % of the optimization period.

The global search is further illustrated by the uniformly tested points in figure 9(b).
The algorithm starts near γ = [7, 0]T and explores the feature space from the boundary
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Figure 9. Same as figure 6, but with LHS.

to the central area. The second new minimum is explored early and finds an asymmetric
actuation but with a cost close to the global minimum. LHS outperforms EGM at m = 10
before EGM leads at m ≥ 23. Exploration is seen to have advantages at the beginning, but
exploitation wins already in the midterm.

5. Drag optimization of an Ahmed body with 10 actuation parameters

The starting point of the computational fluid dynamics plant is an experimental study of
a low-drag 35◦ Ahmed body (Li et al. 2018). The investigated Ahmed body configuration
(§ 5.1) has the same physical dimensions. The effect of actuation is assessed with RANS
simulations (§ 5.2). In § 5.3, a parametric drag study with a single streamwise-oriented
actuator on the top edge is performed. In § 5.4, the streamwise blowing of all five actuator
groups is optimized for drag reduction. EGM is contrasted to DSM and LHS. In § 5.5, the
velocity and orientation of the five slot actuators are optimized with EGM, thus giving
rise to a ten-dimensional search space. As expected drag reduction increases with the
dimension of the search space, i.e. expanding actuation opportunities. The corresponding
physical drag reduction mechanisms are investigated in § 5.6.

932 A7-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.974


Y. Li and others

67.33 156.67

z
x

z
y

348
(a) (b) 129.67

10 54.5

1
6
.6

7
5
3
.5

69
6

R
 3

3

α

Figure 10. Dimensions of the investigated 1:3-scaled Ahmed body. (a) Side view. (b) Back view. The length
unit is mm and the angle is specified in degrees.

Actuation b2(a) (b)
Actuation b1
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Actuation b5θ2
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4
8
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Figure 11. Deployment and blowing direction of actuators on the rear window and the vertical base. The
angles θ1, θ2, θ3, θ4 and θ5 are all defined to be positive when pointing outward (a) or upward (b).

5.1. Configuration
The point of departure is an experimentally investigated 1:3-scaled Ahmed body
characterized by a slanted edge angle of α = 35◦ with length L, width W and height H
of 348 mm, 130 mm and 96 mm, respectively. The front edges are rounded with a radius
of 0.344 H. The model is placed on four cylindrical supports with a diameter equal to
10 mm and the ground clearance is 0.177 H. The origin of the Cartesian coordinate system
(x, y, z), is located in the symmetry plane on the lower edge of the model’s vertical
base (see figure 10). Here, x, y and z denote the streamwise, spanwise and wall-normal
coordinates, respectively. The velocity components in the x, y and z directions are denoted
by u, v and w, respectively. The free-stream velocity is chosen to be U∞ = 30 m s−1.

Five groups of steady blowing slot actuators (figure 11) are deployed on all edges of the
rear window and the vertical base. All slot widths are 2 mm. The horizontal actuators at
the top, middle and bottom sides have lengths of 109 mm. The upper and lower sidewise
actuators on the upper and vertical rear window have a length of 71 mm and 48 mm,
respectively. The actuation velocities U1, . . . , U5 are independent parameters; U1 refers
to the upper edge of the rear window, U3 to the middle edge and U5 to the lower edge of
the vertical base; U2 and U4 correspond to the velocities at the right and left sides of the
upper and lower windows, respectively.

Following the experiment by Zhang et al. (2018), all blowing angles can be varied
as indicated in figure 11. This study aims at minimizing drag as represented by the
drag coefficient, J = cD, by varying the actuation control parameters. The actuation
velocity amplitudes Ui, i = 1, . . . , 5 are capped by twice of the single optimum value
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z

Outlet

Inlet

9.45H
5.21H

20.1H

xy
4
H

Figure 12. Computational domain of RANS and LES.

Mesh grid points 2.5 M 5 M 10 M

Drag coefficient 0.294 0.313 0.315

Table 3. Drag coefficient based on different mesh resolutions; ‘M’ denotes million.

(b)(a)

Figure 13. Side view of a part of the computational grids used for (a) RANS and (b) LES.

as discussed in § 5.3. The actuation angles θi, i = 1, . . . , 5 are fixed to 0◦, i.e. streamwise
direction, in a five-dimensional optimization. The actuation angles are later added into the
input parameters in ten-dimensional optimization, with variable angles θ1 ∈ [−35◦, 90◦],
θ2, θ3, θ4, θ5 ∈ [−90◦, 90◦].

5.2. RANS simulations

5.2.1. RANS simulation set-up
A numerical wind tunnel (figure 12) is constructed using the commercial grid generation
software Ansys ICEM CFD. The rectangular computational domain is bounded by
X1 ≤ x ≤ X2, 0 ≤ z ≤ HT , |y| ≤ WT/2. Here, X1 = −5.21 H, X2 = 20.17 H, HT = 4H
and WT = 9.45H, larger than the smallest domain suggested by Serre et al. (2013).
Coarse, medium and fine meshes using an unstructured hexahedral computational grid
are employed in order to evaluate the performance of the RANS method for the current
problem with different mesh resolutions. The statistics in table 3 show that using a finer
mesh can be expected to lead to negligible improvement in the accuracy of the drag
coefficient. In addition, the medium mesh predicts a flow similar to time-averaged flows of
LES (see Appendix C) and to experimental statistics (see Appendix D) Hence, the more
economical medium mesh (figure 13) is used. This mesh consists of 5 million elements and
features dimensionless wall grid sizes of �x+ = 20, �y+ = 3, �z+ = 30. In addition to
resolving the boundary layer, the shear layers and the near-wake region, the mesh near the
actuation slots is also refined.

932 A7-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.974


Y. Li and others

0.40

0.35
cD

0.30

0 20

O

M

C

U1

40 60

Figure 14. Drag coefficient as a function of the blowing velocity U1 of the streamwise-oriented top actuator.
Here, ‘O’ marks the drag without forcing, ‘M’ the best actuation and ‘C’ the smallest actuation with worse drag
than for unforced flow.

Numerical simulations are performed using the RANS equations in conjunction with a
two-equation realizable k − ε turbulence model employing the commercial solver Fluent.
The spatial discretization is based on a second-order upwind scheme in the form of
semi-implicit method for pressure linked equations scheme based on a pressure–velocity
coupling method. RANS simulation has been frequently and successfully used to assess
actuation effects from steady blowing (Viken et al. 2003; Dejoan, Jang & Leschziner
2005; Ben-Hamou, Arad & Seifert 2007; Muralidharan, Muddada & Patnaik 2013). The
flow for the chosen slanted angle 35◦ is well predicted by RANS (Guilmineau et al. 2018;
Viswanathan 2021). In contrast, the 25◦ Ahmed body with a separation bubble on the slant
is difficult to capture. We deem RANS simulations to provide reasonable qualitative and
approximately quantitative indications for actuator optimization of the chosen low-drag
Ahmed body.

The RANS prediction of the uncontrolled and controlled cases is validated by the
experiment in appendix with LES (Appendix C) and experiments (Appendix D). Partially
averaged Navier–Stokes simulations (Han, Krajnović & Basara 2013) and LES (Brunn &
Nitsche 2006; Krajnović 2009) are trusted higher-fidelity simulations for drag reduction
with active flow control but are computationally orders of magnitudes more demanding.

5.3. The optimization problem based on streamwise blowing at the top edge
The formulation and constraints of the optimization problem are motivated by the drag
reduction results from the top actuator blowing in the streamwise direction. Figure 14
shows the drag coefficient dependency on the streamwise blowing velocity, all other
actuators being off. The blowing velocity varies in increments of 5 m s−1 from 0 to
60 m s−1, i.e. reaches twice the oncoming velocity.

The drag coefficient is quickly reduced by modest blowing, has a shallow minimum
near the actuation velocity Ub1 = 25 m s−1 before quickly increasing with more intense
blowing. This optimal value corresponds to 5/6 of the oncoming velocity. The best drag
reduction is 5 % with respect to the unforced flow Cd = 0.3134. Near U1 = 45 m s−1, the
drag rapidly rises beyond the unforced value. Active separation control relies on exploiting
instabilities that are inherent in the flow, generally requiring relatively small amplitude
excitation (Seifert, Greenblatt & Wygnanski 2004).

This behaviour motivates the choice of actuation parameters. The first five actuation
parameters are the normalized jet velocities bi = Ui/Ub1, i = 1, . . . , 5 introduced in
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m b1 b2 b3 b4 b5 J

1 1.8 1.8 1.8 1.8 1.8 0.4153
2 1.6 1.8 1.8 1.8 1.8 0.4048
3 1.8 1.6 1.8 1.8 1.8 0.4109
4 1.8 1.8 1.6 1.8 1.8 0.3996
5 1.8 1.8 1.8 1.6 1.8 0.4075
6 1.8 1.8 1.8 1.8 1.6 0.4040

Table 4. Initial simplex (m = 1, . . . , 6) for the five-dimensional DSM optimization; bi are the normalized
actuation velocities and J corresponds to the drag coefficient.

§ 5.1. Thus, b1 = 1 corresponds to minimal drag with a single streamwise-oriented top
actuator. All bi are capped by 2: bi ∈ [0, 2], i = 1, . . . , 5. At b1 = 1.8, point ‘C’ in
figure 14, actuation yields already drag increase. The first vertex of the amoeba of DSM
is put at b1 = b2 = b3 = b4 = b5 = 1.8. From figure 14, we expect a drag minimum
at lower values, hence the next five vertices test the value 1.6, e.g. [b1, b2, . . . , b5]T =
[1.8 − 0.2δ1,m−1, 1.8 − 0.2δ2,m−1, . . . , 1.8 − 0.2δ5,m−1]T for m = 2, . . . , 6. DSM may be
expected to move to the outer border of the actuation domain, if maximum drag reduction
lies outside the domain, thus indicating too restrictive constraints. An example is drag
reduction of wall turbulence (Fernex et al. 2020).

We refrain from starting already with a much larger actuation domain, as the exploration
with LHS and the proposed EGM will consistently test too many large velocities. An
increase of the upper velocity bound by a factor 2, for instance, implies that only 2−5 or
approximately 3 % of uniformly distributed sampling points are in the original domain and
97 % of the samples are outside.

The next five parameters characterize the deflection of the actuator velocity with respect
to the streamwise direction (see § 5.1), bi+5 = θi/(π/2), i = 1 . . . , 5, and are normalized
with 90◦. Now all bi, i = 1, . . . , 10 span an interval of width 2, except for the more limited
deflection b6 of the top actuator. Summarizing, the domain for the most general actuation
reads

Ω :=
⎧⎨
⎩b ∈ R10 :

bi ∈ [0, 2] for i = 1, . . . , 5
bi ∈ [−35/90, 1

]
for i = 6

bi ∈ [−1, 1] for i = 7, . . . , 10

⎫⎬
⎭ . (5.2)

The choice of b as symbol recalls the control B-matrix in control theory and is consistent
with many earlier publications of the authors, e.g. the review article by Brunton & Noack
(2015).

5.4. Optimization of the streamwise trailing edge actuation
The drag of the Ahmed body is optimized with streamwise blowing from the five slot
actuators. We apply DSM, LHS and EGM of §§ 5.4.1, 5.4.2 and 5.4.3, respectively.

5.4.1. DSM
Following § 5.3, DSM is centred around bi = 1.8, i = 1, . . . , 5 as first vertex and explores
a lower actuation bm−1 = 1.6 in all directions for vertices m = 2, . . . , 6. Table 4 shows
the values of the individuals and corresponding cost. All vertices have a larger drag than
for the unforced benchmark Cd = 0.3134. And all vertices with bi = 1.6 are associated
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Figure 15. Optimization of five streamwise-oriented jet actuator groups with DSM. Panel (a) displays the
best achieved drag reduction in terms of the number of evaluations (RANS simulations). Panel (b) shows the
proximity map of all evaluated actuations. The contour plot corresponds to the interpolated cost function (drag
coefficient) from all RANS simulations of this section. As in § 3, solid red circles mark newly find optima
while open blue circles mark unsuccessful tests of cost functions. For better interpretability, select newly found
optima are highlighted with by a yellow solid circle as in § 4. In the control landscape, these circles are marked
with the index m.

with a smaller drag indicating a downhill slide to small actuation values consistent with
the expectations from § 5.3.

Figure 15(a) shows the evolution of DSM with 200 RANS simulations. As in § 3, solid
red circles mark newly found optima while open blue circles record the best actuation so
far. The drag quickly descends after staying shortly on a plateau at m ≈ 20. From there
on, the descent becomes gradual. The optimal drag J = 0.2908 is reached with the 148th
RANS simulation and corresponds to 7 % drag reduction. The optimal actuation reads
b1 = 0.7264, b2 = 0.5508, b3 = 0.1533, b4 = 0.6746, b5 = 0.7716. While the middle
horizontal jet has small amplitude, the other actuation velocities on the four edges of the
Ahmed body are 55% to 77% of the optimal value achieved with single actuator.

Figure 15(b) illustrates the downhill search in a control landscape J(γ ) described in
§ 2. Here, γ = [γ1, γ2]T feature vectors defining a proximity map of the five-dimensional
actuation parameters b = [b1, . . . , b5]T. This landscape indicates a complex topology of
the five-dimensional actuation space by many local maxima and minima in the feature
plane. This complexity may explain why most simplex steps did not yield a better cost.
The feature coordinates γ1, γ2 arise from a kinematic optimization process and have no
inherent meaning. The simplex algorithm is seen to crawl from right γ ≈ [2, 0]T to the
assumed global minimum at γ ≈ [−0.6, 0]T through an elongated curved valley. The
simulation results for m = 1, 19, 33, 60 and 148 are marked with yellow solid circles.
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Figure 16. Same as figure 15, but with LHS.

Note that the construction of this proximity map includes also not displayed actuation
data from LHS and EGM so that the control landscapes remain identical for all discussed
five-dimensional actuations.

5.4.2. LHS
Figure 16(a) shows the slow learning process associated with LHS starting with the
simplex reference point b1 = . . . = b5 = 1.8. Apparently, the optimization is ineffective.
Only 3 new optima are successively obtained in 200 RANS simulations. The remaining
simulations yield worse drags than the best discovered before. At the 70th RANS
simulation, the best drag coefficient of Cd = 0.2928, with b1 = 0.0994, b2 = 0.9587,
b3 = 0.1276, b4 = 0.0289 and b5 = 1.0393 corresponding to 5 % reduction like the
one-dimensional top actuator b1 = 1, b2 = b3 = b4 = b5 = 0. Intriguingly, only the upper
side and bottom actuators have bi amplitudes near unity while remaining parameters are
less than 13 % of the one-dimensional optimum. These results show that near-optimal drag
reductions can be achieved with quite different actuations. Moreover, individual actuation
effects are far from additive. Otherwise, the almost complimentary LHS optimum for
actuators 2–5 and the one-dimensional optimum of § 5.3 should yield 10 % reduction with
b1 ≈ 1, b2 ≈ 1, b3 ≈ 0.13, b4 ≈ 1 and b5 ≈ 1.

Figure 16(b) shows the LHS in the control landscape. In the first iteration, LHS jumps to
the opposite site of domain and finds better drag. The next successive two improvements
are in a good terrain but the optimum at m = 70 is still far from the assuming global
minimum at γ ≈ [−0.6, 0]T (see figure 15). The exploratory steps uniformly cover the
whole range of feature vectors.
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Figure 17. Same as figure 15, but with EGM.

5.4.3. EGM
From figure 17, EGM is seen to converge much faster than DSM. The best actuation is
found at the 65th RANS simulation yielding the same drag coefficient Cd = 0.2908 as
DSM with only slightly different actuation parameters b1 = 0.6647, b2 = 0.4929, b3 =
0.1794, b4 = 0.7467 and b5 = 0.7101.

The fast convergence of EGM is initially surprising since up to 50 % of the steps are
for explorative purposes, i.e. identify distant minima. However, the control landscape in
figure 16 reveals how the explorative LHS steps help the algorithm to prevent the long
and painful march through the long and curved valley. At m = 7, an explorative step leads
to the opposite side of control landscape with a better cost value. Then, the subsequent
iterations quickly lead to the near-global minimum at m = 11. The proposed new algorithm
operates like a visionary mountain climber, who performs not only local uphill steps but
sends drones to the remotest location to find better mountains and terrains.

5.5. Optimization of the directed trailing edge actuation
In this section, the actuation space is enlarged by the jet directions of all slot actuators.
The jets may now be directed inwards or outwards as discussed in § 5.1. The actuation
optimization for drag reduction is performed with EGM.

We employ EGM as best performing method of § 5.4 for the ten-dimensional actuation
optimization problem. The search is accelerated by starting with a simplex centred around
the optimal actuation of the five-dimensional problem. The first vertex of table 5 contains
this optimal solution. Here, the cost is 4L’ lower than the value of the previous section as
the RANS integration for the first flow is re-computed and not yet fully converged. The next
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m b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 J

1 0.6647 0.4929 0.1794 0.7467 0.7101 0 0 0 0 0 0.2895
2 0.6647 0 0 0 0 1/2 0 0 0 0 0.3268
3 0 0.4929 0 0 0 0 1/2 0 0 0 0.3226
4 0 0 0.1794 0 0 0 0 1/2 0 0 0.3168
5 0 0 0 0.7467 0 0 0 0 1/2 0 0.3476
6 0 0 0 0 0.7101 0 0 0 0 1/2 0.3060
7 0.6647 0 0 0 0 −35/90 0 0 0 0 0.3091
8 0 0.4929 0 0 0 0 −1/2 0 0 0 0.3085
9 0 0 0.1794 0 0 0 0 −1/2 0 0 0.3187
10 0 0 0 0.7467 0 0 0 0 −1/2 0 0.3001
11 0 0 0 0 0.7101 0 0 0 0 −1/2 0.3354

Table 5. Initial individuals in the optimization of the directed trailing edge actuation; bi, i = 1, 2, 3, 4, 5
represents the actuation amplitudes Ui of the ith actuator; bi, i = 6, 7, 8, 9, 10 denotes the actuation angle
θi of the (i − 5)th actuator; J is the drag coefficient.

five vertices represent isolated actuations at the optimal value but directed 45◦ outwards
for the side edges and upwards for the middle horizontal actuator. The corresponding drag
values are larger. The next five vertices deflect the jets in opposite direction by 45◦ or the
maximum 35 ◦ of the top actuator, leading to smaller drag than the previous deflection.
The drag of middle horizontal actuator remains close to the unforced benchmark because
the jet velocity is small.

Figure 18(a) illustrates the convergence of EGM. After 289 RANS simulations, a
drag coefficient of 0.2586 is achieved corresponding to a 17 % drag reduction. The
optimal actuation values read b1 = 0.8611, b2 = 0.9856, b3 = 0.0726, b4 = 1.0089, b5 =
0.8981, b6 = −0.3000 corresponding to θ1 = −27◦, b7 = −0.4666 (θ2 = −42◦), b8 =
0.7444 (θ3 = 67◦), b9 = −0.4888 (θ4 = −44◦) and b10 = 0.2444 (θ5 = −22◦). All outer
actuators have velocity amplitudes near unity and are directed inwards, i.e. emulate Coanda
blowing. The third middle actuator blows upward with low amplitude. The strong inward
blowing seems to be related to the additional 10 % drag reduction as compared with the
7 % of streamwise actuation.

Figure 18(b) shows the search process in a proximity map. It should be noted that this
control landscape is based on data in a ten-dimensional actuation space and is hence
different from the five-dimensional space in § 5.4. The algorithm quickly descends in the
valley while many exploration steps probe suboptimal terrain. One reason for this quick
landing in good terrain is the chosen initial simplex around the optimized actuation in the
five-dimensional subspace.

The topology of the control landscape of figure 18 is investigated with discrete steepest
descent lines connecting neighbouring data points in figure 19. For each investigated
actuation vector, the nearest five neighbours are considered. If all neighbours have higher
drag, the vector is considered as a local minimum and marked by a red point. Otherwise,
a grey dashed arrow is plotted to the best of these neighbours. This steepest descent is
continued until a local minimum is reached. The corresponding path is called the (discrete)
steepest descent lines. Line segments shared by at least 10 of these paths may be considered
as important valleys towards the minimum and are highlighted as black solid arrows. The
visiting times of each individual are marked by the colour bar. The global minimum of all
data points is visited most – 54 steepest descent lines end here. The resulting pathways of
‘mountain trails’ to ‘expressways’ may give an indication of the directions to be expected
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Figure 18. Same as figure 17, but for the ten-dimensional optimization of the orientable trailing edge
actuation with EGM.

from local search algorithms. Moreover, crossing steepest descent lines indicate that the
two-dimensional proximity maps oversimplifies a higher-dimensional landscape structure.
Intriguingly, the steepest descent lines become more aligned to each other in the valleys,
leading to a global data minimum, i.e. the most relevant regions for optimization.

5.6. Discussion of streamwise and directed jet actuations
In this section, the unforced and three actuated Ahmed body wakes are investigated. For
brevity, we refer to flows with no, one-dimensional, five-dimensional and ten-dimensional
actuation spaces as cases 0D, 1D, 5D and 10D, respectively. The investigation includes
the drag (§ 5.6.1), the surface pressure (§ 5.6.2), the near wake (§ 5.6.3) and the vortex
formation (§ 5.6.4).

5.6.1. Drag reduction
First, the achieved drag reductions are discussed (see table 6). Evidently, more degrees
of freedom for the actuators is associated with more opportunities for drag reduction.
The drag reduces by 5 % to 7 % to 17 % as the dimensions of the actuation parameters
increase from 1 to 5 to 10, respectively. Intriguingly, the increase of drag reduction from the
optimized top actuator to the best 5 streamwise actuators is only 2 %. For the square-back
Ahmed body, Barros (2015) experimentally observed that the individual drag reductions
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Figure 19. The steepest decent lines of the control landscape depicted in figure 18. For details see text.

Drag Actuation parameters

Case (reduction) Top Upper side Middle Lower side Bottom

(0D) 0.3134 (0 %) — — — — —
(1D) 0.2977 (5 %) b1 = 1 b2 = 0 b3 = 0 b4 = 0 b5 = 0
(5D) 0.2908 (7 %) b1 = 0.6647 b2 = 0.4929 b3 = 0.1794 b4 = 0.7467 b5 = 0.7101
(10D) 0.2586 (17 %) b1 = 0.8611 b2 = 0.9856 b3 = 0.0726 b4 = 1.0089 b5 = 0.8981

θ1 = −27◦ θ2 = −42◦ θ3 = 67◦ θ3 = −44◦ θ3 = −22◦

Table 6. Investigated optimized actuations of the Ahmed body configuration in comparison with the unforced
benchmark. The table shows the achieved drag reduction and corresponding actuation parameters for (0D) the
unforced benchmark, and for the optimized (1D) top streamwise actuator, (5D) all streamwise actuators, (10D)
all deflected actuators.

from the streamwise blowing actuators on the four trailing edges roughly add up to the
total drag reduction of 10 % with all pulsed jets on. This additivity of actuation effects is
not corroborated for the slanted low-drag Ahmed body. Intriguingly, the inward deflection
of the jet-slot actuators substantially decreases drag by additional 10 %. This additional
drag reduction of 10 % has also been observed for the square-back Ahmed body when
the horizontal jets were deflected inward with Coanda surfaces on all four edges (Barros
et al. 2016). Improved drag reduction with inward as opposed to tangential blowing was
also observed for the 35◦ high-drag Ahmed body (Zhang et al. 2018) and the square-back
version (Schmidt et al. 2015).

Table 6 summarizes the discussed flows, associated drag reduction and actuation
parameters. Cases 5D and 10D show strong peripheral blowing comparable to the
optimized velocity of top actuator (case 1D). The magnitude of the middle actuation is
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0
0D 1D 5D 10D

17 %

Pressure drag
Viscous drag

7 %5 %

0.1

0.2

0.3

0.4

Figure 20. Pressure and viscous drag of the unforced flow (0D) and optimized actuations (1D, 5D, 10D). The
total drag reduction by actuation is indicated by the red arrows and the associated percentages.

comparatively small. For optimal drag reduction (case 10D), all peripheral actuators are
directed inward. The top and bottom jets have inclinations of 27◦ and 22◦, respectively,
while side jets feature stronger inward angles of 42◦ and 44◦, respectively. Intriguingly, all
optimal amplitudes of the peripheral jets become larger for inward direction (case 10D) as
compared with streamwise blowing (case 5D).

For engineering purposes, the drag power needs to be corrected by the actuation power
yielding the net drag power saving. The actuation power may be conservatively estimated
by the energy flux through all jet actuators:

∑5
i=1

∫
dAiρU3

i /2.
Here, the actuation jet fluid is assumed to be accelerated from 0 to the actuation jet

velocity Ui and then deflected after the outlet, e.g. via a Coanda surface. In this case, the
actuation energy of cases 1D, 5D and 10D would correspond to 3.2 %, 3.0 % and 7.9 %
of the parasitic drag power, respectively. This expenditure is significantly less than the
saved drag power. The ratio from saved drag power to actuation energy is comparable to
a truck model where steady Coanda blowing with 7 % energy expenditure yields a 25 %
drag reduction (Pfeiffer & King 2014). This estimate should not be taken too literally as
actuation energy strongly depends on the realization of the actuator. It would be less, more
precisely

∑5
i=1

∫
dAi ρ cos(θi) U3

i /2. when the actuation jet fluid leaves the Ahmed body
through a slot directed with the jet velocity and can be expected much less when this fluid
is taken from the oncoming flow, e.g. from the front of the Ahmed body.

5.6.2. Pressure drag
The viscous drag contributes only 20.9% to the total drag for the unforced benchmark
(0D) and is hardly affected by actuation (1D, 5D, 10D) as illustrated in figure 20. In other
words, effectively all drag reduction is associated with the pressure drag.

The drag reduction can be related to the Cp distribution of the rearward windows in
figure 21. The 5 % drag reduction in subfigure (b) for case 1D is associated with a pressure
increase of the vertical surface. The additional 2 % drag decrease for case 5D in (c)
is accompanied by an increase over vertical and slanted surface. The aerodynamic boat
tailing of case 10D with 17 % drag reduction alleviates significantly the pressures on both
surfaces.
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RANS: 5D RANS: 10D

RANS: 0D

Cp:  –0.35 –0.05

RANS: 1D

(a) (b)

(c) (d)

Figure 21. Pressure coefficient on the slant and vertical base predicted for the Ahmed body by RANS. (a)
Without control and under (b) 1D, (c) 5D and (d) 10D control respectively.

5.6.3. Near-wake flow field
In the sequel, the mechanism behind the pressure increase on the rearward window is
inferred from the flow field. Figure 22 shows the streamwise velocity component and
streamlines of the transversal velocity in the same plane for the unforced and actuated
cases. First, the flow topology is investigated. All flow visualizations show the streamlines
of the in-plane velocity field by grey lines. Evidently, the drag reduction from actuation is
associated with an elongation of the recirculation region ((x, z)DW = arg min{u(x, 0, z) ≤
0}) marked by the solid circle. For tangential blowing (1D and 5D) the increase of drag
reduction from 5 to 7 % is associated with an increase of the recirculation bubble. Such
correlation between length of the recirculation bubble and drag reduction has also been
reported in actuated cylinder wakes (Gerhard et al. 2003; Thiria et al. 2006). In the limit
of increasing extend, the wake may approximate the Kirchhoff solution with vanishing
velocity in the wake. For the Kirchhoff solution, the inner pressure equals the outer
pressure which might be considered as the upper limit of feasible drag reduction with
small actuation energy.

The increased drag reduction by elongated recirculation region may be explained by
centripetal forces. When the fluid particle follows the upper downward curved streamline
it experiences a centripetal force outward which must by balanced by an equal but opposite
pressure gradient. In other words, the near-wake region must have a lower pressure leading
to increased drag. The more the wake is elongated the smaller the pressure gradient. Hence,
the near wake shows a larger pressure and the bluff body experiences lower drag. This is
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Figure 22. RANS flow visualization of the unforced Ahmed body benchmark and optimized actuations in the
symmetry plane y = 0. The panels colour code the pressure coefficient (a,d,g,j) as well as streamwise (b,e,h,k)
and vertical velocity components (c, f,i,l). From (a–c) to ( j,k,l), the figure depicts the flows (a–c) without control
and under (d–f ) 1D, (g–i) 5D and ( j–l) 10D control, respectively. All rows show the same streamline from the
in-plane velocity components in grey for orientation. The solid circle marks the furthest downstream extend
of the dead-water region (x, z)DW = arg maxx{u(x, 0, z) ≤ 0}. The squares denote in-plane velocity equilibria
associated with the vortices.

confirmed by the pressure coefficient contours of figure 22(a,d,g,j). The large curvature at
the end of the wake bubble is associated with small velocities, i.e. is of little relevance for
this argument. More quantitative aspects of the recirculation bubble and its associated drag
are beautifully summarized in the inspiring book by Hucho (2011) and have been applied
to the Ahmed body wake by Barros et al. (2016).

For the optimized directed jets (case 10D) this wake elongation trend with increasing
drag reduction is not continued, as depicted in figure 22( j–l). Instead, the wake becomes
more slender and symmetric as featured by the velocity equilibrium points marking the
vortex centres (solid squares). The increased up–down symmetry is facilitated by the
upward blowing of the bottom jet. This peripheral inward blowing enables aerodynamic
boat tailing (Geropp 1995) as a new and evidently more effective drag reduction
mechanism. Similar observations of increased drag reduction by inward actuation jet
deflection have been made for the square-back Ahmed body with Coanda surfaces (Barros
et al. 2016; Haffner et al. 2020), which also induce a sign change of streamline curvature
leading to a local pressure increase near the wall. The pressure increase associated with a
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more symmetric and slender bubble has also been reported in the vertical rear surface of a
25◦ Ahmed body using rounded corners by Rossitto et al. (2016).

The increased drag reduction by symmetrization of the wake can also be explained by
the shape of the streamlines starting near the separation points. The whole wake region is
pushed upward by the bottom jet blowing upward. As a consequence, the upper streamline
bounding the wake region is more aligned with the streamwise direction. Hence, the
transverse pressure gradient from the upper stream to the wake region is smaller, leading
to a higher rearward pressure and thus smaller drag.

The pressure field illustrated in figure 22(a,d,g, j) expectedly shows that increasing
drag reduction is associated with an increasing pressure towards the rearward Ahmed
body windows. This trend is consistent with our streamline arguments. The visualization
of the streamwise velocity component indicates a more pronounced near-wall jet with
increasing drag reduction. Clearly, the velocity component towards the wake decreases in
the upper wake region with increasing drag reduction. This tendency is consistent with the
streamline arguments.

5.6.4. Vorticity field
The analysis of the vorticity field mirrors the discussion of the velocity field. Figure 23
displays iso-surfaces for the same Okubo–Weiss parameter value Q for all four cases.
The unforced case 0D (figure 23a) shows pronounced C-pillar vortices extending far into
the wake. Under streamwise top actuation (case 5D, figure 23b), the C-pillar vortices
significantly shorten. The next change with all streamwise actuators optimized (case 5D)
is modest, consistent with the small additional drag decrease. The C-pillar vortices are
slightly shorter (see figure 23c). The inward deflection of the actuation (case 10D) is
associated with aerodynamic boat tailing, as displayed in figure 23(d). The separation
from the slanted window is significantly delayed and the sidewise separation is vectored
inward.

This actuation effect on the C-pillar vortices is corroborated by the streamwise vorticity
contours in a transverse plane on body height downstream (x/H = 1). Figure 24 shows this
averaged vorticity component for cases 0D, 1D, 5D, 10D in panels a–d, respectively. The
extent of the C-pillar vortices clearly shrinks with increasing drag reduction. We mention a
similarity with Prandtl’s lifting line theory which relates the drag of a finite wing with the
strength of the trailing edge vortices. From this theory, stronger C-pillar vortices should
be related with larger lift and larger drag.

The effect of the upward-directed bottom jet can clearly be evidenced as strong
vortices in the right and left near-wall regions of (d). For tangential blowing (a–c),
the right and left sides feature pairs of near-wall vortices with smaller net circulation.
The RANS results are validated with the LES and the experiment as detailed in
Appendices C and D, respectively.

6. Conclusions

We propose a novel optimization approach for active bluff-body control exploiting local
gradients with a DSM and exploring new better minima with LHS. This approach is
called the explorative gradient method (EGM) as the iterations alternate between downhill
simplex iteration as a robust gradient method and LHS as the most explorative step. A
distinguishing feature of EGM is that it performs an ‘aggressive’ exploitation in one step
and the arguably most optimal exploration in another step. Thus, both, exploitation and
exploration come with optimizing principles and with an a priori evaluation investment
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RANS: 1DRANS: 0D

RANS: 10DRANS: 5D

(a) (b)

(c) (d)

Figure 23. The iso-surfaces of Okubo–Weiss parameter Q = 20 000 of the Ahmed body flow predicted by
RANS. (a) Without control and under (b) 1D, (c) 5D and (d) 10D control respectively.

which is determined upfront. This policy has distinct advantages as illustrated in figure 25
for three different control landscapes with one, few and many minima. In some cases,
the exploitation (left column) will be pointless because the best minimum still needs to
be found. In other cases, the exploration (middle column) will be ineffective, because
gradient-based descent will quickly lead to the global minimum or because the dimension
or complexity of the search space is too large. EGM (right column) hedges against both
scenarios of inefficiency because high-dimensional search spaces typically have unknown
characteristics. EGM seems a rational ‘all-weather’ strategy as it may perform best or, at
least, does not fall much behind the winning exploitive or explorative optimizers.

This policy may be contrasted with the GA which can be remarkably effective in
high dimensions, but the goal of explorative operations, like mutation, and exploitative
operations, like crossover, come with no optimizing principle, like gradient-based
convergence or geometric coverage of the search space. A similar observation applies to
other biologically inspired optimization methods (see, e.g. Wahde 2008), like ant colony
or particle swarm optimization. As another example, simulated annealing explores good
minima before it increasingly exploits them. Here, again, exploration and exploitation
come with no optimizing principle and the switch between exploration and exploitation
is a design parameter. We argue that the radical alternation between gradient-based
exploitation and maximal exploration is one of the most promising strategies in an
unknown search space.
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Figure 24. Streamwise vorticity component in near-wake plane x/H = 1 predicted by RANS. (a) Without
control and under (b) 1D, (c) 5D and (d) 10D control, respectively.

Exploit Explore EGM

Single minimum
Win Lose Win with price

Several minima
Win with price Win with price Win

Many minima
Lose Win Win with price

Method

Landscape

Figure 25. Simplified performance sketch of the exploitive, explorative and alternating optimizers for
landscapes with one, few or many minima. Three and one stars indicate the best or ineffective strategy,
respectively, for the considered control landscape. Two stars indicate a suboptimal yet practical solution.

EGM is compared with other optimizers for an analytical test function with one global
and four local minima. The study includes the failure rate in finding the global optimum
and the convergence rate. EGM is found to be distinctly superior in both aspects in
comparison with (i) LHS, (ii) MCS, (iii) a GA, (iv) a DSM and (v) a random restart
or shotgun DSM (RRS). This behaviour is made physically plausible for smooth cost
functions with few minima, i.e. a typical case for active flow control.

As first flow control example, EGM is applied to the minimization of the parasitic
net drag power of the multi-input fluidic pinball problem. It yields a slightly asymmetric
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boat-tailing actuation with 29% net drag power reduction comprising 52% drag reduction
penalized by 23% actuation energy. As very similar actuation has been found with machine
learning control for feedback law ansatz (Cornejo Maceda et al. 2019). This boat-tailing
actuation foreshadows the optimization result of the subsequent drag minimization of the
Ahmed body. Intriguingly, EGM also probed base bleed and circulation control as options
for drag power minimization.

EGM reduces the drag of an 35◦ slanted Ahmed body by 17% with independent steady
blowing at all trailing edges at Reynolds number ReH = 1.9 × 105. The ten-dimensional
actuation space includes five symmetric jet-slot actuators or corresponding actuator groups
with variable velocity and variable blowing angle. The resulting drag is computed with a
RANS simulation.

The approach is augmented by auxiliary methods for initial conditions, for accelerated
learning and for a control landscape visualization. The initial condition for a RANS
simulation with a new actuation is computed by the 1-nearest neighbour method. In other
words, the RANS simulation starts with the converged RANS flow of the closest hitherto
examined actuation. This cuts the computational cost by 60 % as it accelerates RANS
convergence. The actuation velocities are quantized to prevent testing of too similar control
laws. This optional element reduces the CPU time by roughly 30 %. The learning process
is illustrated in a control landscape. This landscape depicts the drag in a proximity map –
a two-dimensional feature space from the high-dimensional actuation response. Thus, the
complexity of the optimization problem can be assessed.

The slanted Ahmed body with 1, 5 and 10 actuation parameters constitutes a more
realistic plant for an optimization algorithm. First, only the upper streamwise jet actuator
is optimized. This yields drag reduction of 5 % with pronounced global minimum for
the jet velocity. Second, the drag can be further reduced to 7 % with five independent
streamwise symmetric actuation jets. Intriguingly, the actuation effects of the actuator are
far from additive – contrary to the experimental observation for the square-back Ahmed
body (Barros 2015). The optimal parameters of a single actuator are not closely indicative
for the optimal values of the combined actuator groups. The control landscape depicts a
long curved valley with small gradient leading to a single global minimum. Interestingly,
the explorative step is not only a security policy for the right minimum. It also helps to
accelerate the optimization algorithm by jumping out of the valley to a point closer to the
minimum.

A significant further drag reduction of 17 % is achieved when, in addition to the jet
velocities, also the jet angles are included in the optimization. Intriguingly, all trailing
edge jets are deflected inward mimicking the effect of Coanda blowing and leading to
fluidic boat tailing. The C-pillar vortices are increasingly weakened with one-, five- and
ten-dimensional actuation. Compared with the pressure increase at C-pillar in one-
and five-dimensional control, the ten-dimensional control brings a substantial pressure
recovery over the entire base. The achieved 17 % drag decrease with constant blowing is
comparable to the experimental 20 % reduction with high-frequency forcing by Bideaux
et al. (2011) and Gilliéron & Kourta (2013).

For the 25◦ high-drag Ahmed body, (Zhang et al. 2018) have achieved 29 % drag
reduction with steady blowing at all sides, thus significantly outperforming all hitherto
existing active flow control studies cited therein. The actuation has only been investigated
for few selected actuation values. Hence, even better drag reductions are perceivable. Yet,
the unforced high-drag Ahmed body has a significantly higher drag coefficient of 0.361
than the low-drag version and is hence not fully comparable. Their reduced drag coefficient
of 0.256 is almost identical with the one of this study.
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We expect that our RANS-based active control optimization is widely applicable for
virtually all multi-input steady actuations or combinations of passive and active control
(Bruneau et al. 2010). EGM mitigates the chances of sliding down a suboptimal minimum
at an acceptable cost. The 1-nearest neighbour method for initial condition and the
actuation quantization accelerate the simulations and learning processes. And the control
landscape provides the topology of the actuation performance, e.g. the number of local
minima, nature and shape of valleys, etc.

The current performance benefits of EGM over other commonly used optimizers has
also been corroborated in preliminary bluff-body drag reduction experiments in Europe
and China. Evidently, the optimizer can also be employed for cost function minimization
for design parameters of passive devices or parameters of closed-loop control schemes.

7. Outlook

EGM can be algorithmically improved and generalized in several directions. The key idea
of EGM is to balance exploration and exploitation by aiming to optimize each for one step
in an alternating fashion. The winning choice of the exploration and exploitation method
may depend on the dimensions of the search space. If this dimension is too large, the DSM
may be replaced by a subplex (Rowan 1990) or a stochastic gradient method. Similarly, for
large dimensions, the LHS may need to be replaced by MCS or GA (see Appendix B).
Note that LHS will first explore the edge of the search space before it explores the centre.

The current version of EGM assumes complete lack of knowledge of the control
landscape. The alteration between exploitation and exploration hedges against unnecessary
evaluations in worst-case scenarios. For instance, exploration is unnecessary for a single
radially symmetric cost function minimum, and exploitation is inefficient for large terrains
with many minima. The authors actively pursue augmenting EGM from learning the
response model and control landscape characteristics of the available data. This knowledge
can be expected to change the algorithm, e.g. the alteration policy between explorative and
exploitive steps. Machine learning (see, e.g. Brunton & Kutz 2019) provides powerful tools
for these purposes.

An exciting new avenue is the generalization of EGM from a parameter optimizer
to a regression problem solver: EGM has recently been applied to optimize multi-input
multi-output control laws for the stabilization of the fluidic pinball and was found to be
distinctly superior to genetic programming (Cornejo Maceda et al. 2021).

Other EGM applications of closed-loop control include the experimental stabilization of
an open cavity flow Cornejo Maceda (2021), the lift increase of a high-Reynolds-number
airfoil and the drag/side force reduction of a track model under transient yaw.

Summarizing, EGM is a versatile optimizer framework with numerous future
applications. The algorithm can not only be applied to parameter optimization but also to
model-free control law optimization, hitherto performed by genetic programming (Gautier
et al. 2015; Ren, Hu & Tang 2020) and deep reinforcement learning (Bucci et al. 2019;
Rabault et al. 2019).

A direct path is a structure identification of the control law so that the regression problem
becomes a parameter optimization problem. Examples are cluster-based control laws (Nair
et al. 2019), Taylor expansions and weights of neural networks (Lee et al. 1997). A second
avenue is the interpolation of control laws in subspaces (Cornejo Maceda et al. 2021). The
authors expect that future optimizers will synergize more and more methods and principles
to deal with an increasing spectrum of control landscapes.
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Appendix A. Genetic algorithm

This section provides further details about the chosen Matlab realization of GA.

(i) First generation. The algorithm begins by creating an initial population with random
individuals. Each parameter of each individual is taken with uniform probability
from a given interval.

(ii) Next generations. The algorithm uses the individuals in the current generation, called
parents, to create individuals of the next population, called children:
(a) Cost evaluation. Score each member of the current population by computing its

cost function. The cost function is assumed to be sorted, J1 ≤ J2 ≤ . . . ≤ Jr ≤
. . . JI . The index is called the rank.

(b) Scaled fitness. Scale the cost function based on relative ordering. An individual
with rank r has fitness score of 1/

√
r (higher fitness, smaller rank).

(c) Parents. Select members, called parents, based on their expectation value.
The selection function chooses parents for the next generation based on their
expectation values. An individual can be selected more than once as a parent, in
which case it contributes its genes to more than one child.

(d) Elitism. The best Ne individuals are copied directly into the new generation. This
number corresponds to the probability Pe = 0.05, i.e. Ne = I ∗ Pe

(e) Mutation and crossover. Produce children from the parents with crossover or
mutation. By combining parts of genes from a pair of parents, crossover children
are produced with probability Pc = 0.8. The remaining individuals, other than
elite children, are mutation children by making random changes to a single
parent. Scattered, the default crossover function, creates a random binary vector
and selects the genes where the vector is a 1 from the first parent, the genes
where the vector is a 0 from the second parent and combines the genes to form
the child. The default mutation function adds a random number taken from
a Gaussian distribution with mean 0 to each entry of the parent vector. The
standard deviation of this distribution is determined by the parameters scale = 1
and shrink = 1 (Matlab 2018b).

(f) Next generation. This generation comprises all children as created above.
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Figure 26. Two-dimensional analytical function contour.

(iii) Termination. The algorithm stops when a stopping criterion is met. Here, the
stopping criterion is the maximum generation number L.

Appendix B. Exploration in high-dimensional search spaces

A study of the exploration from low- to high-dimensional search spaces is presented.
Different explorative methods are benchmarked. We show that LHS is recommended for
dimensions up to five while GA performs better in higher-dimensional spaces.

Three optimization methods of § 2 are compared for analytical problems with five local
minima for two-, four-, six- and eight-dimensional spaces. The corresponding analytical
cost function reads

J(b1, . . . , bN) = 1 − e
[
−10

∑N
i=1(b1−a1i)

2
]
− 1

2 e
[
−10

∑N
i=1(b2−a2i)

2
]

− 1
3 e

[
−10

∑N
i=1(b3−a3i)

2
]
− 1

4 e
[
−10

∑N
i=1(b4−a4i)

2
]

− 1
5 e

[
−10

∑N
i=1(b5−a5i)

2
]
. (B1)

The 5 minima have the approximate locations [aj1, aj2, . . . , ajN]T, j = 1, . . . , 5. These
minima are distributed evenly in the b1, b2-plane on a circle with a radius of 0.6 around
the [1, 1]T (see figure 26 ). In other words,

[
aj1
aj2

]
=

[
1 + 0.6 sin

[
(6 − j) × 2π/5

]
1 + 0.6 cos

[
(6 − j) × 2π/5

]
]

, j = 1, . . . , 5. (B2)

In higher-dimensional spaces, the parameters vanish, aji = 0, i = 3, . . . , N.
The comparison includes three explorative optimization methods: LHS, MCS and GA.

The corresponding parameters of the methods are the same as § 3.2. The average learning
rates from 50 runs are shown in figure 27. In a low-dimensional space (N = 2, 4), LHS
outperforms GA followed by MCS. The turning point appears around n = 6, from where
GA significantly surpasses LHS. This study suggests replacing LHS with GA as the
explorative step for EGM around N ≈ 5.
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Figure 27. Comparison of explorative optimizers for the two-, four-, six- and eight-dimensional analytical
functions (B1). Learning curves of (a,d,g, j,m) LHS, (b,e,h,k,n) MCS and (c, f,i,l,o) GA in 50 runs are plotted.
The 10th, 50th, and 90th percentiles indicate the J value below which 10, 40 and 90 per cent of runs at current
evaluation fall.

Appendix C. LES for the Ahmed body

This section discusses the first RANS validation for the unforced and actuated flow around
the low-drag Ahmed body. A high-fidelity LES is performed for the unforced (0D) and
optimized flows (1D, 5D and 10D) of the same configuration. The computational domain
coincides the one of RANS (see § 5.2.1). The domain is discretized into an unstructured
hexahedral grid with 17 million computational nodes. The cell distance in the normal
direction from the body is within the range of 0.3 ≤ x+, y+, z+ ≤ 0.7. A wall-adjusted
local eddy viscosity model is used for the subgrid-scale model (Weickert et al. 2010). The
boundary conditions are prescribed as for RANS: no-slip wall condition on the Ahmed
body and the stationary ground, steady Dirichlet inlet conditions for the incoming velocity,
no-stress conditions at the sides and the top of the domain and a convective outflow
condition. All simulations are computed for 250 convective time units. This corresponds
to 69 downwash times over the Ahmed body.

First, the drag of unforced and actuated cases are compared. From figure 28, RANS and
LES predict the trend of increasing drag reduction with increasing number of optimized
actuation parameters. The deviation between RANS and LES predicted drag reductions
increases with actuation complexity but remains always less than 3 %. LES might yield
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RANS
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Figure 28. Drag reduction predicted by RANS and LES for the low-drag Ahmed body: 0D – the unforced
benchmark, 1D – the optimized top streamwise actuator, 5D – the optimized all streamwise actuators and 10D
– the optimized all deflected actuators.

higher drag reductions because it can resolve dynamic coherent effects of the unforced
and actuated flows.

Second, the vorticity field of the time-averaged flow from LES is compared with RANS.
In figure 29, iso-surfaces of the Okubo–Weiss parameter visualize the vorticity field in
analogy to figure 23 depicting RANS data. The C-pillar vortices of the benchmark flow
(case 0D, figure 29a) are weakened under the optimized streamwise top actuation (case 5D,
figure 29b). For optimized actuation of all streamwise jets this vorticity mitigation trend
is continued (figure 29c). LES predicts the aerodynamic boat tailing characterized by the
inward deflection and the delayed separation associated with case 10D and illustrated in
figure 29(d). This behaviour follows the companion figure 23 of RANS.

Finally, a quantitative comparison of RANS and LES is performed and benchmarked
with the companion experiment in Appendix D. Summarizing, the proposed RANS-based
actuation optimization faithfully distils the achievable drag reductions in the search space
hierarchy. The computational savings of RANS over LES is immense, with a factor of 140.
One RANS simulation employs a cluster with 52 cores for only 35 min. In contrast, one
LES uses a cluster with 60 cores for 3 days. In other words, the one RANS optimization
can be performed with the CPU load needed for one LES.

Appendix D. RANS simulation validation for the Ahmed body

This section provides a validation of RANS simulations of the low-drag Ahmed body.
This validation comprises a grid convergence study of RANS, LES of Appendix C, and a
companion experiment described below.

The grid convergence of RANS is corroborated by simulations on three meshes,
containing 2.5, 5 and 10 million nodes described in § 5.2.1. Figure 30 presents the
time-averaged streamwise velocity profiles of the corresponding RANS simulations in
the symmetry plane. Figures 30(a) and 30(b) show a good agreement of the flow over
the slanted window and the near-wake region. The figure includes RANS profiles for the
grid with 2.5 million (‘2.5M’, blue dashed curve), 5 million (‘5M’, red fine curve) curve
and 10 million grid points (‘10M’, grey bold curve). The difference in RANS profiles
is hardly distinguishable for the medium and fine mesh, except for a very narrow region
around x/H = −0.2. The drag variation between the results obtained with the medium
and fine meshes is only 0.6 %. Hence, the medium mesh is used for the simulation during
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LES: 0D LES: 1D

LES: 5D LES: 10D

(a) (b)

(c) (d)

Figure 29. The iso-surfaces of Okubo–Weiss parameter Q = 20000 of the Ahmed body flow predicted by
LES. (a) Without control and under (b) 1D, (c) 5D and (d) 10D control, respectively.
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Figure 30. Time-averaged profiles obtained with the RANS model in the symmetry plane y = 0. (a) over the
slanted window and (b) in the wake of the Ahmed body.

optimization as compromise between efficiency and accuracy. For later reference, the
experimental data are included in figure 30 as circles.

The experiment of the unforced configuration is carried out in a three-quarter open-jet
low-speed closed-loop wind tunnel with a test section of 1520 mm × 1185 mm × 810 mm,
belonging to Shanghai Automotive Wind Tunnel Center (SAWTC), Tongji University (see
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A

B

C

D

E
F

(a) (b)

Figure 31. The set-up of PIV measurement (a) for the uncontrolled Ahmed body. The Ahmed body (E) is
placed in the test section (A), with Vlite-500 pulse laser source (B) at the top and a charge-coupled device
camera (C). D, F in (b) are the nozzle exit and the collector, respectively.
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Figure 32. Velocity profiles over the slanted back (a) and in the wake (b) of the Ahmed body from RANS,
LES and experimental results. For details see text.

figure 31). The maximum wind speed is approximately 49 m s−1, The free-stream turbulent
intensity from the nozzle (432 mm × 288 mm) is less than 0.5%. The Reynolds number
ReH of the unforced flow is equal to 1.9 × 105, consistent with performed RANS and LES
simulations.

The velocity field of the vertical mid-plane y = 0 in the wake is measured by a particle
image velocity (PIV) system from TSI Incorporated. The image magnification in the
vertical planes is 72 μm pixel−. The time interval between two successive pulses is 10 μs.
The mean velocity (see black circle in figure 32) is calculated from 1000 pairs of PIV
images captured with the sampling frequency of 1.25 Hz. The streamwise velocity profiles
over the rear slant and in the wake are plotted in figures 32(a) and 32(b), respectively. The
location of the profiles follows Lienhart, Stoots & Becker (2002). The x-axis is stretched
by a factor 2 to disperse the profiles. The dotted-dashed lines mark the x location and
correspond to U = 0. The distance of each data point from its x location indicates the
parameter (U − U∞)/U∞, where U∞ is the incoming velocity. Both RANS and LES
predict well the experimental flow profile in the symmetry plane starting with an early
separation from the upper leading edge. LES shows a slightly better agreement with
experiment. The drag coefficient predicted by LES is 0.3423 and closer to the experimental
value 0.355 than the RANS value of 0.3134.
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