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This work investigates the compressible turbulence induced by Richtmyer–Meshkov (RM)
instability using high-resolution Navier–Stokes simulations. Special attention is paid to
the characteristics of RM turbulence including the mixing width growth, the turbulent
kinetic energy (TKE) decay, the mixing degree, inhomogeneity and anisotropy. Three
distinct initial perturbation spectra are designed at the interface to reveal the initial
condition imprint on the RM turbulence. Results show that cases with initial large-scale
perturbations present a stronger imprint on statistical characteristics and also a quicker
growth of mixing width, whereas cases with small-scale perturbations present a faster
TKE decay, greater mixing level, higher isotropy and homogeneity. A thorough analysis on
the inter-scale energy transfer in RM turbulence is also presented with the coarse-graining
approach that exposes the two subfilter-scale (SFS) energy fluxes (i.e. deformation work
and baropycnal work). A strong correlation between the nonlinear model of baropycnal
work (Fluids, 4(2), 2019) and the simulation results is confirmed for the first time,
demonstrating its potential in modelling the RM turbulence. Two primary mechanisms
of baropycnal work (the straining and baroclinic generation processes) are explored with
this nonlinear model. The evolutions of two SFS energy fluxes exhibit distinct behaviours
at various filter scales, in different flow regions and under various flow motions (strain
and rotation). It is found that all three cases share the common inter-scale energy transfer
dynamics, which is important for modelling the RM turbulence.

Key words: shock waves, turbulent mixing, compressible turbulence

1. Introduction

The Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs when
a perturbed interface separating two different fluids is subject to an impulsive acceleration
typically by a shock wave. After the shock impact, initial perturbations at the interface
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grow persistently with time and later secondary instabilities such as Kelvin–Helmholtz
(KH) instability begin to play a role, potentially leading to a flow transition to turbulent
mixing (called RM turbulence). The RM turbulence plays a crucial role in various
engineering applications (e.g. inertial confinement fusion [ICF]) and natural phenomena
(e.g. supernova explosion). For example, in ICF, the intensive mixing between the inner
hot spot and the outer ablator caused by RM instability greatly reduces the energy
yield and even causes the ignition failure (Lindl 1995; Lindl et al. 2004; Casner 2021;
Do et al. 2022). In a scramjet, the mixing between fuel and air enhanced by the RM
turbulence could increase the combustion efficiency (Yang, Kubota & Zukoski 1993;
Yang, Chang & Bao 2014; Ren et al. 2019). The RM turbulence is also a crucial element
that should be considered when explaining the supernova remnants (Kifonidis et al. 2006;
Müller 2020). In addition, as a typical variable-density turbulence (Livescu 2020), the
RM turbulence that arises from finite, impulsive, directional energy injection, presents
unique characteristics differing from other types of turbulence. Hence, the study on RM
turbulence constitutes a significant complement to the fundamental research of turbulence
(Olmstead et al. 2017).

An important finding in RM turbulence is the discovery of a self-similar stage beyond
which the width of the mixing layer exhibits exponential growth with time (W ∝ tθ ).
Numerous studies have been performed to estimate the asymptotic value of the growth
exponent θ (Youngs 2004; Thornber et al. 2010, 2017), which was found to vary in a
wide range (0.213, 2/3). A comprehensive summary of the findings on θ is available
in the review of Zhou (2017a,b). The various values of θ obtained indicate the evident
influence of initial conditions on the RM turbulence. Previous studies have shown that the
initial conditions, especially the initial perturbation spectrum, have a dramatic influence on
both the early stage instability evolution and the late-stage turbulent mixing development
(Brouillette 2002; Mikaelian 2005; Groom & Thornber 2020). Such an influence can
be elucidated by several potential mechanisms, which are generally divided into two
categories (Soulard & Griffond 2022): structural and statistical. The former comprises
a ‘bubble competition’ mechanism that is initiated by a large-scale perturbation, and
a ‘bubble merging’ mechanism (mode coupling of short-wavelength perturbations) that
is less sensitive to initial conditions (Elbaz & Shvarts 2018). The latter incorporates
theoretical insights from homogeneous isotropic turbulence into the context of RM
turbulence, which arises from the persistence of large eddies (Chasnov 1997; Llor 2006;
Soulard et al. 2018). Previous studies have provided a preliminary understanding of the
influence of initial conditions on the mixing zone growth. In this work, we intend to
conduct a comprehensive and in-depth analysis on the influences of initial perturbation
spectrum on the RM turbulence in various aspects, including turbulent kinetic energy
(TKE), mixing degree, inhomogeneity and anisotropy, aiming to attain a thorough
understanding of initial condition influences.

The study of inter-scale energy transfer is an effective means to gain insights into
turbulence. From the perspective of energy cascade, energy is injected at large scales,
then transferred progressively to smaller scales and dissipated ultimately into heat at
the Kolmogorov scale. An example is the three-dimensional (3-D) Taylor–Green vortex
problem (Taylor & Green 1937; Brachet et al. 1983), where turbulence is generated as
large vortex roll-ups break down and later small eddies take over the flow field, causing
turbulent decay. Although the classical energy cascade process seems simple and clear, the
underlying physical mechanisms remain ambiguous (Alexakis & Biferale 2018). Existing
studies on the energy cascade focused mainly on incompressible flows (Eyink 2005;
Domaradzki, Teaca & Carati 2009; Eyink & Aluie 2009), in which the sole pathway
for inter-scale energy transfer is deformation work. For instance, McKeown et al. (2020)
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studied the vortex ring collision both experimentally and numerically, and found the
evidence that links the cascade process with vortex interactions (i.e. deformation). It was
found that there are other pathways for the inter-scale energy transfer in compressible
or variable-density turbulence (Aluie 2011, 2013; Wang et al. 2013), namely baropycnal
work, Λ� = ∂jp̄τ̄ (ρ, uj)/ρ̄. Baropycnal work results from the variations in pressure and
density, making it sensitive to density and pressure gradients. This phenomenon can
occur in both barotropic and baroclinic cases, since it can be non-zero when pressure and
density gradients are either aligned or misaligned. Recently, the study of energy transfer
between scales through filtering methods has been applied to the Rayleigh–Taylor (RT)
(Rayleigh 1883; Taylor 1950) turbulence. For instance, Zhou et al. (2016) examined the
inter-scale transfer of kinetic energy, thermal energy, and enstrophy in two-dimensional
(2-D) Boussinesq RT turbulence. It was found that on average, kinetic energy undergoes
a dynamic transfer from small to large scales through an inverse cascade, whereas
both thermal energy and enstrophy are transferred towards small scales through forward
cascades. Zhao, Liu & Lu (2020) examined the inter-scale transfer of kinetic energy
and enstrophy in 3-D compressible RT turbulence. It was found that kinetic energy
can transfer between scales through both deformation work and baropycnal work. The
former is responsible for transferring kinetic energy at small scales, whereas the latter is
responsible for transferring kinetic energy at large scales. Recently, Zhao, Betti & Aluie
(2022) compared the energy scale transfer in 2-D and 3-D RT turbulence, and found that
the baropycnal work serves as a conduit for the continuous non-local transfer of potential
energy from the largest scale to smaller scales within the inertial region, in which the
cascade process is dominated by deformation work.

Unlike the RT turbulence, in which potential energy is transformed continuously into
kinetic energy, RM turbulence generates kinetic energy solely during the interaction of
the shock with the interface. The gradual transfer of kinetic energy that shares the same
scales as initial perturbations to other generative scales is a crucial process in the evolution
of RM turbulence. Nevertheless, few studies have been reported on this subject. In the
work of Liu & Xiao (2016), three cases with different initial perturbation bands were
considered, and the simulation results showed that the mean subfilter-scale (SFS) energy
flux within the mixing zone exhibits an inverse transfer at early times but transits to a
forward transfer at late times. The time duration of the inverse transfer was found to be
dependent on initial conditions. In addition, a strong correlation between the SFS energy
fluxes and the presence of quadrupole or dipole vortex structures was found with the
conditional averaging method. Recently, Wong et al. (2022) conducted a comprehensive
budget analysis on the large-scale Reynolds stress and second-order moments for the
RM turbulence after reshock. It was shown that the overall budgets exhibit approximate
self-similarity with filtering, whereas the SFS stress has an evident influence on various
components of the budget terms. Other works addressing this aspect of RM turbulence
include Zeng et al. (2018) and Yan et al. (2022). The former related the inverse and forward
energy transfer between scales to 2-D and 3-D vortical structures, respectively, whereas
the latter found that chemical reaction promotes the inverse energy cascade process during
shock compression. So far, the role of baropycnal work, which is regarded as an important
pathway for the inter-scale energy transfer in compressible turbulence (Lees & Aluie
2019), has never been reported in the context of RM turbulence. It is therefore highly
desirable to investigate the roles of both deformation work and baropycnal work in RM
turbulence, elucidating the energy transfer mechanisms. In particular, it is imperative to
clarify the behaviour of SFS energy flux at different scales, in different regions of the
mixing layer, under different fluid motions, and with various initial perturbation spectra at
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the interface, which would enable a comprehensive and in-depth understanding of the RM
turbulence.

In this paper, we shall investigate the RM turbulence via high-resolution Navier–Stokes
(N–S) simulations with a recently developed high-resolution weighted compact nonlinear
scheme (WCNS) that possesses state-of-the-art spectral properties. Three cases with
different initial perturbation spectra are designed. Comparisons in the evolutions of
statistical characteristics among the three cases are provided to reveal the influences of
initial perturbations on the statistical characteristics. Then, a coarse-grained analysis is
adopted to reveal the dynamics of two SFS energy fluxes in the RM turbulence. The
evolutions of both deformation work and baropycnal work at different filter scales, within
different regions of the mixing layer, under different fluid motions and with different initial
conditions are examined in detail, aiming to provide a thorough understanding of the
inter-scale energy transfer mechanism in the RM turbulence. The results are also used
to examine the validity of the nonlinear model of baropycnal work (Lees & Aluie 2019)
for the RM turbulence.

2. Numerical set-up

2.1. Governing equations
In the present work, the 3-D compressible N–S equations supplemented by the
conservative mass-fraction equations for N − 1 species (N is the total number of species)
are adopted to describe the RM flow. This model is commonly referred to as the
four-equation model (Thornber, Groom & Youngs 2018) or the mass fraction model
(Abgrall & Karni 2001). The governing equations in conservation form can be written
as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂ρu
∂t

+ ∇ · (ρu ⊗ u + pδ) = ∇ · σ , (2.2)

∂ρE
∂t

+ ∇ · [(ρE + p)u] = ∇ · (σ · u − qc − qd), (2.3)

∂ρYl

∂t
+ ∇ · (ρYlu) = −∇ · J l (l = 1, . . . , N − 1), (2.4)

where ρ, u = [u, v, w]t, p and E = e + 1
2 u · u refer to the density, velocity vector, pressure

and total energy per unit mass of the mixture, respectively; e is the internal energy per unit
mass; ⊗ and δ are the tensor product and Kronecker delta, respectively; and Yl is the mass
fraction of species l with

∑N
1 Yl = 1. With the ideal gas hypothesis and the Dalton’s law

of partial pressures, the equation of state can be given as

p =
N∑

l=1

pl =
N∑

l=1

ρl
R0

Ml
T = ρRT = (γ − 1)ρe, (2.5)

where R = R0/M and R0 = 8.314 J (mol K)−1 are the gas constant and universal gas
constant, respectively; M = (

∑
Yl/Ml)

−1 and T are the molar mass and the temperature
of the mixture, respectively; pl, ρl = ρYl and Ml are the pressure, the density and the molar
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mass of species l, respectively. With the definition,

cp − cv = R =
N∑

l=1

Ylγl

γl − 1
R0

Ml
−

N∑
l=1

Yl

γl − 1
R0

Ml
, (2.6)

the specific heats at constant pressure and constant volume for the mixture are cp =∑
Ylcp,l and cv = ∑

Ylcv,l, respectively, where cp,l = [γl/(γl − 1)]R0/Ml and cv,l =
[1/(γl − 1)]R0/Ml. The specific heat ratio of the gas mixture is γ = cp/cv . For the
Newtonian fluid considered in this work, the viscous stress tensor σ is

σ = 2μS − 2
3
μϑδ, (2.7)

where the strain-rate tensor S = 1
2 [∇u + (∇u)t] and the dilatation ϑ = ∇ · u. The

conductive heat flux qc and the interspecies enthalpy flux qd are defined as

qc = −κ∇T, (2.8)

qd =
N∑

l=1

hlJ l, (2.9)

where the lth-species enthalpy per unit mass is hl = cp,lT , and the mass diffusion flux J l
is given by Groom & Thornber (2021)

J l = −ρDl∇Yl + Yl

N∑
n=1

ρDn∇Yn. (2.10)

In the case of a binary mixture, the mass diffusion coefficients D1 = D2 = D12, and J l
reduces to the Fick’s law,

J l = −ρDl∇Yl. (2.11)

The viscosity (μ) and thermal conductivity (κ) of the mixture are given by (Poling,
Prausnitz & O’Connell 2001)

μ =

N∑
l=1

μlYl/M1/2
l

N∑
l=1

Yl/M1/2
l

, (2.12)

κ =

N∑
l=1

κlYl/M1/2
l

N∑
l=1

Yl/M1/2
l

, (2.13)

where the lth-species viscosity coefficient (μl), thermal conductivity coefficient (κl) and
the mass diffusion coefficient (D12) are calculated according to Tritschler et al. (2014a).
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2.2. Numerical methods
The simulation of RM turbulence involving both discontinuities (e.g. shock wave and
material interface) and complex small-scale regions (e.g. turbulent fluctuations) remains
a great challenge today. The major challenge lies in the simultaneous handling of
discontinuities and turbulent fluctuations, which poses two contradictory demands to
numerical schemes. On the one hand, a certain amount of numerical dissipation should be
introduced into numerical scheme to mitigate spurious oscillations at discontinuities. On
the other hand, to precisely resolve turbulent structures spanning a wide range of scales,
numerical schemes should possess minimal dispersion and dissipation (Hill, Pantano &
Pullin 2006; Pirozzoli 2011), namely, good spectral properties. Moreover, when treating
multi-component flows in the framework of the fully conservative four-equation model,
traditional shock-capturing schemes such as the weighted essentially non-oscillatory
(WENO) scheme (Jiang & Shu 1996) and the WCNS scheme (Deng & Zhang 2000),
which have achieved great success in the simulation of single-fluid flows, would generate
noticeable spurious oscillations at the interface across which there is a sudden jump in
specific heat ratio (Larrouturou 1991; Abgrall 1996; Nonomura & Fujii 2017).

To efficiently capture shock waves and meanwhile to accurately resolve small-scale
turbulent structures, an optimised six-point WCNS with state-of-the-art spectral properties
has been developed recently by Zhou et al. (2023b). The optimisation procedure includes:
(i) two free parameters in WCNS are optimised with the approximated dispersion relation
(ADR) technique (Pirozzoli 2006) that is able to attain the spectral properties of a
nonlinear scheme; (ii) considering nonlinear mechanism has a dramatic influence on the
spectral properties, an advanced nonlinear weighting function of Wong & Lele (2017)
is adopted and its key parameter, C, is optimised for better spectral properties; (iii) the
optimised parameters are adjusted at each grid point according to the flow conditions there
to realise adaptive dissipation. Following this optimisation strategy, a new type of WCNS
with low dispersion and adaptive dissipation is achieved. Several benchmark test cases are
simulated, and the results show that the developed WCNS exhibits state-of-the-art spectral
properties and strong robustness. The optimised WCNS is then extended to multi-species
flows by combining the double-flux algorithm of Abgrall & Karni (2001), and thus is
suitable for simulating the RM turbulence. Note that the double-flux algorithm is not a
conservative numerical method. As analysed by Abgrall & Karni (2001), there exist two
main sources of conservation error for the double-flux algorithm, which have opposite
effects on the solution and can nearly cancel each other out. As a result, it introduces
only a little loss of conservation and produces a negligibly weak influence on the motions
of shock and interface. In previous works (Ding et al. 2017, 2018; Feng et al. 2021; Li
et al. 2022), the double-flux algorithm combined with the fifth-order WENO scheme has
exhibited its ability to reproduce experimental results for various RM instability problems.
It is also worth noting that the family of low-dissipation WCNSs has gained great success
in the simulation of RM turbulence (Wong, Livescu & Lele 2019; Wong et al. 2022; Zhou
et al. 2023a).

The present work employs this optimised WCNS to discretise the hyperbolic part
of the governing equations (2.1)–(2.4). Specifically, in the interpolation step, the
characteristic-wise interpolation of primitive variables is adopted. For the flux difference
splitting technique, the Harten–Lax–van Leer–Contact (HLLC) approximate Riemann
solver is employed to calculate the flux at the midpoint, which is based on the three-wave
assumption and suitable for multi-component compressible flows (Toro 2019). The wave
speeds estimation method of Einfeldt et al. (1991) and the pressure-control technique of
Xie et al. (2019) are used for the HLLC. The spatial derivatives of fluxes are calculated by
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the robust sixth-order midpoint-and-node-to-node difference scheme of Deng et al. (2015).
For more details about the WCNS scheme, the readers are referred to Zhou et al. (2023b).

For the parabolic part of the governing equations (2.1)–(2.4), the viscous term, the
diffusion term and the heat conduction term are written in a non-conservative form during
the discretisation process. This is analogous to the method adopted by Subramaniam,
Wong & Lele (2019) when isolating the Laplace operators (Nagarajan, Lele & Ferziger
2003; Pirozzoli 2010),

∇ · σ = μ(∇2u + ∇ϑ) + 2S · ∇μ − 2
3μδ · ∇ϑ − 2

3ϑδ · ∇μ, (2.14)

∇ · (σ · u) = u · (∇ · σ ) + σ : ∇u, (2.15)

∇ · qc = −κ∇2T − ∇T · ∇κ, (2.16)

∇ · qd =
N∑

l=1

(∇hl · J l + hl∇ · J l), (2.17)

∇ · J l = −ρD12∇2Yl + ρ∇D12 · ∇Yl + D12∇ρ · ∇Yl, (2.18)

where ∇ϑ is also written in the isolated form,

∇ϑ = ∂2ui

∂x2
i

+
∑
k /= i

∂2uk

∂xi∂xk
. (2.19)

Note the indicators, i and k, repeated in (2.19) do not represent Einstein summation. This
approach solves directly the second derivatives instead of solving first derivatives two
times, which can effectively improve the accuracy of the viscous damping on the highest
resolvable wavenumber of the mesh (Lele 1992). In (2.14)–(2.18), the first derivatives are
computed with the fourth-order centre-difference scheme, whereas the second derivatives
are computed with an optimised fourth-order nonlinear scheme proposed by Li et al.
(2016). The explicit third-order total variation diminishing Runge–Kutta method is adopted
for time integration.

At the boundaries of the computational domain, the ghost cell approach is employed.
This enables the use of the same stencil and numerical scheme as those used in the
interior grids, and also facilitates the communication in the message passing interface
(MPI) parallelisation. At the ghost nodes, the conserved variables are assigned based on
the known values at the interior nodes according to specific physical boundary conditions
(Fu 2021; Wu et al. 2021). It should be pointed out that for the outflow boundary condition,
the standard zero-gradient extrapolation may result in spurious nonphysical reflection of
the outgoing waves (Motheau, Almgren & Bell 2017). Numerous non-reflecting boundary
conditions (NRBCs) have been developed to address this issue (Manco & de Mendonca
2019). One simple and effective method is the buffer-zone-based NRBC, in which a
buffer zone with artificial damping is set adjacent to the boundary of the physical zone.
Buffer zone methods are generally classified into two categories: implicit and explicit.
In the implicit approach, a damping function related to the location of the computational
domain is incorporated into the governing equations, whereas in the explicit approach
the damping function is directly applied to the flow solution. The implicit method, which
is less sensitive to the time-step size compared with the explicit method (Gill, Fattah &
Zhang 2015), is adopted throughout the present simulations, which can be expressed as
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(Mani 2012)

∂Q
∂t

+ F − Fν

∂x
+ G − Gν

∂y
+ H − Hν

∂z
= −σd(x)(Q − Qtarget). (2.20)

The left-hand side of the equation corresponds to the governing equations (2.1)–(2.4)
in vector form. Here, Q is a conserved variable; F , G and H are the convective flux
components in the x, y and z directions, respectively; F ν , Gν and Hν are the summation of
the viscous, diffusive and heat conduction fluxes in the x, y and z directions, respectively.
The damping term on the right-hand side of the equation operates solely in the buffer
zone, which can facilitate the transition of the flow solution Q to the target solution Qtarget
by using the artificial damping σd. In this work, the damping function of Hu, Morfey &
Sandham (2003) is utilised, which is defined as

σd(xb) =
[

1 + exp
(

1
xb − 1

+ 1
xb

)]−1

. (2.21)

Here, xb = (x − xbs)/(xbe − xbs) is the relative coordinate in the buffer zone with xbs being
the starting point of the buffer zone and xbe being the end point. Within the physical
domain, σd = 0. Inside the buffer zone, the grid-stretching approach of Colonius, Lele &
Moin (1993) is adopted to obtain a larger sponge without increasing the computational
cost.

2.3. Computational set-up
As shown in figure 1, the physical domain is a cuboid with dimensions of 2L0 × L0 ×
L0 (L0 = 10 mm) in the x, y and z directions, respectively. The domain is connected to
two buffer zones at the two ends of the x direction, respectively. In each buffer zone, the
mesh is deliberately stretched. The computational boundaries parallel to the x direction
take the periodic boundary condition, and the boundaries perpendicular to x direction
take the outflow boundary condition (i.e. zero-gradient extrapolation). A right-moving
planar shock wave with Mach number Ma = 1.5 is initially set at x = −L0/4 in air. The
pre-shock pressure is p = 101325 Pa and the temperature is T = 298.15 K. The post-shock
flow is given according to the Rankine–Hugoniot relations. A multi-mode interface that
separates air and SF6 is initially positioned at x = 0.11L0. The pre-shock Atwood number
is At = 0.67, where Atwood number is defined as At = (ρ2 − ρ1)/(ρ2 + ρ1) with ρ1 and
ρ2 being the densities of air and SF6, respectively. To prevent the interface from exiting the
physical domain, a background velocity 
U = −158.38 m s−1 is prescribed for the flow.
This background velocity is equal in value to the velocity jump of the interface imparted
by the incident shock impact, which can be calculated with one-dimensional (1-D) gas
dynamics theory. In this way, the shocked interface evolves at the centre of the domain.
In the present simulation, γ1 = 1.4 and M1 = 28.964 g mol−1 for air, γ2 = 1.094 and
M2 = 146.055 g mol−1 for SF6.

The multi-mode interface is created with the flexible approach of Groom & Thornber
(2020), which has a power spectrum of

P(k) =
{

Ckm, kmin < k < kmax,
0, otherwise, (2.22)

where k =
√

k2
y + k2

z is the radial wavenumber. The coefficient C governs the magnitude of

the mean standard deviation, whereas the parameter m (where m ≤ 0) determines the slope
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Figure 1. Schematic of the computational domain.
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Figure 2. Initial density spectrum at the mixing layer centre.

of the perturbation distribution. The values of kmin and kmax determine both the range,
denoted as (kmin, kmax), and the bandwidth, denoted as R = kmax/kmin, of the perturbation.
To investigate the influence of initial condition (especial the large- and small-scale
perturbations) on the RM turbulence, three cases with different perturbation spectra are
set in the present simulations. For cases 1, 2 and 3, their initial perturbation ranges are
kn ∈ (24, 40), kn ∈ (16, 48) and kn ∈ (2, 64), respectively. Here, kn = (L0/2π)k denotes
the dimensionless radial wavenumber. The initial perturbation bandwidths are 5/3, 3 and
32 for cases 1, 2 and 3, respectively. For all three cases, the total standard deviation of the
perturbation is σ0 = 0.5λmin and m = 0. The interface has an initial diffusion thicknesses
of λmin/4 for each case. The initial density spectra at the centre of the interface for cases
1, 2 and 3 are given in figure 2. These cases exhibit two notable features: first, their
initial bandwidths increase progressively from case 1 to case 3; second, the latter case
encompasses the perturbation range of the former, extending to both larger and smaller
scales. The grid resolution in the physical domain is 1024 × 512 × 512. A grid sensitivity
study is given in the Appendix to show the uncertainty of the simulation results.

Achieving a high Reynolds number is an important goal in the study of RM turbulence
(Zhou et al. 2019). Despite the rapid development of high-performance computing,
it remains a great challenging to perform direct numerical simulation and large-eddy
simulation of RM turbulence with high Reynolds number, except for the implicit
large-eddy simulation of the high-Reynolds-number limit (Zhou et al. 2021). The Taylor
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Reynolds number, ReλT = 〈u′′
r 〉yz〈λT〉yz/〈ν〉yz, is examined for each case. Here, u′′

r , λT and
ν are the radial velocity fluctuation, Taylor scale and kinematic viscosity, respectively
(Zhou et al. 2023a). Note ϕ′′ = ϕ − 〈ϕ〉F is the fluctuation under Favre average, 〈ϕ〉F =
〈ρϕ〉yz/〈ρ〉yz, and 〈·〉yz refers to the spatial average in the yz plane. It is found that ReλT
presents identical values for cases 1 and 2, and a slightly higher value for case 3 due to
the deposition of large-scale energy there. For these cases, ReλT decreases gradually from
ReλT ≈ 120 immediately after shock passage to ReλT ≈ 30 at the end of simulation. This
value is at level of Tritschler et al. (2014b), but lower than the highest value in Groom &
Thornber (2021). The continuous drop in Reynolds number is ascribed to the absence of
energy source after the initial shock–interface interaction.

3. Characteristics of the mixing layer

In this section, we investigate the characteristics of the mixing layer from various aspects
with several different analytical tools. Special attention is paid to the comparison in
turbulence characteristics within the mixing layer among different cases to illustrate the
initial condition influence.

The reference quantities used for non-dimensionalisation are calculated first. For an
interface with the power spectrum in (2.22), its weighted average wavenumber, k̄n, is
calculated by

k̄n =

√∫ ∞

0
k2P(k) dk√∫ ∞

0
P(k) dk

= kmax

√
1
3

(
1 + 1

R
+ 1

R2

)
. (3.1)

The corresponding wavelength is λ̄ = 2π/k̄ = L0/k̄n. Here, the values of k̄n are 32.3316,
33.3067 and 37.5411 for cases 1, 2 and 3, respectively. The initial growth rate of the integral
mixing width for this type of interface can be expressed as (Thornber et al. 2017; Groom
& Thornber 2021)

Ẇ0 = 0.564k̄At+σ+
0 
U, (3.2)

where the post-shock Atwood number is At+ = 0.73, and the post-shock standard
deviation of the perturbation is σ+

0 = (1 − 
U/Us)σ0 with Us being the velocity of the
incident shock. The mean post-shock density is ρ̄+ = (ρ+

1 + ρ+
2 )/2. The timescale λ̄/Ẇ0

is used to calculate the dimensionless time.

3.1. Growth of mixing layer
The mixing layer at late stages visualised from both the bubble and spike sides for cases
1 and 3 are shown in figure 3. Due to the presence of secondary instabilities, such as
the KH instability, the bubbles with an initially rounded shape develop into numerous
small irregular creases, and meanwhile the necks of the spikes undergo elongation and
twisting. It is interesting that several faster-growing individual spikes behave like vortex
rings, carrying a small amount of heavy fluid out of the mixing layer, which is consistent
with the observation of Youngs (2004). It is found that cases 1 and 2 present more such
fast-growing spikes than case 3. The leading fronts of bubbles and spikes, Fb(s), which are
defined as the streamwise positions that represent 1 % volume fraction of air and SF6 on
the iso-surfaces, respectively, can be extracted (Thornber et al. 2017). Figure 4 shows the
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(a) (b)

Figure 3. Iso-surface of mass fraction for (a) case 1 at τ ≈ 43.94 and (b) case 3 at τ ≈ 44.20. Blue
(YSF6 = 0.01) and red (YSF6 = 0.99) correspond to spikes and bubbles, respectively.

contours of bubble and spike fronts at early and late stages for cases 1 and 3. As we can see,
the bubbles have undergone multiple generations of bubble merging, whereas the spikes
develop into distinct vortex rings. The experimental results of Balakumar et al. (2012) and
Balasubramanian, Orlicz & Prestridge (2013) showed that the mixing layer maintains the
memory of initial large-scale perturbation even at the latest time of their experiments. To
quantify this imprint, the correlation coefficients of bubble and spike fronts with respect
to the initial distributions are calculated, which are defined as

Ib(s) = 〈Fb(s),τ Fb(s),0〉 − 〈Fb(s),τ 〉〈Fb(s),0〉
[(〈F2

b(s),τ 〉 − 〈Fb(s),τ 〉2)(〈F2
b(s),0〉 − 〈Fb(s),0〉2)]1/2

. (3.3)

Note higher values of Ib(s) indicate more retention of the initial perturbation information.
As shown in figure 5(a), the memory of the initial perturbations is forgotten faster and
more for cases 1 and 2 than case 3, which implies that the large-scale perturbations are
more persistent in the RM turbulence. It is also found that spikes retain a slightly stronger
imprint about initial condition than bubbles.

The mean bubble wavelength can be calculated from figure 4 using the method of
Dimonte et al. (2004). The first step is to obtain the autocorrelation function of the bubble
front,

ηb(y, z) =
∑

y′,z′(Fb(y′, z′) − 〈Fb〉)(Fb(y′ + y, z′ + z) − 〈Fb〉)∑
y′,z′(Fb(y′, z′) − 〈Fb〉)2 . (3.4)

Next, the mean diameter of the bubbles is estimated by identifying the radial position at
which the azimuthally averaged value of ηb, 〈ηb〉(r) = 〈ηb(y, z)〉|

r=
√

x2+y2 , is less than
0.3, i.e. 〈Db〉 = r[〈ηb〉(r) < 0.3]. The threshold of 0.3 is determined by testing the images
containing objects with known diameters (Ramaprabhu, Dimonte & Andrews 2005).
Finally, the mean bubble wavelength is calculated with the relationship suggested by Daly
(1967),

〈λb〉 ≈ 〈Db〉(ρ+
h + ρ+

l )/ρ+
h , (3.5)

where ρ+
h and ρ+

l are the post-shock densities of the heavy and light gases, respectively.
Combining the bubble front snapshot in figure 4 with the bubble wavelength evolution in
figure 5(b), a possible physical scenario for the evolution of bubbles is presented as follows.
After the impact of the incident shock, the bubble size experiences a rapid increment in
all three cases. Later, as the bubbles are laterally squeezed, the bubbles in case 1 shrinks
briefly, i.e. reduces in size. The squeezing process can also cause the inversion of the
leading and trailing positions of the bubble front. This explains the negative correlation
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Figure 4. Contours of bubble and spike fronts.
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Figure 5. Temporal evolutions of (a) the initial perturbation imprint measured by Ib(s) and (b) the mean
bubble wavelength 〈λb〉 calculated by (3.5).

coefficient for case 1, as given in figure 5(a). For case 3, the existence of large-scale
perturbations provides more space for small bubbles to expand, and thus the mean bubble
size remains invariant for a certain period of time. The bubble size in case 2 falls between
these two cases. At late stages, the bubble merging becomes pronounced, leading to the
sustained growth of bubble size for all three cases.

The approach described in (3.4) and (3.5) extracts the dominant bubble wavelengths.
As a supplement, we introduce Voronoi diagrams of bubble tips (Oron et al. 2001) to
describe the bubble sizes more finely. Voronoi diagrams are a specific spatial tessellation
that divides space into unique cells associated with each particular point (Ferenc & Néda
2007; Monchaux, Bourgoin & Cartellier 2010). Each Voronoi cell contains the space
that is closer to the corresponding particular point than to any other point. The Voronoi
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analysis has a wide range of applications in the field of fluid mechanics, such as describing
the clustering of inertial particle (Monchaux et al. 2010; Brandt & Coletti 2022) and
the distribution of vortices (Osawa et al. 2021; Ding et al. 2023). In the RM and RT
instabilities, this approach can be used to visualise the distribution of the bubbles (Kartoon
et al. 2003).

Figure 6(a–d) displays the 2-D Voronoi diagrams of bubbles for cases 1 and 3. To
ensure closure of all sub-areas at the domain boundaries, ghost bubble tips based on
periodicity are introduced (Jayaram et al. 2020). It is seen that large bubbles in figure 4
are partitioned into several smaller bubbles in figure 6(a–d) due to their non-smoothness.
Therefore, this approach primarily measures the features of small bubbles. The probability
density function (p.d.f.) of the bubble size can be obtained from the Voronoi diagrams,
as shown in figure 6(e). The area of each Voronoi cell, S, is normalised by the mean
value, 〈S〉 = Sd/Np, where Sd and Np are the total area of the domain and the number of
bubble tips, respectively. In d-dimensional space (d = 1, 2, 3), the p.d.f. of the normalised
Voronoi cell sizes for entities spatially distributed as a random Poisson process is well
described by the Γ distribution (Ferenc & Néda 2007),

pΓ (y) = [(3d + 1)/2](3d+1)/2

Γ [(3d + 1)/2]
y(3d−1)/2 exp(−[(3d + 1)/2]y), (3.6)

where Γ (y) is the Gamma function. It is found that the distribution of bubble sizes
approximately follows a random Poisson process for all three cases. This finding is
useful for the bubble merger model (Alon, Shvarts & Mukamel 1993; Alon et al. 1994,
1995). As illustrated in figure 6( f ), the standard deviation of the normalised Voronoi
areas of the bubble tips, σS/〈S〉, is slightly higher than the value of the Γ distribution,
σΓ = √

2/(3d + 1), particularly for case 3, which indicates the ‘clustering’ of bubbles
(Monchaux et al. 2010; Tagawa et al. 2012). The increasing trend also reflects the
increasing bubble merging. Figure 6(g) shows the results of the second measurement of
bubble wavelength,

〈λb〉 ≈
√

〈S〉
π

, (3.7)

which is more representative of small bubbles as mentioned earlier. The results indicate
that there are many smaller bubbles produced at early times, which is particularly evident
in case 1 and relatively weak in case 3. This may be the reason for the early decrease in
the bubble wavelength for case 1, as shown in the first measurement in figure 5(b). Upon
observing the proximity of the starting point of the increase in figure 6( f,g), it is found that
bubble merging derives the growth of bubble size. It is important to note that, although
two distinct approaches are employed to measure bubble sizes, aiming to enhance the
robustness of our conclusions regarding bubble size evolution, factors such as diffusion,
bubble tilting and coverage collectively diminish the effectiveness of these measurements,
particularly in the early stages of establishing self-similar order.

For the entire mixing layer, the mixing width can be calculated by integrating the
averaged volume fractions (e.g. Thornber et al. 2010),

W =
∫

4〈 f1〉yz〈 f2〉yz dx. (3.8)

Note the evolutions of the mixing width for cases 1 and 3 have been reported in our
previous work (Zhou et al. 2023a). Here, it is found that the mixing width in case 2 is
nearly identical to that of case 1. In addition, the growth rate of the mixing width, θ ,
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Figure 6. (a–d) Voronoi cells (blue lines) of bubble tips (red dots). Data are from (a,b) case 1 and (c,d) case 3
at (a,c) τ ≈ 4 and (b,d) τ ≈ 44. Localised diagrams are used for clarity. (e) The p.d.f. of normalised Voronoi
areas S/〈S〉. Open symbols: τ ≈ 4. Solid symbols: τ ≈ 44. ( f ) Temporal evolution of scaled standard deviation
σS/〈S〉/σΓ . (g) Temporal evolution of the mean bubble wavelength 〈λb〉 calculated by (3.7).

has a fitted value of 0.220 in case 2 that is nearly identical to 0.211 in case 1, whereas
the fitted value of θ in case 3 is notably higher (θ = 0.333) (Zhou et al. 2023a). The
value of θ in the broadband case is lower than the model prediction value 0.4 (Youngs
2004; Soulard et al. 2018). One possible reason is that the total standard deviation of the
perturbation is fixed at σ0 = 0.5λmin for reaching the turbulent state faster, which violates
the early linearity-ensuring (Thornber et al. 2010; Groom & Thornber 2020). Therefore,
simulations in the present work deviate to some extent from the linear assumption adopted
by the model. This may be a reason for the discrepancy between the present simulation
and the model prediction. In addition, limited bandwidth for the present simulations may
also have a certain influence on the value of θ (Groom & Thornber 2020). It indicates that
the mixing width evolution tends to remain the same if the initial perturbation bandwidth
is narrowed towards a high wavenumber, revealing an insensitivity of the RM mixing layer
to initial perturbations. This finding is consistent with the theoretical proposal of Elbaz
& Shvarts (2018) and Soulard et al. (2018). They found that the evolution of the mixing
width is influenced by both the characteristics of large-scale structures and the nonlinear
interactions of small-scale structures, and the sole presence of small-scale structures
could lead to similar evolution results for cases with narrowband, short-wavelength
perturbations. A detailed explanation of the similarity between case 1 and case 2 is given
hereinafter from various perspectives.
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3.2. Turbulent kinetic energy
For the RM turbulence, the shock–interface interaction is the primary source of kinetic
energy. The kinetic energy deposited at the early stage is subsequently transferred to
various scales and ultimately dissipated into internal energy by viscosity in an irreversible
manner. It has been found that the RM turbulence at the self-similar stage is analogous to
the decaying turbulence (Thornber & Zhou 2012; Tritschler et al. 2014b), and the growth
rate exponent θ of the mixing width is closely related to the decay rate exponent n of TKE,

n = 2 − 2θ. (3.9)

This relationship can be obtained through dimensional analysis (Thornber et al. 2010),√
TKE ∝ dW/dt ∝ tθ−1. The decay rate of the integral TKE (ITKE) can be estimated by

utilising the mean TKE in conjunction with the mixing width W, i.e. ITKE ∝ W ∗ TKE ∝
t−(n−θ), where

ITKE =
∫

TKE(x)L2
0 dx, TKE(x) =

〈
1
2
ρu′′

i u′′
i

〉
yz

. (3.10a,b)

Both ITKE and TKE (shown here with its maximum value) experience an exponential
decay that is compatible with (3.9) at late stages, as seen in figure 7. It is also found that,
the curves here for case 1 and case 2 almost collapse with each other.

Figure 8 displays the spatial distribution of the mean TKE along the x axis for the three
cases, where the horizontal coordinate is normalised with the mixing width W and the
mixing layer centre xc (Walchli & Thornber 2017) that is determined by∫ xc

−∞
〈 f2〉 =

∫ ∞

xc

〈 f1〉 dx. (3.11)

It is shown that the peak of the mean TKE does not occur at the centre of the mixing layer,
but is biased towards the spike side (i.e. (x − xc)/W < 0), similar to the asymmetric results
of Groom & Thornber (2023). It indicates that turbulent fluctuations are more active in the
spike region. As time proceeds, the distribution curves for the three cases deviate. The
curves for case 1 and case 2 exhibit greater irregularity with longer and more complex
tails on the spike side, whereas the curve for case 3 is closer to the Gaussian curve with
a smoother tail. This is consistent with the observation in figure 3 that for cases 1 and 2
there are numerous small vortex rings ejected from the head of fast-growing spikes, and
their scaling behaviour differs from the rest region of the mixing layer (Thornber et al.
2019). The distribution curves of TKE for the three cases converge when τ > 30, which
indicates the reach of a self-similar state.

3.3. Mixing measures
To quantify the mixing degree within the mixing zone, two mixing metrics are introduced:
the molecular mixing fraction Θ (Youngs 1991) and the mixing parameter Ξ (Cook &
Zhou 2002; Thornber et al. 2010), which are respectively given by

Θ =

∫
〈 f1f2〉 dx∫

〈 f1〉〈 f2〉 dx
, (3.12)
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Figure 7. Temporal evolutions of TKE for (a) case 1, (b) case 2 and (c) case 3. The dash-dotted and dashed
lines represent ∝ τ−(2−2θ) and ∝ τ−(2−3θ), respectively, where θ is assigned the fitted value.

Ξ =

∫
〈min( f1, f2)〉 dx∫

min(〈 f1〉, 〈 f2〉) dx
. (3.13)

As shown in figure 9, for each case, Θ and Ξ have similar evolution trends and asymptotic
values. The curves for cases 1 and 2 almost overlap, whereas the curve for case 3 has a
lower asymptotic value and enters the plateau stage earlier (τ ≈ 20 for case 3, τ ≈ 30 for
cases 1 and 2). The emergence of the plateau stage also indicates the self-similar evolution
of the mixing layer. According to the theory of Soulard et al. (2018), there is a relationship
between the molecular mixing fraction Θ and the growth rate exponent θ of the mixing
width:

Θ1 = 2 − 3θ

2 + (np − 3)θ

(
θ ≤ 2

3

)
, (3.14)

where the coefficient np is related to the proportional contribution of large and small scales
to the energy and concentration spectra. Equation (3.14) illustrates that Θ decreases as
θ increases, namely, the degree of mixing is inversely related to the growth rate of the
mixing layer. This finding aligns with the results depicted in figure 9, wherein case 3 with
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Figure 8. The profiles of plane-averaged TKE along the x-direction for (a) case 1, (b) case 2 and (c) case 3 at
various moments.

broadband perturbations exhibits a higher mixing width growth rate but a lower mixing
degree.

By applying mathematical analysis of partial differential equations, Doss (2022)
examined the mass transport within a decaying turbulence field, which is a specific critical
class balanced between wave-like convection and heat-like diffusion. The author then
extended this theory to the RM turbulence, obtaining a relationship between the molecular
mixing fraction and the diffusion parameter μ = n(2Cθ − 1)/(2 − n):

Θ2 = 1 − μc

μ
= 2Cθ − 1 − (2Cθ − 1 + μc)θ

(2Cθ − 1)(1 − θ)
, (3.15)

where Cθ is the Monin constant (Pope 1994) and μc = 1. Although models (3.14) and
(3.15) are developed with two different methods and assumptions, they can match if the
free parameters of one model are adjusted to the conventions of the other (Doss 2022). The
connection between Θ and θ for the three cases at the plateau stage is given in figure 10,
where the prediction curves of models (3.14) and (3.15) are also provided. It is worth noting
that these curves collapse perfectly when the value of np in the former model is set to 1.0
and the value of Cθ in the latter model is adjusted to 3/2. At the plateau stage, all numerical
results fall within the range between the two models and also show consistent variation
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Figure 9. Temporal evolutions of (a) the molecular mixing fraction, Θ , and (b) the mixing parameter, Ξ .

1.0

0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8
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Case 1

Case 2

Case 3

Figure 10. Variations of the molecular mixing fraction, Θ , vs the mixing width growth rate, θ . The solid and
dash-dotted lines represent the relationship curves obtained by taking np in (3.14) as that in (3.9) and 1.1,
respectively; the dashed line represents the curve obtained by using Cθ = 3/2 in (3.15). The symbols denote
the values of Θ at the plateau stage.

trend with the model predictions. This suggests again that the mixing layer grows more
slowly, but more efficiently, for cases with narrowband, short-wavelength perturbations.
The present finding demonstrates the validity of the theoretical models.

In addition, the mixing level can be assessed by calculating the p.d.f. of YSF6 within the
mixing zone. For a dataset of physical quantity ϕ, dividing its values equally into Nb bins
within the range [ϕmin, ϕmax], the discrete p.d.f. of ϕ in the kth bin is

p.d.f. = Nk

(
ϕ)N
, (3.16)

where N and Nk are the total number of data points within the dataset and the
kth bin, respectively. Here 
ϕ = (ϕmax − ϕmin)/Nb represents the bin spacing, and∑Nb

k=1 p.d.f.
ϕ = 1. In this work, Nb = 64 is adopted, and the dataset is taken as the data
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in the inner mixing zone (IMZ), where the IMZ is defined as the set of cross-flow planes
satisfying the following condition (Tritschler et al. 2014a):

4〈Y〉yz(1 − 〈Y〉yz) ≥ 0.9. (3.17)

Figure 11 displays the p.d.f.s of the mass fraction of SF6 in the range 0.1 ≤ YSF6 ≤ 0.9
at the post-shock moment (τ ≈ 0.3), the early stage (τ ≈ 4), the transition stage (τ ≈ 15)
and the plateau stage (τ > 30) for all three cases. It should be noted that in the p.d.f. curve
of YSF6 , the mixing degree is higher for a single peak than for double peaks. In addition,
for the single peak situation, the mixing is higher when the peak is narrower (i.e. smaller
variance) and the tail is thinner (i.e. lower kurtosis). At τ ≈ 0.3, the p.d.f.s of YSF6 show
a distinct bimodal distribution with two peaks at the boundaries, which indicates that the
fluids in the IMZ are in a nearly separated state. At τ ≈ 4, the curves for all three cases
converge to a state with a single peak, whose position leans toward the heavy fluid side.
The presence of tail buckling in the curves suggests the existence of a substantial amount
of pure, unmixed fluids at this moment. At the transition stage (τ ≈ 15), the two gases in
the IMZ have already reached a high degree of mixing, and the p.d.f. curves show a nearly
Gaussian distribution around YSF6 = 0.5. At the plateau stage (τ > 30), the p.d.f. within
the IMZ maintains the Gaussian distribution. Afterwards, the peak value decreases and
the tail widens, indicating the transfer of partially mixed fluids from the border of mixing
zone into the IMZ for further mixing. In addition, the p.d.f.s of SF6 within the IMZ tend to
converge to a single curve for each case, which implies a dynamic equilibrium between the
expanding mixing zone and the mixing occurring within the mixing layer. It is found that
case 3 exhibits a lower level of mixing within the IMZ than cases 1 and 2, which aligns
with the aforementioned finding.

3.4. Anisotropy and inhomogeneity
The RM turbulence is highly anisotropic and inhomogeneous due to the inherent
directionality of both the moving shock wave and the initial perturbations. The evolutions
of anisotropy, characterised by the ratio of velocity fluctuations in different directions
(Tritschler et al. 2014a), and inhomogeneity, measured by density self-correlation (DSC)
(Besnard et al. 1992), within the mixing zone (0.01 ≤ 〈Y〉yz ≤ 0.99) for all three cases are
plotted in figure 12. The two quantities are defined, respectively, as

a = |u′′|
|u′′| + |v′′| + |w′′| − 1

3
, (3.18)

b = −
〈(

1
ρ

)′
ρ′

〉
=

〈
1
ρ

〉
〈ρ〉 − 1. (3.19)

The value of a ranges from −1/3 to 2/3. The lower and upper limits correspond to
the absence of TKE in the streamwise and spanwise directions, respectively. The value
of a = 0 corresponds to an isotropic state. DSC is a non-negative parameter. Its zero
value corresponds to homogeneous mixing, and higher DSC values indicate increased
spatial inhomogeneity and a lower degree of mixing. At the late stage, the RM turbulence
decreases in anisotropy with time. Despite this, the RM turbulence seems hard to reach
complete isotropy as suggested by the curve variation tendency (Tritschler et al. 2014a;
Thornber et al. 2017; Sewell et al. 2021). The indicators of anisotropy and inhomogeneity
reach stable values at the self-similarity stage, but are different among the three cases.
Specifically, the degree of anisotropy and inhomogeneity is higher for case 3 than for
cases 1 and 2, and the evolution curves for cases 1 and 2 almost overlap. The asymptotic
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Figure 11. The p.d.f.s of SF6 mass fraction, YSF6 , within the IMZ for (a) case 1, (b) case 2 and (c) case 3.

values for both cases 1 and 2 are 〈a〉MZ ≈ 0.087 and 〈b〉MZ ≈ 0.077, whereas the
asymptotic values for case 3 are 〈a〉MZ ≈ 0.119 and 〈b〉MZ ≈ 0.155. Since a and b are
large-scale metrics, this result is consistent with the fact that case 3 has initial large-scale
perturbations.

4. Inter-scale energy transfer

One of the main objectives of the present study is to examine the inter-scale energy transfer
in RM turbulence. In particular, the difference in the inter-scale energy transfer among
cases 1, 2 and 3, where the energy is initially deposited at different scales, are analysed.
For this purpose, a coarse-graining approach is adopted to expose the inter-scale energy
fluxes at selected specific scales.

4.1. Coarse-grained method
The coarse-graining approach, which has the same form as the modelling of large-eddy
simulation of turbulence, was intended primarily to probe the sub-scale physical processes
(Germano 1992; Aluie 2013). When a field f (x) is subjected to low-pass filtering, it retains
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Figure 12. Temporal evolutions of (a) the mean anisotropy, 〈a〉MZ , and (b) DSC, 〈b〉MZ , within the mixing
zone.

only the scales with sizes ≥ �. This process can be regarded as an n − D convolution

f̄ (x) = G� � f =
∫

dnrG�(x − r)f (r), (4.1)

where G(r) is the normalised convolution/filtering kernel, i.e. for dimensionless s,∫
dnsG(s) = 1. To achieve filtering, the real function G(r) should exhibit a rapid decay

as r becomes larger. Here G�(r) ≡ �−nG(r/�) is the n-dimensional; dilation kernel for
G(r) and its main support is within the region of diameter �. Thus, (4.1) can be regarded
as a local spatial average. After the coarse graining, the field f (x) is decomposed into
a large-scale (� �) component f̄ � and a small-scale (� �) component f ′

� = f − f̄ �. In
this work, we adopt the Gaussian filter kernel, which is commonly used in physical space
filtering:

G�(x − r) =
( γ

π�2

)n/2
exp

(
−γ |x − r|2

�2

)
, (4.2)

where γ is a constant that usually takes the value γ = 6, and the standard deviation is σ =
�/

√
2γ . The Gaussian filter kernel remains positive in the physical space, thereby avoiding

the occurrence of unphysical negative densities during the filtering process (Wang et al.
2018). The proper scale decomposition for variable-density flows is not as straightforward
as it is for incompressible flows. A more suitable approach in such cases is the utilisation
of Favre filtering (Garnier, Adams & Sagaut 2009)

f̃ = ρf /ρ̄. (4.3)

As shown by Aluie (2013) and Zhao & Aluie (2018), the Favre filtering satisfies the inviscid
criterion for arbitrarily large density variations.

Subsequently, the budget for kinetic energy at large scales (� �) can be derived by
filtering the momentum equation in the N–S equations

∂t

(
ρ̄

|ũ�|2
2

)
+ ∇ · J � = −Π� − Φ� − D� + ε

inj
� , (4.4)
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(J�)j = ρ̄
|ũ|2

2
ũj + p̄ũj + ũiρ̄τ̃ (ui, uj) − ũiσ̄ij, (4.5)

Π� = −ρ̄∂jũiτ̃ (ui, uj), (4.6)

Φ� = −p̄�∇ · ũ�, (4.7)

D� = ∂jũiσ̄ij, (4.8)

ε
inj
� = ũiρ̄F̃i, (4.9)

where J �, Φ�, D� and ε
inj
� are the spatial transports for the kinetic energy, the large-scale

pressure dilatation, the viscous dissipation and the kinetic energy injection, respectively.
Here τ̃ ( f , g) ≡ (̃ fg)� − f̃�g̃� is the second-order generalised central moment for the fields
f (x) and g(x) (Germano 1992). We use Π� to denote the inter-scale energy flux (also
known as SFS energy flux) in the budget (4.4), which is produced by the large-scale strain
∂jũi against the small-scale turbulent stress ρ̄τ̃ (ui, uj) (Aluie 2011) and thus referred to as
the deformation work. This form of large-scale kinetic energy budget is commonly used in
turbulence studies, especially for incompressible flows. Recent studies (Aluie 2011, 2013)
found that there is another pathway of energy transfer between scales for compressible
flows, which is concealed in the form of (4.4). In fact, the derivation of (4.4) takes ũi∂ip̄ in
the following form

ũi∂ip̄ = ∂i(ũip̄) − p̄∂iũi. (4.10)

Rewritten in another equivalent form, namely

ũi∂ip̄ = 1
ρ̄

∂ip̄τ̄ (ρ, ui) + ∂i(p̄ūi) − p̄∂iūi, (4.11)

(4.4) can be transformed to

∂t

(
ρ̄

|ũ�|2
2

)
+ ∇ · J � = −Π� − Λ� − Φ� − D� + ε

inj
� . (4.12)

The spatial transfer and pressure-dilatation terms in the above equation become

(J�)j = ρ̄
|ũ|2

2
ũj + p̄ūj + ũiρ̄τ̃ (ui, uj) − ũiσ̄ij, (4.13)

and

Φ� = −p̄�∇ · ū�, (4.14)

respectively. The rest of the terms with the same notation as in (4.4) remain unchanged.
Another inter-scale energy flux, newly derived in (4.12), is called baropycnal work, which
has the form

Λ� = 1
ρ̄

∂jp̄τ̄ (ρ, uj). (4.15)

This term arises from the action of large-scale pressure gradient ∂jp̄/ρ̄ on the small-scale
turbulent mass flux τ̄ (ρ, uj), which is present only in flows with density variation. In (4.12),
the positive Π� and Λ� denote the forward transfer of TKE from large scales (� �) to small
scale (� �), whereas the negative versions denote the inverse transfer of TKE from small
scale (� �) to large scale (� �).
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Figure 13. Temporal evolutions of (a) deformation work, Π�, and (b) baropycnal work, Λ�, at three filter scales
within the mixing zone. Absolute values are plotted using lines for positive data and symbols for no-positive
data. The red, yellow and blue represent the results for case 1, case 2 and case 3, respectively. All results in the
figure have been normalised by ρ̄+(
U)3/λ̄.

4.2. Inter-scale energy fluxes
This subsection focuses on the evolutions of the two inter-scale energy fluxes in budget
(4.12) with filter scales of k� = 16, k� = 32 and k� = 48. As illustrated in figure 2, the
scale k� = 32 is initially involved for all three cases, and k� = 16 and k� = 48 represent the
upper and lower limits of the initial perturbation spectrum in case 2. Temporal evolutions
of the two inter-scale energy fluxes averaged in the mixing zone at the filter scales k� = 16,
k� = 32, and k� = 48 are plotted in figure 13. It should be noted that the data are plotted in
log–log scale. When 〈Π�〉MZ and 〈Λ�〉MZ are non-positive, they hold no meaning and thus
are plotted by their absolute values in the figure. In figure 13(a), the deformation work at all
three scales exhibits an inverse transfer at the early stage, then shifts to the forward transfer.
It indicates that vorticity initially deposited at the interface forms large vortical structures
at the early stage and, subsequently, small vortical structures are generated as a result of
the deformation process. As shown in figure 13(b), the mean baropycnal work curves for
all three cases almost overlap at the early stage and show a forward transfer behaviour.
Subsequently, they shift to a brief period of inverse transfer and return eventually to the
forward transfer. At the late stage, notable difference among the three cases is observed,
which is similar to the evolution of the mixing features (see figures 9 and 12). Both energy
fluxes exhibit exponential decay at the self-similar stage for each case. The decay exponent
of deformation work shows a larger difference than that of baropycnal work at each scale,
whereas its decay exponent on the largest filter scale is comparable to that of the ITKE.

Due to anisotropy of RM turbulence, it is necessary to conduct a directional examination
of the SFS energy fluxes. To this end, the SFS energy fluxes are expressed in the form of
directional components, enabling the assessment of anisotropy at various scales within the
mixing layer. The mean SFS energy flux fraction is defined as

c
Π

ξ
�

= 〈Πξ
� 〉

|〈Πx
� 〉| + |〈Πy

� 〉| + |〈Π z
�〉|

,

c
Λ

ξ
�

= 〈Λξ
�〉

|〈Λx
�〉| + |〈Λy

�〉| + |〈Λz
�〉|

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.16)
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where Π
ξ
� = −ρ̄∂jũξ τ̃ (uξ , uj) and Λ

ξ
� = (1/ρ̄)∂ξ p̄τ̄ (ρ, uξ ) with ξ being the x, y or z

direction. Note the signs of the fluxes are incorporated into the definition, and we have∑|c
Π

ξ
� (Λ

ξ
�)

| = 1. Temporal evolutions of the mean SFS energy flux fraction for all three
cases are plotted in figure 14. The y and z components are consistent with each other,
which indicates the statistical isotropy in the cross-flow direction. The x component is
always greater than the other two components. This gives the evidence of anisotropy at all
three scales and also emphasises the necessity of considering anisotropy when modelling
the RM turbulence. As the filter scale decreases, the anisotropy measure in the SFS energy
flux decreases, which is in accordance with the findings of Lombardini, Pullin & Meiron
(2012), Mansoor et al. (2020) and Mohaghar et al. (2017) regarding the local isotropy of
the energy spectrum. The comparison among the three cases shows that the anisotropy
measure of the deformation work for case 3 is greater than that of cases 1 and 2 at
all three scales, which is consistent with the results in figure 12. Considering the initial
narrowband perturbations in cases 1 and 2 are naturally different from the initial broadband
perturbation in case 3, the findings here suggest that the anisotropy caused by the scale
evolution is greater than that caused by interactions with other (anisotropic) scales.
This also implies that symmetry breaking is gradually weakened during the interactions
between scales. Unlike the deformation work, the anisotropy measure of the baropycnal
work shows no significant difference among the three cases. The inverse transfer of
baropycnal work is predominantly observed in the x direction, and case 3 shows a longer
period of dominance in this inverse transfer compared with cases 1 and 2.

4.3. Nonlinear model of baropycnal work
The distinct behaviours of the two SFS energy fluxes imply that they might be governed
by different physical mechanisms. Previous studies suggested that the deformation work
is linked to processes involving vortex stretching and strain self-amplification (Carbone
& Bragg 2020; Johnson 2020, 2021), whereas the mechanisms of the baropycnal work
in variable-density turbulence remain unclear. Inspired by the theoretical work of Borue
& Orszag (1998) and Eyink (2006), Lees & Aluie (2019) derived a nonlinear model for
baropycnal work,

Λ�(x) ≈ Λm,�(x) = 1
3

C2�
2 1
ρ̄

(∂jp̄∂kρ̄∂kūj)

= 1
3

C2�
2 1
ρ̄

[
∇p̄ · S̄ · ∇ρ̄ + 1

2
ω̄ · (∇ρ̄ × ∇p̄)

]
= ΛSR,� + ΛBC,�. (4.17)

Here, ΛSR and ΛBC represent the strain generation process and the baroclinic vorticity
generation process, respectively, which are given as

ΛSR,� = 1
3

C2�
2 1
ρ̄

[∇p̄ · S̄ · ∇ρ̄] = 1
3

C2�
2 1
ρ̄

∂jp̄∂kρ̄S̄kj, (4.18)

ΛBC,� = 1
3

C2�
2 1
ρ̄

[
1
2
ω̄ · (∇ρ̄ × ∇p̄)

]
= 1

3
C2�

2 1
ρ̄

1
2
∂jp̄∂kρ̄εkjsω̄s. (4.19)

In (4.17), Cι is the ιth-order moment of the filter kernel. For the Gaussian filter kernel
adopted here, Cι is given as

Cι =
∫

d3rG(r)|rι| = ι + 1√
π

γ − ι
2 Γ

(
ι + 1

2

)
, (4.20)
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Figure 14. Temporal evolutions of the mean SFS energy fluxes (a,c,e) c
Π

ξ
�

and (b,d, f ) c
Λ

ξ
�

within the mixing
zone. Data are from (a,b) case 1, (c,d) case 2 and (e, f ) case 3. The blue, red and yellow lines represent ξ = x,
y and z, respectively.

where Γ (x) is the Gamma function, and we have C2 = 3/2γ . The nonlinear model (4.17)
indicates that the baropycnal work transfers energy between scales through two pathways:
one associated with baroclinic generation of vorticity and the other linked to strain
generation caused by the pressure and density gradients (both barotropic and baroclinic).
This model has recently been successfully applied to a priori test in forced compressible
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Figure 15. Snapshots of (a,d,g) the deformation work, Π�, (b,e,h) baropycnal work, Λ�, and (c, f,i) the
nonlinear model, Λm,�, for case 1 at τ = 43.94 at the central plane of the mixing layer. (a,b,c) k� = 16, (d,e, f )
k� = 32 and (g,h,i) k� = 48. The SFS energy fluxes in the figure have been normalised using their variances.

turbulence (Lees & Aluie 2019). To the best of the authors’ knowledge, this is the first time
the performance of this model has been examined in relation to RM turbulence.

Figure 15 shows snapshots of the SFS energy fluxes at the mixing layer centre at τ = 44
for case 1. The other two cases have similar results and thus are not shown here. It is
evident that the active regions of SFS energy fluxes display a speckled pattern at smaller
filter scales and a chunky pattern at larger filter scales. Both forward and inverse transfers
of deformation work are noticeably distinguishable at the larger filter scale, whereas the
forward transfer region dominates at the smaller filter scale. There are distinct regions with
positive and negative baropycnal work on both large and small filter scales. This implies
that the inverse transfer of deformation work primarily occurs at large scales, whereas
the inverse transfer of baropycnal work is prevalent at both large and small scales. The
snapshots of Λm,� computed from the simulation data using the nonlinear model (4.17)
are also given in figure 15. The predictions of this nonlinear model are very similar to the
simulation results, especially at k� = 32 and k� = 48.
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Energy transfer in Richtmyer–Meshkov turbulence

The relevance of the baropycnal work Λ� and its nonlinear model Λm,� can be quantified
by calculating their correlation coefficient:

Rc = 〈Λm,�Λ�〉 − 〈Λm,�〉〈Λ�〉
[(〈Λ2

m,�〉 − 〈Λm,�〉2)(〈Λ2
�〉 − 〈Λ�〉2)]1/2

. (4.21)

Figure 16(a,c,e) displays the temporal evolutions of Rc for all three cases. The correlation
between Λ� and Λm,� increases significantly shortly after the shock impact, particularly at
the filter scales k� = 32 and k� = 48 (Rc > 0.85 and Rc > 0.9, respectively). On the larger
filter scale k� = 16, the correlation is relatively lower but still rise persistently (Rc > 0.6).
As we can see, the correlation coefficients for the baropycnal work and its nonlinear model
can reach Rc � 0.79 (k� = 16), Rc � 0.89 (k� = 32) and Rc � 0.92 (k� = 48). These
values correspond to the slopes of the joint p.d.f. in figure 16(b,d, f ) where it approaches
1.0. Specifically, the Rc values are quite similar for all three cases on the two smaller
filter scales, and they are higher for case 3 on the largest filter scale. The difference in the
correlation among the three cases is mainly caused by the different distances between the
filter scale and the spectral peak. As discussed by Aluie et al. (2022), the approximation,
τ̄ (ρ, uj) ≈ τ̄ (ρ̄, ūj), adopted in the deduction of nonlinear model (4.17), may fail if it
approaches scales of the spectral peak or larger. It means that the correlation in the inertial
range may decrease as the filter scale approaches the spectral peak. This argument aligns
with the present finding. Specifically, the spectral peak in case 3 is located at a larger scale
(Zhou et al. 2023a), and the filter scale k� = 16 is further away from the spectral peak in
case 3 than in cases 1 and 2, resulting in a higher correlation in case 3. A similar behaviour
can also be seen in figure 5 of Aluie et al. (2022).

The strong correlation between the nonlinear model (4.17) and the baropycnal work in
simulation indicates that the model can effectively reveal the distribution of baropycnal
work in RM turbulence. Hence, it is reasonable to utilise the model to assess the two
processes (ΛSR,� and ΛBC,�), of the baropycnal work during the evolution of the mixing
layer. For this purpose, we define the strain/baroclinic component fraction as

cΛSR(BC),�
= 〈ΛSR(BC),�〉

|〈ΛSR,�〉| + |〈ΛBC,�〉| . (4.22)

Temporal evolutions of cΛSR,�
and cΛBC,�

for the three cases are plotted in figure 17.
Unlike forced compressible turbulence, in which the primary source of baropycnal work
contribution arises from the strain component (Lees & Aluie 2019), in RM turbulence
the baroclinic component plays a crucial role. Specifically, before the self-similarity
stage, the forward transfer and inverse transfer via baropycnal work in both case 1 and
2 are primarily dominated by the straining component and the baroclinic component,
respectively, whereas in case 3, the baroclinic component of baropycnal work almost
always exceeds its strain component at this stage. At the self-similarity stage, both
components maintain the forward transfer on average, with the strain component exceeding
the baroclinic component and comprising a greater proportion of larger filter scales. Due
to the deposition at large-scale baroclinic vorticity in case 3, the average fraction of the
baroclinic process is larger in case 3 than cases 1 and 2.

4.4. Energy fluxes at the spike and bubble regions
Considering the asymmetric development of the spike and bubble structures in the mixing
layer (e.g. figures 3 and 4), it is necessary to investigate the differences in the evolution
of the SFS energy fluxes at the spike and bubble regions. Figure 18 displays the mean
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Figure 16. (a,c,e) Temporal evolutions of the correlation coefficients between baropycnal work, Λ�, and its
nonlinear model, Λm,�, within the mixing zone. (b,d, f ) The joint p.d.f. of Λ� and Λm,� at τ ≈ 44. (a,b) case 1,
(c,d) case 2 and (e, f ) case 3. The red lines in (b,d, f ) represent y = x. All the contours range from outermost to
innermost as 10−5 ∼ 10−1.

profile of deformation work and baropycnal work along the x-axis for all three cases.
It should be noted that the majority of the non-zero region corresponds to the region
where the normalised mean TKE exceeds about 0.1 in figure 8. Similar to the finding
of Thornber & Zhou (2012), the spike side occupies the predominant events due to the
larger velocity shear there. The early stage (τ ≈ 4) deformation work and baropycnal work
show a preference for forward transfer on the spike side and exhibit higher activity on
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Figure 17. Temporal evolutions of the mean strain (blue lines) and baroclinic (red lines) component fraction
of the nonlinear model, Λm,�, within the mixing zone for (a) case 1, (b) case 2 and (c) case 3.

small filter scales. In contrast, on the bubble side, deformation work and baropycnal work
tend to exhibit inverse transfer, with higher activity on the larger and smaller filter scale,
respectively. The transfer direction of deformation work in the spike and bubble regions
aligns with the finding of Liu & Xiao (2016), corresponding to the small vortex structures
rolling up on the spike side and the enlarged bubbles on the bubble side (see figure 4). It
is interesting that the positive profile of the deformation work on the smallest filter scale
extends partially to the bubble side, whereas the negative part on larger filter scales extends
partially to the spike side. The mean profiles of the baropycnal work at all three filter scales
have their zero values located near the centre of the mixing layer, denoted as xc. At the late
stage (τ ≈ 44), the deformation work predominantly prefers forward transfer in both spike
and bubble regions, except for a partial tendency for inverse transfer that persists on the
bubble side at the largest filter scale. The baropycnal work still exhibits a preference for
forward transfer on the spike side and inverse transfer on the bubble side. In addition, its
mean profiles have zero values still located near xc as at the early time. This indicates a
persistent difference in the tendency of baropycnal work transfer between the spike and
bubble regions, which is effectively predicted by the nonlinear model.

Comparing the three cases, it is found that the distributions of the SFS energy fluxes
within the mixing layer are generally similar, except for case 3 that presents a flatter and
wider profile peak. The nonlinear model Λm,� gives an underestimation of the numerical
results at all three filter scales, as depicted in figure 18. This is expectable because
discontinuities can have a significant effect on the accuracy of the model, as pointed out by
Lees & Aluie (2019) and Aluie et al. (2022). The nonlinear model is based on a first-order
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Figure 18. Profiles of plane-averaged SFS energy fluxes, Π� (blue lines), Λ� (red lines) and Λm,� (yellow
lines) along the x-direction at (a,c,e) τ ≈ 4 and (b,d, f ) τ ≈ 44 for (a,b) case 1, (c,d) case 2 and (e, f ) case 3.
All results in the figure have undergone the same non-dimensionalisation as in figure 13.

approximation and may underestimate the results by neglecting higher-order terms in
regions where the field is not smooth enough (e.g. near shock waves or interfaces). Further
development of the corresponding model should address this issue, as such discontinuities
are not rare in variable-density turbulence. Despite this, it does effectively capture the trend
of the baropycnal work, which is consistent with our aforementioned finding regarding a
high correlation between the two. The relationship between 〈Λ�〉 and 〈Λm,�〉 can be largely
characterised by the expression, 〈Λ�〉/σΛ�

= kΛ,�(〈Λm,�〉/σΛm,�
) + bΛ,�, where kΛ,� and

bΛ,� are two scale-dependent constants.
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The deformation and baropycnal works can be decomposed into positive and negative
components (Wang et al. 2018; Zhao et al. 2020),

Π+
� = 1

2 (Π� + |Π�|), Π−
� = 1

2 (Π� − |Π�|), (4.23)

Λ+
� = 1

2(Λ� + |Λ�|), Λ−
� = 1

2 (Λ� − |Λ�|). (4.24)

Temporal evolutions of both the mean positive and negative components of SFS energy
fluxes within the spike and bubble regions are plotted in figure 19. For the sake of brevity,
the results for k� = 16 and k� = 48 in cases 1 and 3 are given here as representative.
The deformation work exhibits notably distinct mean evolution patterns in the spike and
bubble regions at larger filter scales, whereas its mean evolution curves in the spike and
bubble regions at smaller filter scales can almost collapse. It suggests that the different
evolution trends of spikes and bubbles in the mixing layer are primarily pronounced at
larger scales. On large filter scales, 〈Π+

� 〉 is greater and less than −〈Π−
� 〉 in the spike

and bubble region, respectively. For the most part, at smaller filter scales, 〈Π+
� 〉 exceeds

−〈Π−
� 〉 in both the spike and bubble regions. This suggests once again that, on average,

the deformation work at larger scales exhibits forward and inverse transfers in the spike
and bubble regions, respectively, whereas at smaller scales, it exhibits forward transfer
during the whole evolution stage of the mixing layer. Unlike the deformation work, the
baropycnal work evolves more uniformly on large and small scales. In particular, the values
of 〈Λ+

� 〉 and −〈Λ−
� 〉 in the spike region closely match those of −〈Λ−

� 〉 and 〈Λ+
� 〉 in the

bubble region, respectively. This indicates a degree of antisymmetry in the baropycnal
work between the spike and bubble regions. As depicted in figure 19( f,h), the negative
components exceed positive components in both the spike and bubble regions around τ =
10 before reaching the self-similar state. At this moment, there is no such antisymmetry
for baropycnal work in the spike and bubble regions, and thus a brief period of inverse
transfer is observed in figure 13.

4.5. Influence of strain and rotation effect
As mentioned previously, variable-density turbulence involves two SFS energy fluxes, Π�

and Λ�. The former is linked to vortex stretching and strain self-amplification, whereas the
latter is related to baroclinic and straining processes. Hence, it is suitable to examine the
evolution of both fluxes with respect to the strain and rotation characteristics of the flow.
To accomplish this, we introduce a filtered strain-enstrophy angle (Boratav, Elghobashi &
Zhong 1998; Aslangil, Livescu & Banerjee 2020),

Ψ� = tan−1 S̃ijS̃ij

W̃ijW̃ij
, (4.25)

where S̃ij = 1
2(Ãij + Ãji), Wij = 1

2 (Ãij − Ãji) and Ãij = ∂jũi are the strain-rate tensor, the
rotation-rate tensor and the velocity gradient tensor on the filter scale, respectively.
According to this definition, in regions where Ψ� > π/4, strain dominates over rotation,
whereas in regions where Ψ� < π/4, rotation dominates over strain.

The p.d.f.s of Ψ� within the mixing layer are shown in figure 20. At the early stage
(τ ≈ 0.34), the peaks of the p.d.f.s are concentrated at Ψ� = π/2, which indicates that
the flow is largely dominated by the strain effect at this stage. Subsequently, the peak of
the p.d.f.s at Ψ� = π/2 decreases gradually and its Ψ� < π/4 part increases. It indicates
that more and more flow regions are affected by the rotation effect, although the strain
effect remains predominantly dominant. The comparison among the three cases reveals
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Figure 19. Temporal evolutions of the mean positive (lines with circle) and negative (line with cross)
components of (a–d) deformation work and (e–h) baropycnal work at (a,b,e, f ) k� = 16 and (c,d,g,h) k� = 48:
(a,c,e,g) case 1 and (b,d, f,h) case 3. All results in the figure have undergone the same non-dimensionalisation
as in figure 13.
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Figure 20. The p.d.f.s of the filtered strain-enstrophy angle, Ψ�. Data are from case 1 at (a) τ = 0.25,
(d) τ = 3.97 and (g) τ = 43.94; case 2 at (b) τ = 0.27, (e) τ = 4.21 and (h) τ = 43.67; case 3 at (c) τ = 0.34,
( f ) τ = 4.10 and (i) τ = 44.20, respectively.

that, at the largest filter scale, the p.d.f. of case 3 in the Ψ� < π/4 region exceeds that of
cases 1 and 2, whereas the reverse holds true at the smallest filter scale. This aligns with
the density spectra distribution depicted in figure 2, which suggests that there is a greater
deposition of large-scale vorticity in case 3 than in cases 1 and 2. In contrast, there is a
greater deposition of small-scale vorticity in cases 1 and 2 than case 3. It is interesting that
the p.d.f.s of Ψ� exhibit a consistent asymptotic shape during the self-similarity stage at
each filter scale for all three cases. Moreover, this asymptotic shape is in agreement with
the results of numerical simulation of buoyancy-driven homogeneous variable-density
turbulence (Aslangil et al. 2020).

To illustrate the strain and rotation effects on the SFS energy fluxes, figure 21 gives
the conditional averaging of the deformation work and baropycnal work with respect to
the filter strain-enstrophy angle. It is generally found that the two SFS energy fluxes
exhibit different performances. Specifically, the 〈Π�‖Ψ�〉 flux displays a clear peak in
the area where Ψ� > π/4, which indicates that the deformation work is stronger in the
strain-dominated region and this trend is more evident on smaller scales. There is no
noticeable peak for 〈Λ�‖Ψ�〉 in cases 1 and 2, which indicates the weak preference
of baropycnal work between the strain and rotation effect. This reflects the fact that
baropycnal work involves two pathways: the strain and baroclinic processes. Slight peaks
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are noticeable in the Ψ� < π/4 area of 〈Λ�‖Ψ�〉 for case 3, which may be ascribed to
the deposition of large-scale vorticity in case 3. Conditional averaging of the positive and
negative components of both deformation and baropycnal works is also given in figure 21.
The deformation work exhibits a greater positive component in the strain-dominated
region. In contrast, the negative component diverges between large and small filter scales.
Specifically, on the largest filter scale, the negative component bulges out near Ψ� = π/2,
whereas on the two smaller filter scales, the negative components bulge out near Ψ� = 0.
The dependence of 〈Λ±

� ‖Ψ�〉 on Ψ� is not significant, which aligns with 〈Λ�‖Ψ�〉.
Here we present a preliminary analysis of how inter-scale energy transfer responds to

various fluid motions and mixing layer regions. The unique features of the two SFS energy
fluxes identified in this study appear to be associated with the diverse and intricate vortical
structures (Kokkinakis, Drikakis & Youngs 2020) in the spike and bubble regions, as well
as the complicated strain fields that surround them (Liu & Xiao 2016). However, further
in-depth work is required to clarify the correlation, which would be a very meaningful
addition to the RM instability community.

The connection between features of flow regions and inter-scale energy transfer could
offer valuable insights for future modelling of compressible variable-density turbulence
and also for the examination of existing models. It is essential to ensure that the models
can respond accurately to these distinct regions. The uncovered commonalities, such as
the preference of SFS energy fluxes for certain flow motions, may assist in modelling
the dynamics of the inertial range. In addition, for further optimisation of the model of
baropycnal work, higher-order terms near interfaces should be addressed appropriately.
It should be noted that the power-law profile of the perturbation can significantly affect
the evolution of the mixing layer, particularly integral quantities, and further affects the
temporal laws (e.g. the decay rate of TKE) and asymptotic values (e.g. the molecular
mixing fraction) that are closely related to θ . Therefore, further studies with various
spectrum slopes that can better represent the surface roughness measured from ICF
capsules (Barnes et al. 2002) are necessary. This has attracted some attention recently
(Groom & Thornber 2020, 2023; Soulard & Griffond 2022). Although the present study
considers only a constant power spectrum, the results regarding inter-scale energy transfer
show relatively weak sensitivity to large-scale perturbations. This provides a certain
confidence in the applicability of the present finding to situations with different spectrum
slopes.

5. Conclusions

In this work, high-resolution N–S simulations of the RM turbulence are performed with an
optimised six-point WCNS. The characteristics of the RM turbulence including the mixing
width growth rate, the TKE decay rate, the mixing degree, inhomogeneity and anisotropy,
are analysed and discussed in detail. In addition, a thorough analysis on the inter-scale
energy transfer in the RM turbulence is given with the coarse-graining approach that
exposes two distinct SFS energy fluxes within the mixing layer. To investigate the memory
of initial perturbations on the RM turbulence, three cases with different perturbation
spectra are considered, and the comparisons among these cases reveal the imprint of initial
perturbations on various aspects of RM turbulence.

The overall development of the mixing layer is affected by both the large scale itself and
the nonlinear interaction of small scales with the large scale. The presence of large-scale
perturbations at the initial interface introduces a stronger imprint on the mixing layer
development and also leads to a larger growth rate θ of the mixing width. The two
narrowband cases without initial large-scale perturbations show a similar evolutionary

984 A56-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.240


Energy transfer in Richtmyer–Meshkov turbulence

–1

0

1

2

3

k	 = 16

k	 = 32

k	 = 48

(a)

–1.0

–0.5

0

0.5

1.0
(b)

–1

0

1

2

3

–1.0

–0.5

0

0.5

1.0

–2

0

2

4

6

–2

–1

0

1

2

0 π/4

Π	 Λ	

Π	 Λ	

Π	 Λ	

π/2 0 π/4 π/2

0 π/4 π/2 0 π/4 π/2

0 π/4

Ψ	

π/2 0 π/4

Ψ	

π/2

(×10–7) (×10–7)

(c) (d )(×10–7) (×10–7)

(e) ( f )(×10–7) (×10–7)

Figure 21. The conditional averaging of (a,c,e) the deformation work, 〈Π�‖Ψ�〉, and (b,d, f ) the baropycnal
work, 〈Λ�‖Ψ�〉, vs the filtered strain-enstrophy angle, Ψ�. Data are from (a,b) case 1 at τ = 43.94, (c,d) case
2 at τ = 43.67 and (e, f ) case 3 at τ = 44.20. The yellow, red and blue lines represent the SFS energy fluxed
itself, its positive and negative components, respectively. All results in the figure have undergone the same
non-dimensionalisation as in figure 13.

behaviour. The exponential decay rate of the TKE, n, as well as the asymptotic value of
the molecular mixing fraction Θ , at the self-similarity stage are both closely related to θ ,
which confirms the existing theoretical models. It is found that the narrowband cases have
higher n and Θ compared with the broadband case with initial large-scale perturbations.
This suggests a faster decay of TKE and greater mixing efficiency for the small-scale
perturbation cases, which is also supported by the comparison of p.d.f.s of the heavy fluid
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mass fraction. Partial anisotropy and inhomogeneity remains within the mixing layer of
RM turbulence, with a higher level for the broadband case than the two narrowband cases.

In the RM turbulence, there are two pathways for inter-scale energy transfer: the
deformation work and baropycnal work. The deformation work within the mixing layer,
which is attributed to the vortex stretching and strain self-amplification, shows the inverse
transfer at the early stage, followed by a gradual transition to forward transfer. The
baropycnal work exhibits the forward transfer during the whole evolution stage, except for
a small period of inverse transfer during the transition phase. The mean SFS energy flux
fraction exhibits less anisotropy at small scales than at larger scales within the mixing layer.
In particular, the anisotropy metric based on deformation work is higher in the broadband
case, while the metric based on baropycnal work shows no notable difference among the
three cases. A priori test of the nonlinear model of baropycnal work is performed in RM
turbulence for the first time. Although the nonlinear model underestimates the simulation
results in magnitude, the high correlation demonstrates its effectiveness in accurately
capturing the two primary physical mechanisms of baropycnal work. Based on this model,
it is found that the early forward and inverse transfers via baropycnal work in both two
narrowband cases are dominated by the straining and baroclinic components, respectively,
whereas the baroclinic component of baropycnal work almost always exceeds its strain
component in the broadband case during early transfer. The straining component plays a
major role after entering the self-similar stage. Our findings indicate that the transfer of
SFS energy fluxes are different between the spike and bubble regions. From a temporal
perspective, the deformation work and baropycnal work exhibit a preference for forward
transfer on the spike side and inverse transfer on the bubble side at the early stage. Later,
the baropycnal work maintains this preference, whereas the deformation work exhibits
forward transfer at the entire mixing layer. From a cross-scale perspective, deformation
work takes forward and inverse transfers in the spike and bubble regions, respectively, at
the large filter scale. On the other hand, it shows forward transfer throughout the mixing
layer at small filter scales. Meanwhile, baropycnal work remains consistent between the
large and small filter scales, with some degree of antisymmetry between the spike and
bubble regions. The p.d.f.s of the strain-enstrophy angle indicate that the strain effect
dominates the flow, whereas rotation effect begins to play in more and more regions. The
deformation work is more significant in the region dominated by strain effect, whereas the
baropycnal work shows nearly unbiased to the strain and rotation effects. This illustrates
the distinct physical mechanisms of the two SFS energy fluxes, with the latter having both
straining and baroclinic processes.

It can be generally concluded that the RM turbulence presents unique features such
as unsteadiness, inhomogeneity and anisotropy, all of which rely to some extent on
initial large-scale perturbations. In addition, it is a decaying turbulence (e.g. Reynolds
number and turbulence kinetic energy decay with time) due to the absence of energy
source after the initial shock–interface interaction, which distinguishes it from RT and
KH turbulence. These unique characteristics of RM turbulence render it a distinctive topic
of study within the turbulence community. So far, the transition mechanisms and criteria
for RM turbulence, which pose more challenges to simulations and experiments, remain
unclear. We are developing the GPU parallel computing algorithm and will report the RM
turbulence with higher Reynolds numbers in the future.

Funding. This work was supported by the National Natural Science Foundation of China (nos. 12122213,
12072341 and 12388101), the National Key Research and Development Program of China (2022YFF0504500)
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Appendix

The molecular mixing fraction and the DSC of the mixing layer are first examined. As
shown in figure 22, these large-scale metrics present nearly identical results under 3842 and
5122 cross-sectional resolutions, i.e. they are grid converged. Figure 23 gives the temporal
evolutions of deformation work and baropycnal work under the two resolutions. As we can
see, the deformation work is lower at the 3842 resolution than the 5122 resolution. This
may be due to the delay in the reversal of energy transfer direction under the coarse grid.
Despite the difference, we observe the same evolution trend under both grid resolutions.
The baropycnal work exhibits a lower grid sensitivity, presenting similar results under
the two grid resolutions. The grid sensitivity for the correlation coefficient (Rc) between
the baropycnal work and its nonlinear model is also examined, as well as for the p.d.f.
of the filtered strain-enstrophy angle. As shown in figure 24(a), the variation of Rc is grid
converged for k� = 48, and also presents a convergence trend for k� = 16. In figure 24(b,c),
the results obtained with the 3842 and 5122 cross-sectional resolutions converge from the
early time for k� = 48, but converge at a later time for k� = 16.

In general, for the present simulations, grid-converged results are obtained for the
large-scale metrics of the mixing layer, whereas the subgrid quantities still exhibit a certain
degree of grid sensitivity. It indicates that grid convergence of the subgrid statistics is
more challenging. Although lower subgrid quantities are obtained under the coarse grid,
the evolution trends under the two grid resolutions are nearly the same. In particular, some
of the subgrid statistics already exhibit grid-converged behaviours. We should note that in
the present simulations, in order to deposit more kinetic energy on the interface to feed the
subsequent turbulence, the initial interface thickness is set to be a small value of λmin/4
(Lombardini et al. 2012). As a result, the initial interface is sharp for the coarser mesh, but
presents a diffusive layer for the fine mesh. This accounts for the relatively large difference
under different grid resolutions. Despite this, the lack of grid convergence is not likely to
affect the main finding of this paper.
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