
TPLP 24 (4): 606–627, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-

nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,

provided that no alterations are made and the original article is properly cited. The written permis-

sion of Cambridge University Press must be obtained prior to any commercial use and/or adaptation

of the article.

doi:10.1017/S147106842400022X

606

A Reliable Common-Sense Reasoning Socialbot
Built Using LLMs and Goal-Directed ASP

YANKAI ZENG and ABHIRAMON RAJASEKHARAN
University of Texas at Dallas, Richardson, USA

(e-mails: yankai.zeng@utdallas.edu, abhiramon.rajasekharan@utdallas.edu)

KINJAL BASU
IBM Research, Yorktown Heights, USA

(e-mail: kinjal.basu@ibm.com)

HUADUO WANG
University of Texas at Dallas, Richardson, USA

(e-mail: huaduo.wang@utdallas.edu)

JOAQUÍN ARIAS
Universidad Ray Juan Carlos, Madrid, Spain

(e-mail: joaquin.arias@urjc.es)

GOPAL GUPTA
University of Texas at Dallas, Richardson, USA

(e-mail: gupta@utdallas.edu)

submitted 20 August 2024; accepted 13 September 2024

Abstract

The development of large language models (LLMs), such as GPT, has enabled the construc-
tion of several socialbots, like ChatGPT, that are receiving a lot of attention for their ability
to simulate a human conversation. However, the conversation is not guided by a goal and is
hard to control. In addition, because LLMs rely more on pattern recognition than deductive
reasoning, they can give confusing answers and have difficulty integrating multiple topics into
a cohesive response. These limitations often lead the LLM to deviate from the main topic to
keep the conversation interesting. We propose AutoCompanion, a socialbot that uses an LLM
model to translate natural language into predicates (and vice versa) and employs commonsense
reasoning based on answer set programming (ASP) to hold a social conversation with a human.
In particular, we rely on s(CASP), a goal-directed implementation of ASP as the backend. This
paper presents the framework design and how an LLM is used to parse user messages and gen-
erate a response from the s(CASP) engine output. To validate our proposal, we describe (real)
conversations in which the chatbot’s goal is to keep the user entertained by talking about movies
and books, and s(CASP) ensures (i) correctness of answers, (ii) coherence (and precision) during

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X
https://orcid.org/0009-0007-6817-9747
https://orcid.org/0000-0001-8693-9307
mailto:kinjal.basu@ibm.com
https://orcid.org/0000-0002-2118-5425
https://orcid.org/0000-0003-4148-311X
mailto:joaquin.arias@urjc.es
https://orcid.org/0000-0001-9727-0362
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S147106842400022X&domain=pdf
https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 607

the conversation—which it dynamically regulates to achieve its specific purpose—and (iii) no
deviation from the main topic.

KEYWORDS: Answer Set Programming (ASP), large language model, socialbot

1 Introduction

Conversational agents are designed to understand dialogs and generate meaningful

responses to communicate with humans. After the popularity of ChatGPT, with its

surprising performance and powerful conversational ability, commercial large language

models (LLMs) for general NLP tasks such as GPT-4 by Achiam et al. (2023), Gemini

from Anil et al. (2023), etc., sprung up and brought the generative AI as a solution to

the public view. These LLMs work quite well in content generation tasks, but their defi-

ciency in knowledge-and-reasoning-oriented tasks are well-established by now, according

to Nezhurina et al. (2024). These models themselves cannot tell whether the text they

generate is based on facts or made-up stories, and they cannot always follow the given

data and rules strictly and sometimes even modify the data at will, also called halluci-

nation. The reasoning that these LLMs appear to perform is also at a very shallow level.

These are serious flaws that make the LLMs unsuitable for fact-based conversations such

as providing correct information to a user. The reason for these flaws is that LLMs

generate text that is purely based on a pattern-matching mechanism, and consequently

have no understanding of the meaning of sentences and thus a safe and sound way of

reasoning is not guaranteed, as stated by Nezhurina et al. (2024). In contrast, humans

understand the meaning of sentences and then use their reasoning capabilities to check

for consistency and take further actions. Thus, to make the machine-generated response

reliable and consistent, our socialbot needs to follow a similar approach.

Following the above insights, in this paper, we report on developing an elaborate con-

versational socialbot that can understand human dialog and respond properly according

to human expectations. The goal of this socialbot is to be able to engage in multiple

rounds of social conversations with users about their interests, understand the context of

what the user is saying like a human, and be able to initiate new topics or make relevant

recommendations at the right time to control the pace of the chat. We currently focus

our topics of interest on discussions of movies, books, and related people and use the

STAR framework by Rajasekharan et al. (2023), which has been successfully applied in

the task-oriented chatbot domain (e.g., AutoConcierge from Zeng et al. (2024)) to build

a social conversational bot called AutoCompanion.1 AutoCompanion uses an LLM to

interact with the user and to translate between natural language dialogs and knowledge

represented in predicates. It further uses an answer set programming (ASP) system for

reasoning over this knowledge. After the user’s input is parsed into predicates by the

LLM, the ASP reasoner uses reasoning (and a bit of randomness) to decide whether

to continue with the current topic of conversation, move on to a related topic, or rec-

ommend books or movies that are currently on sale based on the user’s preferences.

Questions asked by the user are also answered. Subsequently, the instructions for the

1 Now available at https://github.com/Sambour/Social-bot/

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.608

next step from the reasoner are passed on to another LLM in the form of an open-ended

free-for-all on that topic, and the generated sentence is provided to the user as a reply.

We believe that the use of LLM should be controlled to avoid its misuse in fact-based

domains and that the best way to utilize LLM is to use it only as an interface for pars-

ing and presenting knowledge. Our AutoCompanion outperforms LLM-only socialbots in

reliability, scalability, controllability, creativity, and many other aspects.

Our contribution in this paper are as follows. First, We developed a general socialbot

framework that allows the bot to control the conversation flow and react reliably accord-

ing to the user input, attributed to leveraging both the LLM and s(CASP), as described

in Section 3. Section 3.1 shows the predicates we extract from natural language sentences,

Section 3.2 explains how the reasoner works to add control and consistency to the sys-

tem, and Section 3.3 provides the details to the response generation stage. Second, We

built the AutoCompanion based on the above framework with knowldge about books

and movies, as described in Section 4. Section 5 displays a short conversation between

our AutoCompanion and the user. Finally, this paper also discusses the usage and

performance (in Section 4.3 and 7) of LLMs on similar tasks.

2 Background and related work

This section introduces s(CASP), the reasoner used to control the conversations. It also

presents state-of-the-art Chatbots and discusses their limitations.

2.1 Answer set programming and s(CASP)

ASP, according to Brewka et al. (2011) and Gelfond and Kahl (2014), is a logic pro-

gramming paradigm suited for knowledge representation and reasoning that facilitates

commonsense reasoning. The s(CASP) system proposed by Arias et al. (2018), is an

ASP system that supports predicates, constraints over non-ground variables, uninter-

preted functions, and, most importantly, a top-down, query-driven execution strategy.

These features make it possible to return answers with non-ground variables (possibly

including constraints among them) and compute partial models by returning only the

fragment of a stable model that is necessary to support the answer.

Complex commonsense knowledge can be represented in ASP and the s(CASP) query-

driven predicate ASP system can be used for querying it, as shown in the work done by

Chen et al. (2016) and Xu et al. (2023). Commonsense knowledge can be emulated using

(i) default rules, (ii) integrity constraints, and (iii) multiple possible worlds, according

to Gelfond and Kahl (2014) and Gupta (2022). Default rules are used for jumping to a

conclusion in the absence of exceptions, for example a bird normally flies, unless it’s a

penguin.

1 flies(X) :- bird(X), not abnormal_bird(X).

2 abnormal_bird(X) :- penguin(X).

Integrity constraints allow us to express impossible situations and invariants. For

example, a person cannot be dead and alive at the same time.

1 false :- person(X), dead(X), alive(X).

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 609

Finally, multiple possible worlds allow us to construct alternative universes that may

have some parts common but other parts inconsistent. For example, the cartoon world

of children’s books has a lot in common with the real world (e.g., birds can fly in both

worlds), yet in the former birds can talk like humans but in the latter they cannot.

A large number of commonsense reasoning applications have already been devel-

oped using ASP and the s(CASP) system: Sartor et al. (2022); Chen et al. (2016);

Xu et al. (2023). Justification for each response can also be given as the s(CASP) system

can generate justifications for successful queries as proof trees as shown by Arias et al.

(2020).

2.2 State-of-the-art chatbots and their limitations

Conversational agents (chatbots) have been an active area of research for a long time.

Rule-based or finite-state-based systems, like Eliza by Weizenbaum (1966), Chat-80 by

Warren and Pereira (1982), and PARRY by Colby et al. (1971), encode the mapping

of user commands to an ontology using rules and state transitions. The Conversational

Knowledge Template (CKT) proposed by Basu et al. (2021b) enables the system to

control the dialog flow and change topics. Here, the main challenge is parsing the dialogs

and correctly extracting the knowledge conveyed in the dialogs.

Until recently, transformer-based LLMs, pre-trained on an enormous quantity of well-

annotated data, have been applied to general NLP tasks. With the advent of LLMs, the

paradigm changed from pre-training and fine-tuning (Casola et al. (2022)) to teaching

a language model any arbitrary task using just a few demonstrations, called in-context

learning , a method of prompt engineering . Brown et al., (2020) introduced an LLM

called GPT-3 containing approximately 175 billion parameters that have been trained

on a massive corpus of filtered online text, on which the well-known ChatGPT is based.

GPT-3 and its successor GPT-4 can perform competitively on several tasks such as

question-answering, semantic parsing, and machine translation, as noted by Achiam et

al. (2023). However, such LLMs lack the ability of mathematical reasoning and find it

hard to overcome the hallucination brought from the training data, as shown by Floridi

and Chiriatti (2020); Wei et al. (2022); Nezhurina et al. (2024).

Retrieval Augmented Generation (RAG) by Lewis et al. (2020) is proposed and widely

used to mitigate the deficiencies mentioned above by retrieving the relevant materials

using similarity matching of content embedded as vectors by a transformer-based model.

Recent efforts by Kulkarni et al. (2024) and Quidwai and Lagana (2024), are trying to

leverage RAG for building chatbots, but none of them engages an explicit reasoning

system.

Finally, Our AutoCompanion is an extension of our previous work developing NLU

systems based on commonsense reasoning (Basu et al. (2021b); Li et al. (2021); Zeng et

al. (2024)). Our group has been dedicated to building socialbots, specifically addressing

the Amazon (2021) Alexa Socialbot Challenge for years. GPT-4 with in-context learning

as a semantic parser leads to a significant advantage over our previous socialbots and

helped this framework succeed, as we report in this paper.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.610

3 Socialbot design

The AutoCompanion is designed to model the human thought process during conversa-

tions. When humans hear a sentence, they parse it to extract its meaning and represent

the meaning in their minds as knowledge. Humans will check for consistency and cor-

rectness of this knowledge using additional (commonsense) knowledge, that also resides

in their mind, to find any gaps in the captured knowledge wrt their goal. If human

reasoning reveals gaps in this knowledge, they may ask further questions to cover this

gap. Once the knowledge is (reasonably) complete, humans will draw a conclusion. This

conclusion—that also represents knowledge—will be translated into a natural language

response. Therefore, similar to humans, when AutoCompanion receives a user sentence,

it will also process it using three stages: First, it will parse the natural language input

to knowledge, which is done by LLMs reliably. Next, it will check the consistency and

correctness of the input knowledge and use the knowledge extracted from the dialog, in

conjunction with commonsense knowledge it already possesses, to reason out the next

action. The ASP reasoning system is used to implement this capability. Finally, the

knowledge representing the next step (conclusion) is converted into a natural language

response by another invocation of the LLM and communicated.

This mechanism embodied is known as the STAR framework by Rajasekharan et al.

(2023), which leverages the advantages of LLMs and ASP systems by combining them

systematically. It parses the semantics of the text sentences to generate the predicates

using LLMs such as GPT 3.5 or GPT 4. After that, it sends the predicates to the ASP

system to get reliable answers through reasoning. This framework was previously applied

to task-oriented chatbots such as AutoConcierge by Zeng et al. (2024) and has proved to

work well. Indeed, LLMs do not parse the sentences to knowledge with 100% accuracy,

but LLMs have proven to be the most effective semantic parsers by far. Prior to LLMs,

Basu et al. (2021a) used parsers such as the Stanford CoreNLP parser and the spaCy

parser, and those methods were largely ineffective in extracting semantics. Besides, a

wrong predicate generated by LLMs can often be checked by additional logic written in

ASP.

Unlike task-oriented chatbots, socialbots are not set to complete a task. Hence, they

can chat without a goal, until whenever the user likes to end the conversation. This

requires AutoCompanion to switch the chat topic actively based on the current and

previous conversation. Turner (1988) suggests that a good chatbot should satisfy the

user’s sense of security, inclusion, and gratification. With this in mind, AutoCompanion

is designed to contain the below functions.

(i) AutoCompanion should be able to carry a conversation on the current topic to a

deep level and express a refined perspective based on a true understanding of the

topic. For example, when the user is talking about the plot of the movie Titanic, the

AutoCompanion can have an in-depth discussion about this plot: either the lines,

actors’ performance, or even comment on it. For example, if the user mentions a

famous line in a movie, AutoCompanion can talk about its influence on the plot,

etc.

(ii) AutoCompanion should be able to jump from one topic to another with some

common features. Again, taking Titanic as an example, AutoCompanion is capable

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 611

Natural language
input

User
Interface

Question?

Irrelevant?

LLM
Parser

Answer
Question

Stay in current topic?

Get One
Current Topic

Change topic?

Continue
the CKTFind one RCC

Explain Jumping
Reason

Output predicates

Get
Results

No Question?

User
Interface

Natural language
response Recommend

Reached
standard for

recommendation?

By LLM: GPT-4
By ASP: s(CASP)

Fig 1. AutoCompanion architecture. The yellow-colored boxes are handled by GPT-4 in
Python, and the green-colored by s(CASP). The two parts interact using Python subprocess

calls.

of fluidly changing the topic from Titanic to Catch Me If You Can, as Leonardo

DiCaprio acted in both movies.

(iii) AutoCompanion should be able to maintain consistency, typically for opinions.

This indicates that, once AutoCompanion expresses a point of view, no matter

whether positive or negative, it should remain the same for the subsequent time.

It can also follow the user’s idea if the user insists on a contradicting view.

(iv) AutoCompanion should be able to answer the user’s question accurately. When

the user’s question exceeds its knowledge, it should answer that it does not know.

(v) AutoCompanion should be able to recommend the current popular topics the user

might like. For example, if there is one in-theater movie that meets all the pref-

erences the user mentioned previously, AutoCompanion should recommend this

movie to the user.

To satisfy these functions, AutoCompanion is designed in the structure as shown in

Figure 1. From the perspective of conversation, our AutoCompanion is designed to be

evoked by the user. However, if the user does not know what to talk about, they can

simply say “Hello.”, or “Hello, let us talk about movies.”, and AutoCompanion will guide

the user to continue the conversation.

3.1 LLM parser and ontology

AutoCompanion leverages LLMs such as the GPT series to parse the natural language

sentences to knowledge. The prompts are given to LLMs including the knowledge ontol-

ogy, which is represented in the predicates used in the reasoning part, and several

examples covering the use cases.

3.1.1 Topic

The topic describes a subject to talk about in a social conversation. A socialbot may

cover many different topics when chatting with the users, such as movies, books, sports,

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.612

pets, etc., while a certain movie, book, sport, or pet discussed is called a topic instance.

AutoCompanion will mainly cover movies, books, and relevant people.

3.1.2 Property

A property indicates an aspect of the topic instance to be potentially discussed. The list

of properties is fixed for each topic and covers all possible directions that can be used.

3.1.3 Theme

A theme is a set of predicates centralized on one property of a topic instance. It typi-

cally contains one talk predicate: “talk(Topic, Instance name, Property).”, one attitude

predicate: “attitude(positive/negative/ask/argue).”, and one content predicate: “con-

tent(Property, Detailed content).”. If the user asks a question, the predicate question:

“question(What is asked)” is also captured. For instance, when the user compliments the

scene of the movie Titanic where the giant ship is sinking, the predicates extracted from

the user would be:

1 talk(movie, ‘Titanic’, scene). content(scene, sinking). attitude(positive).

3.1.4 Preference

The user preference is also extracted to be used later for recommendation. The preference

is presented by the prefer predicate: “prefer(Topic, Property, Preference).”.

In the parsing stage, the prompts are given to extract all themes and preferences a

user input is about, where different themes and preferences are separated by ‘###’.

LLMs also extract the exception predicates such as ‘quit’ and ‘irrelevant’ at this stage.

The prompt is given following the below template (only part of the prompts are shown

due to space limitation):

Now you are an expert about books and movies. Now you should use your

profession to extract predicates from sentence input. . .

The predicates are below:

talk(Topic, Name, Property) %% The topic can be movie or book or

people, . . .

Examples:

Sentence 1 -> theme 1 ### theme 2 . . .

Input sentence ->

3.2 Topic control

We leverage an ASP reasoner to guide and switch between the topics. Predicates from the

LLM parser are separated into themes and preferences that are recorded and updated,

and one theme is randomly picked to respond with. The remaining themes will be used

in later rounds where nothing is captured from the user’s input. Then, the ASP reasoner

chooses whether to remain in the same topic instance or switch to a relevant one by

the following strategy: if the instance is first mentioned, the reasoner maintains it for

one more round; otherwise, a random function is applied to decide whether to continue

the current instance, the current property, or start a relevant one. The maintaining and

shifting can be well described by two separate mechanisms, CKT and RCC .

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 613

Conversational Knowledge Template (CKT) by Basu et al. (2021b) is used when

the ASP reasoner continues the current topic instance. It maintains a state with a list

of properties that can be discussed for each topic instance. Once the reasoner chooses

to go deeper into one instance using other properties, the CKT will be triggered to pick

up one property that has not been discussed yet for this topic instance. On the other

hand, the CKT can also choose to remain on the current property, which will lead the

LLM response generator (see Section 3.3) to tell something new about this property (e.g.,

depict another plot, etc.).

CKT also controls AutoCompanion’s attitude about an instance and its properties.

Four kinds of attitudes are used in AutoCompanion: positive, negative, ask, and acknowl-

edge. For a new topic instance or a new property of the current instance, AutoCompanion

would randomly pick one attitude from positive or negative. In contrast, for an existing

instance property, it will obey the previous attitude, which is based on the assump-

tion that generally humans have a consistent attitude toward one property of a specific

instance and AutoCompanion simulates this human feature. The attitude “ask” is

involved in the above two cases of attitude selection, in which case, instead of express-

ing “personal” views, AutoCompanion asks the user about their attitude toward it. The

attitude “acknowledge”, indicating maintaining the current property, is only applied if

the user argues on one property of the topic instance.

Relevant Consistent Concept (RCC) selector, proposed by Li et al. (2021), will

be invoked if the ASP reasoner decides to switch to a relevant topic instance. In our

AutoCompanion, an RCC is a new topic instance that shares some common properties

with the current instance. For example, the RCCs of a movie include movies of the same

genre, or by the same director, etc. These relations are formatted and listed for the

reasoner to search the RCCs automatically.

The RCC searching step maps the current topic instance to the RCC relation rules and

enumerates all possible RCCs in the current conversation round. Next, if the reasoner

chooses to switch to a relevant topic, one of the RCCs will be randomly picked, together

with its relation to the source topic. The RCC selecting mechanism guarantees that the

original topic instance is related to the target one. It can discover connections that are

not obvious.

3.2.1 Question Answering

Whenever user asks some questions, AutoCompanion answers them in the next round of

replies. The AutoCompanion would first track all current themes that contain a question

and then search through the knowledge base for an answer. These used themes are no

longer recorded in the unused theme list. When the answer to the question does not lie in

the knowledge base, AutoCompanion would honestly say “I don’t know” instead of trying

to find an answer using its ambiguous knowledge learned from the LLM pre-training,

which minimizes hallucinations to a great extent.

3.2.2 Recommendation

Our AutoCompanion also collects the user preference during the conversation by the

“prefer” predicates, which are then recorded and updated independently by maintaining

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.614

a state. Every time the “prefer” predicate is extracted, AutoCompanion tracks the lat-

est news of the discussed topics (e.g., the movie in the theater today, or the bestselling

books today, etc.) that meets the user’s preference. Once the number of matched proper-

ties meets a threshold, AutoCompanion will recommend this new topic instance. While

recommending a topic, AutoCompanion would not use the themes, and the extracted

themes will be reserved for further conversation. After recommending, if the user does

not actively talk about it, AutoCompanion will avoid recommending it again repeatedly.

Instead, it goes to the general response mode and waits for the correct conditions for the

next recommendation.

Following this pattern, recommendations for new topic instances will not appear so

abrupt but will be smoothly integrated into the conversation, making the conversation

more engaging.

3.2.3 Response to Irrelevant Dialogs

The response that prevents the chat from being off-topic is triggered if the user talks

about something irrelevant to the interest-sharing, or the LLM parser cannot extract

useful information from user input. Under the irrelevant mode, the AutoCompanion

would first reply “I cannot catch up with you now. Let’s go back and talk about . . .” and

loop back to the CKT or RCCs selection step by randomly picking an unused theme in the

theme list. If the theme list is empty, it will try to start with some famous movies, such as

Titanic. The irrelevant mechanism ensures the conversation is always centralized in the

prescribed topics, and the AutoCompanion continues chatting (by proposing a relevant

topic instance) even if the user exhausts their words about a certain topic instance.

3.2.4 Output Format

The output of the reasoner contains three parts: mode, answers , and reply theme. The

mode ranges over “quit”, “irrelevant”, “general”, and “recommend”, where the former

two are tied with the two special predicates, and the latter two define whether to talk

about the next theme or make a recommendation. The answers part has all the answers

to the given questions. In the recommend mode, the reply theme refers to the latest topic

instance to recommend and the reason to recommend it; while in the general mode, it

indicates the theme to talk about in the next round, the attitude toward it, and how it

is associated with the former theme if a relevant theme is selected.

3.3 Response generation

Due to the lack of detailed information about each movie (e.g., for plots, lines, etc.),

book (e.g., for plots, characters, etc.), and person (e.g., for skills, appearance, etc.), our

AutoCompanion leaves the generation of these specifics to LLM, controlling only the

topic and property for each round. We assume that the LLMs are experts in common

topics such as famous movies and books, which makes it possible for us to leverage this

advantage of LLMs in constructing AutoCompanion. Once a comprehensive knowledge

base is built for these topics, control over the specific content level can also be exerted.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 615

While leveraging the LLMs for content generation, a proper prompt makes the output

closer to the expected performance. In our designed prompt, we first describe the con-

versation situation and the LLM’s role and define the response tone and length. Then we

provide the LLM with some examples and ask it to generate the content following the

format of the examples. The examples always start with a question with the template:

What are the most interesting [property] for [topic] [instance]?

[attitude] ->

And LLM would generate an answer for that. For example, if we ask about the value

expressed in Batman Begin:

What are the most interesting value expressed for Batman Begins?

positive ->

The LLM would generate:

I feel like Batman Begins nails it with the whole inner battle vibe.

It’s not just about taking down bad guys; it’s Bruce Wayne wrestling with

his own demons, and that’s what makes it hit home. Do you have the same

feeling as me?

If the LLM cannot find any specific content that supports the given attitude, we allow

the LLM to oppose its attitude toward the content, and this will be captured by the

topic controller.

The function of the “attitude” predicate is to help LLMs generate some alternative

perspectives other than the mainstream ones. During the AutoCompanion construction,

we found out that LLMs seldom create a view that strays too much from the common

views of the public. However, for an ordinary human, not all of their opinions may match

the mainstream. Therefore, randomness should be added to the attitude to help LLMs

generate “surprising” responses.

If the RCC mechanism is invoked, the response generator will also create cohesive

sentences that naturally mention the next topic instance to discuss. The template for a

cohesive sentence is:

“Because you mentioned [source topic instance], it makes me think of

the [next topic] [next topic instance], since [relation of them].”

Similarly, if the reasoner answers the questions from the user, one of the following

templates will be used according to the condition:

“I remembered that the [property] of the [topic] [topic instance] is

[answer].”

“Sorry I could not remember the [property] of the [topic]

[topic instance].”

And the recommendation generation adopted the below template:

“Do you know the recent [topic] named [topic instance]? Since you like

[source topic], so you should like it.”

The reply sentences generated by the above templates are then concatenated and

processed by an LLM language modifier to make the replies more coherent, gentler, and

more informal.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.616

4 Implementation

AutoCompanion is constructed in Python with the s(CASP) goal-directed ASP

Reasoning Engine (Arias et al. (2018)). GPT-4 is chosen as the LLM in both the LLM

Parser and Response Generation stages.

4.1 Data collection

We deployed our AutoCompanion to discuss movies, books, and the people involved.

4.1.1 Movies

The movie data is from IMDb dataset,2 where we collected the information of release

year, runtime, rating, countries involved, languages, genres, top 10 casts with their char-

acters, directors, writers, editors, composers, producers, cinematographers, and the plot

summary. The above information is then marked as properties for answering users’ ques-

tions and linking the movies to related people. Other than those above, the properties

of the movie topic include plot episodes, scenes, lines, costumes, awards, music, val-

ues expressed, characterization, cinematography, technique, actor performance, adaption,

and social impact, which are out of the knowledge base but are likely to be mentioned

by the users. We store the database locally with a selection of 500 top-rated movies, and

the 500 most popular movies since 2010, resulting in 931 movies.

4.1.2 Books

They were collected from the Users-Books-Dataset,3 including 528 books with informa-

tion about their series, author, rating, language, genres, awards, setting places, characters,

and plot description. These are also recorded as properties along with their writing style,

symbolism, emotional impact, and social background.

4.1.3 People

The data of the people associated with the movies are also extracted from the IMDb

database and stored locally. The people topic contains properties of birth year, death

year, profession, and representative work, whereas the skills, awards, appearance, and

personal life require an LLM to generate. We extracted all people linked to the selected

movies, resulting in a knowledge base of 5625 data. The authors in the book’s knowledge

base are also matched to the corresponding movie people.

Identifying in-theater movies and bestsellers in bookstores is also required for

recommendation mode. We leveraged IMDb’s website for movie in-theater by providing

location information and chose USA Today’s Best-Selling Booklist4 as our best-selling

book data and extract further details from Open Library.5 The knowledge from the

recommendation knowledge base is used to match the user preference (the “prefer” pred-

icate) in the property of popularity rank, rating, genre, language, located countries,

writer, actor, director, etc.

2 IMDb dataset is available at https://developer.imdb.com/non-commercial-datasets and https://
cinemagoer.github.io.

3 Users-Books-Dataset is available at https://data.world/divyanshj/users-books-dataset.
4 USA Today’s Best-Selling Booklist is available at https://www.usatoday.com/booklist/booklist.
5 Open Library is available at https://openlibrary.org/dev/docs/api/search.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 617

4.2 ASP coding

Below are several coding examples of the ASP implementation of the reasoning part of

our AutoCompanion. In this part, we will elaborate on how the CKT and topic switching

work in our s(CASP) program.

4.2.1 CKT implementation

The CKT component chooses what property to discuss under a topic. The code for CKT

is shown below:

1 next_attr(Topic, Name, Attr) :- continue_attr, talk(Topic, Name, Attr),

2 response_attr(Topic, Attr).

3 next_attr(Topic, Name, Attr) :- response_attr(Topic, Attr),

4 not neg_next_attr(Topic, Name, Attr).

5 neg_next_attr(Topic, Name, Attr) :- not next_attr(Topic, Name, Attr).

6 neg_next_attr(Topic, Name, Attr) :- hist(I, Topic, Name, Attr, Attitude, From).

The first rule indicates to continue the current property if continue attr, which is

evoked by a random function, is true. The second and third rule forms an even loop,

making it possible to choose any available property. The fourth rule defines that the

discussed property should not be selected.

4.2.2 Topic switching

When a topic continues for several rounds, the reasoner may switch to a related topic.

This is implemented by the codes below.

1 next_topic(Topic, Name, Attr, 'None', 'None') :-

2 round(I), hist(I, Topic, Name, Attr, Attitude, 'user'),
3 not discussed_before(Topic, Name, Attr).

4 next_topic(Topic, Name, Attr, 'None', 'None') :-

5 continue_topic, talk(Topic, Name, Attr1),

6 next_attr(Topic, Name, Attr).

7 next_topic(Topic, Name, Attr, Source, Relation) :-

8 len_rcc(I), random(1, I, N), rcc(N, Topic, Name, Source, Relation),

9 next_attr(Topic, Name, Attr).

The first rule sets out that a new topic should continue for at least one round. The

second rule indicates to continue the current topic if continue topic is true. The third

rule describes how to switch the topic to another linked one by a random RCC.

4.3 Leveraging LLMs

Besides parsing and response generation, LLMs are also used for other purposes.

4.3.1 Property enumeration

Before constructing the AutoCompanion, a detailed list of properties is needed for each

topic. Although the property list has been equipped with information extracted from the

knowledge base, more properties are required to cover as many themes as people might

be interested in while chatting. Therefore, an LLM is used to seek a comprehensive list

of properties. We used GPT-4 with the following prompt to list the properties.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.618

Table 1. Output of GPT-4 of the similar plot to Titanic’s sacrifice

Movie Name Similar Content

The Dark Knight Rises Batman sacrifices himself to save Gotham City,
taking the blame for Harvey Dent’s crimes and
going into hiding.

The Hunger Games:
Mockingjay - Part 2

Finnick sacrifices himself to allow Katniss and
others to escape from mutts during the assault
on the Capitol.

“When people talk about their interests in [topic] in a social chat,

what aspects will they discuss? Please make each point as much different

as possible from others. Summarize each point in a short name.”

We ran GPT-4 for 5 rounds to ensure comprehensiveness and collected all the answers

it gave, concatenating them with the information from the knowledge base to form the

property list.

4.3.2 Name correction

LLM is also used to correct the names of the topic instances extracted from user input.

Due to the LLM parser only serving to turn the sentences into predicates, sometimes

even when the user inputs the incorrect topic instance name, the LLM parser copies the

mistakes as they are. Also, some instance names have multiple spellings, resulting in the

incorrect exact matching. Hence, fuzzy search is required, for which an LLM is used.

4.3.3 Extra rules generation

When humans chat socially, topic changes also happen when they find some common

features of two topics involved. For example, one person might mention that in the

movie Titanic, Jack sacrifices himself to save Rose, the listener may recall Romeo and

Juliet, where sacrifice also happens between the lovers. This is also simulated by our

AutoCompanion through LLMs’ extra rules generation step with instructions given as:

In the [topic] [topic instance], [detailed content]. Is there any other

[topic] that contains a similar [property]?

Then, the list of topic instances and two examples are given to limit the scope of topic

instances and control the output format. Table 1 displays the result for the Titanic

example from GPT-4, which is then added to the RCC list.

5 Conversation samples

Below we display one conversation between the AutoCompanion and a human user, which

demonstrates how the AutoCompanion directs and switches between topics.

Bot: Hello! It’s delightful coming across another cinema enthusiast.

Seen any noteworthy films lately? Or maybe you’ve been immersed

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 619

in a captivating read? My enthusiasm seems to oscillate between

both constantly!

User: Me too! I just saw Inception. It is a great idea to take action

on one’s dream! Dreams in the dreams! What a fabulous idea!

Themes:

1 talk(movie, Inception, plot episode). content(plot episode, actions in dreams).

attitude(positive).

Next:

1 talk(movie,Inception,plot episode). attitude(positive).

Bot: Absolutely! The concept of a dream within a dream in Inception

is simply astonishing. Who could forget that sensational

zero-gravity hotel scene? The representation of physics and

action was remarkable, wasn’t it?

User: Yeah! And those people are kicked to wake up from their level of

dreams one after another. very impressive and surprising, right?

Themes:

1 talk(movie, Inception, plot episode). content(plot episode, waking up one after

another). attitude(positive).

Next:

1 talk(movie,The Wolf of Wall Street,plot episode). attitude(positive).

Bot: Totally! Your mention of ’Inception’ brings to mind ’The Wolf of

Wall Street’, another DiCaprio masterpiece. The scene in which

Jordan Belfort galvanizes his firm and denounces stepping down

is incredibly grand! Quite the adrenaline surge, right?

User: Sorry I haven’t seen this movie before. But I did see another of

his work, Catch Me If You Can. I think DiCaprio’s acting there

quite matches the character’s traits, right? It’s really a good

story. I like that.

Themes:

1 talk(person, Leonardo DiCaprio, filmography). content(filmography, Catch Me If You

Can). attitude(positive).

2 talk(movie, Catch Me If You Can, actor performance). content(actor performance, acting

of DiCaprio matches the traits). attitude(positive).

3 talk(movie, Catch Me If You Can, plot episode). attitude(positive).

Next:

1 talk(movie,Catch Me If You Can,plot episode). attitude(positive).

Bot: Couldn’t agree more, buddy - the scene with Frank as a Pan Am

pilot? Unbelievably good. It’s astounding to think of a kid

being able to pull off a scam that big. What scene did you enjoy

the most?

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.620

User: Right, that’s amazing! But almost everybody trusts his make-up

identity without a second thought. It’s kind of ridiculous, but

if things like this happened around us, it would be terrible,

right?

Themes:

1 talk(movie, Catch Me If You Can, characterization). content(characterization, everybody

trusts Frank’s make-up identity). attitude(negative).

2 talk(movie, Catch Me If You Can, social impact). content(social impact, terrible if

happened in real life). attitude(positive).

Next:

1 talk(movie,Catch Me If You Can,social impact). attitude(positive).

Bot: Absolutely, buddy! Imagine having tricksters like Frank amidst

us - entertaining in films but not in reality! The movie,

Catch Me If You Can, prompts us not to be rebels but to demand

transparency, wouldn’t you agree? There’s a certain allure to

the con artist lifestyle, don’t you find it intriguing?

User: So according to you, this is a very educational movie, right?

Anyway I really like its story, it’s fun and exciting.

Themes:

1 talk(movie, Catch Me If You Can, value expressed). content(value expressed,

educational). attitude(positive).

2 talk(movie, Catch Me If You Can, plot episode). content(plot episode, fun and

exciting). attitude(positive).

Next:

1 talk(movie,Don’t Look Up,plot episode). attitude(positive).

Bot: I totally understand, it’s an entertaining narrative full of

excitement, with underlying themes of trust and integrity.

Your mention of Catch Me If You Can brings to mind another

film featuring Leonardo DiCaprio, namely Don’t Look Up.

Well, personal opinion aside, the sequence with the meteorite

approaching Earth was particularly gripping. Would you like to

share your thoughts on it?

User: Ah I don’t quite like that movie. It thinks it satirizes a lot

of things, but there is nothing fresh or original. It is neither

spicy nor funny, and its reflection on the political situation

at that time is a bit deliberate.

Themes:

1 talk(movie, Don’t Look Up, plot episode). content(plot episode, ’nothing fresh or

original, neither spicy nor funny, the reflection of the political situation is

deliberate’). attitude(negative).

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 621

Next:

1 talk(person,Jennifer Lawrence,filmography). attitude(negative).

Bot: Absolutely, my friend. It seemed excessively satirical to the

point of unreality, draining the plot of its potency. When you

bring up ’Don’t Look Up’, I can’t help but think of Jennifer

Lawrence - she was part of its cast. In my opinion, the movie

’House at the End of the Street’ didn’t quite showcase her

acting abilities. A talent like hers seemed underutilized, don’t

you agree?

User: I think it’s the role that limits her, although in fact her

character is actually one of the few bright spots in this movie.

Themes:

1 talk(person, Jennifer Lawrence, acting skill). content(acting skill, limited by role in

House at the End of the Street). attitude(negative).

2 talk(movie, House at the End of the Street, actor performance). content(actor

performance, Jennifer Lawrence is one of the few bright spots). attitude(positive).

Next:

1 talk(movie,House at the End of the Street,actor performance). attitude(positive).

Bot: Absolutely, I concur with your point. Jennifer Lawrence’s skills

exceeded her role. Her performance was indeed the bright spot in

the film. The fear and struggle she represented was so real. Do

you have any insights regarding the performance of other actors?

User: The male lead is quite handsome, and the ending is really

powerful, adding a lot of color to the movie.

Themes:

1 talk(movie, House at the End of the Street, actor performance). content(actor

performance, male lead is handsome). attitude(positive).

2 talk(movie, House at the End of the Street, plot episode). content(plot episode,

powerful ending). attitude(positive).

Next:

1 talk(movie,House at the End of the Street,plot episode). attitude(positive).

Bot: Indeed, the finale, oh my, totally transformed the game! It

added an exciting edge to the film! Positively, the unexpected

revelation where the ’sister’ unfolds as the captive girl is

flabbergasting. I was completely caught off guard. Did this

astonish you to the same degree as it did me?

User: Yeah! But simply astonished. Nothing else. I’m happy to talk

with you, but I need to go now. See you next time!

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.622

Table 2. Time cost for s(CASP) reasoning call and total response
generation

Task Time Cost for Execution

s(CASP) Reasoning (for one call) 8ms
Total (for each round) 11440ms

Themes:

1 talk(movie, House at the End of the Street, emotion impact). content(emotion impact,

just astunished). attitude(negative).

2 quit.

Next:

1 quit.

Bot: Sure thing! I had a great time talking about movies and books

with you. I hope we can carry on with our conversation next

time. Have a great day!

6 Evaluation

Next, we evaluate AutoCompanion’s execution efficiency and quality of dialog generation.

6.1 Execution time

We experimented with the processing time for each round of reply generation in Table 2,

and the average time consumption for 50 rounds is 11.44s, which is an acceptable waiting

time for social sessions. The result also shows that the average time consumption for ASP

reasoning is about 8ms, indicating that most of the time is spent in GPT-4 call. These

experiments are done with an Intel i7-9800X CPU @ 3.80GHz and 32GB RAM. We

believe that LLMs with faster response times will emerge shortly, and this cost of time

will be further shortened. Also, having the LLM reside locally on the machine will speed

up response time.

6.2 Dialog quality

We employed GPT-4 as a judge to evaluate the conversation quality following the instruc-

tion of Zheng et al. (2024). AutoCompanion is compared with ChatGPT-3.5 in aspects of

creativity, topic concentration, and conversation depth. We provided three pieces of con-

versation each, where the first one starts with the book The Little Prince, the second one

initiates with the movie Titanic, and The Lord of Rings by J.R.R. Tolkien for the third

one. For each aspect, we provided the two conversations from different bots and asked

the GPT-4 judge to distinguish which one was better. Due to the position-sensitivity

of GPT-4 reported by Zheng et al. (2024), for each experiment we asked twice, where

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 623

Table 3. We compared autoCompanion with ChatGPT-3.5 on creativity, topic
concentration, and conversation depth by employing an LLM-as-a-judge system. The
result shows that autoCompanion outperforms ChatGPT-3.5 in creativity and has

better control of the topic

Conversation Creativity Topic concentration Conversation depth

Conv 1 AutoCompanion tie tie
Conv 2 AutoCompanion tie tie
Conv 3 tie AutoCompanion tie

the order of the conversations was swapped. The experiment result is shown in Table 3,

indicating that AutoCompanion performs better than ChatGPT-3.5 in creativity and

topic concentration, which is consistent with our observations. A more comprehensive

evaluation is part of our future work.

7 Discussion

In this section, we discuss the features of AutoCompanion and the proper ways to use

LLMs.

7.1 Why is AutoCompanion better than the LLM-only socialbots?

Compared with LLM-only socialbot, our AutoCompanion is based on the knowledge

base, not pattern matching alone, which allows retrieval of relevant information about

any topic instance through a query, avoiding factual errors. When we only use LLM to

build socialbots, since the knowledge is not explicitly stored in a specific library, but is

compressed and stored using neural networks and weights, this will inevitably lead to

confusion between concepts, and hallucinations will emerge. For instance, when asking

GPT-4 the below question:

Is Currie Graham in the movie Hitchcock?

It would reply:

Yes, Currie Graham is in the movie ‘‘Hitchcock.’’ He plays the role of

Bertie, one of the characters involved in the production of ‘‘Psycho.’’

However, according to IMDb, Currie Graham acts as a PR called Flack in this movie

and thus can be corrected through AutoCompanion.

There are other advantages of AutoCompanion:

• The use of an information database enhances the scalability of AutoCompanion. To

update an LLM, we need to either load extremely long relevant texts at any time

or train the LLM for a long time. But if a database supplements our information,

an update to the knowledge base is all that is needed.

• ASP reasoner’s ability to control LLM is also a major advantage. LLMs usually

require to describe the instructions in as much detail as possible to complete the

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.624

task better (change topic, recommend, etc.). In the socialbot task for LLMs, this is

reflected in the limitation of conversation topics, the choice of strategies for talking

about a certain topic for several rounds and then jumping to another topic, the choice

of recommendation timing for the latest popular topic instances, etc. However, these

instructions usually require a large amount of token space, which will gradually be

ignored as the conversation length increases. On the other hand, we don’t record

the specific content of the conversation but the state is saved in the summary.

• The ASP reasoner can specify some less common, out-of-the-box-thinking for an

LLM. Even with a certain degree of randomness, it is difficult for LLMs to truly

generate some opinions that are far away from most people’s thinking. Yet, even if a

movie has excellent reviews, there remains a small group of people who don’t like it

for various reasons. However, when using an LLM directly, it almost always caters

to the mainstream views of the public and lacks its “own unique insights”. This can

also be avoided by cleverly using an ASP reasoner.

7.2 Is it proper to let LLM generate the fact-based content for use by
AutoCompanion?

It is well known that LLMs are good at generating coherent text. However, the accu-

racy of the generated content is not guaranteed. If we have certain requirements on

the correctness of the generated content, relying only on an LLM may not be a good

choice. Nonetheless, with the increase in training materials, the reliability of LLM has

also improved to a certain extent. In such a case then, would it be better to rely only on

the knowledge in the knowledge base, and allow LLM to only paraphrase? Not necessar-

ily, because this requires an extremely detailed and complete knowledge base, which we

may not have, such as storing all the information about each movie, including all plots,

shots, lines, costumes, sets, and other information, as well as opinions about them, and

this is almost impossible. For our AutoCompanion, since almost all movies/books/people

are well-known to the public, GPT-4 has also been exposed to relevant materials and is

familiar with relevant information, so it is feasible for GPT-4 to generate content directly,

but it also sacrifices some accuracy. And, since enough constraints are imposed and the

sentences are short, we have not observed hallucinated responses in our reasonably exten-

sive experiments. In our future work, the knowledge base will be expanded to cover most

movies and books, but if so, a detailed knowledge base is required.

7.3 Why does LLM always generate answers lacking novelty?

When we used GPT-4 to build and use an LLM-only socialbot, we found that the views

generated by GPT-4 were often old and boring, not only wrt the property of a certain

topic instance, but also wrt the association of one instance to another. For example, when

discussing fantasy literature, GPT-4 will always mention “Middle-Earth” or the “Harry

Potter” series first and express its appreciation for them. As another example, when we

mention the movie Inception or other acclaimed movies, GPT-4 always speaks highly

of it. Even when we ask it to talk about its shortcomings about a certain property, it

sometimes replies, “I can’t think of any shortcomings.” Work of Gallegos et al. (2023)

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 625

suggests that this is related to the bias and fairness of LLM to a certain extent. Since the

data injected into LLM is based on statistics, LLMs’ belief in a certain point of view is

constantly strengthened during the training. Especially when a small number of samples

are carefully labeled but used repeatedly, those data that deviate from the general public

opinion are directly eliminated. At the same time, training to align reinforcement learning

with users also weakens the creativity of LLM to a certain extent. This essentially reflects

the “data organizer” attribute of LLM, that is, the current LLM is only trained for data

collection and organization, and is rarely trained for innovative work – and innovation

is difficult to gain from training. Franceschelli and Musolesi (2023) also pointed out that

although LLM can produce texts of a certain value, revolutionary or eye-catching ideas

are rarely found.

8 Conclusion and future work

This paper presents an approach to building a socialbot that utilizes LLM to translate

between natural language and predicates while employing an ASP reasoner as the back-

end. We used this framework to develop the AutoCompanion socialbot to chat about

movies and book-related topics. AutoCompanion outperforms LLM-only socialbots in

reliability, scalability, ease of use, and creativity. We believe this organic combination

of LLM and ASP is one of the most effective ways to realize the control of LLM-based

socialbots.

Our future work includes building a more complete knowledge base that allows social-

bots to query most of the topic knowledge rather than generating it using an LLM;

it also includes field testing and evaluation of socialbots. We expect to make our

AutoCompanion Socialbot available on online platforms shortly. Feedback from users will

be one of the criteria to measure the performance of our AutoCompanion. Additionally,

continuing to explore how to better utilize LLMs to generate unstructured knowledge

and ensure its reliability is also part of our future work. We are also planning to add

multi-modality, like importing movie clips and voice I/O to our AutoCompanion.

Acknowledgment

Authors have been partially supported by US NSF Grants IIS 1910131, US DoD, grants

from industry through the UT Dallas Center for Applied AI and Machine Learning, and

grants VAE (TED2021-131295B-C33) and COSASS (PID2021-123673OB-C32) funded

by MCIN/AEI. The authors would like to thank the anonmyous reviewers for their

insightful comments and suggestions for improvement.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al. 2023. GPT-4 technical report. arXiv
preprint arXiv:2303.08774.

Amazon 2021. Amazon alexa socialbot challenge 4.0. URL: https://utdallas.edu/

gupta/alexa.html [Accessed October 2024].

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


Y. Zeng et al.626

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai,
A. M., Hauth, A., et al. 2023. Gemini: A family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805.

Arias, J., Carro, M., Chen, Z. andGupta, G. Justifications for goal-directed constraint answer
set programming. In Proceedings 36th ICLP (Tech. Comm.) 2020, vol. 325. EPTCS , 59–72.

Arias, J., Carro, M., Salazar, E., Marple, K. and Gupta, G. 2018. Constraint answer
set programming without grounding. Theory and Practice of Logic Programming, 18, 3–4,
337–354.

Basu, K., Varanasi, S., Shakerin, F., Arias, J. and Gupta, G. Knowledge-driven natu-
ral language understanding of english text and its applications. In Proceedings of the AAAI
Conference on Artificial Intelligence 2021a, 12554–12563.

Basu, K., Wang, H., Dominguez, N., Li, X., Li, F., Varanasi, S. C. and Gupta, G.
2021b. CASPR: a commonsense reasoning-based conversational socialbot. arXiv preprint
arXiv:2110.05387, abs/2110.05387b.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Commun. ACM, 54, 92–103.

Brown, T. B., Mann, B. et al. 2020. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 . URL: https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Casola, S., Lauriola, I. and Lavelli, A. 2022. Pre-trained transformers: an empirical
comparison. Machine Learning with Applications, 9, 100334.

Chen, Z., Marple, K., Salazar, E., Gupta, G. and Tamil, L. 2016. A physician advisory sys-
tem for chronic heart failure management based on knowledge patterns. Theory and Practice
of Logic Programming, 16, 5–6, 604–618.

Colby, K. M., Weber, S. and Hilf, F. D. 1971. Artificial paranoia. Artificial Intelligence, 2,
1, 1–25.

Floridi, L. and Chiriatti, M. 2020. GPT-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30, 1–14.

Franceschelli, G. and Musolesi, M. 2023. On the creativity of large language models. arXiv
preprint arXiv:2304.00008.

Gallegos, I. O., Rossi, R. A., Barrow, J., Tanjim, M. M., Kim, S., Dernoncourt, F., Yu,
T., Zhang, R. and Ahmed, N. K. 2023. Bias and fairness in large language models: A survey.
arXiv preprint arXiv:2309.00770 .

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: Answer Set Programming Approach. Cambridge University Press.

Gupta, G. 2022. Automating common sense reasoning with ASP and s(CASP). Technical
Report, UT Dallas. URL: https://utdallas.edu/gupta/csr-scasp.pdf.

Kulkarni, M., Tangarajan, P., Kim, K. and Trivedi, A. 2024. Reinforcement learning for
optimizing rag for domain chatbots. arXiv preprint arXiv:2401.06800.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W.-t., Rocktäschel, T., et al. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33,
9459–9474.

Li, F., Wang, H., Basu, K., Salazar, E. and Gupta, G. Discasp: A graph-based ASP system
for finding relevant consistent concepts with applications to conversational socialbots. In Proc
37th ICLP (Tech. Comm) 2021, vol. 345. EPTCS , 205–218.

Nezhurina, M., Cipolina-Kun, L., Cherti, M. and Jitsev, J. 2024. Alice in wonderland:
Simple tasks showing complete reasoning breakdown in state-of-the-art large language models.
arXiv preprint arXiv:2406.02061.

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X


A reliable common-sense reasoning socialbot 627

Quidwai, M. A. and Lagana, A. 2024. A rag chatbot for precision medicine of multiple myeloma.
medRxiv, 2024–03.

Rajasekharan, A., Zeng, Y., Padalkar, P. and Gupta, G. Reliable natural language under-
standing with large language models and answer set programming. In Proceedings 39th
International Conference on Logic Programming, ICLP 2023, vol. 385. EPTCS , 274–287.

Sartor, G., Davila, J., Billi, M., Pisano, G., Contissa, G. and Kowalski, R. Integration
of logical english and s(CASP). In Proc. ICLP Workshops: GDE’22 2022, vol. 2970. CEUR
Workshop Proceedings. CEUR-WS.org.

Turner, J. H. 1988. A Theory of Social Interaction. Stanford University Press.

Warren, D. H. and Pereira, F. C. 1982. An efficient easily adaptable system for interpreting
natural language queries. American Journal of Computational Linguistics, 8, 3–4, 110–122.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q.
V. and Zhou, D. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, vol. 35, 2022.

Weizenbaum, J. 1966. Eliza—A computer program for the study of natural language commu-
nication between man and machine. CACM, 9, 1, 36–45.

Xu, Z., Arias, J. and Others. Jury-trial story construction and analysis using goal-directed
answer set programming. In Proceedings of PADL 2023, vol. 13880. LNCS , 261–278. Springer.

Zeng, Y., Rajasekharan, A., Padalkar, P., Basu, K., Arias, J. and Gupta, G.
Automated interactive domain-specific conversational agents that understand human dialogs.
In International Symposium on Practical Aspects of Declarative Languages 2024, 204–222.
Springer.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D.,
Xing, E., et al. 2024. Judging LLM-as-a-judge with MT-bench and Chatbot Arena. Advances
in Neural Information Processing Systems, vol. 36 .

https://doi.org/10.1017/S147106842400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147106842400022X

	Introduction
	Background and related work
	Answer set programming and s(CASP)
	State-of-the-art chatbots and their limitations

	3 Socialbot design
	LLM parser and ontology
	3.1.1 Topic
	3.1.2 Property
	3.1.3 Theme
	3.1.4 Preference

	Topic control
	3.2.1 Question Answering
	3.2.2 Recommendation
	3.2.3 Response to Irrelevant Dialogs
	3.2.4 Output Format

	Response generation

	4 Implementation
	Data collection
	4.1.1 Movies
	4.1.2 Books
	4.1.3 People

	ASP coding
	4.2.1 CKT implementation
	4.2.2 Topic switching

	Leveraging LLMs
	4.3.1 Property enumeration
	4.3.2 Name correction
	4.3.3 Extra rules generation


	5 Conversation samples
	6 Evaluation
	6.1 Execution time
	6.2 Dialog quality

	Discussion
	7.1 Why is AutoCompanion better than the LLM-only socialbots?
	7.2 Is it proper to let LLM generate the fact-based content for use by AutoCompanion?
	7.3 Why does LLM always generate answers lacking novelty?

	Conclusion and future work
	References

