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Abstract. Motivated by fractal geometry of self-affine carpets and sponges, Feng and
Huang [J. Math. Pures Appl. 106(9) (2016), 411–452] introduced weighted topological
entropy and pressure for factor maps between dynamical systems, and proved variational
principles for them. We introduce a new approach to this theory. Our new definitions of
weighted topological entropy and pressure are very different from the original definitions
of Feng and Huang. The equivalence of the two definitions seems highly non-trivial.
Their equivalence can be seen as a generalization of the dimension formula for the
Bedford–McMullen carpet in purely topological terms.
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1. Introduction
1.1. Weighted topological entropy and pressure. The purpose of this paper is to
introduce a new approach to weighted topological entropy and pressure introduced by
Feng and Huang [FH16]. In this subsection, we describe their original theory. We explain
our new approach in the next subsection.

We first quickly review the classical theory of entropy and pressure of dynamical
systems. See the book of Walters [Wal82] for the details. A pair (X, T ) is called a
dynamical system if X is a compact metrizable space and T : X → X is a continuous
map. We denote its topological entropy by htop(X, T ). This is a topological invariant of
dynamical systems, which counts the number of bits per iterate for describing the orbits of
(X, T ).

One of the most basic theorems about topological entropy is the variational principle.
We define MT (X) as the set of invariant Borel probability measures on X. For each
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measure μ ∈ MT (X), we denote its Kolomogorov–Sinai entropy by hμ(T ). Then the
variational principle states that [Din70, Goodm71, Goodw69]

htop(X, T ) = sup
μ∈MT (X)

hμ(T ). (1.1)

This theory can be generalized to pressure. Let (X, T ) be a dynamical system with a
continuous function f : X → R. Motivated by statistical mechanics, Ruelle [Rue73] (in
some special cases) and Walters [Wal75] (for general systems) introduced the topological
pressure P(T , f ) and proved the variational principle

P(T , f ) = sup
μ∈MT (X)

(
hμ(T )+

∫
X

f dμ

)
. (1.2)

The above (1.1) and (1.2) are classical and standard in ergodic theory. Recently, Feng
and Huang [FH16] found an ingenious generalization of this classical theory. Motivated
by fractal geometry of self-affine carpets and sponges [Bed84, KP96a, Mc84], they
introduced weighted versions of entropy and pressure.

Let (X, T ) and (Y , S) be dynamical systems. A map π : X → Y is called a factor map
if π is a continuous surjection with π ◦ T = S ◦ π . We sometimes write π : (X, T ) →
(Y , S) for clarifying the maps T and S. For an invariant probability measure μ ∈ MT (X),
we denote by π∗μ ∈ MS(Y ) the push-forward of μ by π (this is defined by π∗μ(A) =
μ(π−1A) for A ⊂ Y ). Let f : X → R be a continuous function, and let a1, a2 be two real
numbers with a1 > 0 and a2 ≥ 0. Feng and Huang [FH16, Question 1.1] asked (and then
solved) the following question.

Question 1.1. How can one define a meaningful term P (a1,a2)(T , f ) such that the
following variational principle holds?

P (a1,a2)(T , f ) = sup
μ∈MT (X)

(
a1hμ(T )+ a2hπ∗μ(S)+

∫
X

f dμ

)
.

We describe their approach below. It is a modification of the definition of topological
entropy given by Bowen [Bow73], which is in turn a modification of the standard definition
of the Hausdorff dimension.

Here we explain only the case of f ≡ 0 for simplicity of the exposition. For the case
of f 	≡ 0, see their paper [FH16, §3.1] (they also studied the case where a sequence of
factor maps πi : Xi → Xi+1 (i = 1, 2, . . . , k) is given. We think that our new approach
can be also generalized to this setting. However, we concentrate on the simplest case in
this paper).

Let d and d ′ be metrics on X and Y respectively. For x∈X, a natural number n and ε>0,
we define B(a1,a2)

n (x, ε) ⊂ X as the set of y ∈ X satisfying the following two conditions:

d(T jx, T jy) < ε (0 ≤ j < �a1n
);
d ′(Sjπ(x), Sjπ(x)) < ε (0 ≤ j < �(a1 + a2)n
).

Here �u
 denotes the least integer not less than u. We call B
(a1,a2)
n (x, ε) an

(a1, a2)-weighted Bowen ball.
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Let N be a natural number. We consider families of (a1, a2)-weighted Bowen balls
{B(a1,a2)
nj (xj , ε)}∞j=1 satisfying

X =
⋃
j

B(a1,a2)
nj

(xj , ε), nj ≥ N (for all j ≥ 1). (1.3)

Let s ≥ 0. We define �(a1,a2),s
N ,ε (X) as the infimum of

∑
j

exp(−snj ),

where the infimum is taken over all families {B(a1,a2)
nj (xj , ε)}∞j=1 satisfying (1.3).

The quantity �(a1,a2),s
N ,ε (X) is monotone in N. So we define

�(a1,a2),s
ε (X) = lim

N→∞ �
(a1,a2),s
N ,ε (X).

We vary the parameter s from 0 to ∞. There exists a unique value of s, which we denote
by h(a1,a2)

top (T , ε), where the value of �(a1,a2),s
ε (X) jumps from ∞ to 0:

�(a1,a2),s
ε (X) =

⎧⎨
⎩

0 (s > h
(a1,a2)
top (T , ε)),

∞ (s < h
(a1,a2)
top (T , ε)).

Here, h(a1,a2)
top (T , ε) is monotone in ε. So we define the (a1, a2)-weighted topological

entropy of π : X → Y by

h
(a1,a2)
top (π , T ) = lim

ε→0
h
(a1,a2)
top (T , ε).

Feng and Huang [FH16, Theorem 1.4 and Corollary 1.5] solved Question 1.1 by this
quantity.

THEOREM 1.2. (Feng and Huang, 2016) In the above setting,

h
(a1,a2)
top (π , T ) = sup

μ∈MT (X)

(a1hμ(T )+ a2hπ∗μ(S)).

1.2. New approach. In the previous subsection, we have described the original
definition of weighted topological entropy introduced by Feng and Huang [FH16]. In
this subsection, we explain our new approach. Our approach is a modification of the
familiar definition of topological entropy (not the Hausdorff-dimension-like definition of
[Bow73]).

First of all, notice that we can assume a1 + a2 = 1 in Question 1.1 because we can
reduce the general case to this special case by a simple rescaling. So we study only this
case. As in the previous subsection, here we explain the entropy case (that is, the case of
f ≡ 0) for simplicity. We will explain the pressure case in §2.

Let (X, T ) and (Y , S) be dynamical systems, and let π : X → Y be a factor map. Let
d and d ′ be metrics on X and Y respectively. For a natural number N we define metrics dN
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and d ′
N on X and Y respectively by

dN(x1, x2) = max
0≤n<N

d(T nx1, T nx2), d ′
N(y1, y2) = max

0≤n<N
d ′(Sny1, Sny2). (1.4)

For ε > 0 and a non-empty subset � ⊂ X, we define

#(�, N , ε) = min

⎧⎪⎨
⎪⎩n ≥ 1

∣∣∣∣∣∣∣
there exist open subsets U1, . . . , Un of X with

� ⊂ U1 ∪ · · · ∪ Un and diam(Uk , dN) < ε

for all 1 ≤ k ≤ n

⎫⎪⎬
⎪⎭. (1.5)

Here, diam(Uk , dN) = supx1,x2∈Uk dN(x1, x2) is the diameter of Uk with respect to the
metric dN . When � is the empty set, we define #(�, N , ε) = 0. As is well known, the
topological entropy of (X, T ) is defined by

htop(X, T ) = lim
ε→0

(
lim
N→∞

log #(X, N , ε)
N

)
.

We will modify this definition.
Let 0 ≤ w ≤ 1 be a real number. We set

#w(π , N , ε)= min
{ n∑
k=1

(#(π−1(Vk), N , ε))w
∣∣∣∣Y=V1 ∪ · · · ∪ Vn is an open cover with

diam(Vk , d ′
N) < ε for all 1 ≤ k ≤ n

}
.

(1.6)

It is easy to check that this quantity is sub-multiplicative in N and monotone in ε. So we
define the w-weighted topological entropy of π : X → Y by

hwtop(π , T ) = lim
ε→0

(
lim
N→∞

log #w(π , N , ε)
N

)
.

This definition uses the metrics d and d ′, but the value of hwtop(π , T ) is a topological
invariant (that is, independent of the choice of metrics).

The quantity hwtop(π , T ) provides another solution to Question 1.1 for the case of f ≡ 0
and (a1, a2) = (w, 1 − w). This is our main result for the weighted topological entropy.

THEOREM 1.3. (Variational principle for w-weighted topological entropy) For 0 ≤ w ≤ 1,

hwtop(π , T ) = sup
μ∈MT (X)

{whμ(T )+ (1 − w)hπ∗μ(S)}.

As the above definition of hwtop(π , T ) is close to the standard definition of topological
entropy, the proof of this theorem is also close to a well-known proof of the standard
variational principle. The basic structure of the proof is borrowed from the famous
argument of Misiurewicz [Mis76]. At some technical points, we use the theory of principal
extensions [DH13, Dow11].

By combining Theorems 1.2 and 1.3, we get a corollary.

COROLLARY 1.4. For 0 ≤ w ≤ 1,

h
(w,1−w)
top (π , T ) = hwtop(π , T ).
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Here the left-hand side is the weighted topological entropy h(a1,a2)
top (π , T ) for (a1, a2) =

(w, 1 − w) defined in the previous subsection.

This corollary seems to be a very interesting statement. The author cannot see any direct
way to prove it (without using the variational principles).

Problem 1.5. Can one prove the equality h
(w,1−w)
top (π , T ) = hwtop(π , T ) without using

measure theory?

The following example illustrates the importance of the equality h(w,1−w)
top (π , T ) =

hwtop(π , T ).

Example 1.6. (Bedford–McMullen carpets) Let T = R/Z be the circle, and let T
2 =

R
2/Z2 be the torus. Let a and b be two natural numbers with a ≥ b ≥ 2. Set A =

{0, 1, 2, . . . , a − 1} and B = {0, 1, 2, . . . , b − 1}. Let R ⊂ A× B be a non-empty sub-
set, and define

R′ = {y ∈ B | (x, y) ∈ R for some x ∈ A}.
We define X ⊂ T

2 and Y ⊂ T by

X :=
{( ∞∑

n=1

xn

an
,

∞∑
n=1

yn

bn

)
∈ T

2
∣∣∣∣ (xn, yn) ∈ R for all n ≥ 1

}
,

Y :=
{ ∞∑
n=1

yn

bn
∈ T

∣∣∣∣ yn ∈ R′ for all n ≥ 1
}

.

The space X is the famous Bedford–McMullen carpet [Bed84, Mc84]. We are going to
explain that we can calculate the Hausdorff dimension of X (with respect to the natural
metric on T

2) by using Corollary 1.4.
We define continuous maps T : X → X and S : Y → Y by

T (x, y) = (ax, by), S(y) = by.

Here, (X, T ) and (Y , S) are dynamical systems. Let π : X → Y be the natural projection.
Then π is a factor map between (X, T ) and (Y , S). We are interested in its weighted
topological entropy. Set

w = log b
log a

= loga b.

We have 0 ≤ w ≤ 1. It directly follows from the definitions (the (a1, a2)-weighted Bowen
ball B(a1,a2)

n (x, ε) for a1 = loga b and a2 = 1 − loga b is approximately a square of side
length εb−n) in §1.1 that the Hausdorff dimension of X is given by

dimH X = h
(w,1−w)
top (π , T )

log b
.
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From the equality h(w,1−w)
top (π , T ) = hwtop(π , T ) in Corollary 1.4, we also have

dimH X = hwtop(π , T )

log b
. (1.7)

Now we calculate the w-weighted topological entropy hw(π , T ).

CLAIM 1.7. For each y ∈ B, we define t (y) as the number of x ∈ A satisfying (x, y) ∈ R.
Then

hwtop(π , T ) = log
( ∑
y∈R′

t (y)w
)

.

Proof. First notice that in the definitions (1.5) and (1.6), we can use closed covers instead
of open covers; this does not change their values. Here we will consider closed covers.

We define a metric d ′ on T by

d ′(x1, x2) = min
n∈Z |x1 − x2 − n|.

We define a metric d on T
2 by

d((x1, y1), (x2, y2)) = max(d ′(x1, x2), d ′(y1, y2)).

Let ε > 0 and take a natural number m with b−m < ε. Let N be a natural number. For
each v ∈ (R′)N+m, set

Vv =
{ ∞∑
n=1

yn

bn
∈ Y

∣∣∣∣(y1, . . . , yN+m) = v

}
.

These form a closed covering of Y with diam(Vv , d ′
N) < ε. For each (u, v) ∈ RN+m ⊂

AN+m × BN+m (where u ∈ AN+m and v ∈ (R′)N+m), we set

U(u,v) =
{( ∞∑

n=1

xn

an
,

∞∑
n=1

yn

bn

)
∈ X

∣∣∣∣(x1, . . . , xN+m) = u, (y1, . . . , yN+m) = v

}
.

These are closed subsets of X with diam(U(u,v), dN) < ε and

π−1(Vv) =
⋃

u∈AN+m
with (u,v)∈RN+m

U(u,v).

Hence, for v = (v1, . . . , vN+m) ∈ (R′)N+m,

#(π−1(Vv), N , ε) ≤ t (v1) · · · t (vN+m).

Therefore,

#w(π , N , ε) ≤
∑

v1,...,vN+m∈R′
(t (v1) · · · t (vN+m))w =

( ∑
v∈R′

t (v)w
)N+m

.
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Thus,

hwtop(π , T ) = lim
ε→0

(
lim
N→∞

log #w(π , N , ε)
N

)
≤ log

( ∑
y∈B

t (y)w
)

.

Next, let 0 < ε < 1/a. Fix (p, q) ∈ R. For a natural number N, we consider the
following points in Y:

N∑
n=1

vn

bn
+

∞∑
n=N+1

q

bn
(v1, . . . , vN ∈ R′). (1.8)

These points form an ε-separated set in Y with respect to the metric d ′
N . We also consider

the following points in X:

( N∑
n=1

un

an
,
N∑
n=1

vn

bn

)
+

∞∑
n=N+1

(
p

an
,
q

bn

)
((u1, v1), . . . , (uN , vN) ∈ R). (1.9)

These points form an ε-separated set in X with respect to the metric dN .
Suppose Y = V1 ∪ · · · ∪ Vn is a covering with diam(Vk , d ′

N) < ε. Then each Vk con-
tains at most one point of (1.8). If Vk contains a point

∑N
n=1(vn/b

n)+ ∑∞
n=N+1(q/b

n),
then π−1(Vk) contains t (v1) · · · t (vN) points of the form (1.9) and hence

#(π−1(Vk), N , ε) ≥ t (v1) · · · t (vN).
So

#w(π , N , ε) ≥
∑

v1,...,vN∈R′
(t (v1) · · · t (vN))w =

( ∑
v∈R′

t (v)w
)N

.

This shows

hwtop(π , T ) = lim
ε→0

(
lim
N→∞

log #w(π , N , ε)
N

)
≥ log

( ∑
y∈R′

t (y)w
)

.

Notice that this proof of the claim is completely elementary. We have not used any
sophisticated technique (in particular, measure theory).

From (1.7) and Claim 1.7,

dimH X = log(
∑
y∈R′ t (y)w)

log b
= logb

( ∑
y∈R′

t (y)loga b
)

. (1.10)

This is a famous formula for the Hausdorff dimension of the Bedford–McMullen
carpet [Bed84, Mc84]. Therefore, we conclude that the equality h

(1−w,w)
top (π , T ) =

hwtop(π , T ) provides this famous formula fairly easily. This suggests that the equality

h
(1−w,w)
top (π , T ) = hwtop(π , T ) is a rather deep statement. We can say that it is a

topological generalization of the dimension formula for the Bedford–McMullen
carpet.
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Kenyon–Peres [KP96b, Theorems 1.1 and 3.2] generalized the formula (1.10) to closed
T-invariant subsets of T2 which correspond to subshifts of finite type or sofic subshifts
under the natural Markov partition. We can also prove their results from the equality
h
(1−w,w)
top (π , T ) = hwtop(π , T ) as in the above.

The above example also illustrates that the two notions h(a1,a2)
top (π , T ) and hwtop(π , T )

have their own advantages. One of the great advantages of h(a1,a2)
top (π , T ) is that its

definition is intrinsically related to the Hausdorff dimension. So it can be directly applied
to the study of geometric measure theory. The advantage of hwtop(π , T ) is that its definition
is elementary and hence (sometimes) easy to calculate.

In [FH16, pp. 441], Feng and Huang asked how to generalize their result to Z
d -actions.

It seems rather straightforward to generalize our new approach to Z
d -actions and, possibly,

actions of amenable groups.

Problem 1.8. Suppose that both h(a1,a2)
top (π , T ) and hwtop(π , T ) are generalized to group

actions. Can one deduce any interesting consequence of their coincidence (like the above
calculation of the Hausdorff dimension of the Bedford–McMullen carpet)?

We would like to mention the papers of Barral and Feng [BF09, BF12] and Feng
[Fen11] (see also Yayama [Ya11a, Ya11b]). These papers studied Question 1.1 and related
questions when (X, T ) and (Y , S) are subshifts over finite alphabets. When (X, T ) and
(Y , S) are subshifts, the above definition of hwtop(π , T ) (and its pressure version in §2) is
essentially the same as that given in [BF09, Theorem 1.1] (see also [BF12, Theorem 3.1]).
So we can say that the above definition generalizes the approach in [BF09, Theorem 1.1]
from subshifts to general dynamical systems.

This paper studies only the abstract theory of hwtop(π , T ) and its pressure version.
However, the main motivation for the author to introduce these quantities is not to develop
an abstract theory. The author naturally came up with the above definition of hwtop(π , T )
when he studied the mean Hausdorff dimension of certain infinite dimensional fractals.
(The mean Hausdorff dimension is a dynamical version of the Hausdorff dimension
introduced in [LT19].) We plan to describe this connection in a separate paper.

2. Weighted topological pressure
In this section, we introduce our new definition of weighted topological pressure. For the
original approach, see [FH16, §3.1].

Let π : X → Y be a factor map from a dynamical systems (X, T ) to a dynamical system
(Y , S). Let f : X → R be a continuous function.

Let d and d ′ be metrics on X and Y respectively. For a natural number N, we define new
metrics dN and d ′

N on X and Y respectively by (1.4). We also define a continuous function
SNf : X → R by

SNf (x) = f (x)+ f (T x)+ f (T 2x)+ · · · + f (T N−1x).

The metrics dN , d ′
N , and function SNf are sometimes denoted by dTN , (d ′)SN , and S

T
Nf

respectively for clarifying the underlying dynamics.

https://doi.org/10.1017/etds.2021.173 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.173


1012 M. Tsukamoto

For ε > 0 and a non-empty subset � ⊂ X, we define

P(�, f , N , ε)

= inf

⎧⎨
⎩

n∑
k=1

exp
(

sup
Uk

SNf
) ∣∣∣∣∣∣

there exist open subsets U1, . . . , Un of X with

� ⊂ U1 ∪ · · · ∪ Un and diam(Uk , dN) < ε

for all 1 ≤ k ≤ n

⎫⎬
⎭ .

(2.1)

(When Uk is the empty set, we assume that the term exp(supUk SNf ) is zero.) We
sometimes denote P(�, f , N , ε) by PT (�, f , N , ε) for clarifying the map T. When � is
the empty set, we define P(�, f , N , ε) = 0. It is well known that the topological pressure
of (X, T , f ) is given by

P(T , f ) = lim
ε→0

(
lim
N→∞

log P(X, f , N , ε)
N

)
.

We will modify this definition. Let 0 ≤ w ≤ 1 be a real number. We set

Pw(π , f , N , ε)

= inf
{ n∑
k=1

(P (π−1(Vk), f , N , ε))w
∣∣∣∣ Y = V1 ∪ · · · ∪ Vn is an open cover with

diam(Vk , d ′
N) < ε for all 1 ≤ k ≤ n

}
.

(2.2)

We sometimes denote this by PwT (π , f , N , ε).
The quantity Pw(π , f , N , ε) is sub-multiplicative in N and monotone in ε. So we define

the w-weighted topological pressure by

Pw(π , T , f ) = lim
ε→0

(
lim
N→∞

log Pw(π , f , N , ε)
N

)
.

The value of Pw(π , T , f ) is independent of the choices of the metrics d and d ′. So it
provides a topological invariant. We sometimes use the notation Pw(π , X, T , Y , S, f )
instead of Pw(π , T , f ) for clarifying all the data involved.

Now we state our main result of the paper.

THEOREM 2.1. (Variational principle for w-weighted topological pressure) For any 0 ≤
w ≤ 1,

Pw(π , T , f ) = sup
μ∈MT (X)

(
whμ(T )+ (1 − w)hπ∗μ(S)+ w

∫
X

f dμ

)
.

When f ≡ 0, we have Pw(π , T , f ) = hwtop(π , T ). So Theorem 1.3 in §1.2 follows from
Theorem 2.1. The proof of Theorem 2.1 occupies the rest of the paper.

For the simplicity of the notation, we write

Pwvar(π , T , f ) := sup
μ∈MT (X)

(
whμ(T )+ (1 − w)hπ∗μ(S)+ w

∫
X

f dμ

)
. (2.3)
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(Here var is the abbreviation of variational.) Then our main purpose is to prove the equality

Pw(π , T , f ) = Pwvar(π , T , f ).

In the rest of this section, we gather some elementary properties of w-weighted
topological pressure. Here we always assume that π : (X, T ) → (Y , S) is a factor map
between dynamical systems with a continuous function f : X → R. We take 0 ≤ w ≤ 1.
Let d and d ′ be metrics on X and Y respectively.

LEMMA 2.2. Let m be a natural number.

Pw(π , T m, Smf ) = mPw(π , T , f ).

Here the left-hand side is Pw(π , X, T m, Y , Sm, STmf ).

Proof. Let ε be a positive number. There exists 0 < δ < ε such that

d(x1, x2) < δ �⇒ dTm(x1, x2) < ε (x1, x2 ∈ X),
d ′(y1, y2) < δ �⇒ (d ′)Sm(y1, y2) < ε (y1, y2 ∈ Y ).

Then for any natural number N,

dT
m

N (x1, x2) < δ �⇒ dTmN(x1, x2) < ε (x1, x2 ∈ X),
(d ′)SmN (y1, y2) < δ �⇒ (d ′)SmN(y1, y2) < ε (y1, y2 ∈ Y ).

Because S
T m

N (STmf ) = S
T
mNf , for any subset � ⊂ X,

PTm(�, STmf , N , ε) ≤ PT (�, f , mN , ε) ≤ PTm(�, STmf , N , δ).

Then,

PwTm(π , STmf , N , ε) ≤ PwT (π , f , mN , ε) ≤ PwTm(π , STmf , N , δ).

Thus,

Pw(π , T m, STmf ) = mPw(π , T , f ).

LEMMA 2.3. Let (X′, T ′) be a dynamical system, and let ϕ : (X′, T ′) → (X, T ) be a
factor map.

(X′, T ′) ϕ ��

π◦ϕ
����

���
���

���
��

(X, T )

π

��
(Y , S)

Then

Pw(π , T , f ) ≤ Pw(π ◦ ϕ, T ′, f ◦ ϕ).
Here the right-hand side is Pw(π ◦ ϕ, X′, T ′, Y , S, f ◦ ϕ).
Proof. Let d̃ be a metric on X′. For any ε > 0 there exists 0 < δ < ε satisfying

d̃(x1, x2) < δ �⇒ d(ϕ(x1), ϕ(x2)) < ε.
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Then for any N > 0

d̃N (x1, x2) < δ �⇒ dN(ϕ(x1), ϕ(x2)) < ε.

From this, we have for any � ⊂ X′

PT (ϕ(�), f , N , ε) ≤ PT ′(�, f ◦ ϕ, N , δ).

For any V ⊂ Y

ϕ((π ◦ ϕ)−1(V )) = π−1(V ).

So

PT (π
−1(V ), f , N , ε) ≤ PT ′((π ◦ ϕ)−1(V ), f ◦ ϕ, N , δ).

Then

PwT (π , f , N , ε) ≤ PwT ′(π ◦ ϕ, f ◦ ϕ, N , δ).

Therefore

Pw(π , T , f ) ≤ Pw(π ◦ ϕ, T ′, f ◦ ϕ).
The next lemma is a bit complicated. It might be better for some readers to look at

Remark 2.5 below before reading the lemma. It will provide a clearer perspective.

LEMMA 2.4. Let (Y ′, S′) be a dynamical system and let φ : (Y ′, S′) → (Y , S) be a factor
map. Define the fiber product,

X ×Y Y
′ = {(x, y) ∈ X × Y ′ | π(x) = φ(y)}.

Now, (X ×Y Y
′, T × S′) becomes a dynamical system. We define factor maps ϕ : X ×Y

Y ′ → X and 	 : X ×Y Y
′ → Y ′ by

ϕ(x, y) = x, 	(x, y) = y.

The diagram is as follows:

(X ×Y Y
′, T × S′) ϕ ��

	

��

(X, T )

π

��
(Y ′, S′)

φ
�� (Y , S)

Then,

Pw(π , T , f ) ≤ Pw(	, T × S′, f ◦ ϕ).
Here the right-hand side is Pw(	, X ×Y Y

′, T × S′, Y ′, S′, f ◦ ϕ).
Proof. The point of the proof is that for any subset A ⊂ Y ′, we have

π−1(φ(A)) = ϕ(	−1(A)).
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Let d̃ be a metric on Y ′ and we define a metric ρ on X ×Y Y
′ by

ρ((x1, y1), (x2, y2)) = max(d(x1, x2), d̃(y1, y2)).

Let ε be a positive number. We have

ρ((x1, y1), (x2, y2)) < ε �⇒ d(x1, x2) < ε.

Then for any natural number N and any subset � ⊂ X ×Y Y
′,

PT (ϕ(�), f , N , ε) ≤ PT×S′(�, f ◦ ϕ, N , ε).

In particular, for any subset A ⊂ Y ′,

PT (π
−1(φ(A)), f , N , ε) = PT (ϕ(	

−1(A)), f , N , ε)

≤ PT×S′(	−1(A), f ◦ ϕ, N , ε). (2.4)

There exists 0 < δ < ε such that

d̃(y1, y2) < δ �⇒ d ′(φ(y1), φ(y2)) < ε.

Now we claim that

PwT (π , f , N , ε) ≤ PwT×S′(	, f ◦ ϕ, N , δ).

Indeed, take any positive number C with

PwT×S′(	, f ◦ ϕ, N , δ) < C.

Then there exists an open covering Y ′ = V1 ∪ · · · ∪ Vn such that diam(Vk , d̃N ) < δ for all
1 ≤ k ≤ n and

n∑
k=1

(PT×S′(	−1(Vk), f ◦ ϕ, N , δ))w < C.

We can find compact subsets Ak ⊂ Vk satisfying Y ′ = A1 ∪ · · · ∪ An. We have
n∑
k=1

(PT (π
−1(φ(Ak)), f , N , ε))w ≤

n∑
k=1

(PT×S′(	−1(Ak), f ◦ ϕ, N , ε))w by (2.4)

≤
n∑
k=1

(PT×S′(	−1(Ak), f ◦ ϕ, N , δ))w by δ < ε

≤
n∑
k=1

(PT×S′(	−1(Vk), f ◦ ϕ, N , δ))w by Ak ⊂ Vk

< C.

Each φ(Ak) is a closed subset of Y with diam(φ(Ak), d ′
N) < ε. By the definition (2.1),

there exist open subsets Wk ⊃ φ(Ak) of Y for 1 ≤ k ≤ n such that diam(Wk , d ′
N) < ε and

n∑
k=1

(P (π−1(Wk), f , N , ε))w < C.
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Noticing Y = W1 ∪ · · · ∪Wn, we have

PwT (π , f , N , ε) < C.

Because C is an arbitrary number larger than Pw
T×S′(	, f ◦ ϕ, N , δ), this shows

PwT (π , f , N , ε) ≤ PwT×S′(	, f ◦ ϕ, N , δ).

Thus, we conclude

Pw(π , T , f ) ≤ Pw(	, T × S′, f ◦ ϕ).
Remark 2.5. Let (X′, T ′) and (Y ′, S′) be dynamical systems, and let π ′ : X′ → Y ′ be a
factor map. Suppose there exist factor maps ϕ : (X′, T ′) → (X, T ) and φ : (Y ′, S′) →
(Y , S) satisfying π ◦ ϕ = φ ◦ π ′.

(X′, T ′) ϕ ��

π ′
��

(X, T )

π

��
(Y ′, S′)

φ
�� (Y , S)

Then,

Pw(π , T , f ) ≤ Pw(π ′, T ′, f ◦ ϕ). (2.5)

Here the right-hand side is Pw(π ′, X′, T ′, Y ′, S′, f ◦ ϕ). Lemmas 2.3 and 2.4 are special
cases of this statement. We can prove (2.5) by using the variational principle (Theorem
2.1). However, it seems difficult to prove it in an elementary way. We will not use (2.5) in
the paper.

Finally, we mention two basic results on calculus, which underpin many arguments of
this paper.

LEMMA 2.6.
(1) For 0 ≤ w ≤ 1 and non-negative numbers x, y,

(x + y)w ≤ xw + yw.

(2) Let p1, . . . , pn be non-negative numbers with p1 + · · · + pn = 1. For any real
numbers x1, . . . , xn,

n∑
i=1

(−pi log pi + pixi) ≤ log
n∑
i=1

exi .

In particular (letting x1 = · · · = xn = 0),

−
n∑
i=1

pi log pi ≤ log n.

Proof. (1) is completely elementary. (2) is proved in [Wal82, §9.3, Lemma 9.9].
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3. Kolmogorov–Sinai entropy
In this section, we review basic definitions on Kolmogorov–Sinai entropy. For the details,
see the book of Walters [Wal82].

Let (X, μ) be a probability measure space, namely X is a set equipped with a σ -algebra
andμ is a probability measure defined on it. In our later applications, X is always a compact
metrizable space with the standard Borel σ -algebra.

Let A = {A1, A2, . . . , An} be a finite measurable partition of X, namely each Ai is a
measurable subset of X and

X =
n⋃
i=1

Ai , Ai ∩ Aj = ∅ (i 	= j).

We define the Shannon entropy of A by

Hμ(A ) = −
n∑
i=1

μ(Ai) log μ(Ai),

where we assume 0 log 0 = 0.
For another finite measurable partition A ′ = {A′

1, A′
2, . . . , A′

m}, we set

A ∨ A′ = {Ai ∩ A′
j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

This is a finite measurable partition of X. We define the conditional entropy by

Hμ(A | A ′) = −
∑

1≤j≤m
with μ(A′

j )>0

μ(A′
j )

{ n∑
i=1

μ(Ai ∩ A′
j )

μ(A′
j )

log
μ(Ai ∩ A′

j )

μ(A′
j )

}
.

Here, in the first summation, we have considered only the index j satisfying μ(A′
j )>0. We

have [Wal82, Theorem 4.3(i)]

Hμ(A ∨ A ′) = Hμ(A
′)+Hμ(A | A ′).

We write A ′ ≺ A if A ∨ A ′ = A. This is equivalent to the condition that for every
A ∈ A, there exists A′ ∈ A ′ containing A. If A ′ ≺ A, then

Hμ(A | A ′) = Hμ(A )−Hμ(A
′)

and Hμ(A ′) ≤ Hμ(A ).

LEMMA 3.1.
(1) Hμ(A ) is subadditive in A. Namely, for two finite measurable partitions A and A ′

of X,

Hμ(A ∨ A ′) ≤ Hμ(A )+Hμ(A
′).

(2) Hμ(A ) is concave in μ. Namely, for 0 ≤ t ≤ 1 and two probability measures μ and
μ′ on X,

H(1−t)μ+tμ′(A ) ≥ (1 − t)Hμ(A )+ tHμ(A ).
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Proof. See [Wal82, Theorem 4.3(viii)] and [Wal82, §8.1 Remark] for the proofs of (1)
and (2) respectively.

Let T : X → X be a measurable map satisfying T∗μ = μ. Let A be a finite measurable
partition of X. For a natural number N, we define a new measurable partition A N of X by

AN = A ∨ T −1A ∨ T −2A ∨ · · · ∨ T −(N−1)A.

We define the entropy hμ(T , A ) by

hμ(T , A ) = lim
N→∞

Hμ(A
N)

N
.

Finally, we define the Kolmogorov–Sinai entropy of the measure-preserving transformation
T by

hμ(T ) = sup{hμ(T , A ) | A is a finite measurable partition of X}.
We will need the following lemma later. See theorem 4.12(iv) of the book [Wal82, §4.5]

for the proof.

LEMMA 3.2. If A and A ′ are two finite measurable partitions of X, then

hμ(T , A ) ≤ hμ(T , A ′)+Hμ(A | A ′).

4. Proof of Pwvar(π , T , f ) ≤ Pw(π , T , f )
Let π : (X, T ) → (Y , S) be a factor map between dynamical systems and let f : X → R

be a continuous function. The purpose of this section is to prove a half of the variational
principle.

PROPOSITION 4.1. For any 0 ≤ w ≤ 1 and μ ∈ MT (X),

whμ(T )+ (1 − w)hπ∗μ(S)+ w

∫
X

f dμ ≤ Pw(π , T , f ).

Therefore, Pwvar(π , T , f ) ≤ Pw(π , T , f ).

Proof. Set ν = π∗μ. This is an invariant probability measure on Y. We will prove

whμ(T )+ (1 − w)hν(S)+ w

∫
X

f dμ ≤ Pw(π , T , f )+ 1 + 2 log 2. (4.1)

If this is proved, then we will get the above statement by the standard amplification trick.
Namely, for each natural number m, we apply (4.1) to π : (X, T m) → (Y , Sm) with a
continuous function Smf : X → R:

whμ(T
m)+ (1 − w)hν(S

m)+ w

∫
X

Smf dμ ≤ Pw(π , T m, Smf )+ 1 + 2 log 2.

We have hμ(T m) = mhμ(T ), hν(Sm) = mhν(S),
∫
X
Smf dμ = m

∫
X
f dμ and

Pw(π , T m, Smf ) = mPw(π , T , f ) (Lemma 2.2).
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Hence,

whμ(T )+ (1 − w)hν(S)+ w

∫
X

f dμ ≤ Pw(π , T , f )+ 1 + 2 log 2
m

.

Letting m → ∞, we get the statement. So it is enough to prove (4.1).
Let A = {A1, . . . , Aα} be a finite measurable partition of Y and let B be a finite

measurable partition of X. We will prove that

whμ(T , B )+ (1 − w)hν(S, A )+ w

∫
X

f dμ ≤ Pw(π , T , f )+ 1 + 2 log 2. (4.2)

For each Aa in A (1 ≤ a ≤ α), we take a compact subset Ca ⊂ Aa satisfying

α∑
a=1

ν(Aa \ Ca) < 1
log α

. (4.3)

We set C0 = Y \ (C1 ∪ · · · ∪ Cα) and C = {C0, C1, C2, . . . , Cα}.
CLAIM 4.2. C is a finite measurable partition of Y satisfying

hν(S, A ) < hν(S, C )+ 1.

Proof. From Lemma 3.2,

hν(S, A ) ≤ hν(S, C )+Hν(A | C ).

Because Ca ⊂ Aa for 1 ≤ a ≤ α,

Hν(A | C ) = ν(C0)

α∑
a=1

(
− ν(Aa ∩ C0)

ν(C0)
log

ν(Aa ∩ C0)

ν(C0)

)
≤ ν(C0) log α.

The last term is smaller than one by (4.3).

We consider B ∨ π−1(C ), which has the form

B ∨ π−1(C ) = {Bab | 0 ≤ a ≤ α, 1 ≤ b ≤ βa}, π−1(Ca) =
βa⋃
b=1

Bab (0 ≤ a ≤ α).

For each Bab (0 ≤ a ≤ α, 1 ≤ b ≤ βa), we take a compact subset Dab ⊂ Bab such that

α∑
a=0

log βa

( βa∑
b=1

μ(Bab \Dab)
)
< 1. (4.4)

We set

Da0 = π−1(Ca) \
βa⋃
b=1

Dab (0 ≤ a ≤ α).

We define

D = {Dab | 0 ≤ a ≤ α, 0 ≤ b ≤ βa}.
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CLAIM 4.3. D is a finite measurable partition of X with π−1(C ) ≺ D and

hμ(T , B ) ≤ hμ(T , D)+ 1.

Proof. π−1(C ) ≺ D is obvious by the construction.

hμ(T , B ) ≤ hμ(T , B ∨ π−1(C ))

≤ hμ(T , D)+Hμ(B ∨ π−1(C ) | D) by Lemma 3.2.

Because Dab ⊂ Bab for 0 ≤ a ≤ α and 1 ≤ b ≤ βa ,

Hμ(B ∨ π−1(C ) | D) =
α∑
a=0

μ(Da0)

βa∑
b=1

(
− μ(Da0 ∩ Bab)

μ(Da0)
log

μ(Da0 ∩ Bab)
μ(Da0)

)

≤
α∑
a=0

μ(Da0) log βa

< 1 by (4.4).

We will prove that

whμ(T , D)+ (1 − w)hν(S, C )+ w

∫
X

f dμ ≤ Pw(π , T , f )+ 2 log 2.

If this is proved, then (4.2) will follow from Claims 4.2 and 4.3.
From the definition of the entropy,

whμ(T , D)+ (1 − w)hν(S, C ) = lim
N→∞

(
w · Hμ(D

N)

N
+ (1 − w) · Hν(C

N)

N

)

= lim
N→∞

1
N

{Hν(CN)+ w(Hμ(D
N)−Hν(C

N))}.

Because ν = π∗μ, we have Hν(CN) = Hμ(π
−1(CN)). Because π−1(CN) ≺ DN ,

Hμ(D
N)−Hμ(π

−1(CN)) = Hμ(D
N | π−1(CN)).

So,

whμ(T , D)+ (1 − w)hν(S, C ) = lim
N→∞

1
N

{Hν(CN)+ w ·Hμ(DN | π−1(CN))}.

We have ∫
X

f dμ = 1
N

∫
X

SNf dμ.

Therefore,

whμ(T , D)+ (1 − w)hν(S, C )+ w

∫
X

f dμ

= lim
N→∞

1
N

{Hν(CN)+ w ·Hμ(DN | π−1(CN))+ w

∫
X

SNf dμ}. (4.5)
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For C ∈ CN , we define

DN
C = {D ∈ DN | D ∩ π−1(C) 	= ∅} = {D ∈ DN | D ⊂ π−1(C), D 	= ∅}.

Then,

π−1(C) =
⋃
D∈DN

C

D.

For C ∈ CN with ν(C) > 0 and D ∈ DN
C , we set

μ(D | C) = μ(D)

ν(C)
= μ(D)

μ(π−1(C))
.

For each C ∈ CN with ν(C) > 0, we have∑
D∈DN

C

μ(D | C) = 1.

CLAIM 4.4. We have the following inequality:

Hν(C
N)+ w ·Hμ(DN | π−1(CN))+ w

∫
X

SNf dμ ≤ log
∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
.

Proof. We have∫
X

SNf dμ =
∑
D∈DN

∫
D

SNf dμ ≤
∑
D∈DN

μ(D) sup
D

SNf

=
∑
C∈CN

with ν(C)>0

ν(C)

( ∑
D∈DN

C

μ(D | C) sup
D

SNf

)
.

Hence,

Hμ(D
N | π−1(CN))+

∫
X

SNf dμ

≤
∑
C∈CN

with ν(C)>0

ν(C)

{ ∑
D∈DN

C

(
− μ(D | C) log μ(D | C)+ μ(D | C) sup

D

SNf
)}

.

By Lemma 2.6(2),∑
D∈DN

C

(
− μ(D | C) log μ(D | C)+ μ(D | C) sup

D

SNf
)

≤ log
∑
D∈DN

C

esupD SNf .

So

Hμ(D
N | π−1(CN))+

∫
X

SNf dμ ≤
∑
C∈CN

ν(C)

(
log

∑
D∈DN

C

esupD SNf

)
.
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Therefore,

Hν(C
N)+ w ·Hμ(DN | π−1(CN))+ w

∫
X

SNf dμ

≤
∑
C∈CN

{
− ν(C) log ν(C)+ ν(C) log

( ∑
D∈DN

C

esupD SNf

)w}

≤ log
∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
by Lemma 2.6(2).

We take metrics d and d ′ on X and Y respectively. Recall that Ca (1 ≤ a ≤ α)

are mutually disjoint compact subsets of Y and that Dab (0 ≤ a ≤ α, 1 ≤ b ≤ βa) are
mutually disjoint compact subsets of X. Hence, we can take ε > 0 such that:
(a) for any y ∈ Ca and y′ ∈ Ca′ with distinct 1 ≤ a, a′ ≤ α,

ε < d ′(y, y′);

(b) for any x ∈ Dab and x′ ∈ Dab′ with 0 ≤ a ≤ α and distinct 1 ≤ b, b′ ≤ βa ,

ε < d(x, x′).

CLAIM 4.5. Let N be a natural number.
(1) If a subset V ⊂ Y has diam(V , d ′

N) < ε, then the number of C ∈ CN having
non-empty intersection with V is at most 2N :

|{C ∈ CN | C ∩ V 	= ∅}| ≤ 2N .

(2) If a subset U ⊂ X has diam(U , dN) < ε, then for each C ∈ CN , the number of D ∈
DN
C having non-empty intersection with U is at most 2N :

|{D ∈ DN
C | D ∩ U 	= ∅}| ≤ 2N .

Proof. (1) For each 0 ≤ k < N , the set SkV may have non-empty intersection with C0

and at most one set in {C1, C2, . . . , Cα}. The above statement follows from this.
(2) Suppose C ∈ CN has the form

C = Ca0 ∩ S−1Ca1 ∩ S−2Ca2 ∩ · · · ∩ S−(N−1)CaN−1 ,

with 0 ≤ a0, . . . , aN−1 ≤ α. Recall that {Dak0, Dak1, Dak2, . . . , Dakβak } is a partition of
π−1(Cak ). Then any set D ∈ DN

C has the form

D = Da0b0 ∩ T −1Da1b1 ∩ T −2Da2b2 ∩ · · · ∩ T −(N−1)DaN−1bN−1 ,

with 0 ≤ bk ≤ βak for 0 ≤ k ≤ N − 1.
For each 0 ≤ k < N , the set T kU may have non-empty intersection with Dak0 and,

at most, one set in {Dak1, Dak2, . . . , Dakβak }. Now the above statement follows from
this.

Let N be a natural number. Suppose we are given an open cover Y = V1 ∪ · · · ∪ Vn
with diam(Vi , d ′

N) < ε for all 1 ≤ i ≤ n. Moreover, suppose that for each 1 ≤ i ≤ n, we
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are given an open cover π−1(Vi) = Ui1 ∪ Ui2 ∪ · · · ∪ Uimi with diam(Uij , dN) < ε for
all 1 ≤ j ≤ mi . We are going to prove

log
∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
≤ 2N log 2 + log

n∑
i=1

( mi∑
j=1

e
supUij SNf

)w
. (4.6)

Suppose this is proved. Then by Claim 4.4,

Hν(C
N)+ w ·Hμ(DN | π−1(CN))+ w

∫
X

SNf dμ

≤ 2N log 2 + log
n∑
i=1

( mi∑
j=1

e
supUij SNf

)w
.

Taking the infimum over {Vi} and {Uij } satisfying the above assumptions, we have

Hν(C
N)+ w ·Hμ(DN | π−1(CN))+ w

∫
X

SNf dμ ≤ 2N log 2 + log Pw(π , f , N , ε).

Divide this by N and let N → ∞. Recalling (4.5), we get

whμ(T , D)+ (1 − w)hν(S, C )+ w

∫
X

f dμ ≤ 2 log 2 + lim
N→∞

log Pw(π , f , N , ε)
N

.

Letting ε → 0, we get the desired result:

whμ(T , D)+ (1 − w)hν(S, C )+ w

∫
X

f dμ ≤ 2 log 2 + Pw(π , T , f ).

So the rest of the work is to prove (4.6).
For D ∈ DN , we have

esupD SNf ≤
∑

Uij∩D 	=∅
e

supUij SNf .

Here the sum is taken over the index (i, j) such that Uij has non-empty intersection
with D.

Let C ∈ CN . We define VC as the set of 1 ≤ i ≤ n such that Vi ∩ C 	= ∅. By Claim
4.5(2),

∑
D∈DN

C

esupD SNf ≤ 2N
∑
i∈VC

mi∑
j=1

e
supUij SNf .

Then (recall 0 ≤ w ≤ 1),
( ∑
D∈DN

C

esupD SNf

)w
≤ 2Nw

( ∑
i∈VC

mi∑
j=1

e
supUij SNf

)w

≤ 2Nw
∑
i∈VC

( mi∑
j=1

e
supUij SNf

)w
by Lemma 2.6(1).
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Hence,

∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
≤ 2Nw

∑
C∈CN

{ ∑
i∈VC

( mi∑
j=1

e
supUij SNf

)w}
.

By Claim 4.5(1), for each 1 ≤ i ≤ n, the number of C ∈ CN satisfying i ∈ VC is at most
2N . So the right-hand side is bounded from above by

2Nw · 2N
n∑
i=1

( mi∑
j=1

e
supUij SNf

)w
.

Therefore,

∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
≤ 2Nw · 2N

n∑
i=1

( mi∑
j=1

e
supUij SNf

)w
.

Taking the logarithm,

log
∑
C∈CN

( ∑
D∈DN

C

esupD SNf

)w
≤ (N +Nw) log 2 + log

n∑
i=1

( mi∑
j=1

e
supUij SNf

)w

≤ 2N log 2 + log
n∑
i=1

( mi∑
j=1

e
supUij SNf

)w
.

This is the estimate (4.6). So we have finished the proof of the proposition.

5. Zero-dimensional principal extension
In this section, we prepare some definitions and results on principal extensions. The main
reference is the book of Downarowicz [Dow11].

Let π : (X, T ) → (Y , S) be a factor map between dynamical systems. Let d be a metric
on X. We define the topological conditional entropy of π by

htop(X, T | Y , S) = lim
ε→0

(
lim
N→∞

supy∈Y log #(π−1(y), N , ε)

N

)
.

Here, #(π−1(y), N , ε) is the number defined by (1.5). It is easy to check that the quantity

sup
y∈Y

log #(π−1(y), N , ε)

is sub-additive in N and monotone in ε. So the above limits exist. This definition of the
topological conditional entropy arises from [Dow11, Lemma 6.8.2].

The factor map π is said to be principal if htop(X, T | Y , S) = 0. In the case that this
condition holds, the dynamical system (X, T ) is called a principal extension of (Y , S).

The next theorem shows an important consequence of this condition. This is proved in
[Dow11, Corollary 6.8.9]. (See also the paper of Ledrappier and Walters [LW77].)

THEOREM 5.1. A principal factor map preserves Kolmogorov–Sinai entropy. Namely, if
π : (X, T ) → (Y , S) is a principal factor map between dynamical systems, then for any
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invariant probability measure μ ∈ MT (X),

hμ(T ) = hπ∗μ(S).

Remark 5.2. Indeed, [Dow11, Corollary 6.8.9] proves the following more precise result.
Let π : (X, T ) → (Y , S) be a factor map with htop(Y , S) < ∞. Then π is a principal
factor map if and only if hμ(T ) = hπ∗μ(S) for all μ ∈ MT (X).

LEMMA 5.3. Let (X, T ), (Y , S), (Y ′, S′) be dynamical systems. Let π : X → Y be a
factor map and let φ : Y ′ → Y be a principal factor map. We define the fiber product
(see Lemma 2.4)

X ×Y Y
′ = {(x, y) ∈ X × Y ′ | π(x) = φ(y)}.

So, (X ×Y Y
′, T × S′) becomes a dynamical system. We define factor maps ϕ : X ×Y

Y ′ → X and 	 : X ×Y Y
′ → Y ′ by

ϕ(x, y) = x, 	(x, y) = y.

(X ×Y Y
′, T × S′) ϕ ��

	

��

(X, T )

π

��
(Y ′, S′)

φ: principal
�� (Y , S)

Then ϕ is a principal factor map. (The map 	 is not used in this statement, but we have
introduced it for convenience in what follows.)

Proof. Let d and d ′ be metrics on X and Y ′ respectively. We define a metric ρ onX ×Y Y
′

by

ρ((x1, y1), (x2, y2)) = max(d(x1, x2), d ′(y1, y2)).

For any natural number N and x ∈ X, the metric space

(ϕ−1(x), ρN)

is isometric to (φ−1(π(x)), d ′
N). Therefore, for any ε > 0,

#(ϕ−1(x), N , ε) = #(φ−1(π(x)), N , ε).

So (recall that a factor map is always surjective),

sup
x∈X

#(ϕ−1(x), N , ε) = sup
x∈X

#(φ−1(π(x)), N , ε) = sup
y∈Y

#(φ−1(y), N , ε).

Thus,

htop(X ×Y Y
′, T × S′ | X, T ) = htop(Y

′, S′ | Y , S) = 0.

The next theorem is a key technical result. This is proved in [Dow11, Theorem
7.6.1]. (See also [DH13].) Here recall that a compact metrizable space is said to be
zero-dimensional if clopen subsets form an open basis of the topology (a subset of a
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topological space is called clopen if it is closed and open). For example, the Cantor set
{0, 1}N is zero-dimensional. A dynamical system (X, T ) is said to be zero-dimensional if
X is a zero-dimensional compact metrizable space.

THEOREM 5.4. Every dynamical system has a zero-dimensional principal extension.
Namely, for any dynamical system (X, T ), there exist a dynamical system (X′, T ′) and
a factor map φ : X′ → X such that X′ is zero-dimensional and φ is principal.

Recall that we have defined two terms Pw(π , T , f ) and Pwvar(π , T , f ) in §2.

COROLLARY 5.5. Let π : (X, T ) → (Y , S) be a factor map between dynamical systems
with a continuous function f : X → R. There exists a factor map π ′ : (X′, T ′) → (Y ′, S′)
with a continuous function f ′ : X′ → R satisfying the following two conditions.
(1) X′ and Y ′ are zero-dimensional.
(2) For any 0 ≤ w ≤ 1, we have

Pw(π , T , f ) ≤ Pw(π ′, T ′, f ′), Pwvar(π
′, T ′, f ′) ≤ Pwvar(π , T , f ).

Proof. By Theorem 5.4, there exists a zero-dimensional principal extension φ :
(Y ′, S′) → (Y , S). We consider the fiber product (X ×Y Y

′, T × S′) and the projections
ϕ : X ×Y Y

′ → X and 	 : X ×Y Y
′ → Y ′ as in Lemma 5.3. Then ϕ is a principal factor

map.

(X ×Y Y
′, T × S′) ϕ ��

	

��

(X, T )

π

��
(Y ′, S′)

φ: principal
�� (Y , S)

By Lemma 2.4, for any 0 ≤ w ≤ 1,

Pw(π , T , f ) ≤ Pw(	, T × S′, f ◦ ϕ).
Here, the right-hand side is Pw(	, X ×Y Y

′, T × S′, Y ′, S′, f ◦ ϕ). By Theorem 5.1, for
any invariant probability measure μ ∈ MT×S′

(X ×Y Y
′),

hμ(T × S′) = hϕ∗μ(T ), h	∗μ(S
′) = hφ∗	∗μ(S) = hπ∗ϕ∗μ(S).

Then,

Pwvar(	, T × S′, f ◦ ϕ)

= sup
μ∈MT×S′

(X×Y Y
′)

{
whμ(T × S′)+ (1 − w)h	∗μ(S

′)+ w

∫
X×Y Y

′
f ◦ ϕ dμ

}

= sup
μ∈MT×S′

(X×Y Y
′)

{
whϕ∗μ(T )+ (1 − w)hπ∗ϕ∗μ(S)+ w

∫
X

f d(ϕ∗μ)
}

≤ Pwvar(π , T , f ). (5.1)
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(Here, we prove Pwvar(	, T × S′, f ◦ ϕ) ≤ Pwvar(π , T , f ). Indeed we can prove the
equality Pwvar(	, T × S′, f ◦ ϕ) = Pwvar(π , T , f ) because the map ϕ∗ : MT×S′

(X ×Y

Y ′) → MT (X) is surjective. However, we do not need this.)
By applying Theorem 5.4 to the system (X ×Y Y

′, T × S′), there exists a zero-
dimensional principal extension ψ : (X′, T ′) → (X ×Y Y

′, T × S′).

(X′, T ′)
ψ : principal ��

	◦ψ
������

�����
�����

�����
����

(X ×Y Y
′, T × S′)

ϕ: principal ��

	

��

(X, T )

π

��
(Y ′, S′)

φ: principal
�� (Y , S)

By Lemma 2.3,

Pw(	, T × S′, f ◦ ϕ) ≤ Pw(	 ◦ ψ , T ′, f ◦ ϕ ◦ ψ).

Here, the right-hand side is Pw(	 ◦ ψ , X′, T ′, Y ′, S′, f ◦ ϕ ◦ ψ). As in the above (5.1),
by Theorem 5.1,

Pwvar(	 ◦ ψ , T ′, f ◦ ϕ ◦ ψ) ≤ Pwvar(	, T × S′, f ◦ ϕ).

So we conclude

Pw(π , T , f )≤Pw(	 ◦ ψ , T ′, f ◦ ϕ ◦ ψ), Pwvar(	 ◦ ψ , T ′, f ◦ ϕ ◦ ψ)≤Pwvar(π , T , f ).

Set π ′ := 	 ◦ ψ : (X′, T ′) → (Y ′, S′) and f ′ := f ◦ ϕ ◦ ψ : X′ → R. These satisfy the
required conditions.

6. Completion of the proof of the variational principle
In this section, we prove Pw(π , T , f ) ≤ Pwvar(π , T , f ) and complete the proof of the
variational principle. First, we consider the case of zero-dimensional dynamical systems.
Later, we will reduce the general case to this zero-dimensional case.

PROPOSITION 6.1. Let π : (X, T ) → (Y , S) be a factor map between zero-dimensional
dynamical systems. Then, for any 0 ≤ w ≤ 1 and a continuous function f : X → R,

Pw(π , T , f ) ≤ Pwvar(π , T , f ).

Proof. Let ε > 0. We will prove that there exists μ ∈ MT (X) satisfying

whμ(T )+ (1 − w)hπ∗μ(S)+ w

∫
X

f dμ ≥ lim
N→∞

log Pw(π , f , N , ε)
N

.
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We take metrics d and d ′ on X and Y respectively. Let Y = A1 ∪ · · · ∪ Aα be a clopen
partition (that is, Aa are mutually disjoint clopen subsets of Y) with diam(Aa , d ′) < ε for
all 1 ≤ a ≤ α. Here we have used dim Y = 0.

From dim X = 0, for each 1 ≤ a ≤ α, we can also take a clopen partition

π−1(Aa) =
βa⋃
b=1

Bab with diam(Bab, d) < ε for all 1 ≤ b ≤ βa .

Set A = {A1, . . . , Aα} and B = {Bab | 1 ≤ a ≤ α, 1 ≤ b ≤ βa}. These are clopen parti-
tions of Y and X respectively. We have π−1(A ) ≺ B.

Let N be a natural number. We have π−1(A N) ≺ BN . For each non-empty A ∈ A N ,
we define

BN
A = {B ∈ BN | B ∩ π−1(A) 	= ∅} = {B ∈ BN | B ⊂ π−1(A), B 	= ∅}.

We have

π−1(A) =
⋃

B∈BN
A

B.

We set

ZN ,A =
∑
B∈BN

A

esupB SNf .

Define

ZN =
∑
A∈AN

(ZN ,A)
w.

Here, the sum is taken over only non-empty A ∈ A N . When we consider below a sum
over A ∈ A N (or B ∈ BN ), we always assume that A (or B) is not empty.

We have

Pw(π , f , N , ε) ≤ ZN .

So it is enough to prove that there exists μ ∈ MT (X) satisfying

whμ(T , B )+ (1 − w)hπ∗μ(S, A )+ w

∫
X

f dμ ≥ lim
N→∞

log ZN
N

,

where the limit in the right-hand side exists because ZN is sub-multiplicative in N.
Let N be a natural number. For non-empty B ∈ BN , we denote by A N(B) the unique

element of A N containing π(B). For non-empty A ∈ A N , we have A N(B) = A for all
B ∈ Bn

A.
For each non-empty set B in BN , we take a point xB ∈ B satisfying SNf (xB) =

supB SNf . (Such a point exists because B is closed.) We define a probability measure
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on X by

σN = 1
ZN

∑
B∈BN

(Z
N ,AN(B)

)w−1eSNf (xB) · δxB

= 1
ZN

∑
A∈AN

∑
B∈BN

A

(ZN ,A)
w−1eSNf (xB) · δxB .

Here, δxB is the delta probability measure at the point xB and σN is not an invariant
measure in general. We set

μN = 1
N

N−1∑
n=0

T n∗ σN .

We can take a subsequence {μNk } converging to an invariant probability measure μ on X
in the weak∗ topology. We will prove that this measure μ satisfies

whμ(T )+ (1 − w)hπ∗μ(S)+ w

∫
X

f dμ ≥ lim
N→∞

log ZN
N

.

CLAIM 6.2. For every natural number N,

wHσN (B
N)+ (1 − w)Hπ∗σN (A

N)+ w

∫
X

SNf dσN = log ZN .

Proof. We have

π∗σN = 1
ZN

∑
B∈BN

(Z
N ,AN(B)

)w−1eSNf (xB) · δπ(xB).

For each non-empty A ∈ A N ,

π∗σN(A) = 1
ZN

∑
B∈BN

A

(Z
N ,AN(B)

)w−1eSNf (xB)

= 1
ZN

(ZN ,A)
w by AN(B) = A for B ∈ BN

A .

Then,

Hπ∗σN (A
N) = log ZN − w

∑
A∈AN

(ZN ,A)
w

ZN
log ZN ,A. (6.1)

For non-empty B ∈ BN ,

σN(B) = (Z
N ,AN(B)

)w−1

ZN
eSNf (xB).
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Then,

HσN (B
N) = −

∑
B∈BN

(Z
N ,AN(B)

)w−1

ZN
eSNf (xB) log

(
(Z
N ,AN(B)

)w−1

ZN
eSNf (xB)

)

= log ZN
ZN

∑
B∈BN

(Z
N ,AN(B)

)w−1eSNf (xB)

︸ ︷︷ ︸
(I)

− w − 1
ZN

∑
B∈BN

(Z
N ,AN(B)

)w−1eSNf (xB) log Z
N ,AN(B)

︸ ︷︷ ︸
(II)

−
∑
B∈BN

(Z
N ,AN(B)

)w−1

ZN
eSNf (xB)SNf (xB)

︸ ︷︷ ︸
(III)

.

We calculate the term (I) by

(I) =
∑
A∈AN

∑
B∈BN

A

(ZN ,A)
w−1eSNf (xB) =

∑
A∈AN

(ZN ,A)
w−1 · ZN ,A = ZN .

The term (II) is calculated by

(II) =
∑
A∈AN

∑
B∈BN

A

(ZN ,A)
w−1eSNf (xB) log ZN ,A =

∑
A∈AN

(ZN ,A)
w log ZN ,A.

For the term (III), we consider∫
X

SNf dσN = 1
ZN

∑
B∈BN

(Z
N ,AN(B)

)w−1eSNf (xB)SNf (xB) = (III).

Thus,

HσN (B
N)+

∫
X

SNf dσN = log ZN − w − 1
ZN

∑
A∈AN

(ZN ,A)
w log ZN ,A.

Combining this with (6.1),

wHσN (B
N)+ (1 − w)Hπ∗σN (A

N)+ w

∫
X

SNf dσN = log ZN .

CLAIM 6.3. Let M and N be natural numbers. We have

1
M
HμN (B

M) ≥ 1
N
HσN (B

N)− 2M log |B|
N

,

1
M
Hπ∗μN (A

M) ≥ 1
N
Hπ∗σN (A

N)− 2M log |A|
N

.

Here, |A| and |B| are the cardinalities of A and B respectively.
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Proof. This is rather standard. (See the proof of the standard variational principle in
[Wal82, §8.2].) Here we provide the proof for BM . The case of AM is the same.

From the concavity of the entropy function (Lemma 3.1(2)), for μn = (1/N)
∑N−1
n=0

T n∗ σN ,

HμN (B
M) ≥ 1

N

N−1∑
n=0

HT n∗ σN (B
M) = 1

N

N−1∑
n=0

HσN (T
−nBM). (6.2)

Let N = qM + r with 0 ≤ r < M ,

N−1∑
n=0

HσN (T
−nBM) =

M−1∑
t=0

q∑
s=0

HσN (T
−sM−tBM)−

qM+M−1∑
n=qM+r

HσN (T
−nBM)

≥
M−1∑
t=0

q∑
s=0

HσN (T
−sM−tBM)−M log |BM |

≥
M−1∑
t=0

q∑
s=0

HσN (T
−sM−tBM)−M2 log |B|. (6.3)

We estimate
∑q

s=0 HσN (T
−sM−tBM) from below for each t. We have

T −sM−tBM =
M−1∨
m=0

T −(sM+t+m)B.

When we fix 0 ≤ t ≤ M − 1 and move 0 ≤ s ≤ q and 0 ≤ m ≤ M − 1, the number sM +
t +m moves over

t , t + 1, t + 2, . . . , t + (q + 1)M − 1 without multiplicity.

Hence,

q∑
s=0

HσN (T
−sM−tBM)+

t−1∑
n=0

HσN (T
−nB )

≥ HσN

( t+(q+1)M−1∨
n=0

T −nB
)

by Lemma 3.1(1)

≥ HσN (B
N) by t + (q + 1)M ≥ (q + 1)M > N .

Therefore,

q∑
s=0

HσN (T
−sM−tBM) ≥ HσN (B

N)−
t−1∑
n=0

HσN (T
−nB )

≥ HσN (B
N)− t log |B|

≥ HσN (B
N)−M log |B| by t < M .
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Thus,
M−1∑
t=0

q∑
s=0

HσN (T
−sM−tBM) ≥ M ·HσN (BN)−M2 log |B|.

So by (6.3),

N−1∑
n=0

HσN (T
−nBM) ≥

M−1∑
t=0

q∑
s=0

HσN (T
−sM−tBM)−M2 log |B|

≥ M ·HσN (BN)− 2M2 log |B|.
From (6.2), we conclude that

1
M
HμN (B

M) ≥ 1
NM

N−1∑
n=0

HσN (T
−nBM) ≥ 1

N
HσN (B

N)− 2M log |B|
N

.

We have ∫
X

f dμN = 1
N

∫
X

N−1∑
n=0

f ◦ T n dσN = 1
N

∫
X

SNf dσN .

Claim 6.3 implies

w

M
HμN (B

M)+ 1 − w

M
Hπ∗μN (A

M)+ w

∫
X

f dμN

≥ w

N
HσN (B

N)+ 1 − w

N
Hπ∗σN (A

N)+ w

N

∫
X

SNf dσN − 2M(log |A| + log |B|)
N

= log ZN
N

− 2M(log |A| + log |B|)
N

by Claim 6.2.

Because μNk → μ as k → ∞, letting N = Nk → ∞,

w

M
Hμ(B

M)+ 1 − w

M
Hπ∗μ(A

M)+ w

∫
X

f dμ ≥ lim
N→∞

log ZN
N

.

Here, we have used the clopenness of the elements of AM and BM . Finally, letting
M → ∞, we get

whμ(T , B )+ (1 − w)hπ∗μ(S, A )+ w

∫
X

f dμ ≥ lim
N→∞

log ZN
N

.

Now we can prove the main result (Theorem 2.1). We repeat the statement for the
convenience of readers.

THEOREM 6.4. (= Theorem 2.1) Let π : (X, T ) → (Y , S) be a factor map between
dynamical systems. Then for any 0 ≤ w ≤ 1 and a continuous function f : X → R,

Pw(π , T , f ) = Pwvar(π , T , f ).

Proof. We already proved in Proposition 4.1 that

Pwvar(π , T , f ) ≤ Pw(π , T , f ).
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By Corollary 5.5, there exists a factor map π ′ : (X′, T ′) → (Y ′, S′) between zero-
dimensional dynamical systems with a continuous function f ′ : X′ → R such that

Pw(π , T , f ) ≤ Pw(π ′, T ′, f ′), Pwvar(π
′, T ′, f ′) ≤ Pwvar(π , T , f ).

By Proposition 6.1,

Pw(π ′, T ′, f ′) ≤ Pwvar(π
′, T ′, f ′).

Therefore,

Pw(π , T , f ) ≤ Pwvar(π , T , f ).

So we conclude that

Pw(π , T , f ) = Pwvar(π , T , f ).

Remark 6.5. The book of Downarowicz [Dow11] systematically develops the idea of using
zero-dimensional dynamical systems in the study of entropy theory. The above proof is
influenced by this idea. We also notice that it seems difficult to use this zero-dimensional
trick in the proof of Proposition 4.1 in §4 because it is difficult to prove that principal
extensions preserve weighted topological pressure without using the variational principle.
A similar remark is given in [Dow11, Remark 7.6.12] about the proof of the standard
variational principle.
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