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Abstract

Background. Previous studies (various designs) present contradicting insights on the potential
causal effects of diet/physical activity on depression/anxiety (and vice versa). To clarify this, we
employed a triangulation framework including three methods with unique strengths/limita-
tions/potential biases to examine possible bidirectional causal effects of diet/physical activity on
depression/anxiety.
Methods. Study 1: 3-wave longitudinal study (n = 9,276 Dutch University students). Using
random intercept cross-lagged panel models to study temporal associations. Study 2: cross-
sectional study (n = 341monozygotic and n = 415 dizygotic Australian adult twin pairs). Using a
co-twin control design to separate genetic/environmental confounding. Study 3: Mendelian
randomization utilizing data (European ancestry) from genome-wide association studies
(n varied between 17,310 and 447,401). Using genetic variants as instrumental variables to
study causal inference.
Results. Study 1 did not provide support for bidirectional causal effects between diet/physical
activity and symptoms of depression/anxiety. Study 2 did provide support for causal effects
between fruit/vegetable intake and symptoms of depression/anxiety, mixed support for causal
effects between physical activity and symptoms of depression/anxiety, and no support for causal
effects between sweet/savoury snack intake and symptoms of depression/anxiety. Study 3 pro-
vides support for a causal effect from increased fruit intake to the increased likelihood of anxiety.
No support was found for other pathways. Adjusting the analyses including diet for physical
activity (and vice versa) did not change the conclusions in any study.
Conclusions. Triangulating the evidence across the studies did not provide compelling support
for causal effects of diet/physical activity on depression/anxiety or vice versa.

Introduction

Mental health disorders (particularly depression and anxiety), along with unhealthy lifestyle
behaviours (such as poor diet and physical inactivity) are pressing challenges in today’s society
(GBD 2019 Diseases and Injuries Collaborators, 2020; NCD Countdown 2030 collaborators,
2018;World Health Organization, 2022). Between 1990 and 2019, the estimated past-year global
prevalence of depression and anxiety increased from 171 to 280 million and from 195 to
301 million, respectively (GBD Mental Disorders Collaborators, 2022). Additionally, the global
prevalence of insufficient physical activity1 has increased from 23% in 2000 to 26% in 2010 and
31% in 2022 (Strain et al., 2024) and over several decades dietary quality has worsened globally
(e.g., increased uptake of processed foods, away-from-home meals and sugar-sweetened bever-
ages) (Popkin, Adair, & Ng, 2012). Accordingly, understanding factors contributing to the
development and recovery of these conditions/behaviours is important.

Previous studies have suggested that mental health and lifestyle behaviours might be inter-
connected and possibly influence each other (although results are mixed). Several studies have
found support for bidirectional or unidirectional causal pathways between diet or physical
activity and depression or anxiety (Choi et al., 2019; Iob et al., 2023; Liu, Yan, Li, & Zhang,
2016; Mammen & Faulkner, 2013; McDowell, Dishman, Gordon, & Herring, 2019; Molendijk,
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Molero, Sánchez-Pedreño, Van der Does, & Martínez-González,
2018; Pasman et al., 2024; Pearce et al., 2022; Rebar et al., 2015;
Roshanaei-Moghaddam, Katon, & Russo, 2009; Saghafian et al.,
2018; Schuch et al., 2019; Schuch et al., 2018; Tuck, Farrow, &
Thomas, 2019; Wanjau et al., 2023; Yan, Xu, Li, & Liu, 2023), while
others have not (Appleton, Boxall, Adenuga-Ajayi, & Seyar, 2024;
T. T. Chen, Chen, Fang, Cheng, & Lin, 2022; Choi et al., 2019; De
Moor, Boomsma, Stubbe, Willemsen, & de Geus, 2008; Iob et al.,
2023; Moreno-Peral et al., 2022; Pasman et al., 2024; Yan et al.,
2023). It must be noted that these studies focussed on either diet or
physical activity in relation to mental health. None of these studies
took into account that diet might confound the relationship
between physical activity and mental health, and vice versa that
physical activity might confound the relationship between diet and
mental health. Consequently, this limits the ability to provide more
robust estimates on direct effects between diet/physical activity and
depression/anxiety. Additionally, not all pathways have been thor-
oughly investigated. For example, studies involving diet have
mostly focused on the intake of healthy foods (e.g., fruits and
vegetables) but neglected studying the intake of unhealthy foods
(e.g., sweet or savoury snacks).

Various research designs have been employed in previous stud-
ies (e.g., randomized controlled trials, prospective cohort studies,
co-twin control designs (CTCDs)2 and Mendelian randomization
(MR)3). Given that no single-methodology approach can provide
definite evidence for causal pathways on its own (Hammerton &
Munafò, 2021), the ultimate approach to gain more robust insights
on this complex causal question is to apply “triangulation” (Munafò
& Davey Smith, 2018; Patton, 1999). This refers to using various
study designs, each with unique strengths and potential weak-
nesses, to address the same research question. In a triangulation
framework, the results across the included methods are compared
to help overcome the biases arising from the use of one single
method, to focus on overarching patterns, and to help achieve
empirical consensus (Munafò & Davey Smith, 2018; Patton, 1999).

Consequently, in this study, we aimed to unravel the potential
causal effects of diet (intake of sweet snacks, savoury snacks, fruits
and vegetables)/physical activity on depression/anxiety and vice
versa. This was done in unadjusted models (including one lifestyle
and one mental health measure) and adjusted models (including
one diet, one physical activity and one mental health measure; to
explore possible confounding by diet/physical activity and obtain
more robust direct effect estimates of the exposure of interest on the
outcome). We employed a triangulation framework including
three distinct lines of evidence, to utilise the different strengths
and acknowledge potential weaknesses and sources of bias of each
method.We focused on: (1) exploring temporal associations using
random intercept cross-lagged panel models (RI-CLPMs),
(2) separating genetic and environmental confounding using
CTCD mixed-effects models, and (3) utilising genetic variants
as instrumental variables with MR. Study 1 used longitudinal data
from the Healthy Student Life (HSL) project (n = 9,276 Dutch
University students) (van Hooijdonk, Simons, van Noorden, Geurts,
& Vink, 2023). Study 2 used cross-sectional data from the Brisbane
Longitudinal Twin Study (BLTS; n = 341 monozygotic and n = 415

dizygotic Australian adult twin pairs) (Mitchell et al., 2019). Study
3 used summary statistics from genome-wide association studies
(GWASs; n varied between 17,310 and 447,401).

Methods

Triangulation framework

In the current study, we employed a triangulation framework to
examine causal pathways between diet/physical activity and
depression/anxiety. This involves answering the same causal ques-
tion by integrating results from different statistical methods which
have different strengths, limitations and (preferably) unrelated
sources of potential bias (Lawlor, Tilling, & Davey Smith, 2016;
Munafò, Higgins, & Davey Smith, 2021). In the current triangula-
tion framework, we used three complementary methods (referred
to as Studies 1, 2 and 3), that provide insight on potential causal
effects form different perspectives (as illustrated in Figure 1):

• RI-CLPMs (Study 1). We estimated individual-level temporal
associations which show how changes in one variable might
predict changes in another variable over time.

• CTCD (Study 2). We separated genetic and environmental
confounding by examining and comparing the association
between an exposure and outcome at population-level and
within twin pairs (who have overlap in genes and shared early
environment).

• MR (Study 3). We leveraged genetic variants as instrumental
variables to estimate the potential population-level causal effect
of an exposure on an outcome.

When the findings in a triangulation framework converge, this
provides greater confidence in the conclusions and potential causal
effect, since it is unlikely that the same bias effects all threemethods.
Divergent findingswill help to identify sources of biaswhich require
further investigation (Munafò et al., 2021). Table 1 provides a
detailed comparison of how the three methods in the triangulation
framework complement each other in addressing different sources of
potential bias. To investigate converge/divergence in our triangula-
tion framework, we evaluated the magnitude, direction and margin

Figure 1. Concept of triangulation.
Note. Illustration of how our three complementary methods help to strengthen causal
inference.

2In co-twin control designs monozygotic and dizygotic twin pairs are lever-
aged to account for genetic and environmental confounding (Gonggrijp, van de
Weijer, Bijleveld, van Dongen, & Boomsma, 2023).

3In Mendelian randomization studies genetic variants robustly associated
with an exposure are used as instrumental variables to study its causal effects on
an outcome (Davey Smith & Ebrahim, 2003).
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of error of all effect estimates and compared these across the three
methods.

All methods in the triangulation framework were preregis-
tered in the Open Science Framework: https://osf.io/e4d5b/
(Supplementary Material A describes deviations). Analyses were
performed in R version 4.3.1 (R Core Team, 2023). Reporting
followed the Strengthening the Reporting of Observational Stud-
ies in Epidemiology (STROBE) and STROBE using mendelian
randomisation (STROBE-MR) guidelines (Skrivankova et al.,
2021; Von Elm et al., 2007). Details of the methods per study
have been provided below.

Study 1: random intercept cross-lagged panel models

The RI-CLPM is a structural equation modelling approach used to
model within-person directional effects of one variable on another
variable over time, and vice versa (Hamaker, Kuiper, & Grasman,
2015). In the RI-CLPM, observed scores of all constructs are
decomposed into (1) grand means (time-varying or fixed means
over all individuals per occasion; the paths from the triangles
(constants, with value fixed at 1) to the squares (observed scores)
in Figure 2); (2) stable between-person variance (random inter-
cepts, an individual’s time-invariant deviation from the grandmeans,
see “Between” in Figure 2) and (3) fluctuating within-person variance
(differences between an individual’s observed measurements and
their expected score based on the grandmeans and random intercept,
see “Within” in Figure 2) (Mulder & Hamaker, 2021). The within-
person cross-lagged effects (red arrows Figure 2) illustrate how one
variable potentially influences another variable over time within a
person and are of interest when studying possible causal effects.

Procedure and participants
Data from the HSL project were used (van Hooijdonk et al., 2023).
This questionnaire study follows Dutch Radboud University

students and assesses their mental health and lifestyle. In this
study, we utilized data from Wave 1 (October–November 2021,
collected during the COVID-19 pandemic; Ninvited = 25,035),
Wave 2 (May–July 2022; Ninvited = 23,994) and Wave 3 (May–
July 2023; Ninvited = 23,425). The analytical sample included
9,276 students (6,004 participated in one questionnaire; 2,208
in two; 1,064 in all). The study was independently reviewed by
Radboud University’s Social Sciences Ethics Committee, and
there is no formal objection to this study (ECSW-2021-086).
Supplementary Material B includes additional information.

Measures (self-reported)
For the main analyses, we used continuous data on sweet snack
intake (van den Broek, Larsen, Verhagen, Burk, & Vink, 2020),
savoury snack intake (van den Broek et al., 2020), fruit intake (van
den Broek et al., 2020), vegetable intake (van den Broek et al., 2020),
physical activity (IPAQ Research Committee, 2005), depressive
symptoms (Van de Velde, Levecque, & Bracke, 2009), anxiety
symptoms (Donker, van Straten, Marks, & Cuijpers, 2011) and
age. Additionally, information on gender (male/female/other)
was used. For descriptive purposes, we also used data on living
situation, relationship status, parental educational type, body mass
index (BMI; kg/m2), and overall perceived physical and mental
health. Supplementary Material C includes additional information.

Statistical analyses
Descriptive statistics were used to explore all measures. Addition-
ally, intraclass correlation (ICCs) were calculated using the lme4
package (Bates et al., 2009b) to gain insight in the proportion of
variance explained between persons (ICC) and within persons
(1-ICC) across the waves (Aarts, Verhage, Veenvliet, Dolan, &
Van Der Sluis, 2014). Next, RI-CLPMs were applied to the data
using the lavaan package (Rosseel, 2012). We ran ten RI-CLPMs
including one diet/physical activity and one mental health measure

Table 1. Overview of the studies included in the triangulation framework

Study Short description Strengths compared to other studies Potential bias/limitation

Study 1: Random
Intercept Cross-
Lagged Panel Models
(observational
longitudinal study)

Statistical approach used to examine the
individual-level temporal associations
between ≥2 variables.

In contrast to Studies 2 and 3, in Study 1
within-person and between-person
effects can be decomposed. This
allows to control for all time-invariant
unobserved heterogeneity. Compared
to Study 2, this design can provide
insights on the direction of effects.

Unmeasured confounding could bias the
findings.

Study 2: Co-Twin Control
Design (observational
cross-sectional study)

Statistical approach used to separate
genetic and environmental
confounding (and indirectly infer
possible causation) by examining and
comparing the association between an
exposure and outcome (1) at
population-level (without considering
zygosity/discordance), (2) within same-
sex DZ twin pairs discordant for the
exposure and (3) within MZ twin pairs
discordant for the exposure.

In contrast to Studies 1 and 3, comparing
discordant same-sex DZ and MZ twins
enables controlling for factors shared
within twins of the same twin pair, e.g.,
unobserved and unmeasured genetic
and shared (early) environmental
factors.

Although Study 2 naturally controls for
confounding factors which are shared
within twin pairs, unmeasured
confounding by non-shared
environmental factors could still bias
the findings. Additionally, this design
cannot distinguish between causation
and reverse causation.

Study 3: Mendelian
randomization
(genetically informed
study)

Statistical approach which leverages
genetic variants (robustly associated
with an exposure) as instrumental
variables to estimate the potential
population-level causal effect of an
exposure on an outcome.

Compared to Studies 1 and 2, Study 3 is
less susceptible for unmeasured
confounding. Compared to Study 2,
MR can distinguish between causation
and reverse causation.

Weak instrument bias (occurs when the
instrumental variable is weakly
associated with the exposure of
interest) and horizontal pleiotropy
(occurs when a genetic variant directly
and independently influences ≥2 traits)
could bias the findings.

Note. All studies use observational studies to some extend which has known potential biases like reporting/recall bias, measurement errors, selection bias, and social-desirability bias. DZ =
dizygotic. MZ = monozygotic.
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(Supplementary Table ST1). In the results, we refer to these analyses
as unadjustedmodels.Moreover, we ran eight RI-CLPMswhere the
unadjusted temporal associations were adjusted for either diet (when
unadjusted model included physical activity) or physical activity
(when unadjusted model included diet), taking into account poten-
tial confoundingbydiet/physical activity (SupplementaryTableST2).
Each model included one diet measure, physical activity, and one
mental health measure. In the results, we refer to these models as
adjusted models.

In all models, five parameters were estimated: (1) between-
person covariance random intercepts, (2) within-person stability
(or autoregressive) effects, (3) within-person cross-lagged effects,
(4) within-person concurrent covariance, and (5) time-invariant
covariate associations of gender (male/female) and Wave 1 age
(extension 1 in Mulder and Hamaker (2021)). When participants
joined afterWave 1,Wave 1 age was estimated and gender reported
at first participation was used. Full information maximum likeli-
hood (FIML) was used to handle missing data and the robust
estimator maximum likelihood with robust standard errors
(MLR) was used to handle non-normality (Enders, 2001; Graham,
2009). Per model, the fit was assessed and considered acceptable
when: (1) the scaled chi-square test was non-significant (p > .05),
(2) root-mean-square error of approximation < .06, (3) standardized

root mean square residual < .08, and (4) comparative fit index > .90
(Hu & Bentler, 1999; Kline, 2023). To investigate potential support
for causal effects, themagnitude, direction andmargin of error of the
within-person cross-lagged effects were studied.

Last, sensitivity analyses to examine the robustness of the find-
ings were performed using complete cases for all RI-CLPMs
(n varied between 776 and 841). These were added as a large
proportion of HSL participants only joined one wave and these
might be different from participants who participated every time
(e.g., healthier lifestyle/better mental health).

Study 2: co-twin control design

The CTCD is applied on the assumption that monozygotic
(MZ) twins share 100% of their genetic material and 100% of their
shared (early) environment (e.g., prenatal exposures, childhood
environment and other family influences), and that dizygotic
(DZ) twins share, on average, 50% of their genetic material and
100% of their shared (early) environment (Vitaro, Brendgen, &
Arseneault, 2009). In population-level observational studies, the
association between exposure and outcome can be confounded by
multiple factors. This limits the possibility of drawing valid con-
clusions on causal inference. In contrast, equivalent association

Figure 2. Example of a random intercept cross-lagged panel model (RI-CLPM) assessing the bidirectional pathways between variable A and variable B, including between-person
and within-person components at three survey waves.
Note. The squares indicate observed variables, while the circles represent latent (unobserved) variables. U and V represent the residual variance. The triangles represent constants
for the mean structure. To improve readability, no covariates are presented. Based on Hamaker et al. (2015) and Mulder and Hamaker (2021).
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estimates in discordant4 MZ and same-sex DZ twin pairs control for
age, sex and varying degrees of familial confounding, thus helping to
differentiate between causation and confounding (Eaton et al., 2012;
Mosteller & Boruch, 2004; Shadish, Cook, & Campbell, 2002).

The CTCD consists of three sub-models, testing the association
between an exposure and outcome: (1) at the population-level
(using all data without considering zygosity/twin pair discordance),
(2) within DZ same-sex twin pairs discordant for the exposure, and
(3) within MZ twin pairs discordant for the exposure (Gonggrijp
et al., 2023). The mean difference in the magnitude of the associ-
ation between exposed and unexposed individuals in these sub-
models can be compared to infer the contributions of unmeasured
genetic and shared (early) environmental confounders and, thus,
indirectly infer possible causation. Figure 3 further illustrates this.
Scenario 1 points to possible causation, as the mean difference in
the magnitude of the association between exposed and unexposed
individuals is equal in all three sub-model (regardless of overlap in
genes/shared (early) environment within the DZ and MZ twin
pairs). Scenario 2 points to genetic confounding, as the mean
difference in the magnitude of association between exposed and
unexposed individuals is intermediate within DZ twin pairs (50%
overlap in genes) and zero within MZ twins (100% overlap in
genes). Scenario 3 points to environmental confounding, as the
mean difference in the magnitude of association between exposed
and unexposed individuals is zero within DZ and MZ twin pairs
(both 100% overlap in shared (early) environment). Scenario
4 points to a combination of genetic and environmental confound-
ing, given that themean difference between exposed and unexposed
individuals is not zero in all three sub-models and reduces depend-
ing on the degree of genetic overlap.

Procedure and participants
We used data from the BLTS, 25UP project (Mitchell et al., 2019).
The 25UP project utilized questionnaires to collect information on
mental health conditions, general/physical health, psychosocial
items, and general demographic information. Data were collected
between 2016 and 2018, and participants included twins and their
non-twin siblings from South-East Queensland (Australia). Recruit-
ment details have been reported by Mitchell et al. (2019). For this
study, data fromcomplete twin pairswere used (ntotal individuals=1,512,
including 341 MZ, 217 DZ same-sex and 198 DZ opposite-sex twin
pairs).

Measures (self-reported)
For the main analyses, we used data on sweet/savoury snack intake
(dichotomized) (Mitchell et al., 2019), fruit/vegetable intake (dichot-
omized) (Mitchell et al., 2019), physical activity (continuous and
dichotomized) (IPAQ Research Committee, 2005) and symptoms of
depression/anxiety (continuous and dichotomized) (Andrews &
Slade, 2001). Additionally, age and gender (male/female) were
used. For descriptive purposes, we also used information on living
situation, study/work status, highest level of education, current
relationship status, BMI (kg/m2), and overall perceived physical
and mental health. Supplementary Material D includes additional
information.

Selection of twins per sub-model
For sub-model 1 (population-level), we selected all available data
without considering zygosity or twin pair con/discordance on the
exposure of interest (dichotomized sweet/savoury snack intake,
fruit/vegetable intake, physical activity and symptoms of depres-
sion/anxiety). For sub-model 2, we selected data fromDZ same-sex
twin pairs who were discordant on the exposure of interest (within
one pair: one twin exposed and one twin unexposed to the exposure
of interest). For sub-model 3, we selected data from MZ twin pairs
who were discordant on the exposure of interest.

Statistical analyses
Descriptive statistics were used to explore all measures. Next, the
CTCD was utilized by running linear (lmer) and logistic (glmer)
mixed-effects models using the lme4 package (Bates et al., 2009a).
We fitted six mixed-effects models, each including the three
sub-models (mentioned above), including one diet/physical
activity measure and the combined measure for symptoms of
depression/anxiety (Supplementary Table ST3). In the results, we
refer to these models as unadjusted models. Moreover, we fitted
eight mixed-effects models to adjust the unadjusted models for
either diet (when unadjusted models included physical activity)
or physical activity (when unadjusted models included diet),
taking into account potential confounding by diet/physical activ-
ity (Supplementary Table ST4). In case this variable was con-
tinuous, the variable was standardized. Again, each model
consisted of three sub-models and each sub-model included
one diet measure, physical activity, and symptoms of depres-
sion/anxiety. In the results, we refer to these models as adjusted
models. In all models, family clustering was taken into account
(by adding family as a random effect). Sub-models 1 were cor-
rected for age and gender, Supplementary Material E provides
additional information on model settings, calculations of p-
values and confidence intervals. To investigate potential causal
effects, the magnitude, direction and error margin of the associ-
ation between exposure and outcome across the three sub-models
in each model were studied.

Figure 3. Hypothetical outcome scenarios of a co-twin control design (CTCD).
Note. Population-level (PL) = the mean difference in the magnitude of association
between exposed and unexposed individuals; DZ = the mean difference in the
magnitude of association within dizygotic same-sex twin pairs discordant for the
exposure; MZ = the mean difference in the magnitude of association within
monozygotic twin pairs discordant for the exposure. Scenario 1: the magnitude of
the association is similar across all groups (regardless of shared genes or (early)
environment), inferring possible causality. Scenario 2: the association between
exposure and outcome is entirely inferred by genetic confounding, as the association
within same-sex DZ twins (who share 50%of their geneticmaterial) is intermediate, and
the association within MZ twins (who share 100% of their genetic material) is zero.
Scenario 3: the association between exposure and outcome is entirely inferred by
environmental confounding, as the association within same-sex DZ and MZ twins (who
share 100% of their (early) environment) is zero. Scenario 4: the association between
exposure and outcome is partly inferred by both genetic and environmental
confounding. Based on Gonggrijp et al. (2023).

4Discordance refers to the fact that one member of the twin pair is exposed
while the other person is unexposed to an exposure of interest.

Psychological Medicine 5

https://doi.org/10.1017/S0033291724003349 Published online by Cambridge University Press

http://doi.org/10.1017/S0033291724003349
http://doi.org/10.1017/S0033291724003349
http://doi.org/10.1017/S0033291724003349
http://doi.org/10.1017/S0033291724003349
https://doi.org/10.1017/S0033291724003349


Sensitivity analyses were performed for all models to assess the
reliability of the chosen discordance thresholds (Supplementary
Material D). In these analyses, slightly different discordance criteria
were used (given that no set cut-offs were available).

Study 3: mendelian randomization

In two-sample univariable Mendelian randomization (UVMR),
genetic variants (single nucleotide polymorphisms; SNPs) robustly
associated with an exposure are leveraged as instrumental variables
to estimate the potential population-level causal effect of an expos-
ure on an outcome (Davey Smith & Ebrahim, 2003), see Figure 4A.
The basis of MR is built on Mendel’s laws of random segregation5

and independent assortment6 (Evans & Davey Smith, 2015). MR is
less prone to unmeasured confounding or reverse causation than
observational studies as genetic variants are randomly assigned
during conception and typically unaffected by environmental/life-
style factors later in life (Carnegie et al., 2020; Gupta, Walia, &
Sachdeva, 2017). To gain valid estimates, several core assumptions
need to be satisfied: (1) the genetic instrumental variable is robustly
associated with the exposure (relevance assumption), (2) there is no
confounding between the genetic instrumental variable and the
outcome (independence assumption), and (3) the instrumental
variable is not associated with the outcome other than via the
exposure (exclusion restriction) (Lawlor, Harbord, Sterne, Timp-
son, & Davey Smith, 2008). Multiple MR methods exist that evalu-
ate these assumptions. The consistency of effect estimates across
these methods strengthens the evidence.

Multivariable Mendelian randomization (MVMR) is an exten-
sion of UVMR which facilitates using multiple exposures (e.g., diet
and physical activity) to estimate the direct independent effects of
multiple exposures on an outcome (Burgess & Thompson, 2015),
conditional on the effect of the other exposure on the outcome
(Figure 4B).

Data sources
Publicly available summary statistics from GWASs (European
ancestry) were used to select SNPs associated with sweet snack
intake (Elsworth et al., 2020), savoury snack intake (Elsworth
et al., 2020), fruit intake (Cole, Florez, & Hirschhorn, 2020),
vegetable intake (Elsworth et al., 2020), physical activity
(Klimentidis et al., 2018), depression7 (Howard et al., 2019),

and anxiety8 (Otowa et al., 2016). See Supplementary Table ST5
and Supplementary Material F for information per phenotype.

Statistical analyses
Supplementary Material G explains the SNPs selection and
Supplementary Table ST6 (UVMR) and ST7 (MVMR) contain all
selected SNPs. First, twenty UVMR analyses were run using the
TwoSampleMR package (Hemani, Zheng, et al., 2018). Each model
included one diet/physical activity and one mental health measure
(Supplementary Table ST8). The inverse-variance weighted (IVW)
method was used as the main method (Burgess, Butterworth, &
Thompson, 2013), providing valid estimates when horizontal plei-
otropy is balanced or absent (Hemani, Bowden, & Davey Smith,
2018). Next, several sensitivity analyses (mostly available in the
TwoSampleMR package) were performed (Supplementary Mater
ial H): MR-Egger (Bowden, Davey Smith, & Burgess, 2015),
weighted median (Bowden, Davey Smith, Haycock, & Burgess,
2016), simple mode (Hartwig, Davey Smith, & Bowden, 2017),
weighted mode (Hartwig et al., 2017), MR Pleiotropy RESidual
Sum and Outlier (MR-PRESSO) (Verbanck, Chen, Neale, & Do,
2018), MR using the robust adjusted profile score (MR-RAPS)
(Zhao, Wang, Hemani, Bowden, & Small, 2018)) and, MRlap
(Mounier & Kutalik, 2023). The mean F-statistic was calculated
to evaluate instrument strength (F < 10 may indicate a weak
instrument (Burgess & Thompson, 2011)), IVW and MR-Egger
heterogeneity tests and MR-Egger pleiotropy tests were per-
formed to assess horizontal and directional pleiotropy, respect-
ively (Hemani, Zheng, et al., 2018).

Moreover, twenty-four MVMR analyses were run using the
TwoSampleMR package (Hemani, Zheng, et al., 2018). This exten-
sion of the UVMR allows for adjustment of potential confounders,
in this case adjusting theUVMRanalyses including diet for physical
activity and adjusting the UVMR analyses including physical activ-
ity for diet. Eachmodel included one diet measure, physical activity
and one mental health measure (Supplementary Table ST9). The
MVMR-IVW method was used as the main method (Sanderson,
Davey Smith, Windmeijer, & Bowden, 2018) and several sensitivity
analyses were performed (Supplementary Material H): MVMR-
Egger9 (Rees, Wood, & Burgess, 2017) and MVMR-PRESSO
(Verbanck et al., 2018). The F-statistic was calculated to evaluate
instrument strength and pleiotropy tests were performed using the
MVMR package to assess heterogeneity (Sanderson, Spiller, &
Bowden, 2021). For both UVMR and MVMR, the magnitude,

Figure 4. Directed acyclic graphs for (A) Univariable mendelian randomization and (B) Multivariable mendelian randomization.

5Mendel’s law of random segregation: alleles separate at meiosis, and a
randomly selected allele is passed from the parents to the offspring (Evans &
Davey Smith, 2015).

6Mendel’s law of independent assortment: alleles for separate traits are
transmitted independently of one another (Evans & Davey Smith, 2015).

7Including three depression-related phenotypes: broad depression, probable
major depressive disorder (MDD), and International Classification of Diseases
(ICD, version 9 or 10)-coded MDD.

8Including lifetime diagnosis for any of the five core anxiety disorders:
generalized anxiety disorder, panic disorder, social phobia, agoraphobia, and
specific phobias.

9MVMR-Egger was performed twice, once oriented so that the exposure
1 SNPs were positive and once oriented so that exposure 2 SNPs were positive
(Sanderson et al., 2018). For each exposure, only the results for the relevant
(positive) orientation have been reported.
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direction and confidence intervals of the odds ratios (ORs) were
studied to evaluate potential causal effects.

Results

Triangulated evidence

Table 2 provides a summary of all effect estimates and themagnitude,
direction and margin of error of the effect estimates for Studies 1, 2
and 3 for the analyses performed with one lifestyle behaviour (diet/
physical activity) and one mental health measure (depression/anx-
iety); unadjusted models. The findings of most assessed pathways
across the three methods did not provide strong support for causal
pathways between diet/physical activity and depression/anxiety
(or vice versa). This is reflected by the magnitude of the effect
estimates which were considerably small, pointing to weak or non-
existing causal pathways. Converge for all three methods was
observed for the models testing bidirectional causal effects between
sweet/savoury snack intake and depression/anxiety, and the models

testing causal effects of physical activity on depression/anxiety. The
convergence across the threemethods provides greater confidence in
the conclusions and absence of causal pathways.

Some divergence was observed in the models assessing bidirec-
tional causal effects between fruit/vegetable intake and depression/
anxiety. Study 1 did not provide support (i.e., the (un)standardized
betas are close to zero), Study 2 did provide support (i.e., the
regression coefficients across the three sub-models are roughly
equal), Study 3 did not provide support in most assessed pathways
(i.e., theORs are close to one), except for the pathway fruit intake on
anxiety (OR = 1.99, 95% CI = 1.19–3.34). Additionally, some
divergence was observed in the models assessing causal effects of
depression/anxiety on physical activity. Studies 1 and 3 did not
provide support (i.e., in Study 1 the (un)standardized betas are close
to zero and in Study 3 the OR are close to one), while Study 2 did
provide support (i.e., the regression coefficients of the MZ/DZ sub-
models are larger than of the population-level submodel). A further
reflection on how potential biases might have impacted these
findings and contributed to the divergence is required, and has

Table 2. Triangulated evidence of all unadjusted/univariable analyses

Causal path

Study 1: random intercept-cross
lagged panel modelsa Study 2: co-twin control designb

Study 3: univariabele mendelian
randomizationc

b SE b SE Group b 95% CI N SNPs OR (95% CI)
W1 ! W2 W2 ! W3

Sweet snack intake à Depression �0.05 0.06 0.03 0.07 PL 1.03 0.34, 1.69 21 1.00 (0.83, 1.20)

Sweet snack intake à Anxiety �0.02 0.03 0.00 0.03 DZ 0.28 �1.10, 1.70 12 1.41 (0.39, 5.14)

Savoury snack intake à Depression 0.03 0.11 0.06 0.13 MZ 0.17 �1.16, 1.50 15 1.04 (0.85, 1.27)

Savoury snack intake à Anxiety �0.07 0.05 �0.07 0.05 11 0.61 (0.14, 2.57)

Depression à Sweet snack intake 0.03 0.04 0.00 0.04 PL 0.40 0.11, 0.67 72 0.99 (0.96, 1.02)

Anxiety à Sweet snack intake �0.07 0.08 0.05 0.10 DZ 0.09 �0.70, 0.89 15 1.00 (0.99, 1.01)

Depression à Savoury snack intake 0.04 0.02 0.02 0.02 MZ 0.20 �0.50, 0.91 72 1.00 (0.97, 1.02)

Anxiety à Savoury snack intake �0.03 0.05 0.00 0.04 15 1.01 (0.99, 1.02)

Fruit intake à Depression 0.21 0.13 0.10 0.14 PL 1.84 1.19, 2.50 79 0.93 (0.83, 1.05)

Fruit intake à Anxiety 0.08 0.06 0.01 0.06 DZ 1.33 �0.57, 3.17 76 1.99 (1.19, 3.34)

Vegetable intake à Depression 0.08 0.09 �0.03 0.08 MZ 2.06 0.98, 3.25 19 1.06 (0.86, 1.30)

Vegetable intake à Anxiety 0.05 0.04 �0.02 0.03 14 1.12 (0.22, 5.66)

Depression à Fruit intake 0.13 0.02 0.02 0.02 PL 0.56 0.30, 0.79 73 1.00 (0.95, 1.04)

Anxiety à Fruit intake �0.03 0.04 0.03 0.05 DZ 0.46 �0.28, 1.15 19 1.00 (0.99, 1.00)

Depression à Vegetable intake 0.00 0.03 0.04 0.03 MZ 0.66 0.03, 1.32 72 0.99 (0.97, 1.01)

Anxiety à Vegetable intake �0.03 0.07 �0.04 0.08 15 1.00 (0.99, 1.01)

Physical activity à Depression �0.01 0.01 0.01 0.01 PL 1.05 0.19, 1.88 19 1.08 (0.81, 1.43)

Physical activity à Anxiety �0.01 0.04 0.04 0.04 DZ 0.12 �2.43, 2.67 17 1.54 (0.54, 4.33)

MZ 0.43 �1.31, 2.14

Depression à Physical activity 0.09 0.27 �0.52 0.29 PL �4.29 �7.90, �0.70 72 0.99 (0.96, 1.03)

Anxiety à Physical activity 0.02 0.06 �0.02 0.06 DZ �7.03 �16.19, 1.84 15 0.99 (0.99, 1.00)

MZ �9.46 �16.40, �2.20

Note. Findings highlighted in bold present pathways were support was found for that potential causal path. b = unstandardized estimate, SE = standard error, b = regression coefficient for the
exposure, 95%CI = 95% confidence interval, OR = odds ratio, SNPs = single nucleotide polymorphisms, W1 =Wave 1, W2 =Wave 2, W3 =Wave 3, PL = population-level, MZ =monozygotic twin pairs,
DZ = same-sex dizygotic twin pairs.
aOnly the cross-lagged within-person effects have been presented. Full results can be found in Supplementary Tables ST12–ST29.
bOnly the regression coefficients of the exposure of interest have been presented. Full results can be found in Supplementary Tables ST32–ST45. In Study 2, combined measures of sweet and
savoury snack intake, fruit and vegetable intake, and depression and anxiety were used.
cOnly the results from the inverse-variance weighted (IVW) method have been presented. Full results can be found in Supplementary Tables ST47–48.
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been provided in the discussion. Below, we discuss the findings
from Studies 1, 2 and 3 in more detail.

Supplementary Table ST10 provides a summary of effect esti-
mates and themagnitude, direction andmargin of error of the effect
estimates from Studies 1, 2 and 3 for the analyses were the causal
pathways were adjusted for a potential confounder (the other
lifestyle behaviour; diet or physical activity); adjusted models.
Conclusions were in line with the unadjusted models.

Study 1: random intercept cross-lagged panel models

Sample description and intraclass correlations (ICC)
AtWave 1, the mean age of the sample was 23 years (SD = 4.2), 72%
were female, 86% were not living alone, and 49% were single. The
mean BMI score was 22.5 kg/m2 (SD = 3.5) and overall physical and
mental health was perceived as very good or excellent by 32% and
25%, respectively. Descriptives for Wave 2 and 3 were similar
(Supplementary Table ST11).

The ICC for depressive symptoms was 0.63, which shows that
63% of the variance in the three measurements of depressive
symptoms can be explained by differences between persons
(i.e., stable trait level) and the remaining 37% of the variance can
be explained by fluctuations within persons (i.e., change over time).
For anxiety symptoms the ICC was 0.53, for sweet snack intake the
ICC was 0.64, the ICC for savoury snack intake was 0.64, the ICC
for fruit intake was 0.73, the ICC for vegetable intake was 0.66, and
the ICC for physical activity was 0.52.

Random intercept cross-lagged panel models
Table 3 shows all within-person cross-lagged effects. Supplementary
Tables ST12-ST29 provide all estimates. The fit indices per model
were acceptable (Supplementary Table ST30).

The within-person cross-lagged effects (unadjusted models) did
not provide support for causal effects of diet or physical activity on
depressive or anxiety symptoms, given that the (un)standardized
estimates were close to zero with relatively large error margins.
Similarly, the within-person cross-lagged effects (unadjusted
models) did not provide support for causal effects of depressive
or anxiety symptoms on diet or physical activity. This means that
participants’ changes in depressive/anxiety symptoms, relative to
their own expected scores, were not predicted by participants’ diet/
physical activity at the previous wave (or vice versa). This pattern
was consistent with the adjusted models and sensitivity analyses.

Study 2: co-twin control design

Sample description
Themean age of the total sample was 30 years (SD = 4.2), 62% were
male, 53% lived with a partner (and/or children), 66% worked full-
time, and 70% had a relationship (Supplementary Table ST31). The
mean BMI score was 24.7 kg/m2 (SD = 4.8) and overall physical and
mental health was perceived as (very) good by 76% and 72%,
respectively. A total of 64% of the participants were “exposed” to
sweet/savoury snack intake, 47% to insufficient fruit/vegetable
intake, 19% to physical inactivity and 29% to symptoms of depres-
sion/anxiety.

Mixed-effects models
All results are reported in Supplementary Tables ST32-ST45 and
patterns in regression coefficients are shown in Figure 5 and
compared to the scenarios in Figure 3. Information on the DZ/MZ
discordance rate per model has been provided in Supplementary
Table ST46.

Our results do not support causal pathways between sweet/
savoury snack intake and symptoms of depression/anxiety
(Figure 5A/5B). The association between exposure and outcome
was present at the population-level (unadjusted models) but not
within DZ/MZ twin pairs, and the regression coefficients within
DZ/MZ twins were roughly equal with overlapping error bars. This
suggests that Scenario 3 (confounding by shared (early) environ-
ment) most closely represents the observed patterns in regression
coefficients (unadjusted/adjusted models). Although this pattern
was observed in some sensitivity analyses, these findings were not
fully consistent with the sensitivity analyses (Supplementary Tables
ST32-ST33, ST38-ST39).

Our results support causal pathways between fruit/vegetable
intake and symptoms of depression/anxiety (Figure 5C/5D). The
patterns in regression coefficients (unadjusted/adjusted models)
most closely represent Scenario 1, as the regression coefficients
across the three groups were roughly equal. In most sub-models,
the association between exposure and outcome was present (except
for one within MZ and all within DZ twins sub-models). These
findings were consistent with the sensitivity analyses (Supplementary
Tables ST34-ST35, ST40-ST41).

Our results providedmixed support for causal pathway between
symptoms of depression/anxiety and physical activity. In the
models where symptoms of depression/anxiety were the exposure
and physical activity was the outcome (Figure 5F), the pattern in
regression coefficients (unadjusted/adjusted models) between the
three groups most closely represents Scenario 1, supporting causal
effects. In most sub-models, the association between exposure and
outcome was present (except the population-level model adjusted
for fruit/vegetable intake and all within DZmodels). These findings
were consistent with the sensitivity analyses (Supplementary Tables
ST37, ST44-ST45). In the models where physical activity was the
exposure and symptoms of depression/anxiety were the outcome
(Figure 5E), the pattern in regression coefficients (unadjusted/
adjusted models) between the three groups most closely represents
Scenario 3 (confounding by shared (early) environment). The
pattern observed in the sensitivity analyses pointed more towards
genetic confounding (Scenario 2) (Supplementary Tables ST36,
ST42-ST43).

Study 3: mendelian randomization

Univariable and multivariable mendelian randomization
Supplementary Tables ST47-ST48 provide all UVMR and MVMR
results. Figure 6 presents results from the IVWmethod. UVMR did
not provide support for the hypothesis that the genetic liability for
unhealthy diet/physical inactivity causally increases the risk of
depression (Figure 6A) or anxiety (Figure 6C), given that most of
the ORs were close to one with confidence intervals including one.
Likewise, our results do not support the hypothesis that the genetic
liability of depression (Figure 6B) or anxiety (Figure 6D) causally
increases unhealthy diet/physical inactivity. One exception, UVMR
does suggest fruit intake might causally increase the risk of anxiety
(Model 11AUVMR; ORIVW = 1.99; 95% confidence interval (CI) = 1.19
to 3.34; p= .009). This effectwas consistent across all sensitivity analyses
(Supplementary Table ST47). The UVMR IVW (p = .023) and
MR-Egger (p = .019) heterogeneity tests for Model 11A did provide
evidence for heterogeneity (Supplementary Table ST49), while the
MR-Egger pleiotropy test (p = .918) did not provide evidence for
directional pleiotropy (Supplementary Table ST50). The MVMR find-
ingswere in linewith theUVMRfindings (SupplementaryTables ST48,
ST51). Most instruments were sufficiently strong (F-statistics >10;
Supplementary Tables ST52 (UVMR) and ST53 (MVMR)).
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Table 3. Results within-person cross-lagged effects

Pathways

Unadjusted models Adjusted models

W1 à W2 W2 à W3 W1 à W2 W2 à W3

b SE β p b SE β p b SE β p b SE β p

Sweet snack intake ! Depressive symptomsa �0.05 0.06 �0.04 .401 0.03 0.07 0.03 .610 �0.06 0.06 �0.05 .334 0.03 0.07 0.03 .621

Depressive symptoms ! Sweet snack intakea 0.03 0.04 0.03 .543 0.00 0.04 0.01 .920 0.02 0.04 0.02 .676 �0.01 0.04 �0.02 .790

Sweet snack intake ! Anxiety symptomsa �0.02 0.03 �0.03 .552 0.00 0.03 0.01 .896 �0.02 0.03 �0.03 .538 0.00 0.03 0.01 .881

Anxiety symptoms ! Sweet snack intakea �0.07 0.08 �0.04 .410 0.05 0.10 0.03 .656 �0.08 0.09 �0.04 .336 0.03 0.10 0.02 .746

Savoury snack intake ! Depressive symptomsa 0.03 0.11 0.01 .822 0.06 0.13 0.03 .615 0.00 0.11 0.00 .978 0.06 0.13 0.03 .622

Depressive symptoms ! Savoury snack intakea 0.04 0.02 0.08 .094 0.02 0.02 0.05 .325 0.03 0.02 0.07 .161 0.01 0.02 0.03 .484

Savoury snack intake ! Anxiety symptomsa �0.07 0.05 �0.08 .116 �0.07 0.05 �0.08 .198 �0.08 0.05 �0.08 .098 �0.07 0.05 �0.08 .200

Anxiety symptoms ! Savoury snack intakea �0.03 0.05 �0.02 .592 0.00 0.04 0.00 .968 �0.04 0.05 �0.03 .450 0.00 0.04 0.00 .932

Fruit intake ! Depressive symptomsa 0.21 0.13 0.08 .120 0.10 0.14 0.05 .359 0.22 0.13 0.08 .105 0.12 0.14 0.05 .412

Depressive symptoms ! Fruit intakea 0.13 0.02 �0.04 .483 0.02 0.02 0.05 .410 0.00 0.02 �0.01 .817 0.02 0.02 0.06 .293

Fruit intake ! Anxiety symptomsa 0.08 0.06 0.07 .170 0.01 0.06 0.01 .871 0.08 0.06 0.07 .178 0.00 0.06 0.00 .972

Anxiety symptoms ! Fruit intakea �0.03 0.04 �0.03 .541 0.03 0.05 0.04 .555 �0.01 0.04 �0.02 .752 0.03 0.05 0.04 .522

Vegetable intake ! Depressive symptomsa 0.08 0.09 0.05 .343 �0.03 0.08 �0.02 .687 0.09 0.09 0.05 .325 �0.03 0.08 �0.02 .723

Depressive symptoms ! Vegetable intakea 0.00 0.03 0.01 .910 0.04 0.03 0.07 .253 0.00 0.03 0.00 .969 0.04 0.04 0.06 .315

Vegetable intake ! Anxiety symptomsa 0.05 0.04 0.06 .224 �0.02 0.03 �0.03 .584 0.05 0.04 0.06 .221 �0.02 0.03 �0.03 .590

Anxiety symptoms ! Vegetable intakea �0.03 0.07 �0.02 .629 �0.04 0.08 �0.03 .606 �0.04 0.07 �0.03 .586 �0.05 0.08 �0.04 .545

Physical activity ! Depressive symptomsb �0.01 0.01 �0.07 .175 0.01 0.01 0.04 .467 Not presented here as multiple adjusted models were estimated.

Depressive symptoms ! Physical activityb 0.09 0.27 0.02 .734 �0.52 0.29 �0.10 .075

Physical activity ! Anxiety symptomsb �0.01 0.04 �0.01 .829 0.04 0.04 0.04 .367

Anxiety symptoms ! Physical activityb 0.02 0.06 0.02 .701 �0.02 0.06 �0.01 .794

Note.Othermodel estimates (between-person covariance random intercepts, within-person stability (or autoregressive) effects, within-person concurrent covariance, and time-invariant covariate associations of gender and age) permodel are presented in
Supplementary Tables S11-S28. W1 = Wave 1, W2 = Wave 2, W3 = Wave 3, b = unstandardized estimate, β = standardized estimate, SE = standard error.
aAdjusted models were corrected for physical activity.
bAdjusted models were corrected for all diet measures and these cross-lagged effects have been presented in Supplementary Tables S22–S29.
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Discussion

Principal findings

Triangulating evidence from three distinctmethods did not provide
compelling support for causal effects of diet/physical activity on
depression/anxiety (or vice versa). These conclusions remained
when adjusting the analyses including diet and depression/anxiety
for physical activity and when adjusting the analyses including
physical activity and depression/anxiety for diet.

Comparison with previous studies

Sweet/savoury snack intake and depression/anxiety
Convergent evidence from our triangulation framework did not
support causal effects of sweet/savoury snack intake on depression/
anxiety (both in unadjusted and adjusted models). No previous
studies focused on these specific pathways, although our results are
in line with an MR study that did not find a causal effect of “Never

eating sugar or foods/drinks containing sugar” on depression
(Du et al., 2023). In contrast, meta-analyses of prospective/cohort
studies did support causal effects of Western-style dietary patterns
(including high consumption of sweets), sugar-sweetened bever-
ages and ultra-processed foods on increased depression/anxiety
(Lane et al., 2024; Li et al., 2017; Y. Wang et al., 2022). These effects
could be enhanced by unmeasured confounders or differences
could be explained by using different measurements and including
participants with different ancestries or from different cultures
(with different eating habits).

Convergent evidence from our triangulation framework did not
support causal effects of depression/anxiety on sweet/savoury snack
intake (both in unadjusted and adjustedmodels). This is in linewith
some studies focusing on the relationship between sugar intake and
negative mood (Cardi, Leppanen, & Treasure, 2015; Knüppel,
Shipley, Llewellyn, & Brunner, 2017), although it is in contrast with
previous work indicating that some individuals cope with negative
emotions by overeating energy-dense, nutrient-poor and palatable

Figure 5. Results mixed-effects models - patterns in regression coefficients at population-level (PL), within dizygotic (DZ) same-sex twins and within monozygotic (MZ) twins.
Asterisks represent associations between exposure and outcome per subgroup where p < .05.
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Figure 6. Results of the univariable and multivariable mendelian randomization.
Note. (A) Exposure = diet (sweet snack intake, savoury snack intake, fruit intake, vegetable intake) or physical activity. Outcome = depression. (B) Exposure = depression.
Outcome = diet or physical activity. (C) Exposure = diet or physical activity. Outcome = anxiety. (D) Exposure = anxiety. Outcome = diet or physical activity. Method = Inverse variance
weighted. UVMR =UnivariableMendelian randomization; MVMR =MultivariableMendelian randomization; OR = odds ratio; 95%CI = 95% confidence interval; SNP = single nucleotide
polymorphism.
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foods (Burnatowska, Surma, & Olszanecka-Glinianowicz, 2022;
Dakanalis et al., 2023). Assessment of foods (for example high in
sugar) might not reflect an individual’s general diet, which requires
more nuanced assessments to shed new light on potential causal
effects.

Fruit/vegetable intake and depression/anxiety
Consistent in the unadjusted and adjusted models, Study 1 did not
support causal effects of fruit/vegetable intake on depression/anx-
iety, while Study 2 did support causal effects between increased fruit
intake and increased depression/anxiety and Study 3 did support a
causal effect from increased fruit/vegetable intake to increased
anxiety (Study 3). Contradicting insights were also observed in
previous work (Appleton et al., 2024; T. T. Chen et al., 2022; Liu
et al., 2016; Molendijk et al., 2018; Saghafian et al., 2018; Tuck et al.,
2019; Q. Wang et al., 2024; Yan et al., 2023). Possibly, the time
intervals in Study 1 (6–12months) were too long to detect causation
(Singh et al., 2024). Additionally, the variance in the studymeasures
across all waves that could be explained by fluctuations within
persons varied between 27% to 48%, which might limit the oppor-
tunity to detect possible temporal associations in Study 1.

Studies 1 and 3 did not provide support for causal effects of
depression/anxiety on fruit/vegetable intake while Study 2 support
causal effects between depression/anxiety and fruit/vegetable intake
(both in unadjusted and adjusted models). When comparing these
findings to previous literature, only two MR studies were identified
which did not support a causal effect of depression on fruit intake
and/or vegetable intake (T. T. Chen et al., 2022; Yan et al., 2023).

Possibly, limitations of the designs used in Studies 2 and 3 could
explain the suggestive findings mentioned above. E.g., a small
sample size, arbitrary discordance definitions or confounding by
non-shared factors in Study 2 (Frisell, Öberg, Kuja-Halkola, &
Sjölander, 2012) and potential violations of the MR assumptions
(e.g., horizontal pleiotropy10) in Study 3 (Davies et al., 2019;
Hemani, Bowden, & Davey Smith, 2018; Spiga et al., 2023). This
emphasizes the need for triangulation and developing more com-
plexmethods where the strengths of different designs are combined
(e.g., within-family MR).

Physical activity and depression/anxiety
Convergent evidence from our triangulation framework did not
support causal effects of physical activity on depression/anxiety
(both in unadjusted and adjusted models). Although this is in line
with some studies (various designs, mostly using self-report) (Choi
et al., 2019; De Moor et al., 2008; Iob et al., 2023; Moreno-Peral
et al., 2022; Pasman et al., 2024), most existing studies do provide
support for a protective causal effect of physical activity on depres-
sion and/or anxiety risk (Choi et al., 2019; Iob et al., 2023;Mammen
& Faulkner, 2013; McDowell et al., 2019; Pearce et al., 2022; Rebar
et al., 2015; Schuch et al., 2019; Schuch et al., 2018). Some of these
studies (using MR) found different results for self-reported or
accelerometer-based physical activity (Choi et al., 2019; Iob et al.,
2023), which suggests future studies could explore this difference
further using various other designs.

No support for causal effects of depression/anxiety on physical
activity was provided by Studies 1 and 3 while Study 2 did support
possible causal effects between increased depression/anxiety and
decreased physical activity (both in unadjusted and adjusted

models). Mixed results were also observed in previous work. For
instance, a systematic review (longitudinal studies) showed that
depression was associated with being less active over time
(Roshanaei-Moghaddam et al., 2009). The authors suggested this
might be due to lower motivation and energy to exercise. A recent
MR study also found a causal effect of depression on decreased
accelerometer-based physical activity (Pasman et al., 2024). In con-
trast, this was not found in other MR studies (including both self-
reported and accelerometer-based physical activity) (Choi et al.,
2019; Iob et al., 2023). Pasman et al. (2024) used a more recent and
larger GWAS for depression (Als et al., 2023) (>1.3 million individ-
uals including 371,184 cases; identifying 243 risk loci) compared to
Choi et al. (2019) and Iob et al. (2023) who used a smaller GWAS
(Wray et al., 2018) (including 344,901 controls and 135,458 cases;
identifying 44 risk loci). Consequently, this may explain the differ-
ences in findings and suggest sufficient sample sizes are needed in
future studies. Alternatively, other potential biases (described above)
might also contribute to the divergent results.

Strengths, limitations & future research

Although triangulation is not new, triangulation in mental health
research is limited (Hammerton & Munafò, 2021). To our know-
ledge, this study is the first to triangulate evidence to assess the
causal pathways between diet, physical activity, depression, and
anxiety. No single method can provide definite evidence for causal
pathways on its own (Hammerton & Munafò, 2021). In our study,
triangulation strengthened our conclusion of no causal effects for
sweet and savoury snack intake, since this finding was consistent
across methods that address different types of confounding. How-
ever, for fruit/vegetable intake and physical activity, divergent
findings across methods revealed potential biases that single-
method studies might have missed. This demonstrates triangula-
tion’s value in both confirming null effects and identifyingmethod-
specific biases needing further investigation. We also extended
previous work by considering mutual confounding between diet
and physical activity, since both play substantial roles in health
maintenance and disease prevention, rather than treating them as
independent behaviours.

However, several limitations exist. First, retrospective triangu-
lation was applied using existing data. Although the measures
across the three studies were aligned as much as possible, not all
measures were exactly the same. Consequently, this could influence
the comparability of the studies. In line with this, the three studies
included in the triangulation framework used data originating from
different countries (i.e., The Netherlands and Australia). It could be
that country-specific dietary habits or physical activity norms have
impacted the compatibility of the three studies, which could explain
some divergence in the findings. However, we do not expect that the
difference in the origin of the data had amajor impact, given that all
individuals were from European Ancestry. Future studies could
adapt prospective triangulation approaches (Munafò et al., 2021;
Treur, Lukas, Sallis, & Wootton, 2024), where study measures,
sample populations and timing of data collections are aligned
before data collection. This will result in even stronger confidence
in the conclusions and help to avoid divergence in the results.
Second, all studies used observational self-reported data to some
extent. Therefore, reporting/recall bias11, measurement errors
and selection bias12 could not fully be ruled out (Hammerton

10Horizontal pleiotropy: The SNPs employed might affect the outcome
through pathways unrelated to the exposure.

11Reporting/recall bias: bias introduced by incomplete or inaccurate reporting.
12Selection bias: bias introduced by the selection of participants.
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& Munafò, 2021; Pandis, 2014). Future studies can consider
additional/other approaches less prone to these biases (e.g., the
MR and the Direction of Causation twin model (Castro-de-Araujo
et al., 2023; Minică, Boomsma, Dolan, de Geus, & Neale, 2020) or
within-family GWAS/MR). Third, Wave 1 of Study 1 was collected
during the COVID-19 pandemic (Fall 2021). During this unique
time, several measures aimed to reduce the spread of the corona-
virus were implemented (e.g., working from home, limits on num-
ber of students in classrooms at schools/universities, 1.5-meter
spacing rule, and wearing face masks; National Institute for Public
Health and the Environment (n.d.)). These measures most likely
impacted the lifestyle behaviours and mental health reported dur-
ingWave 1. E.g., other studies do report that physical activity levels
reduced and depressive symptoms increased during the COVID-19
pandemic (Caroppo et al., 2021; P. J. Chen, Pusica, Sohaei, Prassas,
& Diamandis, 2021; Park, Zhong, Yang, Jeong, & Lee, 2022).
However, this does not necessarily imply that the associations
between variables in this study are different during the COVID-
19 pandemic compared to other periods, as in previous work
physical activity-depressive symptoms associations before and dur-
ing the pandemic could be constrained to be equal over time (van
den Broek et al., 2024). Given the different time intervals between
the waves in the RI-CLPMs in Study 1, we were unable to empir-
ically test whether we could constrain during and after the pan-
demic. Despite this, we have little reason to suspect that the within-
person effects would be different for the two time intervals, given
that all effect sizes were considerably small/close to zero. Fourth,
Studies 2 and 3 might have limited power. In Study 2, the sample
sizes are relatively small (especially DZ twin pairs). Consequently,
larger twin studies are needed. In Study 3, this is reflected by smaller
GWASs of sweet snack intake, savoury snack intake, vegetable
intake and, anxiety. Consequently, fewer robustly associated expos-
ure SNPs were available at the genome-wide significance level and a
less stringent p-value threshold was used to select exposure SNPs.
This could have introduced weak instrument bias (Burgess &
Thompson, 2011). Consequently, larger GWASs are needed. Fifth,
sex-specific analyses were not included. However, it is known that
depression/anxiety are more common among females than males
(GBDMental Disorders Collaborators, 2022) and a recent study in
adolescents suggested sex-specific effects from physical activity on
depressive symptoms (van den Broek et al., 2024). Future studies
could investigate these possible sex-specific effects. Last, post-
treatment bias might bias the results of the performed adjusted
models, in case the exposure has an causal effect on the included
confounder (Acharya, Blackwell, & Sen, 2016).

Implications

Integrating triangulation approaches (also beyond the scope of this
study) in scientific work more systematically, instead of single-
methodology approaches, will greatly impact the weight of scien-
tific output (Hammerton & Munafò, 2021). Institutions, organisa-
tions and policymakers can also use triangulated evidence to make
more confident decisions on policy/strategy development, innov-
ations to foster and resource allocation. With regard to the impli-
cations of the current study, given the acknowledged limitations of
our triangulation approach, it is too early to provide strong recom-
mendations for practice. However, triangulating evidence adds an
important piece of the bigger puzzle of finding the true answer to
the question if causal pathways exist between diet/physical activity
and depression/anxiety. Before we can provide clear practical

recommendations, additional pieces of this bigger puzzle are needed.
As mentioned, these can be obtained by e.g., using complementary
methods with other unrelated sources of potential biases or conduct-
ing larger twin studies/GWASs. Although in the current study no
strong support for causal pathways between diet/physical activity
and depression/anxiety was found, offering prevention/interven-
tion services to e.g., stimulate physical activity, healthy diet and
mental health will remain important (regardless of potential
causal pathways), given their role in the disease risk reduction
of multiple chronic diseases (Afshin et al., 2019; Warburton,
Nicol, & Bredin, 2006).

Conclusion

Triangulated evidence from three distinctive methods (with unique
strengths, weaknesses and key sources of potential bias) did not
provide strong support for causal effects of diet/physical activity on
depression/anxiety or vice versa, neither in the unadjusted or
adjusted models (where diet was adjusted for physical activity
and vice versa). Future studies could apply prospective triangula-
tion to gain even more robust insights and confidence in answering
complex causal questions.
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