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Differential phase contrast (DPC) imaging in the scanning transmission electron microscope (STEM) 

measures the deflection of electrons as they pass through a specimen, providing a visualization of 

electromagnetic fields. Because of this, it has found application in a number of important research areas 

including magnetic domains, skyrmionics, p-n junctions, ferroelectrics, and quantum wells [1]. 

Integrated DPC (iDPC) signals can further provide phase contrast information, allowing the imaging of 

both light and heavy elements [2]. These capabilities are complemented by compatibility with 

simultaneous annular dark field (ADF) imaging and as a result DPC imaging has seen increased 

popularity in recent years. 

 

Measuring the electron beam deflection at each STEM probe position requires special detector 

geometries, the most prominent of which is the use of a segmented quadrant-detector. More recently, 

pixelated STEM detectors have been used, though typical readout speeds are several orders of 

magnitude slower than conventional detectors. Segmented detectors facilitate many microscopists 

preference for high-speed and low-dose conditions for DPC imaging of in-situ events or imaging beam 

sensitive materials. In iDPC imaging, the integration process rejects the non-integrable vector fields and 

can give an improved signal to noise ratio over traditional ADF detectors. Integration approaches 

however often need to be performed after the full image has been acquired, and integration 

approximations applicable for real-time analysis can be susceptible to noise [3]. In any case, as the limit 

of signal to noise ratio is approached, the recoverable information is limited. This in turn limits the 

minimum dose achievable, or similarly the maximum framerate achievable. 

 

Here we explore the limits of DPC STEM when using a recently developed solid-state 6 segment 

detector (2 annular rings and 4 annular segments) produced by El-Mul Technologies (Figure 1). The use 

of a solid-state detector delivers minimal segment cross-talk, improved speed and low background noise, 

whilst the detector geometry allows the fully simultaneous acquisition of low and medium angle annular 

dark field, DPC and electron energy loss spectroscopy (EELS). Of importance for DPC imaging is the 

excellent detector uniformity between segments, with minimal variation between individual electron 

detection events. Never the less, we combine this with our single electron pulse counting technique [4], 

to further explore DPC STEM with a true zero noise floor and with quantified signals in units of single 

electrons. To enable image acquisition from in-house developed pulse counting hardware and 

simultaneous image acquisition from all detectors and segments at high frame rates (as low as 20 ns per 

pixel), we use a point electronic DISS6 scan generator interfaced with a 300 kV FEI Titan G2 [5]. 
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Figure 1. a Photograph of the 6 segment DPC detector before installation. b Detector map at high dose 

with individual segments colored uniquely. c Corresponding detector map at low dose with single 

electron counting. 
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