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Abstract

We consider a Poisson autoregressive process whose parameters depend on the past
of the trajectory. We allow these parameters to take negative values, modelling inhi-
bition. More precisely, the model is the stochastic process (Xn)n≥0 with parameters
a1, . . . , ap ∈R, p ∈N, and λ ≥ 0, such that, for all n ≥ p, conditioned on X0, . . . , Xn−1,
Xn is Poisson distributed with parameter (a1Xn−1 + · · · + apXn−p + λ)+. This process
can be regarded as a discrete-time Hawkes process with inhibition and a memory of
length p. In this paper we initiate the study of necessary and sufficient conditions of
stability for these processes, which seems to be a hard problem in general. We consider
specifically the case p = 2, for which we are able to classify the asymptotic behavior of
the process for the whole range of parameters, except for boundary cases. In particu-
lar, we show that the process remains stochastically bounded whenever the solution to
the linear recurrence equation xn = a1xn−1 + a2xn−2 + λ remains bounded, but the con-
verse is not true. Furthermore, the criterion for stochastic boundedness is not symmetric
in a1 and a2, in contrast to the case of non-negative parameters, illustrating the complex
effects of inhibition.
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1. Introduction

The motivation of this paper is to pave the way for obtaining sufficient and necessary condi-
tions for the stability of non-linear Hawkes processes with inhibition. Hawkes processes are a
class of point processes used to model events that have mutual influence over time. They were
initially introduced by Hawkes in 1971 [10, 11] and are now used in a variety of fields such as
finance, biology, and neuroscience.
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1464 M. COSTA ET AL.

More precisely, a Hawkes process (Nh
t )t∈R = (Nh([0, t]))t∈R is defined by its initial condi-

tion on (−∞, 0] and its stochastic conditional intensity denoted by �, characterized by

�(t) = φ

(
λ +

∫ t

−∞
h(t − s) Nh(ds)

)
,

where λ > 0, h : R+ →R, and φ : R→R+ are measurable, deterministic functions (see [4] for
further details). The function h is called the reproduction function, and contains information
on the behaviour of the process throughout time. In the case where φ is non-decreasing, the
sign of the function h encodes for the type of time dependence: when h is non-negative, the
process is said to be self-exciting; when h is signed, negative values of h can then be seen as
self-inhibition [2, 3]. The case where h ≥ 0 and φ = id is called the linear case. Considering
signed functions h requires adding non-linearity by the mean of a function φ which ensures
that the intensity remains positive. In this paper, we focus on the particular case where
φ = (·)+ is the rectified linear unit (ReLU) function defined on R by (x)+ = max (0, x).

Several authors have established sufficient conditions on h to ensure the existence of a stable
version of this process. For signed h, [1] proved that a stable version of the process exists if
‖h‖1 < 1, while [3] proved that it is sufficient to have ‖h+‖1 < 1, where h+(x) = max (h(x), 0)
using a coupling argument. Unfortunately, this sufficient criterion does not take into account
the effect of inhibition, captured by the negative part of h. Going further is difficult because
non-linearity breaks the direct link between the function h and the probabilistic structure of the
Hawkes process. Recent results have been obtained in [14] for a two-dimensional non-linear
Hawkes process with weighted exponential kernel, modeling the case of two populations of
interacting neurons including both inhibition and excitation, and providing a criterion on the
weight function matrix for stability exploiting the Markovian structure of the Hawkes process
in that case. It is noteworthy that the stability condition [14, Assumption 1.2] is similar to the
case R2 of this paper, by reinterpreting the meaning of our parameters to correspond to those
of the model described in [14]. Our work focuses on a simpler process due to its discrete-time
nature, yet the significance of our study lies in providing an almost complete classification of
its asymptotic behaviour without requiring assumptions on the parameter values of the model.

In order to get an intuition on the results that we might obtain on Hawkes processes, we
choose to consider a simplified, discrete analogue of those processes. Namely, we study an
autoregressive process (X̃n)n≥1 with initial condition (X̃0, . . . , X̃−p+1) where p ∈ {1, 2, . . . },
and such that, for all n ≥ 1,

X̃n ∼P(φ(a1X̃n−1 + · · · + apX̃n−p + λ)),

where P(ρ) denotes the Poisson distribution with parameter ρ, and a1, . . . , ap are real
numbers.

In the linear case (a1, . . . , ap non-negative, and φ(x) = x) these integer-valued processes
are called INGARCH processes, and have already been studied in [6, 7], where a necessary
condition for the existence and stability of this class of processes has been derived and can be
written as

∑p
i=1 ai < 1. Furthermore, the link between Hawkes processes and autoregressive

Poisson processes has already been made for the linear case: the discretized autoregressive
process (with p = +∞) has been proved to converge weakly to the associated Hawkes process
[12]. Although this convergence has only been demonstrated in the linear case, i.e. with pos-
itive ai, it seemed valuable to us to understand the modifications induced by the presence of
inhibition on the asymptotic behavior of these processes. An analogous discrete process has
been proposed in [15] using an autoregressive structure based on Bernoulli random variables.
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In order to explore the effect of inhibition, we consider signed values for the parameters
a1, . . . , ap. In this article, we focus on the specific case of p = 2, so that our model of interest
can be written as

for all n ≥ 2, X̃n ∼P((aX̃n−1 + bX̃n−2 + λ)+), (1)

with a, b ∈R and X̃0, X̃1 ∈N. (In this paper we will use the convention 0 ∈N.)
The most important result here is the classification of the process defined in (1). Note that

complete characterization of the behaviour of this simple process is difficult due to the vari-
ety of behaviours observed. We prove that the introduction of non-linearity through the ReLU
function makes the process more stable relative to its linear counterpart, in the sense that the
parameter space (a, b) ∈R

2 for which the linear process yn+1 = ayn + byn−1 + λ admits a sta-
tionary version is strictly a subset of the parameter space for which the non-linear process
admits a stationary version (see Appendix A). Our results also illustrate the complex role of
inhibition, and in particular the asymmetric role of a and b associated with the range at which
inhibition occurs. Our work suggests the existence of complex algebraic and geometric struc-
tures that are likely to play an important role in the more general case of a memory of order p.
In order to obtain our results we use a wide range of probabilistic tools, corresponding to the
variety of the behaviours of the trajectories of the process, depending on the parameters of the
model.

2. Notation, definitions, and results

2.1. Definition and main result

Let a, b ∈R and λ > 0. We consider a discrete-time process (X̃n)n≥1 with initial condition
(X̃0, X̃−1) such that the following holds for all n ≥ 1:

conditioned on X̃−1, . . . , X̃n−1: X̃n ∼P((aX̃n−1 + bX̃n−2 + λ)+),

where (·)+ is the ReLU function defined on R by (x)+ := max (0, x).
As we said previously, some papers have already dealt with the linear version of this process:

if a and b are non-negative, the parameter of the Poisson random variable in (1) is also non-
negative, and the ReLU function vanishes. In this case, [6, Proposition 1] states that the process
is a second-order stationary process if a + b < 1. This weak stationarity ensures that the mean,
variance, and autocovariance are constant with time.

Let us define the function

bc(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 a ≤ 0,

1 − a a ∈ (0, 2),

−a2

4
a ≥ 2,

and define the following sets (see Figure 1):

R= {(a, b) ∈R
2 : b < bc(a)}, T = {(a, b) ∈R

2 : b > bc(a)}. (2)

Our main result is the following.

Theorem 1. If (a, b) ∈R, then the sequence (X̃n)n≥0 converges in law as n → ∞.

If (a, b) ∈ T , then the sequence (X̃n)n≥0 satisfies, almost surely, X̃n + X̃n+1 −→
n→∞ +∞.
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FIGURE 1. The partition of the parameter space described in Theorem 2. The green region corresponds
to R, while the red region corresponds to T . The smaller figures are typical trajectories of the Markov
chain (Xn)n≥0 for each region of the parameter space. In all the simulations, we chose λ = 1. The region
delineated by the dashed triangular line corresponds to the region of parameter space for which the
linear recurrence equation yn = ayn−1 + byn−2 + λ is bounded for all n ∈N, for any given y0, y1 ∈R.

See Appendix A for more details.

This result derives from studying the natural Markov chain associated with X̃n that is
defined by

Xn := (X̃n, X̃n−1), n ≥ 0. (3)

Before giving more details about the behaviour of (Xn)n≥0, let us comment on Theorem 1. In
particular, we stress that the condition for convergence in law is not symmetrical in a and b.
More precisely, for any a ∈R, the sequence (X̃n) can be tight provided that b is chosen small
enough, but the converse is not true as soon as b > 1. This induces inhibition having a stronger
regulating effect when it occurs after an excitation rather than before.

The question of the critical behaviour of the process on the boundary {b = bc(a)} remains
open and presents a difficult question for further work.

2.2. The associated Markov chain

As mentioned, the main part of this article is devoted to studying a Markov chain (Xn) which
encodes the time dependency of (X̃n). We rely on the recent treatment in [5] for results about
Markov chains. In particular, we use their notion of irreducibility, which is weaker than the
usual notion of irreducibility typically found in textbooks on Markov chains (on a discrete
state space). Thus, a Markov chain is called irreducible if there exists an accessible state, i.e. a
state that can be reached with positive probability from any other state. Following [5], we refer
to the usual notion of irreducibility (i.e. every state is accessible) as strong irreducibility.
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The transition matrix of the Markov chain (Xn)n≥0 defined in (3) is thus given for (i, j, k, l) ∈
N

4 by

P((i, j), (k, �)) = δi�
e−sij sk

ij

k! ,

where sij := (ai + bj + λ)+ and

δij :=
⎧⎨⎩1 if i = j,

0 otherwise.

In other words, starting from a state (i, j), the next step of the Markov chain will be (k, i) where
k ∈N is the realization of a Poisson random variable with parameter sij. In particular, if sij = 0,
then the next step of the Markov chain is (0,i).

Since the probability that a Poisson random variable is zero is strictly positive, it is possible
to reach the state (0,0) with positive probability from any state in two steps. In particular, the
state (0,0) is accessible and the Markov chain is irreducible. Furthermore, the Markov chain is
aperiodic [5, Section 7.4], since P((0, 0), (0, 0)) = e−λ > 0. Note that strong irreducibility may
not hold (see Proposition 2).

Recall the definition of the sets R and T in (2).

Theorem 2. Let (a, b) ∈R. Then the Markov chain (Xn)n≥0 is geometrically ergodic, i.e. it
admits an invariant probability measure π and there exists β > 1 such that, for every initial
state, βndTV( Law (Xn), π ) → 0, as n → ∞, where dTV denotes total variation distance.

Let (a, b) ∈ T . Then the Markov chain is transient, i.e. every state is visited a finite number
of times almost surely, for every initial state.

Theorem 1 is a simple consequence of this result. Indeed, in the case of (a, b) ∈R, the
convergence in law of X̃n simply derives from the convergence in law of Xn since X̃n is the first
coordinate of Xn. In the transient case, (a, b) ∈ T , the result in Theorem 1 simply derives from
the fact that ||Xn||1 →n→∞ ∞ almost surely.

The rest of the article is devoted to the proof of Theorem 2. We first focus on the recurrent
case in Section 3, then on the transient case in Section 4. Throughout, we provide typical
trajectories of the cases considered. For the sake of clarity we have plotted the realizations of
(Xn)n=0,...,N by connecting its successive realizations. Unless otherwise stated, for coherence
purposes we always set X0 = (0, 0) and λ = 1 for our plots.

3. Proof of Theorem 2: Recurrence

In this section we prove the recurrence part of Theorem 2. The proof goes by exhibiting three
functions satisfying Foster–Lyapounov drift conditions for different ranges of the parameters
(a, b) covering the whole recurrent regime R.

3.1. Foster–Lyapounov drift criteria

Drift criteria are powerful tools that were introduced in [8], and deeply studied and popular-
ized in [13], among others. These drift criteria allow us to prove convergence to the invariant
measure of Markov chains and yield explicit rates of convergence. Here we use the treat-
ment from [5], which is influenced by [13], but is more suitable for Markov chains that are
irreducible but not strongly irreducible.

A set of states C ⊂N
2 is called petite [5, Definition 9.4.1] if there exists a state x0 ∈N

2 and
a probability distribution (pn)n∈N on N such that infx∈C

∑
n∈N pnPn(x, x0) > 0, where we recall
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that Pn(x, x0) is the n-step transition probability from x to x0. Since the Markov chain (Xn)n≥0
is irreducible, any finite set is petite (take x0 to be the accessible state) and any finite union of
petite sets is petite [5, Proposition 9.4.5].

Let V : N2 → [1, ∞) be a function, ε ∈ (0, 1], K < ∞, and C ⊂N
2 a set of states. We say

that the drift condition D(V, ε, K, C) is satisfied if

�V(x) := Ex[V(X1) − V(X0)] ≤ −εV(x) + K1C,

where Ex[ · ] =E[ · | X0 = x]. It is easy to see that this condition implies the condition
Dg(V, λ, b, C) from [5, Definition 14.1.5], with λ = 1 − ε and b = K.

Proposition 1. Assume that the drift condition D(V, ε, K, C) is verified for some V, ε, K, and
C as above, and assume that C is petite. Then there exists β > 1 and a probability measure π

on N
2 such that, for every initial state x ∈N

2,

βn ×
∑
y∈N2

V(y)|Px(Xn = y) − π (y)| → 0, n → ∞.

In particular, for every initial state x ∈N
2, βndTV( Law (Xn), π ) → 0 as n → ∞, and π is an

invariant probability measure for the Markov chain (Xn)n≥0.

Proof. As mentioned in Section 2.2, the Markov chain is irreducible and aperiodic. The
first statement then follows by combining parts (ii) and (a) of [5, Theorem 15.1.3] with the
remark preceding [5, Corollary 14.1.6]. The second statement follows immediately, noting that
V ≥ 1. �

We consider separately the following ranges of the parameters:

R1 = {(a, b) ∈R
2 : a, b < 1 and a + b < 1};

R2 = {a > 0 and a2 + 4b < 0};
R3 = {1 ≤ a < 2 and −1 < b < 1 − a}.

We then have R=R1 ∪R2 ∪R3; see Figure 2.

3.2. Case R1

This case is the natural extension of the results that have been already proved for the linear
process (see [6, Proposition 1]).

Let V : N2 →R+ be the function defined by V(i, j) := αi + βj + 1, where α, β > 0 are
parameters to be chosen later. Then V(i, j) ≥ 1 for all (i, j) ∈N

2. We look for ε > 0 such that
�V(x) + εV(x) ≤ 0 except for a finite number of x ∈N

2.
Let ε > 0 to be properly chosen later. Then,

�V(i, j) + εV(i, j) =
∑
k∈N

e−sij sk
ij

k! (αk + βi + 1) − (αi + βj + 1) + ε(αi + βj + 1)

= αsij + i(β − α + αε) + j(βε − β) + ε.

Note that sij = 0 or sij = ai + bj + λ > 0. In both cases, �V + εV is a linear function of (i, j) ∈
N

2. We thus choose α, β such that the coefficients of �V + εV are negative, so there will be
only a finite number of (i, j) that satisfy �V(i, j) + εV(i, j) ≥ 0.
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FIGURE 2. Illustration of the three zones of parameters on which the proof of ergodicity will be carried.

Let us first consider couples (i, j) such that sij = 0. According to the above, it is sufficient to
have {

β − α + αε < 0

βε − β < 0
⇐⇒

{
β < α(1 − ε)

ε < 1

In what follows, we impose ε < 1.
If sij = ai + bj + λ > 0, then

�V(i, j) + εV(i, j) = i(αa − α + β + αε) + j(αb + βε − β) + λα + ε.

For the same reasons as before, it is sufficient to have α, β > 0 such that{
αa − α + β + αε < 0

αb + βε − β < 0
⇐⇒

⎧⎨⎩
β < α(1 − a − ε)

β >
αb

1 − ε
(since ε < 1)

Let α := 1. With the above statements we thus want to choose β, ε > 0 such that⎧⎨⎩
b

1 − ε
< β < 1 − a − ε,

β < 1 − ε;
i.e.

b

1 − ε
< β < min{1 − a − ε, 1 − ε}.

Recall that a + b < 1, so it is possible to find ε0 ∈ (0, 1) small enough that, for all ε̃ ≤ ε0,

b

1 − ε̃
< 1 − a − ε̃.

If a ≥ 0, then min{1 − a − ε, 1 − ε} = 1 − a − ε and, since a < 1, we can choose ε ≤ ε0
small enough that b/(1 − ε) < β < min{1 − a − ε, 1 − ε} on one hand, and 1 − a − ε > 0 on
the other hand. It is thus possible to choose β > 0 such that

b

1 − ε
< β < min{1 − a − ε, 1 − ε}.
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FIGURE 3. An illustration of the case of R2. Here, the parameters are a = 3, b = −2.5, and N = 1000.
The red region indicates the set A of couples (i, j) such that sij = s0i = 0.

If a < 0, then min{1 − a − ε, 1 − ε} = 1 − ε. Since b < 1, it is possible to set ε ≤ ε0 small
enough that b < (1 − ε)2. Hence, we have b/(1 − ε) < 1 − ε, so that it is possible to choose
β > 0 that satisfies our constraints.

Note that �V(0, 0) = λ > 0. Hence, with α, β, ε > 0 chosen as above, �V(i, j) ≤ −εV(i, j)
except for a finite number of states (i, j) ∈N

2. This proves that a drift condition D(V, ε, C)
holds for a finite set C, which yields the result.

3.3. Case R2

In this section, we assume that a > 0 and a2 + 4b < 0. The Lyapounov function we will
consider is the following:

for all (i, j) ∈N
2, V(i, j) = i

j + 1
+ 1.

Before getting into the details, a remark about this function. While we initially discovered
it by trial and error, it has an interesting geometric interpretation. As shown in Figure 3, for
the case of R2 the macroscopic trajectories of the Markov chain tend to turn counterclockwise
until they hit the j-axis and eventually get pulled back to (0, 0). This provides a heuristic
understanding of why V should be a Lyapounov function. Indeed, it is an increasing function
of the angle between the vector (i, j) and the j-axis, and therefore V(Xn) should have a tendency
to decrease whenever Xn is far away from the j-axis.

We now turn to the details. We will need to distinguish the region A of the states (i, j) where
sij = 0 (shown in red in Figure 3):

A := {(i, j) ∈N
2 : sij = 0} = {(i, j) ∈N

2 : ai + bj + λ ≤ 0}.
We have the following lemma.
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Lemma 1. The set A is petite.

Proof. By the definition of A, we have sij = 0 for all (i, j) ∈ A, and hence P((i, j), (0, i)) = 1.
Furthermore, for every i ∈N, since b < −a2/4 < 0,

P((0, i), (0, 0)) = e−s0i = e−(λ+bi)+ ≥ e−λ.

It follows that inf(i,j)∈A P2((i, j), (0, 0)) ≥ e−λ > 0, which shows that A is petite. �

Lemma 2. There exists a finite set C ⊂N
2 and ε ∈ (0, 1) such that the drift condition

D(V, ε, K, A ∪ C) is satisfied for some K < ∞.

Proof. Since a2/4 + b < 0, there exists ε ∈ (0, 1) small enough that

(a + ε)2

4
+ b(1 − ε) < 0.

Consider (i, j) ∈ A, and compute

�V(i, j) + εV(i, j) = (ε − 1)i2 + bj2 + (a + ε)ij + L1(i, j)

(i + 1)(j + 1)
,

where L1(i, j) is a polynomial of degree 1. In the numerator we recognize a quadratic form,
and as (a + ε)2/4 + b(1 − ε) < 0, this quadratic form is negative definite. Thus, there are only
a finite number of (i, j) ∈ A such that �V(i, j) + εV(i, j) > 0. We define C ⊂N

2 \ A to be the
finite set of such (i, j).

Note that, for every (i, j) ∈ A, �V(i, j) + εV(i, j) ≤E(i,j)[V(X1)] = V(0, i) = 1. Hence, set-
ting K = 1 ∨ maxx∈C Ex[V(X1)] ∈ [1, ∞), the finiteness of K following from the fact that C is
finite, the drift condition D(V, ε, K, A ∪ C) is satisfied.

Figure 4 illustrates the cutting of the state space that we just described. �

In the case of R2, by Lemma 1 and Lemma 2 we can now apply Proposition 1. Note that
A ∪ C is petite because A is petite (Lemma 1), C is finite, hence petite, and the union of two
petite sets is again petite. This yields the proof of case R2 of Theorem 2.

3.4. Case R3

To finish the proof of Theorem 2, it suffices to consider parameters a and b such that
1 ≤ a < 2 and −a2/4 < b < 1 − a. However, for the sake of conciseness, we will prove the
ergodicity of the Markov chain on a larger space, namely R3. As a consequence, this case will
cover some parameter sets which have already been considered in case R2. Note that this does
not represent any issue in our proof strategy. The choice of R3 will become clearer later on.

We thus assume here that 1 ≤ a < 2 and −1 < b < 1 − a. Let us denote by V the function,
for all (i, j) ∈N

2,

V(i, j) := 1 +
(

i2 − aij + b2 + 1

2
j2
)

1Ac (i, j).

First, notice that the quadratic form in V is positive definite. Indeed, if 1 ≤ a < 2, then
b2 > (1 − a)2 and

4 × b2 + 1

2
− a2 > 2(1 − a)2 + 2 − a2 = (a − 2)2 > 0.

Thus, the function V satisfies V ≥ 1.
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FIGURE 4. Graphical representation of the sets A and C described in the proof of Lemma 2.

Compute, for (i, j) ∈ A and ε ∈ (0, 1) to be properly chosen later,

�V(i, j) + εV(i, j) =
∞∑

k=0

e−sij sk
ij

k! V(k, i) + (ε − 1)V(i, j)

≤
∞∑

k=0

e−sij sk
ij

k!
(

1 +
(

k2 − aki + b2 + 1

2
i2
))

+ (ε − 1)V(i, j)

= sij(sij + 1) − aisij + b2 + 1

2
i2 + (ε − 1)V(i, j) + 1

=
(

b2 − 1

2
+ ε

)
i2 + a(b + 1 − ε)ij +

(
b2(1 + ε) + ε − 1

2

)
j2 + L2(i, j),

where L2(i, j) is a polynomial of degree 1.
We want to choose ε ∈ (0, 1) such that the above quadratic form is negative definite, i.e.

such that

b2 − 1

2
+ ε < 0,

(
b2 − 1

2
+ ε

)(
b2(1 + ε) + ε − 1

2

)
− a2

4
(b + 1 − ε)2 > 0. (4)

On the one hand, we have b2 − 1 < 0. On the other hand, the second inequality in (4) can be
written as (b2 − 1)2 − a2(b + 1)2 + kε,a,b > 0, where kε,a,b ∈R satisfies kε,a,b −→

ε→0
0.

In addition, note that (a, b) ∈R3 =⇒ (b2 − 1)2 − a2(b + 1)2 > 0. We can therefore deduce
that there exists ε ∈ (0, 1) small enough that both conditions of (4) are satisfied. Thus, there are
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only a finite number of (i, j) ∈ A such that �V(i, j) + εV(i, j) > 0. We define C ⊂N
2 \ A to be

the finite set of such (i, j).
Finally, similarly to Lemma 1, the set A is petite, because b < 1 − a ≤ 0. Furthermore, sim-

ilarly to the case R2, for all (i, j) ∈ A, E(i,j)(V(X1)) = V(0, i) is bounded, since (0, i) ∈ A except
for a finite number of i. Since the set C is finite, A ∪ C is a petite set and, up to an adequate
choice of K, the drift condition D(V, ε, K, A ∪ C) is satisfied.

4. Proof of Theorem 2: Transience

In this section, we show that the Markov chain (Xn)n≥0 is transient in the regime T of the
parameters. We distinguish between the following two cases:

Case T1: a < 0, b > 1 (Section 4.1).

Case T2: 0 ≤ a < 2 and a + b > 1 or a ≥ 2 and a2 + 4b > 0 (Section 4.2).

In both cases, we apply the following lemma.

Lemma 3. Let S1, S2, . . . be a sequence of subsets of N2, and 0 < m1 < m2 < . . . an increas-
ing sequence of integers. Suppose that

(i) On the event
⋂

n≥1{Xmn ∈ Sn}, Xn = (0, 0) for all n ≥ 1.

(ii) P(0,0)(Xm1 ∈ S1) > 0 and, for all n ≥ 1 and every x ∈ Sn, Px(Xmn+1−mn ∈ Sn+1) > 0.

(iii) There exist (pn)n≥1 taking values in [0,1] with
∑

n≥1 (1 − pn) < ∞ such that, for all
n ≥ 1 and all x ∈ Sn, Px(Xmn+1−mn ∈ Sn+1) ≥ pn.

Then the Markov chain (Xn)n≥0 is transient.

Proof. Since (0,0) is an accessible state, it is enough to show that

P(0,0)(Xn = (0, 0) for all n ≥ 1) > 0.

Using assumption (i), it is sufficient to prove that

P(0,0)(Xmn ∈ Sn for all n ≥ 1) > 0. (5)

By assumption (iii), there exists n0 ≥ 1 such that
∏

n≥n0
pn > 0. It follows that, for every x ∈

Sn0 ,

Px(Xmn−mn0
∈ Sn for all n > n0) ≥

∏
n≥n0

pn > 0.

Furthermore, by assumption (ii), P(0,0)(for all n ≤ n0, Xmn ∈ Sn) > 0. Combining the last two
inequalities yields (5) and completes the proof. �

4.1. Case T1

In this region of parameters, the Markov chain eventually reaches the i and j axes. Indeed,
since a < 0, if (Xn) hits a state (i, 0) with i ≥ −λ/a, as si0 = (ai + λ)+ = 0, the next step of the
Markov chain will be (0, i). Afterwards, the Markov chain will hit the state (P(bi + λ), 0), with
bi + λ > i. Consequently, to follow the example, if we focus on the i axis, starting from (k, 0)
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FIGURE 5. Log-log plot of a typical trajectory of (Xn), to make the erratic behaviour of the first points of
the Markov chain more visible. Here, the parameters are a = −0.3, b = 1.2, and N = 100.

with k big enough, the Markov chain will return in two steps to a state (k’, 0) belonging to the
i-axis that satisfies k′ > k with high probability. This behaviour is illustrated in Figure 5.

In order to formalize these observations, it is very natural to consider the Markov chain
induced by the transition matrix P2, namely (X2n+1)n≥0. For i ≥ −λ/a, si0 = 0 and thus

P

(
X2n+1 = (k, 0) | X2n−1 = (i, 0), i ≥ −λ

a

)
= e−s0i sk

0i

k! = e−(bi+λ)(bi + λ)k

k! . (6)

Note that if a ≤ −λ, this result holds for i ∈N.
Equation (6) means that if X̃2n−1 ≥ −λ/a and X̃2n−2 = 0, then X̃2n = 0, and X̃2n+1 is a

Poisson random variable with parameter bX̃2n−1 + λ.
Let us now prove our statement.

Proof of the transience of (Xn) when a < 0 and b > 1. Fix r ∈ (1, b). We wish to apply
Lemma 3 with mn = 2n − 1, n ≥ 1, and Sn = {(i, 0) ∈N : i ≥ rn}. We verify that assump-
tions (i)–(iii) from Lemma 3 hold. For the first assumption, note that if X2n−1 = (i, 0) ∈ Sn,
then X2n = (j, i) for some j, hence X2n−1 = (0, 0) and X2n = (0, 0) since i ≥ 1. In particular,
assumption (i) holds.

We now verify that the second assumption holds. For states x, y ∈N
2, write x →1 y if

Px(X1 = y) > 0. Furthermore, for S ⊂N
2, write x →1 S if x →1 y for some y ∈ S. Note that

(0, 0) →1 (i, 0) for every i ∈N, so that (0, 0) →1 S1. Now, for every i ∈N, we have (i, 0) →1
(0, i), and then, because b > 0, (0, i) →1 (j, 0) for every j ∈N. In particular, from every x ∈ Sn,
we can indeed reach Sn+1 in two steps. Hence, the second assumption is verified as well.

We now prove the third assumption. We claim that there exists n0 ∈N such that

for all n ≥ n0 and x ∈ Sn: Px(X2 ∈ Sn+1) ≥ 1 − b

(b − r)2rn
. (7)
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To prove (7), first note that, according to the earlier remark on (6), if n0 is chosen such that
rn0 ≥ −λ/a then, starting from a state (i,0) with i ≥ rn0 , we have X̃1 = 0 almost surely and
X̃2 ∼P(bi + λ). Therefore, if n ≥ n0 and i ≥ rn ≥ rn0 ,

1 − P(i,0)(X̃2 ≥ rn+1, X̃1 = 0) = P(i,0)(X̃2 < rn+1)

≤ P(P(bi + λ) < rn+1)

≤ P(P(brn) < rn+1)

= P(P(brn) − brn < rn(r − b))

≤ P(|P(brn) − brn| > rn(b − r))

≤ b

(b − r)2rn
,

by the Bienaymé–Chebychev inequality. This proves (7). Now, (7) implies that, for all x ∈ Sn,

Px(X2 ∈ Sn+1) ≥ pn :=
(

1 − b

(b − r)2rn

)
+
,

and ∑
n≥1

(1 − pn) ≤
∑
n≥1

b

(b − r)2rn
< ∞.

This proves that the third assumption of Lemma 3 holds. The lemma then shows that the
Markov chain is transient. �

4.2. Case T2

For this case, we will take benefit from the comparison between the stochastic process
(X̃n) and its linear deterministic version. Namely, let us consider the linear recurrence relation
defined by y0, y1 ∈N and

for all n ≥ 0, yn+2 = ayn+1 + byn + λ. (8)

The solutions to this equation are determined by the eigenvalues and eigenvectors of the matrix(
0 b
1 a

)
, which is the companion matrix of the polynomial X2 − aX − b (see Appendix A for

more details). An easy calculation shows that in case T2, we have a2 + 4b > 0, and hence the
eigenvalues are simple and real-valued. We denote the largest eigenvalue by

θ := a + √
a2 + 4b

2
.

In case T2, as can be easily verified,

θ > 1, (9)

θ2 + b > 0. (10)
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In fact, we can check that case T2 exactly corresponds to the region in the space of parameters
a, b where θ > 1, meaning that the sequence (yn+1, yn)n≥0, with (yn)n≥0 the solution to (8),
grows exponentially inside the positive quadrant, along the direction of the eigenvector (θ, 1).

In what follows, we fix 1 < r < θ such that

r2 − ar − b < 0, (11)

where we use the fact that θ > 1 is the largest root of the polynomial X2 − aX − b.
We split our study into two different subcases depending on the sign of b.

Subcase T2a: b ≥ 0 In this case, we have aX̃n + bX̃n−1 + λ > 0 for all n ∈N, and so X̃n+1 ∼
P(aX̃n + bX̃n−1 + λ), i.e. no truncation is necessary. Classically, in this case X̃n grows
exponentially in n almost surely, but we provide a simple proof for completeness.

We therefore apply Lemma 3 with the sequence mn = n and

Sn = {(i, j) ∈N
2, i ≥ rn, j ≥ rn−1}.

With this notations, assumption (i) is automatically satisfied. Assumption (ii) is also satisfied,
because (i, j) →1 (k, i) for every i, j, k ∈N, since ai + bj + λ > 0 for every i, j ∈N, as explained
above.

In order to prove assumption (iii), let us consider n ∈N and let (i, j) ∈ Sn. By definition,
starting from (i, j), X̃1 ∼P(ai + bj + λ). Thus,

P(i,j)(X̃1 < rn+1) = P(P(ai + bj + λ) < rn+1)

≤ P(P(arn + brn−1) < rn+1)

= P(P(arn + brn−1) − (arn + brn−1) < rn−1(r2 − ar − b)).

Recall that r2 − ar − b < 0 by (11), which implies

P(i,j)(X̃1 < rn+1) ≤ P(|P(arn + brn−1) − (arn + brn−1)| > −rn−1(r2 − ar − b))

≤ (a + b)r2

rn(r2 − ar − b)2
,

where we again used the Bienaymé–Chebychev inequality. Thus,

P(i,j)(X1 ∈ Sn+1) ≥
(

1 − (a + b)r2

rn(r2 − ar − b)2

)
+

=: pn.

This allows us to conclude the proof with Lemma 3, as in the previous case.

Subcase T2b: b < 0 In this case, because of the negativity of b it is more difficult to find an
adequate lower bound of aX̃n + bX̃n−1. We thus prove a stronger result, which is illustrated in
Figure 6: asymptotically, the process (X̃n) grows exponentially and the ratio X̃n+1/X̃n is close
to θ .
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FIGURE 6. Log-log plot of a typical trajectory of (Xn), with a = 1.5, b = −0.3, and N = 100.

From (11) and (10), we can choose ε > 0 small enough that

r2 − a(r − ε) − b < 0, (12)

θ2 − θε + b > 0. (13)

We use Lemma 3 using mn = n and, for n ∈N
∗,

Sn =
{

(i, j) ∈N
2, i ≥ rn, j ≥ rn−1,

∣∣∣∣ ij − θ

∣∣∣∣≤ ε

}
.

Note that assumption (i) from Lemma 3 is again automatically verified. Assumption (ii) is also
verified since, for (i, j) ∈ Sn,

ai + bj + λ > (a(θ − ε) + b)j ≥ (a(r − ε) + b)j > 0 (14)

by (12), and so (i, j) →1 (k, i) for every k ∈N.
We now show that assumption (iii) from Lemma 3 is verified. Let n ∈N and (i, j) ∈ Sn. Then

P(i,j)(X1 /∈ Sn+1) ≤ P(i,j)(X̃1 < rn+1) + P(i,j)

(∣∣∣∣ X̃1

i
− θ

∣∣∣∣> ε

)
. (15)

We first bound the first term on the right-hand side of (15). By (14), we have

P(i,j)(X̃1 < rn+1) = P(P(ai + bj + λ) < rn+1)

≤ P(P([a(r − ε) + b]rn−1) < rn+1)

= P(P([a(r − ε) + b]rn−1)

− [a(r − ε) + b]rn−1 < rn−1[r2 − a(r − ε) − b]).
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Furthermore, using (12) and applying the Bienaymé–Chebychev inequality,

P(i,j)(X̃1 < rn+1) ≤ P
(|P([a(r − ε) + b]rn−1)

− [a(r − ε) + b]rn−1| > −rn−1[r2 − a(r − ε) − b]
)

≤ [a(r − ε) + b]rn−1

[rn−1[r2 − a(r − ε) − b]]2

= [a(r − ε) + b]r

rn[r2 − a(r − ε) − b]2
= C1

rn
, (16)

where C1 is a constant that does not depend on n.
We now bound the second term on the right-hand side of (15). Let us write∣∣∣∣ X̃1

i
− θ

∣∣∣∣= ∣∣∣∣ X̃1 −E(i,j)[X̃1]

i

∣∣∣∣+ ∣∣∣∣E(i,j)[X̃1]

i
− θ

∣∣∣∣.
First, notice that, for any (i, j) ∈ Sn,∣∣∣∣E(i,j)[X̃1]

i
− θ

∣∣∣∣= ∣∣∣∣ai + bj + λ

i
− θ

∣∣∣∣= ∣∣∣∣a + b
j

i
+ λ

i
− θ

∣∣∣∣
≤
∣∣∣∣a + b

θ
− θ

∣∣∣∣︸ ︷︷ ︸
=0

+|b|
∣∣∣∣ ji − 1

θ

∣∣∣∣+ λ

i

<
|b|

θ (θ − ε)
ε + λ

i
, (17)

where we used that if |x − θ | < ε and ε < θ , then∣∣∣∣1x − 1

θ

∣∣∣∣= |θ − x|
xθ

<
ε

θ (θ − ε)
.

To prove that

P(i,j)

(∣∣∣∣ X̃1

i
− θ

∣∣∣∣> ε

)
≤ C2

rn
,

where C2 is a constant that does not depend on n, we deduce from (17) that it is sufficient to
show that

P(i,j)

( |X̃1 −E(i,j)[X̃1]| + λ

i
> δε

)
≤ C2

rn
,

where, by (13),

δ := 1 − |b|
θ (θ − ε)

> 0.
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Furthermore, since b < 0 and (i, j) ∈ Sn, ai + bj + λ ≤ ai + λ ≤ (a + λ)i. We finally have, using
the Bienaymé–Chebychev inequality,

P(i,j)

( |X̃1 −E(i,j)[X̃1]| + λ

i
> δε

)
= P(i,j)

(|X̃1 −E(i,j)[X̃1]| > δεi − λ
)

≤ (a + λ)i

(δεi − λ)2

= a + λ

(δε
√

i − λ/
√

i)2

≤ a + λ

(δεrn/2 − λr−n/2)2
.

The last inequality holds for a sufficiently large n. Indeed, since i ≥ rn, we always have δε
√

i −
λ/

√
i > δεrn/2 − λr−n/2, and for n large enough we have δε

√
i − λ/

√
i > 0. This yields, for

some constant C2 < ∞,

P(i,j)

( |X̃1 −E(i,j)[X̃1]| + λ

i
>

(
1 − |b|

θ (θ − ε)

)
ε

)
≤ C2

rn
. (18)

Combining (16) and (18), we have

P(i,j)(X1 ∈ Sn+1) ≥
(

1 − C1 + C2

rn

)
+

=: pn,

which will finally lead us to the result, by using Lemma 3 as before.

5. Perspectives and open problems

5.1. Critical behavior

In the case of linear Hawkes processes, it is well known that, at criticality, the process
achieves fractal-like, i.e. heavy-tail, behaviour related to critical branching processes. It is
tempting to believe that this should remain true on the whole boundary between the phases
R and T , but the fractal exponents might differ.

For the sake of completeness, we offer a numerical study of the various critical cases of
the model considered, which indicates different behaviour depending on whether a < 2 or a >

2. We present realizations of the process (X̃n), as we believe it is simpler to visualize the
behavioural differences compared to showing realizations of the Markov chain in N

2. Given
the diversity of the process behaviours, we anticipate the need for various probabilistic tools
to describe the process evolution over long time spans. We consider the same setting as for
the previous figures: an initial condition X̃−1, X̃0 = 0 and λ = 1. The number N describes the
number of simulated steps.

In Figure 7, we observe linear growth of the discrete-time process X̃n, with oscillations to 0
when a < 0 and b = 1 (left panel) and without oscillations in the case a + b = 1. The situation
seems to be different for a ≥ 2 and b = −a2/4. When a > 2 we observe exponential growth
(Figure 8 (left)), similar to the transient regime, while the case a = 2 presents large excursions
away from 0, but deciphering transient or recurrent behaviour is difficult. These simulations
show that the study of these critical cases is an interesting research topic for the future.
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FIGURE 7. Trajectories of (X̃n)0≤n≤1000 for critical parameters (a, b) = (−1, 1) on the left and (a, b) =
(0.5, 0.5) on the right. We observe linear growth of the process as could be expected in critical cases.

FIGURE 8. Trajectories of (X̃n)0≤n≤1000 for critical parameters (a, b) = (4, −4) on the left and (a, b) =
(2, −1) on the right.

5.2. Generalization of the model

As explained at the beginning of the article, the results obtained here should be seen as a
starting point for the search for necessary and sufficient conditions for the stability of Hawkes
processes with inhibition, in discrete or continuous time.

We believe that obtaining a similar classification in the cases p > 2 or p = ∞ is a very
difficult problem. It should be closely related to the study of the asymptotic behaviour of
certain deterministic equations, such as the non-linear recurrence equation xn = (a1xn−1 +
· · · + apxn−p)+. It seems that the algebraic structures underlying these equations are intricate
and, to this date, unknown. Understanding these structures seems crucial for the study of the
asymptotic behaviour of the solutions to these equations.

Appendix A. Linear recurrence equations

Let α ∈R, p ∈N, and a1, . . . , ap ∈R. Consider the linear recurrence equation

xn = a1xn−1 + · · · + apxn−p + α, n ≥ 1,
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with given initial data x0, . . . , x−p+1 ∈R. Define the matrix

A =

⎛⎜⎜⎜⎜⎜⎝
a1 · · · ap−1 ap

1

. . .

1

⎞⎟⎟⎟⎟⎟⎠ ,

where vanishing entries are meant to be zero. Then, setting

x̄n =

⎛⎜⎜⎝
xn

...

xn−p+1

⎞⎟⎟⎠ , ᾱ =

⎛⎜⎜⎜⎜⎜⎝
α

0

...

0

⎞⎟⎟⎟⎟⎟⎠ ,

the sequence (x̄n)n≥1 solves the system of linear recurrences x̄n = Ax̄n−1 + ᾱ, n ≥ 1. Recall
that the spectral radius ρ(A) of the matrix A is defined by ρ(A) = max (|θ1|, . . . , |θp|),
where θ1, . . . , θp ∈C are the complex eigenvalues of A, counted with algebraic multiplic-
ity. Equivalently, θ1, . . . , θp are the roots, counted with multiplicity, of the characteristic
polynomial P(z) = det (zI − A) = zp − a1zp−1 − · · · − ap.

We recall the following classical fact.

Theorem 3. ([9, Chapter 9, Theorem 9.1]) The following are equivalent:

(i) x̄n converges as n → ∞ for every initial data point x0, . . . , x−p+1.

(ii) ρ(A) < 1.

In the case p = 2, setting a = a1 and b = a2, we have P(z) = z2 − az − b. Its roots are

θ± = a

2
±
√

a2

4
+ b.

In particular,

ρ(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|a|
2

+
√

a2

4
+ b if

a2

4
+ b ≥ 0,

√−b if
a2

4
+ b < 0.

A quick calculation shows that ρ(A) < 1 if and only if |a| + b < 1 and b > −1. This
corresponds to the triangular dashed region of parameters in Figure 1 of Section 2.

Appendix B. Criteria for strong irreducibility

The Markov chain considered in this article is irreducible in the (weak) sense of [5], but
not necessarily strongly irreducible, i.e. irreducible in the classical sense. In this section, we
study the decomposition of the state space into communicating classes. We recall the basic
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definitions. Let x, y ∈N
2. We say that x leads to y, or, in symbols, x → y, if there exists n ≥ 0

such that P(Xn = y | X0 = x) > 0. We say that x communicates with y if x → y and y → x. This
is an equivalence relation that partitions the state space N

2 into classes called communicating
classes.

Recall that a Markov chain is called strongly irreducible if all states are accessible or, equiv-
alently, if N2 is a communicating class. A communicating class C ⊂N

2 is called closed if x ∈ C
and y ∈ Cc do not exist such that x → y.

Proposition 2. The Markov chain (Xn) is strongly irreducible on N
2 if and only if a ≥ 0, or if

a > −λ and a + b ≥ 0.

The communicating class of (0,0) contains

S = {(0, 0)} ∪ {(0, k), k ∈N
∗} ∪ {(k, 0), k ∈N

∗}, (19)

and is actually equal to S if and only if a ≤ −λ.
We will use the following result.

Lemma 4. Let i, j, k, � ∈N. The transition matrix P of the Markov chain (Xk) satisfies

P2((i, j), (k, �)) = e−(sij+s�i)s�
ijs

k
�i

�! k! ,

and, for all n ≥ 3,

Pn((i, j), (k, �)) =
∑

m1,...,mn−2∈N

exp
{−∑n

q=1 sσ n
q+1σ

n
q+2

}∏n
q=1 s

σ n
q

σ n
q+1σ

n
q+2

m1! · · · mn−2! k! �! , (20)

with σ n := (σ n
1 , σ n

2 , . . . , σ n
n+2) = (k, �, mn−2, . . . , m1, i, j).

Proof of Proposition 2. As mentioned above, (i, j) → (0, i) → (0, 0) for any (i, j) ∈N
2 since

it only requires that two successive 0s are drawn from the Poisson random variable. Therefore,
to prove strong irreducibility, it is sufficient to prove that (0, 0)� (i, j) for all (i, j) ∈N

2. We
consider different cases, depending on the values of the parameters a and b.

a ≥ 0: Since λ > 0 and s00 > 0, (j, 0) is accessible from (0, 0) for all j ∈N. Moreover, when
a ≥ 0, sj0 = (aj + λ)+ > 0 and then (j, 0) → (i, j), yielding the result.

−λ < a < 0 and a + b ≥ 0: Let k ∈N. Since a + b ≥ 0 and a + λ > 0,

sk+1,k = (a(k + 1) + bk + λ)+ = ((a + b)k + a + λ)+ > 0.

Let (i, j) ∈N
2. Since sk+1,k > 0 for all k, we deduce that any (�, k + 1) is accessible from

(k + 1, k). Thus, in order to reach (i, j) from (0,0), we move from small steps to (j, j − 1), and
then reach (i, j):

(0, 0) → (1, 0) → (2, 1) → · · · → (j, j − 1) → (i, j),

which concludes the proof of this case.
a ≤ −λ: We prove that the communicating class of (0,0) is given by (19). Let k ∈N

∗. Then,
as previously, we have (0, 0) → (k, 0) since s00 > 0; however, since a ≤ −λ, sk0 = (ak + λ)+ =
0, and the next step of the Markov chain will be (0, k). Depending on the value of the parameter
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b, the next step of the Markov chain will either be (0, 0) if s0k = 0, or (k’, 0) with k′ ≥ 0 if
s0k > 0, and so on. This proves that the class cl(0,0) is closed and given by (19).

−λ < a < 0 and a + b < 0: In this case we can only prove that the Markov chain is not
strongly irreducible on N

2, but we do not identify the communicating class of (0,0). There are
three subcases to consider.

First, b < 0. Since a < 0, we can choose k� such that ak� + λ ≤ 0. We show that it is not
possible to reach the state (1, k�). Assuming the opposite leads to the existence of � ∈N such
that (k�, �) → (1, k�), which implies that sk�,� > 0. If b < 0, we deduce that, necessarily,

ak� + b� + λ > 0 =⇒ � <
−ak� − λ

b
≤ 0,

so � < 0, which is contradictory. We then deduce that the Markov chain is reducible.
Second, if b = 0, sk�,� > 0 would imply that ak� + λ > 0, which contradicts the definition

of k�.
Third, b > 0. Since a + b < 0, it is possible to choose k� ∈N large enough that (a + b)k� +

λ ≤ 0. In particular, 0 ≥ ak� + bk� + λ ≥ ak� + λ, so

−ak� − λ

b
≥ k� ≥ −λ

a
.

Notice that k� ≥ 2 since k� ≥ −λ/a > 1.
We show that it is not possible to reach (1, k�) starting from (0, 0). Assuming the opposite

leads us to the existence of n ∈N such that Pn((0, 0), (1, k�)) > 0. Using (20) in Lemma 4
implies that m1, . . . , mn−2 ∈N exist such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sk�,mn−2 > 0,

sk�
mn−2mn−3

> 0,

...

sm3
m2m1 > 0,

sm2
m10 > 0.

We thus have

ak� + bmn−2 + λ > 0 =⇒ mn−2 >
−ak� − λ

b
≥ k�;

then, since k� > 0, we necessarily have smn−2mn−3 > 0. This yields

amn−2 + bmn−3 + λ > 0 =⇒ mn−3 >
−amn−2 − λ

b
≥ −ak� − λ

b
≥ k�.

By immediate induction, we thus have, for all i ∈ {1, . . . , n − 2}, mi ≥ k� ≥ −λ/a. Finally,
sm1,0 > 0 implies am1 + λ > 0, which is contradictory. We conclude that there is no finite path
between (0, 0) and (1, k�), so the Markov chain (Xk)k≥0 is reducible on N

2. �

Acknowledgements

We thank two anonymous reviewers for their valuable suggestions, which helped to improve
the presentation of the paper.

https://doi.org/10.1017/jpr.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.28


1484 M. COSTA ET AL.

Funding information

M.C. was supported by the Chair ‘Modélisation Mathématique et Biodiversité’ of Veolia
Environnement-École Polytechnique-Muséum national d’Histoire naturelle-Fondation X and
by ANR project HAPPY (ANR-23-CE40-0007) and DEEV (ANR-20-CE40-0011-01). P.M.
acknowledges partial support from ANR grant ANR-20-CE92-0010-01 and from Institut
Universitaire de France.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] BREMAUD, P. AND MASSOULIE, L. (1996). Stability of nonlinear Hawkes processes. Ann. Prob. 24,
1563–1588.

[2] CATTIAUX, P., COLOMBANI, L. AND COSTA, M. (2022). Limit theorems for Hawkes processes including
inhibition. Stoch. Process. Appl. 149, 404–426.

[3] COSTA, M., GRAHAM, C., MARSALLE, L. AND TRAN, V.-C. (2020). Renewal in Hawkes processes with
self-excitation and inhibition. Adv. Appl. Prob. 52, 879–915.

[4] DALEY, D. J. AND VERE-JONES, D. (2006). An Introduction to the Theory of Point Processes. Vol. I,
Elementary Theory and Methods. Springer, New York.

[5] DOUC, R., MOULINES, E., PRIOURET, P. AND SOULIER, P. (2018). Markov Chains. Springer, Cham.
[6] FERLAND, R., LATOUR, A. AND ORAICHI, D. (2006). Integer-valued GARCH process. J. Time Ser. Anal. 27,

923–942.
[7] FOKIANOS, K. AND FRIED, R. (2010). Interventions in INGARCH processes. J. Time Ser. Anal. 31, 210–225.
[8] FOSTER, F. G. (1953). On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist.

24, 355–360.
[9] GALLIER, J. AND QUAINTANCE, J. (2020). Linear Algebra and Optimization with Applications to Machine

Learning. Vol. I, Linear Algebra for Computer Vision, Robotics, and Machine Learning. World Scientific,
Singapore.

[10] HAWKES, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58,
83–90.

[11] HAWKES, A. G. AND OAKES, D. (1974). A cluster process representation of a self-exciting process. J. Appl.
Prob. 11, 493–503.

[12] KIRCHNER, M. (2016). Hawkes and INAR(∞) processes. Stoch. Process. Appl. 126, 2494–2525.
[13] MEYN, S. P. AND TWEEDIE, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge

University Press.
[14] RAAD, M. B. AND LÖCHERBACH, E. (2020). Stability for Hawkes processes with inhibition. Electron.

Commun. Prob. 25, 1–9.
[15] SEOL, Y. (2015). Limit theorems for discrete Hawkes processes. Statist. Prob. Lett. 99, 223–229.

https://doi.org/10.1017/jpr.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.28

	Introduction
	Notation, definitions, and results
	Definition and main result
	The associated Markov chain

	Proof of Theorem 2: Recurrence
	Foster"2013`Lyapounov drift criteria
	Case "026E30F mathcalR_1
	Case "026E30F mathcal R_2
	Case "026E30F mathcal R_3

	Proof of Theorem 2: Transience
	Case T1
	Case T2

	Perspectives and open problems
	Critical behavior
	Generalization of the model

	Linear recurrence equations
	Criteria for strong irreducibility
	Acknowledgements
	Funding information
	Competing interests
	References

