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Abstract

In the classical gambler’s ruin problem, the gambler plays an adversary with initial cap-
itals z and a − z, respectively, where a > 0 and 0 < z < a are integers. At each round, the
gambler wins or loses a dollar with probabilities p and 1 − p. The game continues until
one of the two players is ruined. For even a and 0 < z ≤ a/2, the family of distributions
of the duration (total number of rounds) of the game indexed by p ∈ [0, 1

2 ] is shown to
have monotone (increasing) likelihood ratio, while for a/2 ≤ z < a, the family of dis-
tributions of the duration indexed by p ∈ [ 1

2 , 1] has monotone (decreasing) likelihood
ratio. In particular, for z = a/2, in terms of the likelihood ratio order, the distribution of
the duration is maximized over p ∈ [0, 1] by p = 1

2 . The case of odd a is also consid-
ered in terms of the usual stochastic order. Furthermore, as a limit, the first exit time of
Brownian motion is briefly discussed.

Keywords: Brownian motion; first exit time; likelihood ratio order; monotone likelihood
ratio; usual stochastic order
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1. Introduction and main results

In [4, Chapter XIV], the classical gambler’s ruin problem is studied in detail, in which
the gambler plays an adversary with initial capitals z and a − z, respectively, where a > 0 and
0 ≤ z ≤ a are integers. At each round, the gambler wins or loses a dollar with probabilities p and
q (= 1 − p). The game continues until one of the two players is ruined (and the other player’s
capital reaches the maximum value a). We use the symbol Pp,z,a to denote the probability
measure with parameters p, z, and a. The duration (total number of rounds) of the game is
denoted by N, whose distribution depends on p, z, and a and is denoted by Lp,z,a(N). We are
concerned with stochastic ordering relations for the family of distributions {Lp,z,a(N) : 0 ≤ p ≤
1, 0 ≤ z ≤ a}.

Letting I = 0 if the gambler is ruined and I = 1 otherwise, the generating function for N
admits the following explicit expression [4, (4.11) and (4.12), p. 351]:
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∞∑
n=0

Pp,z,a(N = n)sn =
∞∑

n=0

Pp,z,a(N = n, I = 0)sn +
∞∑

n=0

Pp,z,a(N = n, I = 1)sn,

∞∑
n=0

Pp,z,a(N = n, I = 0)sn =
(

q

p

)z λa−z
1 (s) − λa−z

2 (s)

λa
1(s) − λa

2(s)
,

∞∑
n=0

Pp,z,a(N = n, I = 1)sn = λz
1(s) − λz

2(s)

λa
1(s) − λa

2(s)
,

where, for 0 < s < 1,

λ1(s) = 1 + √
1 − 4pqs2

2ps
, λ2(s) = 1 − √

1 − 4pqs2

2ps
.

Furthermore, for even n − z and n > 1 [4, (5.7) and (5.8), pp. 353–354],

Pp,z,a(N = n, I = 0) = a−12n+1p(n−z)/2q(n+z)/2
∑

1≤ν<a/2

cosn−1 πν

a
sin

πν

a
sin

πzν

a
, (1)

and Pp,z,a(N = n, I = 0) = 0 for odd n − z. By symmetry, for even n − a + z and n > 1,

Pp,z,a(N = n, I = 1) = a−12n+1p(n+a−z)/2q(n−a+z)/2
∑

1≤ν<a/2

cosn−1 πν

a
sin

πν

a
sin

π (a − z)ν

a
,

(2)
and Pp,z,a(N = n, I = 1) = 0 for odd n − a + z.

When a is an even integer, it is shown in [8] that L1/2,a/2,a(N) is stochastically larger than
Lp,a/2,a(N) for p �= 1

2 . In terms of the likelihood ratio order, which is stronger than the usual
stochastic order (see, e.g., [10]), a stronger version of their result may be derived as follows.
Let Xn,p, n = 1, 2, . . . , be independent and identically distributed (i.i.d.) with

P(Xn,p = 1) = p = 1 − P(Xn,p = −1). (3)

For 0 < z < a and n ≥ 1, let

S+
z,a(n) = {(ω1, . . . , ωn) ∈ {−1, 1}n : 0 < z + ω1 + · · · + ωi < a, i = 1, . . . , n − 1,

z + ω1 + · · · + ωn = a},
S−

z,a(n) = {(ω1, . . . , ωn) ∈ {−1, 1}n : 0 < z + ω1 + · · · + ωi < a, i = 1, . . . , n − 1,

z + ω1 + · · · + ωn = 0}.
For z ∈ {0, a} and n ≥ 1, let S+

z,a(n) = S−
z,a(n) = ∅. Note that S−

z,a(n) = ∅ if n and z have opposite
parity, while S+

z,a(n) = ∅ if n and a − z have opposite parity. Assume a is even and 0 < z < a, so
that z and a − z are of the same parity. Then we have Pp,z,a(N = n) = 0 if n and z have opposite
parity; and for n = min{z, a − z}, min{z, a − z} + 2, . . . ,

Pp,z,a(N = n) = P((X1,p, . . . , Xn,p) ∈ S+
z,a(n)) + P((X1,p, . . . , Xn,p) ∈ S−

z,a(n))

= p(n+a−z)/2q(n−a+z)/2|S+
z,a(n)| + p(n−z)/2q(n+z)/2|S−

z,a(n)|

= (pq)n/2
[(

p

q

)(a−z)/2

|S+
z,a(n)| +

(
q

p

)z/2

|S−
z,a(n)|

]
, (4)
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where |S| denotes the cardinality of the set S. For z = a/2, we have |S+
a/2,a(n)| = |S−

a/2,a(n)| by
symmetry, which together with (4) implies that

Pp,a/2,a(N = n) = (pq)n/2
[(

p

q

)a/4

+
(

q

p

)a/4]
|S+

a/2,a(n)|.

So, for p, p′ ∈ (0, 1) (with q′ = 1 − p′) and n = a/2, a/2 + 2, . . . ,

Pp′
,a/2,a(N = n)

Pp,a/2,a(N = n)
=

(
p′q′

pq

)n/2{[(
p′

q′
)a/4

+
(

q′

p′
)a/4]/[(

p

q

)a/4

+
(

q

p

)a/4]}
,

which is increasing in n if
∣∣p − 1

2

∣∣ >
∣∣p′ − 1

2

∣∣. Consequently, for even a and z = a/2, if p and
p′ ∈ [0, 1] satisfy

∣∣p − 1
2

∣∣ >
∣∣p′ − 1

2

∣∣, then Lp′
,a/2,a(N) is larger than Lp,a/2,a(N) in the likeli-

hood ratio order. For a family of distributions indexed by θ ∈ I (an interval) with probability
mass/density functions fθ ( · ) on X (a subset of the real line), it is said to have monotone
(increasing) likelihood ratio if

fθ (x)f
θ
′ (x′) ≥ f

θ
′ (x)fθ (x′) (5)

whenever x, x′ ∈X and θ, θ ′ ∈ I satisfy x < x′ and θ < θ ′, and is said to have monotone
(decreasing) likelihood ratio if the inequality (5) is reversed; see [6]. Indeed, we have shown
the following result.

Theorem 1. For even a ≥ 4 and z = a/2, the family of distributions
{
Lp,a/2,a(N) : 0 ≤ p ≤ 1

2

}
has monotone (increasing) likelihood ratio, and the family of distributions

{
Lp,a/2,a(N) : 1

2 ≤
p ≤ 1

}
has monotone (decreasing) likelihood ratio.

By Theorem 1, in terms of the likelihood ratio order, the distribution Lp,a/2,a(N) is
maximized over p ∈ [0, 1] by p = 1

2 , implying the result of [8].
We next consider the more general case with a even and z �= a/2. We need to establish a

crucial monotonicity result for p = 1
2 , which is of independent interest. For p = 1

2 , note that

Pp,z,a(N = n, I = 1) = 2−n|S+
z,a(n)|, Pp,z,a(N = n, I = 0) = 2−n|S−

z,a(n)|.
Theorem 2. For p = 1

2 , even a ≥ 4, and 0 < z < a/2, as n ∈ {z, z + 2, . . . } increases to ∞,

Pp,z,a(N = n, I = 1)

Pp,z,a(N = n)
= |S+

z,a(n)|
|S+

z,a(n)| + |S−
z,a(n)|

monotonically increases to 1
2 . Equivalently, for p = 1

2 and 0 < z < a/2,

Pp,z,a(N = n, I = 1)

Pp,z,a(N = n, I = 0)
= |S+

z,a(n)|
|S−

z,a(n)|
monotonically increases to 1 as n ∈ {z, z + 2, . . . } increases to ∞.

With the help of Theorem 2, the next theorem can be readily shown, which is an extension
of Theorem 1 from z = a/2 to z �= a/2.

Theorem 3. For even a ≥ 4 and 0 < z < a/2, the family of distributions
{
Lp,z,a(N) : 0 ≤ p ≤ 1

2

}
has monotone (increasing) likelihood ratio, and for a/2 < z < a, the family of distributions{
Lp,z,a(N) : 1

2 ≤ p ≤ 1
}

has monotone (decreasing) likelihood ratio.
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For the case of odd a, analogous results do not hold unless the likelihood ratio order is
replaced by a weaker stochastic order. To see this, consider odd a ≥ 3 and 0 < z < a. Then z and
a − z have opposite parity. So, for all n, either S−

z,a(n) = ∅ or S+
z,a(n) = ∅. For even n − z ≥ 0,

Pp,z,a(N = n) = p(n−z)/2q(n+z)/2|S−
z,a(n)| = (pq)n/2

(
q

p

)z/2

|S−
z,a(n)|,

while for even n − a + z ≥ 0,

Pp,z,a(N = n) = p(n+a−z)/2q(n−a+z)/2|S+
z,a(n)| = (pq)n/2

(
p

q

)(a−z)/2

|S+
z,a(n)|.

We have

Pp′
,z,a(N = n)

Pp,z,a(N = n)
=

⎧⎪⎪⎨
⎪⎪⎩

(
p′q′

pq

)n/2(pq′

p′q

)z/2

for n = z, z + 2, . . . ,

(
p′q′

pq

)n/2(p′q
pq′

)(a−z)/2

for n = a − z, a − z + 2, . . .

(6)

Consider 0 < p < p′ ≤ 1
2 and 0 < z < a

2 . By (6), for all n ≥ a − z ( > z),

[
Pp′

,z,a(N = n + 2)

Pp,z,a(N = n + 2)

]/[
Pp′

,z,a(N = n)

Pp,z,a(N = n)

]
= p′q′

pq
> 1,

i.e. the likelihood ratio Pp′
,z,a(N = n)/Pp,z,a(N = n) increases by a factor of p′q′/pq when n

increases by 2. On the other hand, by (6) again, we have, for n = a − z, a − z + 2, . . . ,

[
Pp′

,z,a(N = n + 1)

Pp,z,a(N = n + 1)

]/[
Pp′

,z,a(N = n)

Pp,z,a(N = n)

]

=
[(

p′q′

pq

)(n+1)/2(pq′

p′q

)z/2]/[(
p′q′

pq

)n/2(p′q
pq′

)(a−z)/2]

=
(

p

p′
)(a−1)/2(q′

q

)(a+1)/2

< 1,

showing that the likelihood ratio Pp′
,z,a(N = n)/Pp,z,a(N = n) is not monotonically increasing

in n. The next theorem gives stochastic ordering results for the odd a case in terms of the usual
stochastic order.

Theorem 4. Let a ≥ 3 be an odd integer. For 0 < z < a/2 and 0 ≤ p < p′ ≤ 1
2 , Lp,z,a(N) is

stochastically smaller than Lp′
,z,a(N), and for a/2 < z < a and 1

2 ≤ p < p′ ≤ 1, Lp,z,a(N) is
stochastically larger than Lp′

,z,a(N).

The long and technical proof of Theorem 2 is given in Section 2, while Sections 3 and 4
present the proofs of Theorems 3 and 4, respectively. We close this section with a number of
remarks on some implications of the above results and a conjecture for odd a related to the
work of [8].
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Remark 1. For p = 1
2 , the conditional distributions of N given I = 0 and I = 1, denoted by

L1/2,z,a(N | I = 0) and L1/2,z,a(N | I = 1), have respective probability mass functions

P1/2,z,a(N = n | I = 0) =
(

a

a − z

)
P1/2,z,a(N = n, I = 0), n = z, z + 2, . . . ,

P1/2,z,a(N = n | I = 1) =
(

a

z

)
P1/2,z,a(N = n, I = 1), n = a − z, a − z + 2, . . .

So, for even a and 0 < z < a/2, Theorem 2 is equivalent to saying that L1/2,z,a(N | I = 1) is
larger than L1/2,z,a(N | I = 0) in the likelihood ratio order.

Remark 2. For even a, Theorem 3 does not cover the case a/2 < z < a and p ≤ 1
2 . In fact, for

a/2 < z < a and 0 < p < p′ ≤ 1
2 , Lp,z,a(N) is neither stochastically smaller nor stochastically

larger than Lp′
,z,a(N). To see this, note that

Pp,z,a(N ≤ a − z) = Pp,z,a(N = a − z) = pa−z < (p′)a−z = Pp′
,z,a(N = a − z)

= Pp′
,z,a(N ≤ a − z).

On the other hand, Pp,z,a(N ≤ n) > Pp′
,z,a(N ≤ n) for large n, as shown below. Since |S+

z,a(n)| =
|S−

a−z,a(n)| and |S−
z,a(n)| = |S+

a−z,a(n)|, it follows from Theorem 2 that |S−
z,a(n)|/|S+

z,a(n)| =
|S+

a−z,a(n)|/|S−
a−z,a(n)| increases to 1 as n ∈ {z, z + 2, . . . } increases to ∞. By (4), as n ∈

{z, z + 2, . . . } increases to ∞,
(

pq

p′q′
)n/2(Pp′

,z,a(N = n)

Pp,z,a(N = n)

)
−→ (p′/q′)(a−z)/2 + (q′/p′)z/2

(p/q)(a−z)/2 + (q/p)z/2
. (7)

Since pq < p′q′, we have limn→∞ Pp,z,a(N ≥ n)/Pp′
,z,a(N ≥ n) = 0 by (7). So Pp,z,a(N ≤ n) >

Pp′
,z,a(N ≤ n) for large n.

Remark 3. In view of (6) and (7), it can be shown that for 0 < z < a and p, p′ ∈ (0, 1),

lim
n→∞

1

n
log

(
Pp′

,z,a(N ≥ n)

Pp,z,a(N ≥ n)

)
= 1

2
log

(
p′q′

pq

)
.

Thus, Lp,z,a(N) has much lighter tails than Lp′
,z,a(N) for

∣∣p − 1
2

∣∣ >
∣∣p′ − 1

2

∣∣.
Remark 4. For even a and z = a/2, it is shown in [8] that the distribution Lp,z,a(N) is
stochastically maximized over p ∈ [0, 1] by p = 1

2 . Can an analogous result hold for odd
a? For odd a, it seems natural to consider a random initial state z that takes on the two
middle values (a + 1)/2 and (a − 1)/2 with equal probabilities. Then the distribution of
the duration N is a mixture of the two distributions Lp,(a+1)/2,a(N) and Lp,(a−1)/2,a(N)
with equal weights, denoted by 1

2Lp,(a+1)/2,a(N) + 1
2Lp,(a−1)/2,a(N). Note that for p = 1

2 ,
L1/2,(a+1)/2,a(N) =L1/2,(a−1)/2,a(N), and for p + p′ = 1,

1

2
Lp,(a+1)/2,a(N) + 1

2
Lp,(a−1)/2,a(N) = 1

2
Lp′

,(a+1)/2,a(N) + 1

2
Lp′

,(a−1)/2,a(N).

We conjecture that 1
2Lp,(a+1)/2,a(N) + 1

2Lp,(a−1)/2,a(N) is stochastically maximized over
p ∈ [0, 1] by p = 1

2 , which can be shown to hold for small odd a. Moreover, this conjecture
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is equivalent to saying that 1
2Pp,(a+1)/2,a(N ≥ n) + 1

2Pp,(a−1)/2,a(N ≥ n) is maximized over
p ∈ [0, 1] by p = 1

2 for all n. It may be verified directly for small n.

Remark 5. [5, II.7] introduces a model of randomized random walks where instead of suc-
cessive jumps occurring at epochs 1, 2, . . . , the time intervals between successive jumps are
assumed to be i.i.d. exponential random variables with mean 1. This model is a compound
Poisson process Zt = ∑�t

n=1 Xn,p, t ≥ 0, where Xn,p (n = 1, 2, . . . ) are i.i.d. as defined in (3),
and �t is a Poisson process of constant rate 1 (independent of the Xn,p). (For a discussion of
compound Poisson processes, see, e.g., [7, 16.9].) For 0 < z < a, let T := inf{t > 0: z + Zt /∈
(0, a)}, the first exit time of the process z + Zt from the interval (0,a). We denote the distribu-
tion of T by Lp,z,a(T ), which is the same as the distribution of

∑N
i=1 Ei where N is the duration

of the gambler’s ruin game and Ei (i = 1, 2, . . . ) are i.i.d. exponential with mean 1 (indepen-
dent of N). We write Lp,z,a(T ) =Lp,z,a

( ∑N
i=1 Ei

)
. In view of this, if Lp,z,a(N) is stochastically

smaller than Lp′
,z,a(N), then Lp,z,a(T ) is stochastically smaller than Lp′

,z,a(T ). In other words,
the usual stochastic order relation concerning the distribution of N carries over to T . However,
the likelihood ratio order relation does not carry over. It follows from Theorems 3 and 4 that,
for 0 < p < p′ ≤ 1

2 and 0 < z ≤ a/2, Lp,z,a(T ) is stochastically smaller than Lp′
,z,a(T ).

Remark 6. [4, XIV.6] discusses the connection of the gambler’s ruin game with Brownian
motion as a limit, which is briefly described below. To have Brownian motion as a limit, the
time and step size for the random walk in the gambler’s ruin problem may be rescaled such
that there are r steps per unit time and each step causes a displacement equal to ±δ. Given real
values c and 0 < ξ < α, let

δ → 0, r → ∞, p → 1

2
, z → ∞, a → ∞ (8)

in such a way that

(p − q)δr → c, 4pqδ2r → 1, zδ → ξ, aδ → α. (9)

Then the duration N of the gambler’s ruin game with initial state z becomes, in the limit,
the first exit time τ := inf{t > 0: ξ + ct + Bt /∈ (0, α)} from the interval (0, α), where Bt is
standard Brownian motion and ξ + ct + Bt is Brownian motion with drift parameter c and
initial state ξ . Denote the density function of τ by uc,ξ,α(t), which may be decomposed
as uc,ξ,α(t) = u−

c,ξ,α(t) + u+
c,ξ,α(t). Here, u−

c,ξ,α(t) and u+
c,ξ,α(t) denote, respectively, the den-

sity functions of τ when the Brownian motion process exits through the lower and upper
boundaries, i.e., for t > 0,

P(τ ≤ t, ξ + cτ + Bτ = 0) =
∫ t

0
u−

c,ξ,α(s) ds,

P(τ ≤ t, ξ + cτ + Bτ = α) =
∫ t

0
u+

c,ξ,α(s) ds.

Since u−
c,ξ,α(t) and u+

c,ξ,α(t) are the continuous-time counterparts of Pp,z,a(N = n, I = 0) and
Pp,z,a(N = n, I = 1) as given in (1) and (2), applying a standard limiting argument to (1) and
(2) yields

u−
c,ξ,α(t) = πα−2e−c(ct+2ξ )/2

∞∑
ν=1

νe−ν2π2t/2α2
sin

πξν

α
, (10)
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u+
c,ξ,α(t) = πα−2ec(−ct+2α−2ξ )/2

∞∑
ν=1

νe−ν2π2t/2α2
sin

π (α − ξ )ν

α
, (11)

where (10) is [4, (6.15) (with D = 1), p. 359] and (11) is due to u+
c,ξ,α(t) = u−

−c,α−ξ,α(t) by
symmetry. In [4, Problem 22, p. 370], (10) and (11) are given in the following alternative
form:

u−
c,ξ,α(t) = 1√

2π t3
e−c(ct+2ξ )/2

∞∑
k=−∞

(ξ + 2kα)e−(ξ+2kα)2/2t, (12)

u+
c,ξ,α(t) = 1√

2π t3
ec(−ct+2α−2ξ )/2

∞∑
k=−∞

(α − ξ + 2kα)e−(α−ξ+2kα)2/2t. (13)

(See also [3] for the Laplace transforms of u−
c,ξ,α(t) and u+

c,ξ,α(t).) Since a can be taken
to be an even number as a increases to ∞ in (8) and (9), the monotonicity property of
Pp,z,a(N = n, I = 1)/Pp,z,a(N = n, I = 0) with p = 1

2 and 0 < z < a/2 in Theorem 2 carries over
to the continuous-time counterpart u+

c,ξ,α(t)/u−
c,ξ,α(t) with c = 0 and 0 < ξ < α/2. Moreover, in

(10) and (11), the term with ν = 1 is dominant for large t, so that limt→∞ u+
0,ξ,α(t)/u−

0,ξ,α(t) = 1.
On the other hand, in (12) and (13), the term with k = 0 is dominant for small t, so that
limt→0+ u+

0,ξ,α(t)/u−
0,ξ,α(t) = 0 for 0 < ξ < α/2. Hence, for 0 < ξ < α/2, as t increases from

0 to ∞, u+
0,ξ,α(t)/u−

0,ξ,α(t) monotonically increases from 0 to 1. (Equivalently, for c = 0 and
0 < ξ < α/2, the conditional distribution of τ given ξ + Bτ = 0 (which has probability density
(α/(α − ξ ))u−

0,ξ,α(t)) is smaller, in the likelihood ratio order, than the conditional distribu-

tion of τ given ξ + Bτ = α (which has probability density (α/ξ )u+
0,ξ,α(t)).) Furthermore, the

monotone likelihood ratio property for N in Theorem 3 also carries over to τ . Specifically, for
0 < ξ ≤ α/2, the family of distributions {Lc,ξ,α(τ ) : c ∈ (−∞, 0]} has monotone (increasing)
likelihood ratio, while for α/2 ≤ ξ < α, the family of distributions {Lc,ξ,α(τ ) : c ∈ [0, ∞)} has
monotone (decreasing) likelihood ratio. In particular, in terms of the likelihood ratio order,
the distribution Lc,α/2,α(τ ) is maximized over c ∈ (−∞, ∞) by c = 0. The first exit time
τ of Brownian motion is a special case of the two-sided barrier problem in the subject of
level-crossing problems for random processes. It is one of a limited number of cases where
an explicit solution is available. See the survey articles [1, 2] for discussion of the related
literature.

2. Proof of Theorem 2

To prove Theorem 2, we need to introduce some notation and establish a few lemmas.
Let a ≥ 4 be an even integer. For 0 ≤ z ≤ a and n ≥ 1, let T+

z,a(n) := |S+
z,a(n)| and T−

z,a(n) :=
|S−

z,a(n)|. For n ≥ 2 and 0 < z < a, since

S+
z,a(n) = [S+

z,a(n) ∩ ({−1} × {−1, 1}n−1)] ∪ [S+
z,a(n) ∩ ({1} × {−1, 1}n−1)],

we have

T+
z,a(n) = |S+

z,a(n)| = |S+
z−1,a(n − 1)| + |S+

z+1,a(n − 1)| = T+
z−1,a(n − 1) + T+

z+1,a(n − 1). (14)
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Let T+
z,a(0) = 1 or 0 according as z = a or 0 ≤ z < a. Then (14) also holds for n = 1 and 0 < z <

a. That is,

T+
z,a(n) = T+

z−1,a(n − 1) + T+
z+1,a(n − 1) for n ≥ 1 and 0 < z < a. (15)

Similarly,

T−
z,a(n) = T−

z−1,a(n − 1) + T−
z+1,a(n − 1) for n ≥ 1 and 0 < z < a, (16)

where T−
z,a(0) = 1 or 0 according as z = 0 or 0 < z ≤ a. Let Tz,a(n) = T+

z,a(n) + T−
z,a(n) for n ≥ 0

and 0 ≤ z ≤ a. By (15) and (16), we have

Tz,a(n) = Tz−1,a(n − 1) + Tz+1,a(n − 1) for n ≥ 1 and 0 < z < a. (17)

Applying (15) twice yields

T+
z,a(n) = T+

z−1,a(n − 1) + T+
z+1,a(n − 1)

= T+
z−2,a(n − 2) + 2T+

z,a(n − 2) + T+
z+2,a(n − 2) for n ≥ 2 and 2 ≤ z ≤ a − 2. (18)

Similarly,

Tz,a(n) = Tz−2,a(n − 2) + 2Tz,a(n − 2) + Tz+2,a(n − 2) for n ≥ 2 and 2 ≤ z ≤ a − 2. (19)

We have, by symmetry,

Tz,a(n) = Tz′,a(n) for z + z′ = a. (20)

Below we adopt the convention that 0/0 := 0 and c/0 := ∞ for c > 0.
We are now ready to state and prove four lemmas. In particular, the inequality (21) given in

Lemma 1 is a key observation for the proof of Theorem 2.

Lemma 1. For even a ≥ 6 and 2 ≤ z ≤ a/2 − 1,

Tz,a(n)

Tz−2,a(n) + Tz+2,a(n)
≥ Tz+2,a(n)

Tz,a(n) + Tz+4,a(n)
for n ≥ 0. (21)

Proof. By (20),

Ta/2−1,a(n)

Ta/2−3,a(n) + Ta/2+1,a(n)
= Ta/2+1,a(n)

Ta/2−1,a(n) + Ta/2+3,a(n)
for n ≥ 0, (22)

from which it follows that (21) holds for z = a/2 − 1.

We now prove (21) by induction on n. Since Tz+2,a(0) = Tz+2,a(1) = 0 for 2 ≤ z ≤ a/2 − 1,
(21) holds for n = 0 and n = 1. Suppose (21) holds for 2 ≤ z ≤ a/2 − 1 and for n ≤ m with
some m ≥ 1. We need to show that

Tz,a(m + 1)

Tz−2,a(m + 1) + Tz+2,a(m + 1)
≥ Tz+2,a(m + 1)

Tz,a(m + 1) + Tz+4,a(m + 1)
(23)
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for 2 ≤ z ≤ a/2 − 1. By (22), (23) holds for z = a/2 − 1. By (17), for 3 ≤ z ≤ a/2 − 2, (23) is
equivalent to

Tz−1,a(m) + Tz+1,a(m)

Tz−3,a(m) + Tz−1,a(m) + Tz+1,a(m) + Tz+3,a(m)

≥ Tz+1,a(m) + Tz+3,a(m)

Tz−1,a(m) + Tz+1,a(m) + Tz+3,a(m) + Tz+5,a(m)
. (24)

For 3 ≤ z ≤ a/2 − 2, we have, by the induction hypothesis,

Tz−1,a(m)

Tz−3,a(m) + Tz+1,a(m)
≥ Tz+1,a(m)

Tz−1,a(m) + Tz+3,a(m)
, (25)

Tz+1,a(m)

Tz−1,a(m) + Tz+3,a(m)
≥ Tz+3,a(m)

Tz+1,a(m) + Tz+5,a(m)
. (26)

Note that the right-hand side of (25) and the left-hand side of (26) are the same. Since for
ci, ci

′ ≥ 0 (i = 1, 2), c1/c2 ≥ c′
1/c′

2 implies

c1

c2
≥ c1 + c′

1

c2 + c′
2

≥ c′
1

c′
2
,

it follows from (25) and (26) that the left-hand side of (24) is greater than or equal to the right-
hand side of (25) while the right-hand side of (24) is less than or equal to the left-hand side of
(26). This establishes (24) (and hence (23)) for 3 ≤ z ≤ a/2 − 2.

It remains to prove (23) for z = 2; i.e.,

T2,a(m + 1)

T0,a(m + 1) + T4,a(m + 1)
≥ T4,a(m + 1)

T2,a(m + 1) + T6,a(m + 1)
. (27)

Note that T0,a(m + 1) = 0 and that, for a = 6, (27) is an equality (since T2,6(m + 1) = T4,6(m +
1) and T6,6(m + 1) = 0). By (19), for (even) a ≥ 8, (27) is equivalent to

T0,a(m − 1) + 2T2,a(m − 1) + T4,a(m − 1)

T2,a(m − 1) + 2T4,a(m − 1) + T6,a(m − 1)

≥ T2,a(m − 1) + 2T4,a(m − 1) + T6,a(m − 1)

T0,a(m − 1) + 2T2,a(m − 1) + 2T4,a(m − 1) + 2T6,a(m − 1) + T8,a(m − 1)
. (28)

Since T2,a(m − 1) = T4,a(m − 1) = T6,a(m − 1) = 0 for m = 1 and a ≥ 8, (28) holds for m = 1.
We now assume m > 1 (implying that T0,a(m − 1) = Ta,a(m − 1) = 0). By (20), for a = 8, (28)
reduces to

2T2,8(m − 1) + T4,8(m − 1)

2T2,8(m − 1) + 2T4,8(m − 1)
≥ T2,8(m − 1) + T4,8(m − 1)

2T2,8(m − 1) + T4,8(m − 1)
. (29)

The induction hypothesis applied to a = 8 and z = 2 yields

T2,8(m − 1)

T4,8(m − 1)
= T2,8(m − 1)

T0,8(m − 1) + T4,8(m − 1)
≥ T4,8(m − 1)

T2,8(m − 1) + T6,8(m − 1)
= T4,8(m − 1)

2T2,8(m − 1)
,
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which implies (or more precisely, is equivalent to) (29). To show (28) for (even) a ≥ 10, by the
induction hypothesis applied to a ≥ 10 and z = 2, 4 (≤ a/2 − 1), we have A1 ≥ A2 ≥ A3, where

Ak = T2k,a(m − 1)

T2k−2,a(m − 1) + T2k+2,a(m − 1)
for k = 1, 2, 3.

Note that

A1 = T2,a(m − 1)

T0,a(m − 1) + T4,a(m − 1)
= T2,a(m − 1)

T4,a(m − 1)
.

If T2,a(m − 1) = 0, then necessarily m − 1 (≥ 1) is odd and T4,a(m − 1) = T6,a(m − 1) =
T8,a(m − 1) = 0, so that (28) holds trivially. Suppose T2,a(m − 1) > 0. Then each of the two
sides of (28) is a weighted average of A1, A2, and A3. Indeed, the left-hand side of (28) equals
c1A1 + c2A2 with weights

c1 = 2T4,a(m − 1)

T2,a(m − 1) + 2T4,a(m − 1) + T6,a(m − 1)
,

c2 = T2,a(m − 1) + T6,a(m − 1)

T2,a(m − 1) + 2T4,a(m − 1) + T6,a(m − 1)
,

while the right-hand side of (28) equals c′
1A1 + c′

2A2 + c′
3A3 with weights

c′
1 = T4,a(m − 1)

2T2,a(m − 1) + 2T4,a(m − 1) + 2T6,a(m − 1) + T8,a(m − 1)
,

c′
2 = 2T2,a(m − 1) + 2T6,a(m − 1)

2T2,a(m − 1) + 2T4,a(m − 1) + 2T6,a(m − 1) + T8,a(m − 1)
,

c′
3 = T4,a(m − 1) + T8,a(m − 1)

2T2,a(m − 1) + 2T4,a(m − 1) + 2T6,a(m − 1) + T8,a(m − 1)
.

Since c1 ≥ c′
1, it follows from A1 ≥ A2 ≥ A3 that c1A1 + c2A2 ≥ c′

1A1 + c′
2A2 + c′

3A3. This
shows (28) for a ≥ 10 and completes the induction proof.

Remark 7. The proof of Lemma 1 makes use of the induction method on n with the help of the
recursion (17), which is related to first-step analysis in Markov chains (see, e.g., [9]). After the
first step, the initial state z moves either down to z − 1 or up to z + 1. To apply the induction
hypothesis, it is necessary to consider the boundary cases z = 2 and z = a/2 − 1 separately
from 3 ≤ z ≤ a/2 − 2. (The induction hypothesis is applicable neither in the case that z = 2
moves down to 1 nor in the case that z = a/2 − 1 moves up to a/2.) The proofs of Lemmas 2
and 3 and Theorem 2 also make use of the recursions (15), (18), and (19). Again, the boundary
cases need to be treated separately.

Lemma 2. For even n ≥ 2, T+
z,a(n)/Tz,a(n) is increasing in z ∈ {2, 4, . . . , a − 2}. For odd n ≥ 1,

T+
z,a(n)/Tz,a(n) is increasing in z ∈ {1, 3, . . . , a − 1}.

Proof. Let ρ(n) = 1 or 2 according as n is odd or even. We show that, for n ≥ 1,
T+

z,a(n)/Tz,a(n) is increasing in z ∈ {ρ(n), ρ(n) + 2, . . . , a − ρ(n)}; i.e., for n ≥ 1,

T+
z+2,a(n)

Tz+2,a(n)
≥ T+

z,a(n)

Tz,a(n)
for z = ρ(n), ρ(n) + 2, . . . , a − ρ(n) − 2. (30)
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We proceed by induction on n. Since T+
z,a(1)/Tz,a(1) = 0 for z < a − 1, and

T+
a−1,a(1)/Ta−1,a(1) = 1, (30) holds for n = 1. Suppose (30) holds for n ≤ m with some

m ≥ 1. We need to show that

T+
z+2,a(m + 1)

Tz+2,a(m + 1)
≥ T+

z,a(m + 1)

Tz,a(m + 1)
for z = ρ(m + 1), ρ(m + 1) + 2, . . . , a − ρ(m + 1) − 2.

(31)
Consider the case that m is even. Then m ≥ 2 and ρ(m + 1) = 1. For z = 1, 3, . . . , a − 3, we
have, by (15) and (17),

T+
z,a(m + 1)

Tz,a(m + 1)
= T+

z−1,a(m) + T+
z+1,a(m)

Tz−1,a(m) + Tz+1,a(m)
, (32)

T+
z+2,a(m + 1)

Tz+2,a(m + 1)
= T+

z+1,a(m) + T+
z+3,a(m)

Tz+1,a(m) + Tz+3,a(m)
. (33)

The right-hand side of (32) equals T+
z+1,a(m)/Tz+1,a(m) for z = 1 and is less than or equal to

T+
z+1,a(m)/Tz+1,a(m) for z > 1 since, by the induction hypothesis, for z = 3, . . . , a − 3,

T+
z+1,a(m)

Tz+1,a(m)
≥ T+

z−1,a(m)

Tz−1,a(m)
.

The right-hand side of (33) equals T+
z+1,a(m)/Tz+1,a(m) for z = a − 3 and is greater than

or equal to T+
z+1,a(m)/Tz+1,a(m) for z < a − 3 since, by the induction hypothesis, for z =

1, . . . , a − 5,
T+

z+3,a(m)

Tz+3,a(m)
≥ T+

z+1,a(m)

Tz+1,a(m)
.

This proves (31) for the case of even m. The case of odd m can be treated similarly.

Lemma 3. For even a ≥ 4 and n ≥ 0,

T+
1,a(n + 2)

T1,a(n + 2)
≥ T+

1,a(n)

T1,a(n)
, (34)

T+
2,a(n + 2)

T2,a(n + 2)
≥ T+

2,a(n)

T2,a(n)
. (35)

Proof. Note that (34) holds trivially for even n since both sides of (34) are 0/0 for even n.
We now prove (34) for odd n ≥ 1. By (15),

T+
1,a(n + 2) = T+

0,a(n + 1) + T+
2,a(n + 1) = T+

2,a(n + 1) = T+
1,a(n) + T+

3,a(n). (36)

Similarly, by (17), T1,a(n + 2) = T1,a(n) + T3,a(n), which together with (36) implies that

T+
1,a(n + 2)

T1,a(n + 2)
= T+

1,a(n) + T+
3,a(n)

T1,a(n) + T3,a(n)
≥ T+

1,a(n)

T1,a(n)
,

where the inequality follows from T+
1,a(n)/T1,a(n) ≤ T+

3,a(n)/T3,a(n) (by Lemma 2).
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Next, to prove (35), it suffices to consider the case of even n. For n = 0, the right-hand side
of (35) is 0, so (35) holds. For even n ≥ 2 and a = 4, both sides of (35) equal 1

2 by symmetry.
For even n ≥ 2 and a ≥ 6, we have, by (18) and (19),

T+
2,a(n + 2)

T2,a(n + 2)
= T+

0,a(n) + 2T+
2,a(n) + T+

4,a(n)

T0,a(n) + 2T2,a(n) + T4,a(n)

= 2T+
2,a(n) + T+

4,a(n)

2T2,a(n) + T4,a(n)
≥ T+

2,a(n)

T2,a(n)
,

where the inequality follows from T+
2,a(n)/T2,a(n) ≤ T+

4,a(n)/T4,a(n) (by Lemma 2). The proof
is complete.

Lemma 4. Let α1 > 0 and αi ≥ βi ≥ 0, i = 1, 2, 3, 4. Suppose

β4

α4
≥ β1

α1
,

β1 + β3

α1 + α3
≥ β2

α2
,

β2 + β4

α2 + α4
≥ β3

α3
,

α2

α1 + α3
≥ α3

α2 + α4
.

Then
β1 + β4

α1 + α4
≥ β2 + β3

α2 + α3
.

Proof. If α2 = 0 then α3 = 0 since α2/(α1 + α3) ≥ α3/(α2 + α4). So

β1 + β4

α1 + α4
≥ 0 = β2 + β3

α2 + α3
.

If α3 = 0, then
β4

α4
≥ β1

α1
= β1 + β3

α1 + α3
≥ β2

α2
,

implying that
β1 + β4

α1 + α4
≥ β2

α2
= β2 + β3

α2 + α3
.

Now suppose α2 > 0 and α3 > 0. We have

0 ≤ α2α3

α1 + α3

[
β2 + β4

α2 + α4
− β3

α3

]
+ α2

[
β1 + β3

α1 + α3
− β2

α2

]

= α2(α2 + α4)β1 + α2α3β4 − (α1α2 + α1α4 + α3α4)β2

(α1 + α3)(α2 + α4)
,

0 ≤ α2α3

α2 + α4

[
β1 + β3

α1 + α3
− β2

α2

]
+ α3

[
β2 + β4

α2 + α4
− β3

α3

]

= α2α3β1 + α3(α1 + α3)β4 − (α1α2 + α1α4 + α3α4)β3

(α1 + α3)(α2 + α4)
,

implying that

α2(α2 + α4)β1 + α2α3β4

α1α2 + α1α4 + α3α4
≥ β2,

α2α3β1 + α3(α1 + α3)β4

α1α2 + α1α4 + α3α4
≥ β3.
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So C ≥ β2 + β3, where

C := α2(α2 + α3 + α4)β1 + α3(α1 + α2 + α3)β4

α1α2 + α1α4 + α3α4
.

To show (β1 + β4)/(α1 + α4) ≥ (β2 + β3)/(α2 + α3), since C ≥ β2 + β3 it suffices to verify
that

C1 := (α2 + α3)(β1 + β4) − (α1 + α4)C ≥ 0. (37)

We have

C1(α1α2 + α1α4 + α3α4) = α4[α3(α1 + α3) − α2(α2 + α4)]β1

+ α1[α2(α2 + α4) − α1(α1 + α3)]β4

= [α2(α2 + α4) − α3(α1 + α3)](α1β4 − α4β1) ≥ 0,

since α2/(α1 + α3) ≥ α3/(α2 + α4) and β4/α4 ≥ β1/α1. This proves (37), and completes the
proof.

Proof of Theorem 2. We claim that, for even a ≥ 4 and 0 < z < a/2,

T+
z,a(n + 2)

Tz,a(n + 2)
≥ T+

z,a(n)

Tz,a(n)
, n ≥ 0. (38)

By Lemma 3, (38) holds for z = 1 and z = 2. Consequently, (38) holds for a = 4 and a = 6.
Note also that

T+
a/2,a(n + 2)

Ta/2,a(n + 2)
≥ T+

a/2,a(n)

Ta/2,a(n)
, n ≥ 0. (39)

(If n and a/2 have opposite parity, both sides of (39) are 0/0 = 0. For n and a/2 of the same
parity, T+

a/2,a(n)/Ta/2,a(n) = 0 or 1
2 according as n < a/2 or ≥ a/2. This shows (39).)

We now prove (38) for a ≥ 8 and 3 ≤ z < a/2 by induction on n. For n = 0 and n = 1, the
right-hand side of (38) equals 0 since T+

z,a(0) = T+
z,a(1) = 0 for 0 < z < a/2. So (38) holds for

n ≤ 1. Suppose (38) holds for n ≤ m with some m ≥ 1. We need to show that

T+
z,a(m + 3)

Tz,a(m + 3)
≥ T+

z,a(m + 1)

Tz,a(m + 1)
for even a ≥ 8 and 3 ≤ z <

a

2
.

By (15) and (17), this is equivalent to

T+
z−1,a(m + 2) + T+

z+1,a(m + 2)

Tz−1,a(m + 2) + Tz+1,a(m + 2)
≥ T+

z−1,a(m) + T+
z+1,a(m)

Tz−1,a(m) + Tz+1,a(m)
(40)

for a ≥ 8 and 3 ≤ z < a/2. By (18) and (19) applied to the left-hand side of (40), (40) is
equivalent to

T+
z−3,a(m) + 3T+

z−1,a(m) + 3T+
z+1,a(m) + T+

z+3,a(m)

Tz−3,a(m) + 3Tz−1,a(m) + 3Tz+1,a(m) + Tz+3,a(m)
≥ T+

z−1,a(m) + T+
z+1,a(m)

Tz−1,a(m) + Tz+1,a(m)
(41)

for a ≥ 8 and 3 ≤ z < a/2. Note that (41) holds trivially if z and m are of the same parity.
Suppose z and m have opposite parity. If Tz−1,a(m + 2) = 0, then m + 2 < z − 1 (< a/2 − 1),
so that both sides of (40) (and hence (41)) are 0.
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Now suppose Tz−1,a(m + 2) > 0. We first prove (41) for z = 3 (and even m), in which case
we have Tz−3,a(m) = T+

z−3,a(m) = 0, so that (41) becomes

3T+
2,a(m) + 3T+

4,a(m) + T+
6,a(m)

3T2,a(m) + 3T4,a(m) + T6,a(m)
≥ T+

2,a(m) + T+
4,a(m)

T2,a(m) + T4,a(m)
.

This inequality holds since, by Lemma 2,

T+
6,a(m)

T6,a(m)
≥ T+

4,a(m)

T4,a(m)
≥ T+

2,a(m)

T2,a(m)
.

We now prove (41) for 4 ≤ z < a/2 (in which case necessarily a ≥ 10). Note that Tz−1,a(m +
2) > 0 implies Tz−3,a(m) > 0. By the induction hypothesis together with (39), we have

T+
z−1,a(m + 2)

Tz−1,a(m + 2)
≥ T+

z−1,a(m)

Tz−1,a(m)
,

T+
z+1,a(m + 2)

Tz+1,a(m + 2)
≥ T+

z+1,a(m)

Tz+1,a(m)
.

By (18) and (19) applied to the left-hand sides of each of these inequalities, we have

T+
z−3,a(m) + 2T+

z−1,a(m) + T+
z+1,a(m)

Tz−3,a(m) + 2Tz−1,a(m) + Tz+1,a(m)
≥ T+

z−1,a(m)

Tz−1,a(m)
, (42)

T+
z−1,a(m) + 2T+

z+1,a(m) + T+
z+3,a(m)

Tz−1,a(m) + 2Tz+1,a(m) + Tz+3,a(m)
≥ T+

z+1,a(m)

Tz+1,a(m)
. (43)

Noting that the left-hand side of (42) equals

c

(
T+

z−3,a(m) + T+
z+1,a(m)

Tz−3,a(m) + Tz+1,a(m)

)
+ (1 − c)

(
T+

z−1,a(m)

Tz−1,a(m)

)
,

where

c = Tz−3,a(m) + Tz+1,a(m)

Tz−3,a(m) + 2Tz−1,a(m) + Tz+1,a(m)
> 0,

the inequality in (42) implies that

T+
z−3,a(m) + T+

z+1,a(m)

Tz−3,a(m) + Tz+1,a(m)
≥ T+

z−1,a(m)

Tz−1,a(m)
. (44)

Similarly, if Tz−1,a(m) > 0, then the inequality in (43) implies that

T+
z−1,a(m) + T+

z+3,a(m)

Tz−1,a(m) + Tz+3,a(m)
≥ T+

z+1,a(m)

Tz+1,a(m)
. (45)

If Tz−1,a(m) = 0, then Tz+1,a(m) = Tz+3,a(m) = 0 (since z − 1 < z + 3 ≤ a − (z − 1)), so the
inequality in (45) holds trivially.

Let

α1 = Tz−3,a(m), α2 = Tz−1,a(m), α3 = Tz+1,a(m), α4 = Tz+3,a(m),

β1 = T+
z−3,a(m), β2 = T+

z−1,a(m), β3 = T+
z+1,a(m), β4 = T+

z+3,a(m).
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Since Tz−1,a(m + 2) > 0, we have α1 = Tz−3,a(m) > 0. By (44) and (45),

β1 + β3

α1 + α3
≥ β2

α2
,

β2 + β4

α2 + α4
≥ β3

α3
.

Furthermore, by Lemma 1,

α2

α1 + α3
= Tz−1,a(m)

Tz−3,a(m) + Tz+1,a(m)
≥ Tz+1,a(m)

Tz−1,a(m) + Tz+3,a(m)
= α3

α2 + α4
,

and by Lemma 2,

β1

α1
= T+

z−3,a(m)

Tz−3,a(m)
≤ T+

z+3,a(m)

Tz+3,a(m)
= β4

α4
.

It follows from Lemma 4 that

β1 + β4

α1 + α4
≥ β2 + β3

α2 + α3
,

implying that

T+
z−1,a(m) + T+

z+1,a(m)

Tz−1,a(m) + Tz+1,a(m)
= β2 + β3

α2 + α3

≤ β1 + 3β2 + 3β3 + β4

α1 + 3α2 + 3α3 + α4

= T+
z−3,a(m) + 3T+

z−1,a(m) + 3T+
z+1,a(m) + T+

z+3,a(m)

Tz−3,a(m) + 3Tz−1,a(m) + 3Tz+1,a(m) + Tz+3,a(m)
,

proving (41) for 4 ≤ z < a/2. This completes the proof of (38), which implies that

|S+
z,a(n)|

|S+
z,a(n)| + |S−

z,a(n)| = T+
z,a(n)

Tz,a(n)

is increasing as n ∈ {z, z + 2, . . . } increases. Finally, as n ∈ {z, z + 2, . . . } tends to ∞, it
follows from (1) and (2) (with p = 1

2 ) that

|S+
z,a(n)|

|S−
z,a(n)| = Pp,z,a(N = n, I = 1)

Pp,z,a(N = n, I = 0)
=

∑
1≤ν<a/2 cosn−1 (πν/a) sin (πν/a) sin (π (a − z)ν/a)∑

1≤ν<a/2 cosn−1 (πν/a) sin (πν/a) sin (πzν/a)

approaches 1, implying that |S+
z,a(n)|/(|S+

z,a(n)| + |S−
z,a(n)|) increases to 1

2 in the limit. The
proof of Theorem 2 is complete.
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3. Proof of Theorem 3

Theorem 2 plays a key role in the following proof of Theorem 3.

Proof of Theorem 3. By (4), for 0 < z < a/2 and n = z, z + 2, . . . ,

Pp,z,a(N = n) = (pq)n/2
[(

p

q

)(a−z)/2

|S+
z,a(n)| +

(
q

p

)z/2

|S−
z,a(n)|

]

= (pq)n/2
[(

p

q

)(a−z)/2 T+
z,a(n)

Tz,a(n)
+

(
q

p

)z/2(
1 − T+

z,a(n)

Tz,a(n)

)]
Tz,a(n)

= (pq)n/2
{[(

p

q

)(a−z)/2

−
(

q

p

)z/2]T+
z,a(n)

Tz,a(n)
+

(
q

p

)z/2}
Tz,a(n).

So, for 0 < p < p′ ≤ 1
2 , 0 < z < a/2, and n = z, z + 2, . . . ,

Pp′
,z,a(N = n)

Pp,z,a(N = n)
=

(
p′q′

pq

)n/2

Hp,p′
,z,a

(
T+

z,a(n)

Tz,a(n)

)
, (46)

where

Hp,p′
,z,a(x) = [(p′/q′)(a−z)/2 − (q′/p′)z/2]x + (q′/p′)z/2

[(p/q)(a−z)/2 − (q/p)z/2]x + (q/p)z/2
for 0 ≤ x ≤ 1.

Note that

d

dx
Hp,p′

,z,a(x)

=
{[(

p

q

)(a−z)/2

−
(

q

p

)z/2]
x +

(
q

p

)z/2}−2(qq′

pp′
)z/2[(

p′/q′
)a/2

−
(

p

q

)a/2]
> 0.

(47)

Since, by Theorem 2, T+
z,a(n)/Tz,a(n) is increasing in n ∈ {z, z + 2, . . . }, it follows from (46)

and (47) that Pp′
,z,a(N = n)/Pp,z,a(N = n) is increasing in n ∈ {z, z + 2, . . . }. This proves that

{Lp,z,a(N) : 0 ≤ p ≤ 1
2 } has monotone (increasing) likelihood ratio. For a/2 < z < a, note that

Lp,z,a(N) =Lp′
,z′,a(N) with p′ = 1 − p and z′ = a − z, implying that {Lp,z,a(N) : 1

2 ≤ p ≤ 1} has
monotone (decreasing) likelihood ratio, completing the proof.

4. Proof of Theorem 4

Proof of Theorem 4. Fix 0 < z < a/2. We claim that, for n ≥ 0,

f (p, n) := Pp,z,a(N > n) is increasing in p ∈ [
0, 1

2

]
. (48)

Let

Sz(n) := {(ω1, . . . , ωn) ∈ {−1, 1}n : 0 < z + ω1 + · · · + ωi < a, i = 1, . . . , n}, (49)

and let (ω1, . . . , ωn)z := (
z, z + ω1, z + ω1 + ω2, . . . , z + ∑n

i=1 ωi
)
, which is the sample path

starting at z with successive increments ω1, . . . , ωn. Since z is fixed, for convenience we may
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identify (ω1, . . . , ωn) with the corresponding sample path (ω1, . . . , ωn)z. In particular, we
refer to Sz(n) as the collection of all sample paths starting at z and strictly staying between 0 and
a up to time n. (By abusing notation, for (ω1, . . . , ωn) ∈ Sz(n), we also write (ω1, . . . , ωn)z ∈
Sz(n).)

We now prove (48) by induction on n. Plainly, (48) holds for n = 0. Suppose (48) holds for
n ≤ m with some m ≥ 0. We need to show that

f (p, m + 1) is increasing in p ∈ [
0, 1

2

]
. (50)

By (49), f (p, m + 1) := Pp,z,a(N > m + 1) = P{(X1,p, . . . , Xm+1,p) ∈ Sz(m + 1)}, where the
Xi,p are defined as in (3). We partition the sample paths of Sz(m + 1) into subsets �i,
i = 0, 1, . . . , m + 1, where �0 is the subset of those sample paths that always stay below
a − 1, and �i (i = 1, . . . , m + 1) is the subset of those sample paths that visit a − 1 at time
i for the first time. (Note that for i ≥ 1, �i = ∅ if i and a − z − 1 have opposite parity.) Then
f (p, m + 1) = ∑m+1

i=0 g(p, m + 1, i), where g(p, m + 1, i) := P{(X1,p, . . . , Xm+1,p)z ∈ �i}. To
prove (50), it suffices to show that, for i = 0, 1, . . . , m + 1, g(p, m + 1, i) is increasing in
p ∈ [

0, 1
2

]
. To show g(p, m + 1, 0) is increasing in p ∈ [

0, 1
2

]
, we have

g(p, m + 1, 0) = P{(X1,p, . . . , Xm+1,p)z ∈ �0}
= P{(X1,p, . . . , Xm+1,p)z stays strictly between 0 and a − 1}
= Pp,z,a−1(N > m + 1),

which, by Theorems 1 and 3, is increasing in p ∈ [
0, 1

2

]
.

To show that g(p, m + 1, i) is increasing in p ∈ [
0, 1

2

]
for i = 1, . . . , m + 1, we further par-

tition the �i into �i,j (i ≤ j ≤ m + 1) where �i,i is the subset of those sample paths that after
time i never revisit z, and �i,j (j > i) is the subset of those sample paths that after time i
revisit z at time j for the first time. Let h(p, m + 1, i, j) := P{(X1,p, . . . , Xm+1,p)z ∈ �i,j}. We
have g(p, m + 1, i) = ∑m+1

j=i h(p, m + 1, i, j). It suffices to show that each h(p, m + 1, i, j) is

increasing in p ∈ [
0, 1

2

]
.

For i < j ≤ m + 1, let

Ai,j := {(ω1, . . . , ωj) ∈ {−1, 1}j : 0 < z + ω1 + · · · + ω� < a − 1, � = 1, . . . , i − 1;

z + ω1 + · · · + ωi = a − 1;

z < a − 1 + ωi+1 + · · · + ω� < a, � = i + 1, . . . , j − 1;

ωi+1 + · · · + ωj = −(a − z − 1)},
and

Sz(m + 1 − j) := {(ω1, . . . , ωm+1−j) ∈ {−1, 1}m+1−j :

0 < z + ω1 + · · · + ω� < a, � = 1, . . . , m + 1 − j}
= {(ωj+1, . . . , ωm+1) ∈ {−1, 1}m+1−j :

0 < z + ωj+1 + · · · + ω� < a, � = j + 1, . . . , m + 1}.
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Since (ω1, . . . , ωm+1)z ∈ �i,j if and only if (ω1, . . . , ωm+1) ∈ Ai,j × Sz(m + 1 − j),

h(p, m + 1, i, j) = P{(X1,p, . . . , Xm+1,p)z ∈ �i,j}
= P{(X1,p, . . . , Xm+1,p) ∈ Ai,j × Sz(m + 1 − j)}
= P{(X1,p, . . . , Xj,p) ∈ Ai,j}P{(Xj+1,p, . . . , Xm+1,p) ∈ Sz(m + 1 − j)}
= P{(X1,p, . . . , Xj,p) ∈ Ai,j}Pp,z,a(N > m + 1 − j). (51)

By the induction hypothesis, Pp,z,a(N > m + 1 − j) is increasing in p ∈ [
0, 1

2

]
. Also,

P{(X1,p, . . . , Xj,p) ∈ Ai,j} =
⎧⎨
⎩

(pq)j/2|Ai,j| if j is even,

0 otherwise,

which is increasing in p ∈ [
0, 1

2

]
. By (51), h(p, m + 1, i, j) is increasing in p ∈ [

0, 1
2

]
.

It remains to show that h(p, m + 1, i, i) is increasing in p ∈ [
0, 1

2

]
. Observe that each sample

path (ω1, . . . , ωm+1)z ∈ �i,i ends above z at time m + 1, so that there are more +1 increments
than −1 increments. It follows that the probability of each sample path in �i,i is increasing
in p ∈ [

0, 1
2

]
. Consequently, h(p, m + 1, i, i) = P{(X1,p, . . . , Xm+1,p)z ∈ �i,i} is increasing in

p ∈ [
0, 1

2

]
. This completes the induction proof of (48).

It follows from (48) that, for 0 < z < a/2, the distribution Lp,z,a(N) is stochastically increas-
ing in p ∈ [

0, 1
2

]
. Since Lp,z,a(N) =Lp′

,z′,a(N) for p′ = 1 − p and z′ = a − z, it follows that

Lp,z,a(N) is stochastically decreasing in p ∈ [ 1
2 , 1

]
for a/2 < z < a. The proof is complete.
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