Novel Nanoscale Tomography Modes in Materials Science G. Möbus, B.J. Inkson Sheffield University, Dept of Engineering Materials, Sheffield, S1 3JD, UK Electron tomography of crystalline, inorganic, and heavy element containing nanomaterials is complicated by nonlinear, possibly non-monotonous, intensity relation during image formation, strong dependence on lattice plane orientation and potentially extreme exposure requirements. Very recent break-through results have been achieved in this field using new modes of image formation available in modern TEMs, comprising bright field, CTEM, STEM, HAADF, EFTEM, and EDX-mapping [1-5]. Three major groups of contrast seem to be most favourable (FIG. 1), sketched for two concentric cylinders of elements A and B (Z_A and Z_B): - binary tomography: $$I_0 = 0$$, $I_1 = I_2 = 1$ (1) - Z-Contrast imaging: $$I_0 = 0$$, $I_1 = t_A(x,y) * Z_A^m$, $I_2 = t_A(x,y) * Z_A^m + t_B(x,y) * Z_B^m$ (2) - Spectroscopic tomography: - tuned to (A): $$I_0 = 0$$, $I_1 = I_2 = t_A(x,y) * \sigma_A$ (3) - tuned to (B): $$I_0 = 0$$, $I_1 = 0$, $I_2 = t_B(x,y) * \sigma_B$ (4) Here, t(x,y) is thickness, σ an inelastic cross section, and m the atomic number exponent (m<2). In this simple picture, longitudinal coherence is neglected, and spectroscopic images are assumed processed into elemental maps (multi-window EFTEM). While HAADF-STEM is the most successful and universal "Z-contrast", other mechanisms such as weak-phase-object (WPO)-HREM, and various special cases of BF/DF-CTEM, e.g. high-angle hollow cone [1], also classify as Z-contrast as of eq. (2). FIG. 1e sketches the topological class of objects which can be solved by binary tomography: Homogeneous phases ($\rho(x,y,z)$ = const.) of strictly convex shape on all cross-sections perpendicular to the backprojection axis. Inversely, this is the class which can be sculptured by parallel beam tools (FIB, Laser cutter) from a rotating block. FIG. 2 shows experimental results obtained for spectroscopic tomography over $\pm 60^{\circ}$ tilt, using EFTEM/ESI, and $\pm 50^{\circ}$ EDX-mapping (step 10°), as the imaging/ projection mechanisms [6, 7]. In FIG. 3, simulations demonstrate the theoretical capabilities of WPO-HREM at atomic resolution (ideal Si-crystal, cut into tip shape). Outlook: The importance of spectroscopic tomography lies in eliminating thickness t(x,y) as a parameter for quantification of composition in EELS and EDX. Furthermore, once the voxel size reduces (in future) to contain only one atom on average, interpretation will change: The element specific spectroscopic "4D-data space" after reconstruction would then consist of 1s and 0s only and can be largely compressed. The Z-contrast "3D data space" then contains no longer superpositions $Z_A^m + Z_B^m$, instead: I $(x,y,z) = Z_{i,j,k}^m$. With careful scaling and calibration of m, full spectroscopic information could then be claimed in 3D without a spectrometer; the 4D space becomes redundant. - [1] H. Kakibayashi, K. Nakamura, R. Tsuneta, Microsc. Microanal. 3 (Suppl. 2) (1997) 479. - [2] A.J. Koster et al., J phys chem., B 104, (2000) 9368. - [3] M. Koguchi et al., J. Electron Microsc. 50 (2001) 235. - [4] G. Möbus, B.J. Inkson, Appl. Phys. Lett., 79 (2001) 1369. - [5] P. Midgley et al., Chem. Communic. 10 (2001) 907-908. - [6] G. Möbus et al., Microsc. Microanal. 7 (Suppl.2) (2001) 84, and Ultramicroscopy, in press (2003). - [7] G. Möbus et al., Mat.Res.Soc.Symp.Proc. 738, online (Fall-02; G1.2) and in press (2003). FIG. 1. (a-d) Four mechanisms of projected contrast (binary, Z-contrast, spectroscopic A and B). (e) class of objects with convex cross sections along backprojection axis. FIG. 2. (a) EFTEM tilt series of FeAl intermetallic alloy with Y_2O_3/ZrO_2 particles, recorded at FeL-edge inner shell loss; LEO-912 Ω . (b) Reconstructed by filtered backprojection; threshold rending for Y_2O_3 particle shape. (c) Reconstruction of 3 spectroscopic energies from tilt series of EDX maps. B/W display (see CDROM for RGB-colour: red=Al, blue=Y, green=Zr) of a superposition of Al, Y, Zr volume maps; same material as in (a,b); JEM 2010. For details see [6,7]. FIG. 3. (a) Silicon-tip, HREM simulations every 3° over 180° (6 shown). (b) Reconstructed by linear backprojection (Optical data for JEM-ARM1250, Scherzer focus).