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Abstract
This paper uses a two-step approach to modelling the probability of a policyholder making an auto
insurance claim.We perform clustering via Gaussian mixture models and cluster-specific binary regression
models. We use telematics information along with traditional auto insurance information and find that the
best model incorporates telematics, without the need for dimension reduction via principal components.
We also utilise the probabilistic estimates from the mixture model to account for the uncertainty in the
cluster assignments. The clustering process allows for the creation of driving profiles and offers a fairer
method for policyholder segmentation than when clustering is not used. By fitting separate regression
models to the observations from the respective clusters, we are able to offer differential pricing, which
recognises that policyholders have different exposures to risk despite having similar covariate information,
such as total miles driven. The approach outlined in this paper offers an explainable and interpretable
model that can compete with black box models. Our comparisons are based on a synthesised telematics
data set that was emulated from a real insurance data set.
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1. Introduction
The use of telematics is widespread in modern society. Shipping and logistics companies use
telematics data for fleet optimisation. Delivery companies use telematics to provide their
customers with accurate estimates of intervals for delivery. Car rental companies use telematics for
cases of vehicle fraud prevention and theft recovery. Telematics has even reached the auto
insurance industry, in the form of “Pay-As-You-Drive” (PAYD) and “Pay-How-You-Drive”
(PHYD) schemes, which are often grouped together under the term “usage-based insurance”
(UBI). The literature on telematics-based insurance has seen a sharp increase over the last decade
but is still in its infancy, as the total number of published works is low compared to other
approaches (Chauhan & Yadav, 2024). The proliferation of telematics information creates new
challenges for insurers, with the main task being to identify which features are predictive and how
they can be incorporated into an interpretable model. This paper showcases how telematics data
can be used to cluster insureds into groups with similar driving profiles. By identifying
homogeneous groups, insurance companies can offer differential pricing based on actual driving
behaviour and tendencies, rather than relying solely on traditional proxies like age.

Premiums under a PAYD policy are calculated based on distance driven, while premiums
under a PHYD policy incorporate driver behaviour – for example, acceleration, cornering, and
braking habits – as well as road type, time of day, and day of the week the vehicle is used on.
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The concept of UBI was first proposed by Vickrey (1968). This innovative idea differed from
traditional insurance, which relies solely on a priori information, in that UBI premiums are
dynamic, changing with how, when, and where a person drives. However, in the 1960s, it was not
possible to monitor drivers in the way we can now via GPS and accelerometers. Using such data,
we aim to deepen our understanding of the relationship between driving behaviour and the
occurrence of claims.

Traditional insurance has relied on data from questionnaires and previous driver history.
Premiums have typically varied depending on factors such as gender, age, experience, profession,
marital status, vehicle type, credit rating, and local crime rates. However, some of these factors are
protected in certain regions. For instance, a European Union ruling came into effect in 2012,
banning the use of gender in premium calculation, to ensure non-discrimination between women
and men. Telematics data have been shown to make gender a redundant factor by Verbelen et al.
(2018) and Ayuso et al. (2016a). To incorporate the distance driven, insurers have previously had
to rely on estimations provided by the insured. However, drivers are more likely to underestimate
their annual mileage, as it can result in cheaper car insurance and because it is difficult to forecast
accurately. Furthermore, the addition of telematics data to claim frequency modelling has shown
that there is a non-linear relationship between claims and annual mileage, contradicting common
practice in the industry (Paefgen et al., 2014). Guillen et al. (2019) and Chan et al. (2024) found
evidence of a “learning effect” for drivers, suggesting that, in general, longer driving should result
in higher premiums, but there should be a discount for drivers who accumulate longer distances
persistently over time due to the increased proportion of zero claims for such drivers. We also note
that Boucher et al. (2017) found a “learning effect”, but this was subsequently rejected by Boucher
and Turcotte (2020). In the latter paper, they derived an approximate linear relationship between
distance driven and claim frequency by capturing residual heterogeneity through a Poisson fixed
effects model.

UBI premiums are calculated using telematics data from a variety of sources. In the early days
of UBI, one such source was the odometer, which records the distance travelled by a vehicle. As
cars have become more technologically advanced, this data frequently comes from devices
installed in the vehicle via the on-board diagnostics port (Meng et al., 2022) or from mobile phone
applications installed on the driver’s phone (Carlos et al., 2019). Vehicle diagnostics can be used in
premium calculations, as they could be used to assess the condition of a vehicle, with Li et al.
(2023) incorporating tyre pressure, fuel consumption, and abnormal vehicle status information
into their models to propose risk mitigation strategies for drivers. Data from accelerometers can
also be used in premium calculations. Accelerometer data have shown that harsh acceleration,
braking, and cornering (Henckaerts & Antonio, 2022; Ma et al., 2018; Guillen et al., 2020; Guillen
et al., 2021) are associated with claims or near-miss events. GPS data can also provide the same
information as an accelerometer, and this has been extensively modelled in the literature by
Wüthrich (2017), Weidner et al. (2017), Gao and Wüthrich (2018), Gao et al. (2019a), Gao et al.
(2019b), Gao et al. (2022), and Sun et al. (2020). Zhu andWüthrich (2021), in particular, used GPS
data for clustering drivers with similar driving profiles via the K-means algorithm. Our clustering
analysis differs not only in the features used but also in the methodology, as we use Gaussian
Mixture Models to cluster policyholders. The Gaussian mixture model offers increased flexibility
in the shape of the clusters.

The benefits of UBI include incentivising safer driving habits, as the dynamic pricing system
can act as a feedback loop to the insured (Stevenson et al., 2021). For example, a driver would see
an increase in their premium from excessive speeding. Safer driving practices lead to a reduction
in accidents and, hence, claims. The feedback also offers a quantification of risk to drivers that is
not currently available. Progressive Insurance advises policyholders in their UBI programme,
Snapshot, that they will be penalised for late-night driving, as it can be more dangerous.
This conclusion was also found in the literature by Verbelen et al. (2018), Henckaerts and
Antonio (2022), and Ayuso et al. (2016b). The ability to associate a tangible amount of money
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with this activity may influence drivers to postpone non-essential journeys to safer times when
possible.

The variable rate that can be offered on some UBI policies deters unnecessary driving, which in
turn reduces congestion and carbon emissions (Ferreira Jr. & Minikel, 2012). For example, on
short-distance journeys, policyholders may opt to cycle or walk. As UBI can offer savings relative
to traditional insurance, it can reduce the number of uninsured currently driving and can also
reach historically underserved communities. For low-mileage and low-risk drivers, it reduces their
premiums. Cheng et al. (2022) considered maximising the utility of a policyholder, as a function of
usage and wealth. They found that UBI insurance has a greater impact on auto usage than fuel
price does for low-mileage drivers. They also derived a cut-off mileage value below which a
policyholder with traditional insurance will switch to UBI insurance.

The benefits discussed so far pertain to the insured, the wider society, and the environment, but
there are also benefits to insurers. UBI mitigates adverse selection as it shares driving risk factors
that were previously only known by the insured, such as where, when and how someone was
driving (Ma et al., 2018). Similarly, UBI eliminates moral hazard, as the insured pays a higher cost
for increasing their risk (Jin & Vasserman, 2021). The information ascertained from UBI
programmes also improves actuarial accuracy as telematics data have been shown to increase the
predictive power of claim frequency models by Gao et al. (2019), Meng et al. (2022), and Maillart
(2021). Henckaerts and Antonio (2022) similarly found that the use of telematics data increases
the expected profits and retention rates for insurers. Although research on this topic is limited, it
can be argued that UBI may help reduce instances of fraud. Telematics data can be used to verify
the legitimacy of claims, potentially exposing “crash-for-cash” scams. Ghost accidents – accidents
that never occurred – can easily be disputed since the data to support them will not exist. Induced
accidents, which target innocent drivers to be the party at fault, can also be contested since the data
will show the deliberate behaviour of the fraudulent claimant. Additionally, cars with telematics
devices are more likely to be fitted with cameras that can record accidents. Staged accidents, where
both parties are guilty of fraud, can be disproven in a similar fashion.

With clear benefits to the insured and the insurer, and technology now capable of recording,
transmitting, and storing large amounts of telematics information, the main challenge now lies in
analysing it. The first question is how to approach such a task. Baecke and Bocca (2017) suggest
that 3 months of driving behaviour data is already sufficient to make the most accurate
predictions. We use a two-step approach: first, clustering policyholders and then fitting cluster-
specific regression models to predict auto insurance claims. This approach is similar to a “mixture
of experts” method, as we divide the problem of risk assessment into two. First, we identify
homogeneous groups, and then we build distinct claim prediction models for each group.

The remainder of this paper is organised as follows. In section 2, we introduce the telematics
data set, detailing the processes of cleaning, standardising, and splitting the data, along with some
exploratory data analysis. In section 3, we discuss our methodology, which includes Gaussian
mixture models, principal component analysis (PCA), regression, and our model selection
procedure. In section 4, we identify the optimal number of components for clustering, as well as
the features and link function for the regression. We also discuss the driving profiles that emerge
from the clustering solutions. Concluding remarks are then provided in section 5.

2. Data
The data set used in this paper was emulated from a real insurance data set, collected by a
Canadian-owned insurance co-operative under a UBI programme between 2013 and 2016, as
described by So et al. (2021b). In total, over 70,000 policies were observed, from which 100,000
policies were then simulated. The telematics information acquired was subsequently pre-
engineered or summarised for use in modelling, such as the number of sudden accelerations at
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6 mph/s per 1,000 miles. The exact method used to synthesise the data is detailed in the
aforementioned paper. The prevalence of claims in the synthetic data set is relatively low
(approximately 4.27%). Information is also available on the exact number of claims for each
policyholder. There were 4,061 policyholders with one claim, 200 policyholders with two claims,
and 11 policyholders with three claims. These claims occurred during the duration of the policy.
As the number of policyholders making more than one claim is so small, we focused on modelling
claim probability rather than claim frequency. The synthetic data set contains 52 variables, which
can be categorised as traditional auto insurance variables, telematics variables, or response
variables. There are 11 variables traditionally used in pricing auto insurance, such as age. There are
39 telematic features, such as the total distance driven in miles. There are two response variables,
describing the number of claims made by each policyholder and the aggregated cost of the claims.

2.1. Data Cleaning

Minor adjustments were made to some of the variables in the data set. The variables
Pct_drive_rush_am and Pct_drive_rush_pm are compositional in nature, so they were added
together to create Pct_drive_rush, which is the percentage of driving that occurs during rush hour.
Annual_pct_driven, which is the annualised percentage of time on the road, was multiplied by 365
to make it discrete and named Total_days_driven. The variable Avgdays_week, which is the mean
number of days driven per week, was dropped as it provided similar information to
Total_days_driven.

We dropped some variables from the analysis because the information they provided was
available through other variables. For example, Pct_drive_wkend and Pct_drive_wkday sum to 1, so
only Pct_drive_wkday was retained. The information provided by this variable also allowed us to
ignore Pct_drive_mon, Pct_drive_tue, Pct_drive_wed, Pct_drive_thr, Pct_drive_fri, Pct_drive_sat, and
Pct_drive_sun. We also ignored Annual_miles_drive, which is the annual miles expected to be driven
as declared by the driver, as it is highly correlated with Total_miles_driven. Territory, which is a
nominal variable with 55 unique levels describing the location code of the vehicle, was also dropped as
the number of levels resulted in a data sparsity problem.

Some variables are also bounded below by other variables. For example, Accel_06miles is
greater than or equal to Accel_08miles. This is because Accel_06miles represents the number of
sudden accelerations of at least 6 mph/s per 1,000 miles, whereas Accel_08miles represents the
number of sudden accelerations of at least 8 mph/s per 1,000 miles. PCA was performed on
variables that captured the percentage of time driving over a certain number of hours, the number
of sudden accelerations and brakes, and the number of cornerings (left-turn intensity and right-
turn intensity). The variables were all retained in their original form for use in a separate analysis,
but PCA was used to address potential issues of multicollinearity.

A list of the variables used in the modelling can be found in Table 1.

2.2. Exploratory Data Analysis

Population demographics play a key role in assessing the risk of an insurance product. The
synthetic data set, which was designed to mimic the intricacies and characteristics of real data,
may not represent the population as a whole. This may be due to the fact that the data set was
emulated from a UBI programme, which may suffer from biases such as self-selection. We
perform exploratory data analysis in this section to understand how such a bias may present itself.
We note that the data have already been pre-engineered. Thus, we do not possess data from each
journey made by a policyholder but rather a summary (often in the form of a sum or a percentage)
of their journeys made throughout the duration of the policy.

The majority of policyholders (53.9%) were male, with the remainder being female. Figure 1
shows the distribution of the age of the insured on each policy. Age ranges from 16 to 103, with an
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average of 51 years. Married policyholders comprised 69.9% of the total. We also find that 78.1%
of policyholders live in an urban environment rather than a rural one. These policyholders use
their vehicles for commuting (49.8%), private (46.1%), commercial (2.6%), and farming (1.4%)
purposes. The credit scores of policyholders are heavily skewed towards the excellent range, as
shown in Figure 2. If we consider some telematic features, we find that, on average, policyholders
spend 23.5% of their driving time in rush hour and 75% of their driving time on weekdays.
A statistical summary for every variable used in the data set is available in Appendix A, in
Tables A1, A2, and A3.

2.3. Standardisation and Splitting

We randomly divided the data set into a training, validation, and test set. The splits were 60%,
20%, and 20%, respectively. The numeric variables in the training set were then standardised by
subtracting their mean and dividing by their standard deviation. The validation and test sets were
standardised using the means and standard deviations of the training set before making
predictions in the clustering and regression steps.

3. Methodology
The Methodology section provides the basic formulation of a Gaussian mixture model, as well as a
brief history with examples of its applications and the motivation for its use in insurance

Table 1. Variables used with their meaning and type (either a response variable, a telematics variable, or a traditional
variable used in auto insurance)

Variable Meaning Type

Claim Indicates a claim during observation. Response

Pct_drive_rush Percentage of driving during rush hours. Telematics

Pct_drive_wkday Percentage of driving during weekdays. Telematics

Pct_drive_Xhrs Percentage of driving within 2/3/4 hours. Telematics

Total_miles_driven Total distance driven in miles. Telematics

Total_days_driven The number of days a policyholder uses a vehicle in a year. Telematics

Left_turn_intensityXX Number of left turns per 1,000 miles with intensity 08/09/10/11/12 mph/s. Telematics

Right_turn_intensityXX Number of right turns per 1,000 miles with intensity 08/09/10/11/12 mph/s. Telematics

Brake_XXmiles Number of sudden brakes at 06/08/09/11/12/14 mph/s per 1,000 miles. Telematics

Accel_XXmiles Number of sudden accelerations at 06/08/09/11/12/14 mph/s per 1,000 miles. Telematics

Insured_sex Sex of the insured driver (Male/Female). Traditional

Insured_age Age of the insured driver, in years. Traditional

Marital Marital status of the insured driver (Single/Married). Traditional

Region Type of region where driver lives (Rural/Urban). Traditional

Car_age Age of vehicle, in years. Traditional

Car_use Use of vehicle (Private/Commute/Farmer/Commercial). Traditional

Years_noclaims Number of years without a claim. Traditional

Credit_score Credit score of the insured driver. Traditional

Duration Duration of the insurance coverage of a given policy, in days. Traditional

British Actuarial Journal 5

https://doi.org/10.1017/S135732172500008X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172500008X


modelling. We describe the Expectation-Maximisation (EM) algorithm used to compute the
model parameters, which include the mixture probabilities, as well as the mean and covariance, for
the multivariate Gaussian distributions. We reference PCA as a way to address multicollinearity in
the telematics data and regression modelling as a way to predict claims. The final subsection
details the model selection process.

Figure 1. Histogram of the ages of the insured on each policy.

Figure 2. Bar plot of the credit scores of the insured on each policy.
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3.1. Gaussian Mixture Modelling

Some of the earliest analyses involving Gaussian mixture models date back to the work of Pearson
(1894) in modelling the breadth of crab foreheads as a mixture of two Gaussian probability density
functions and using the method of moments to solve for the model parameters. The method of
maximum likelihood for a similar problem was examined by Rao (1948), who modelled the height
of two different plants grown on the same plot. The use of Gaussian mixture models has increased
in popularity over the last few decades, due in large part to the EM algorithm and its convergence
properties (Dempster et al., 1977). Gaussian mixture models have been successfully applied to
various fields and industries, including agriculture, finance, medicine, and psychology.
Applications include building a probabilistic model for the underlying sounds of people’s voices
(Reynolds & Rose, 1995) and for feature classification and segmentation in images (Permuter
et al., 2006). Gaussian mixture models have also been shown to successfully identify drivers by
Jafarnejad et al. (2018), although the features used differ from those available in our data set.

Gaussian mixture models offer a flexible probabilistic approach that can represent the presence
of sub-populations within the overall population. Individuals in the population can then be
clustered together based on the likelihood that they belong to each component. Even when the
data follows an unknown or complex distribution that may not be normally distributed, Gaussian
mixture models can provide a good approximation to the underlying structure. This framework
suits insurance modelling as certain characteristics may make some groups of people riskier to
insure than others. Age is known to be a major factor in auto insurance premium pricing, with
younger drivers quoted higher premiums due to their lack of experience and propensity for
accidents relative to older drivers. Individuals in the same cluster are deemed similar by the
Gaussian mixture model, meaning they may possess a similar risk profile for auto insurance.
Fitting separate regression models to each cluster allows for different relationships between the
response and the predictor variables.

Under a mixture model with G components, it is assumed that the p-dimensional random
vector x takes the form,

f x;Ψ� � �
X

G
g�1

πg fg x; θg
� �

; (1)

where Ψ � π1; . . . ;πG; θ1; . . . ; θGf g denotes the model parameters and fg x; θg
� �

is the g th mixture
density. The mixing probabilities πg are subject to two conditions: πg > 0 for all g, andP

G
g�1 πg � 1. A further assumption that the components follow a (multivariate) Gaussian

distribution means that fg x; θg
� � � N µg ;Σg

� �
. This produces clusters that are ellipsoidal and

centred at the p-dimensional mean vector � � �� µg . Using eigen-decomposition, the p × p
matrix Σg can be expressed as Σg � λgDgAgDT

g . The λ term determines the cluster volume, the
orthogonal matrix D determines the cluster orientation, and the diagonal matrix A with Aj j � 1
determines the cluster shape. All three components can be fixed or vary across mixtures.

Our analysis was performed using the scikit-learn package (Pedregosa et al., 2011) in Python.
This package allows four types of Gaussian mixture models to be fitted. The simplest model is
“spherical”, which has Σg � λgI, where I is the identity matrix. This means that Dg � Ag � I.
This model produces clusters that are spherical, can vary in volume, and are equal in shape. The
covariance matrix has G free parameters. The next model is “diag”, which has Σg � λgAg , so
D � I. This model produces mixtures that are diagonal, variable in volume and in shape, and
oriented along the coordinate axes. The covariance matrix for these models has G × p parameters.
The third model available is “tied”, which has covariance matrix Σg � λDADT. This produces
mixtures that are ellipsoidal, and equal in volume, shape, and orientation. The covariance matrix

has
p 1�p� �

2 free parameters. The most complex model is “full” and has covariance matrix
Σg � λDgAgDT

g . This model produces mixtures that are ellipsoidal and vary in volume, shape, and
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orientation. It has the highest number of covariance parameters, with
Gp p�1� �

2 . The total number of
parameters for every model is the number of covariance parameters added to Gp� G � 1 (the
number of component mean parameters plus the number of component probability parameters).

3.1.1. Expectation-Maximisation (EM) algorithm
Under the Gaussian mixture model, each observation arises from one component of the mixture
distribution. If observation i belongs to component g, we let zig � 1; otherwise, we let zig � 0. It is
assumed that z follows a multinomial distribution, z � MultG 1;π� � where π � π1; . . . ;πGf g. To
estimate the unknown parameters, we maximise the marginal likelihood of the observed data,

L Ψ; x� � � f x;Ψ� � �
Z

f x; z;Ψ� �dz: (2)

This quantity is intractable since the component membership for each observation is
unobserved.

The E-step computes the expectation of the conditional probability that observation i belongs
to component g given the current parameter estimates. Denote this quantity by Q at iteration
t � 1:

Q Ψ;Ψ t� �� � � Ezjx;Ψ t� � log L Ψ; x; z� �� �
: (3)

The M-step computes the maximum likelihood estimate for the model parameters. Thus, at
iteration t � 1, Ψ is given by

Ψ t�1� � � argmax
Ψ

Q Ψ;Ψ t� �� �
: (4)

The algorithm iterates between these two steps until convergence. In practice, the algorithm
stops when the lower-bound average gain falls below a predefined threshold, for example, 0.001.

3.1.2. Variables used
Gaussian mixture modelling is better suited to continuous variables than to categorical variables,
such as the sex of the insured, the use of the car, the marital status of the insured, and the insured’s
place of residence. For this reason, these variables were not included in the clustering step.
However, they were considered during variable selection for the regression model, and some of
them feature in the final models. This left 34 variables for use in clustering, which are listed in
Table 5. We performed univariate normality tests, such as the Shapiro–Wilk test (Shapiro &Wilk,
1965) and the Kolmogorov–Smirnov test (Massey Jr., 1951), as well as some multivariate
normality tests, such as the Henze–Zirkler test (Henze & Zirkler, 1990) and the Mardia test
(Mardia, 1970). The conclusion was to reject the null hypothesis of a normally distributed data set.
This result is not surprising, given that many of the continuous variables had ranges that differed
from the real line. For example, the percentage of time driven on weekdays can only range from
0% to 100%. However, as previously mentioned, clustering may still provide an approximation of
the group structure that may exist.

3.2. Principal Component Analysis (PCA)

PCA is a useful tool that is often used to reduce dimensionality. PCA constructs a set of linear
combinations of the variables in the data subject to the constraint that each component is a unit
vector in the direction of the line of best fit that is orthogonal to the preceding vectors. This results
in a new set of variables that maximise the amount of information preserved while being
uncorrelated with each other. Often, a few components contain the majority of information in the
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data set. Therefore, it is possible to discard the other components and reconstruct the data set
using the first k components.

We compute the principal components using singular value decomposition. Let X be the n × p
matrix. Then,

X � UΣWT (5)

where U contains the left singular vectors of X, Σ is a diagonal matrix of the singular values of X
and W contains the right singular vectors of X. If we define the score matrix as T � XW and
retain only the largest k singular values and their singular vectors, Tk � XWk, then the total
squared reconstruction error,

jjTWT � TkWkjj22 � jjX � Xkjj22 (6)

is minimised by construction.
We performed PCA on the variables related to acceleration, braking, turning intensity, and

percentage of time spent driving within a certain number of hours in the training set. This
equated to 25 variables. We chose these variables as they are highly correlated and violate the
assumption of independence for generalised linear models. Figure 3 shows the explained
variance ratio and the cumulative explained variance ratio for the principal components. We
use the first three principal components, as they account for approximately 73% of the
variance in the data set.

Table 2 shows the loading matrix for the three principal components. The loading matrix is
given byW

����
Σ

p
and is interpreted as the weights applied to each original variable when calculating

the principal component values. We see that the first principal component measures the effect of
accelerating and braking because larger values of this principal component are associated
with higher numbers of sudden accelerations and brakes at speeds of at least 6, 8, 9, 11, 12, and
14 mph/s per 1,000 miles. However, the lowest recorded speed, 6 mph/s, has the smallest relative
weight. The second and third principal components are influenced by the left and right
turn intensity variables. Larger numbers of left and right turns at intensities of 8, 9, 10, 11, and
12 mph/s per 1,000 miles result in larger values of the second component. However, in the third
component, we observe that larger left-turn intensities correspond to negative principal
component values. The sign of this component may indicate a propensity to make left or right
turns at higher speeds. The fourth principal component comprises the percentage of time driven
under 2, 3, or 4 hours, although we did not include it in our regression analysis as there is a drop-
off between the third and fourth principal components.

Figure 3. PCA explained variance ratio and cumulative PCA explained variance ratio versus number of principal
components. The first three principal components were ultimately chosen to be used for modelling.
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3.3. Regression of Binary Outcomes

The challenge with this data set is to estimate the probability that a driver makes a claim over the
duration of their policy. The claim frequency on car insurance policies is generally quite low, for
example, 4.27% in this data set. The data set consists of n � 100; 000 observations of auto
insurance policies. We are interested in modelling the dependent variable, Y , which is a binary
outcome for whether the policyholder filed a claim during the duration of the policy,

yi � 0; if policy i did not make a claim
1; if policy i made a claim

�

Under the generalised linear model, it is assumed that each Yi follows a Bernoulli distribution
with probability pi of a claim being made, that is, Yi � Bern pi

� �
.

We analyse all link functions that are available and respect the domain of the Binomial family
in the statsmodels package (Seabold & Perktold, 2010). These include the logit, probit, log-log,
complementary log-log, and Cauchy link functions. Figure 4 shows a plot of these link functions

Table 2. Loading matrix for the first three principal components. pca was performed on the telematics variables, which are
listed in the variable column

Variable PC 1 PC 2 PC 3

Accel_06miles 0.44 −0.00 0.01

Accel_08miles 0.81 −0.00 −0.00

Accel_09miles 0.91 −0.00 −0.00

Accel_11miles 0.94 −0.00 −0.00

Accel_12miles 0.96 −0.00 −0.00

Accel_14miles 0.92 −0.00 −0.00

Brake_06miles 0.34 0.01 0.00

Brake_08miles 0.80 0.00 −0.00

Brake_09miles 0.95 −0.00 −0.00

Brake_11miles 0.96 −0.00 −0.00

Brake_12miles 0.95 −0.00 −0.00

Brake_14miles 0.91 −0.00 −0.00

Left_turn_intensity08 0.00 0.93 −0.29

Left_turn_intensity09 0.00 0.94 −0.29

Left_turn_intensity10 0.00 0.95 −0.30

Left_turn_intensity11 0.00 0.94 −0.30

Left_turn_intensity12 0.00 0.93 −0.30

Pct_drive_2hrs −0.04 0.00 −0.01

Pct_drive_3hrs −0.01 −0.01 −0.01

Pct_drive_4hrs −0.01 −0.00 −0.01

Right_turn_intensity08 0.01 0.29 0.89

Right_turn_intensity09 0.01 0.30 0.93

Right_turn_intensity10 0.00 0.31 0.94

Right_turn_intensity11 0.00 0.30 0.93

Right_turn_intensity12 0.00 0.30 0.92
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for comparison. The logit is the canonical link function for the Binomial distribution. The probit
link is the inverse of a standard normal cumulative distribution function and produces thinner
tails than the logit. The log-log and complementary log-log link functions differ from the others in
that they are both asymmetric, that is, g x� �≠ �g 1 � x� �. In the context of this paper, for the log-
log link, the probability of a claim remains very small for low values of the linear predictor but
increases sharply for higher values. The opposite can be inferred for the complementary log-log
link function. The Cauchy link function produces the heaviest tails of all the functions. The
probabilities approach 0 and 1 very slowly for linear predictor values that are large in magnitude.

Table 3 shows the respective link functions and their inverses. Note that XT is the n × p design
matrix and β is a p × 1 vector of regression coefficients. The regression coefficients are estimated
using maximum likelihood estimation. A closed-form expression does not exist, so they are
instead calculated using an iteratively reweighted least squares algorithm. Full details can be found
in McCullagh (2019).

3.4. Model Selection

Model selection is a two-step process. First, we perform clustering, and then we fit the regression
models. The Gaussian mixture model requires an initial number of components and a covariance

Table 3. Link functions and their inverses that are available in the statsmodels package

Name Link Inverse

Logit log p
1�p

� 	
� XTβ p � exp XTβ� �

1�exp XTβ� �

Probit Φ�1 p� � � XTβ p � Φ XTβ
� �

Log-Log �log �log p� �� � � XTβ p � exp �exp �XTβ
� �� �

Complementary Log-Log log �log 1 � p� �� � � XTβ p � 1 � exp �exp XTβ
� �� �

Cauchy tan π p � 1
2

� �� � � XTβ p � 1
π
arctan XTβ

� �� 1
2

Figure 4. Plot of logit, probit, log-log, complementary log-log, and Cauchy link functions.
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structure, so the optimal number of components and the optimal covariance structure must be
identified. Similarly, for the regression models, we must determine which features to include.

3.4.1. Choosing the number of components
The Gaussian mixture model was fitted using the training set. We varied the number of
components between 1 and 12. We selected 12 as the maximum because there were 12 numerical
variables when using the PCA-incorporated data set. Note that there are 34 numerical variables
when PCA is not used. For the covariance type, there were four options: “spherical”, “diag”, “tied”
and “full”. To select the optimal combination, we relied on the Bayesian information criterion
(BIC) score (Schwarz, 1978) on the validation set,

BIC � kln n� � � 2ln L̂
� �

(7)

where k is the number of parameters in the model, n is the number of observations, and L̂ is the
maximised likelihood of the model. A model that produces the lowest BIC is considered the
optimal choice. Parameters were initialised using the k-means algorithm across 10 initialisations,
selecting the best results based on BIC.

3.4.2. Feature selection
For the regression models, we used a stepwise approach with the geometric average of the recall, or
MAvG, as the performance metric. This metric was used by So et al. (2021a) in their analysis of the
data set from which our data were emulated. It originates from the work of Fowlkes and Mallows
(1983). If we let Ri be the recall (or sensitivity) for class i, then MAvG is given by

MAvG � �R1 × . . . × Rk�1k: (8)

The recall is the number of correctly predicted instances divided by the total number of relevant
instances. In our data set, we have two classes, with observations either having made a claim or
not. Thus, the formula reduces to the square root of the true positive rate TP

P

� �
times the true

negative rate TN
N

� �
,

MAvG �
����������������������������������
TP
P


 �
×

TN
N


 �s
: (9)

In our setting, TP is the number of correctly predicted claims by the model, P is the number of
claims in the data set, TN is the number of correctly predicted no claims by the model, andN is the
number of no claims in the data set. A regression model that maximises this value will produce the
optimal classifier, as it penalises models that perform poorly in one of the classes. In our case, we
have an imbalanced data set with over 95% of the observations never having made a claim. More
basic metrics, such as classification accuracy, will favour models that perform well in predicting
the majority class (no claims).

We used forward selection, adding a variable to the model if it increased the MAvG on the
validation set and had the greatest impact among all candidate variables. The number of candidate
variables was larger for the regression step than the clustering step as we included four categorical
variables (insured_sex, marital, region, and car_use) and allowed quadratic and cubic polynomials
for the numerical variables. For the non-PCA data set, this meant there were 106 candidate
variables to select from, while for the PCA-incorporated data set, there were 34 candidate
variables. We also allowed the link functions to vary, with five to choose from, as previously listed
in Table 3.
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3.4.3. Claim prediction
We classify an observation as a claim if the predicted claim probability exceeds a certain threshold.
Using 0.5 as a threshold often results in the majority of cases being predicted as no claim.
Therefore, we select an optimal cut-off point based on the receiver operating characteristic (ROC)
curve (Bradley, 1997). Using the validation set, we select the cut-off point that maximises the
difference between the recall TP

P

� �
and the false positive rate (FPR), which is the number of

incorrectly predicted claims divided by the total number of actual no claims,

FPR � FP
N

: (10)

4. Results
4.1. Optimal Number of Components

Figure 5 shows the BIC scores for the Gaussian mixture models on the validation set, using both
the data set without PCA and the data set with PCA. Using the full covariance structure results in
the lowest BIC score, so we deduce that this is the optimal covariance structure to use. To decide
on the number of components, we could employ the common heuristic of searching for the BIC
elbow. However, we see a gradual decrease from two to twelve components. Therefore, additional
analysis of the clustering solutions and their silhouette plots (Rousseeuw, 1987) is required.

Figure 6 shows the average silhouette scores for the Gaussian mixture models on the validation
set using the data set without PCA and with PCA. The silhouette score for an observation i is
defined as

s i� � � b i� � � a i� �
max a i� �; b i� �	 
 (11)

where a i� � � 1
CIj j�1

P
j2CI ;i≠ j d i; j

� �
, b i� � � minJ≠ I

P
j2CJ

d i; j
� �

, d �; �� � is the Euclidean distance
between the observations, and CIj j is the number of points belonging to cluster I. The silhouette
score is a measure of how similar an observation is to its own cluster compared to observations
from other clusters. The values range from −1 (worst) to +1 (best). Across all covariance types,
using both data sets (using continuous and discrete variables, or continuous, discrete, and
principal components), we see the largest average silhouette score when the number of

Figure 5. BIC scores for Gaussian mixture models with number of components ranging from 1 to 12. Data used in the left
subplot include continuous and discrete variables, while the right subplot includes continuous, discrete, and principal
components.

British Actuarial Journal 13

https://doi.org/10.1017/S135732172500008X Published online by Cambridge University Press

https://doi.org/10.1017/S135732172500008X


components is equal to two. However, when we analyse the individual silhouette scores for every
observation, we see that the majority cluster has large positive silhouette scores, whereas the
minority cluster has large negative silhouette scores. This suggests that the data is better clustered
in a single cluster rather than two. We also note from Figure 6 that in most cases, the average
silhouette score converges to the same value for all clustering solutions with three or more
components. Once again, by examining the individual silhouette scores for every observation, we
can explain this result: there are three large clusters with every subsequent cluster containing a
small number of observations. Having a small number of observations in a cluster is problematic
for the regression step, as we have 34 features to select from. We therefore conclude that the best
clustering solution generated comes from a Gaussian mixture model with three components and a
full covariance structure.

The cluster proportions are similar for the model with and without the PCA variables, so we
next investigate how alike the clustering results are. Table 4 shows the confusion matrix for the
clustering results on the validation data. Cluster 0 and Cluster 2 from the model with PCA are
most similar to Cluster 2 and Cluster 1 from the model without PCA. However, the clustering
results have an adjusted Rand index (Hubert & Arabie, 1985) of 0.0777. The adjusted Rand index
is a measure of similarity between clustering solutions that has been corrected for chance. It takes a
maximum value of 1 for perfect labelling, while random labelling is expected to produce a score
of 0. The adjusted Rand index can also produce negative scores.

Figure 6. Average silhouette score for Gaussian mixture models with number of components ranging from 1 to 12. Data
used in the left subplot include continuous and discrete variables, while the right subplot includes continuous, discrete, and
principal components.

Table 4. Confusion matrix comparing the clustering results for the model incorporating the principal components and the
model without the principal components on the validation data set. Adjusted Rand Index = 0.0777

With PCA

Cluster 0 Cluster 1 Cluster 2 Total

Cluster 0 2932 1989 457 5378

Cluster 1 10 40 224 274

Without PCA Cluster 2 9542 4806 0 14348

Total 12484 6835 681 20000
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4.2. Driving Profiles without PCA

By analysing the claim rates and variable means of the observations in each cluster, we can start to
paint a picture of the type of drivers present in them. Figure 7 shows the percentage of claims
by cluster and the proportion of policyholders in each cluster in the training set without PCA.
Cluster 2 is the least risky portfolio, with 3.76% of the policyholders making a claim. Cluster 1 is
the most risky, with a claim rate of 6.20%, while Cluster 0 had a claim rate of 5.28%. For reference,
the entire training set had a claim rate of 4.195%. We can refer to Cluster 0, Cluster 1, and
Cluster 2 as medium-risk, higher-risk, and lower-risk groups, respectively. Cluster 2 is the largest
cluster, containing 72.00% of policyholders, followed by Cluster 0 with 26.65% of policyholders,
while Cluster 1 is the smallest cluster, with just 1.35%.

The cluster means are in Table 5. Cluster 2, the lower-risk group, has policyholders who have
the smallest number of sudden accelerations, sudden brakes, and left and right cornerings per
1,000 miles at all intensities. Policyholders in this cluster are also older, have higher credit scores,
newer cars, and have more years without a claim on average than policyholders in the other
clusters. The length of their policy is also closer to half a year than a full year. Despite being the
lower-risk group, the policyholders, on average, have the most days driven and the most total
miles driven. Cluster 1 is the least populated category and contains higher-risk policyholders with
a large number of sudden accelerations, sudden brakes, and left and right cornerings per 1,000
miles at all intensities. This is despite accruing the lowest average amount of miles and days driven.
Policyholders in Cluster 1 have the fewest years without a claim, though this value is quite close to
that of Cluster 0. They also have the oldest cars and lowest credit scores. Finally, Cluster 0, the
medium-risk group, contains the youngest drivers, although their average age is close to that of
Cluster 1. Whereas the higher-risk group and lower-risk groups are the largest or smallest in
certain categories, such as the number of sudden accelerations, sudden brakes, left and right
cornerings, car age, and the number of years with no claim. The medium-risk group falls between
them on average. We note there is very little difference, on average, between the policyholders’
time spent driving in rush hour and on weekdays.

Figure 7. Bar chart showing percentage of claims made by cluster (left) and pie chart showing percentage of training set
that belongs to each cluster (right). Clusterings performed using the data set without PCA. Cluster 0 had a claim percentage
of 5.28%, Cluster 1 had a claim percentage of 6.20%, and Cluster 2 had a claim percentage of 3.76%.
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Table 5. Cluster means for Gaussian mixture model fitted on the data set without PCA

Variable Cluster 0 Cluster 1 Cluster 2

Accel_06miles 79.16 207.33 26.77

Accel_08miles 9.27 76.92 1.47

Accel_09miles 3.23 49.09 0.36

Accel_11miles 1.46 34.44 0.14

Accel_12miles 0.71 23.39 0.05

Accel_14miles 0.45 16.87 0.02

Brake_06miles 124.57 220.58 66.00

Brake_08miles 14.97 66.54 6.56

Brake_09miles 4.76 40.62 1.81

Brake_11miles 1.95 28.75 0.64

Brake_12miles 0.85 21.03 0.13

Brake_14miles 0.50 15.73 0.02

Car_age 6.33 7.19 5.37

Credit_score 791.78 769.03 804.52

Duration 319.78 315.18 312.52

Insured_age 48.70 49.11 52.32

Left_turn_intensity08 605.46 49907.81 169.84

Left_turn_intensity09 314.47 46603.26 71.02

Left_turn_intensity10 102.95 41018.73 16.23

Left_turn_intensity11 45.18 37946.47 5.60

Left_turn_intensity12 18.94 35813.20 1.86

Pct_drive_2hrs 0.01 0.00 0.00

Pct_drive_3hrs 0.00 0.00 0.00

Pct_drive_4hrs 0.00 0.00 0.00

Pct_drive_rush 0.24 0.24 0.23

Pct_drive_wkday 0.75 0.77 0.75

Right_turn_intensity08 981.81 25788.64 307.88

Right_turn_intensity09 569.73 22325.12 147.50

Right_turn_intensity10 222.24 17737.70 40.84

Right_turn_intensity11 108.85 15855.49 15.44

Right_turn_intensity12 49.99 14048.05 5.41

Total_days_driven 176.60 134.99 187.21

Total_miles_driven 4243.25 2730.08 5095.35

Years_noclaims 25.60 24.79 29.99
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4.3. Driving Profiles with PCA

Figure 8 shows the percentage of claims by cluster and the proportion of policyholders in each
cluster for the training set with PCA. Cluster 0 and Cluster 2 have similar claim rates of 5.05% and
5.86%, respectively. Cluster 0 is the largest cluster, containing 63.06% of observations, while
Cluster 2 is the smallest, with 3.33%. Cluster 1 is the lowest risk group, with a claim rate of only
2.43%, accounting for the remaining 33.61% of the data.

The cluster means are in Table 6. Cluster 2 has the largest values for all three principal
components, which implies a large number of sudden accelerations, sudden brakes, and left and

Figure 8. Bar chart showing percentage of claims made by cluster (left) and pie chart showing percentage of training set
that belongs to each cluster (right). Clusterings performed using the data set with PCA. Cluster 0 had a claim percentage of
5.05%, Cluster 1 had a claim percentage of 2.43%, and Cluster 2 had a claim percentage of 5.86%.

Table 6. Cluster means for Gaussian mixture model fitted on the data set with PCA

Variable Cluster 0 Cluster 1 Cluster 2

Car_age 5.42 5.99 6.49

Credit_score 786.93 828.39 780.56

Duration 365.44 218.73 316.32

Insured_age 47.66 58.59 47.00

PCA1 −0.19 −0.03 3.97

PCA2 −0.10 −0.10 2.89

PCA3 −0.03 −0.03 0.94

Pct_drive_rush 0.25 0.21 0.25

Pct_drive_wkday 0.74 0.76 0.75

Total_days_driven 203.30 149.07 161.49

Total_miles_driven 5734.29 3295.96 3382.56

Years_noclaims 25.10 36.10 23.55
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right cornerings at high intensity. Policyholders in this cluster also have the oldest cars and lowest
credit scores on average. The average principal components are similar for Cluster 0 and Cluster 1;
however, they differ in more traditional variables. For example, Cluster 1 has the oldest drivers, the
most years without a claim, the lowest miles and days driven, and a policy duration that is much
closer to half a year on average than the other clusters. Cluster 0 has, on average, the most miles
driven.

4.4. Optimal Feature and Link Function

In the stepwise approach to finding the optimal model, we allowed the clustering solution to vary
based on covariance structure and number of components, as well as assessing performance on the
PCA-incorporated data and non-PCA data set. This required performing the stepwise approach
on 450 different clustering solutions. Figure 9 shows the MAvG averaged across the different
variations. We observe some trends, such as the non-PCA data set producing a higher MAvG on

Figure 9. The average MAvG of models based on the test data set with or without PCA (top left), for different covariance
structures (top right), for different number of components (bottom left), and for different link functions (bottom right). Error
bars represent the minimum and maximum values.
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average. We note that, on average, performing no clustering leads to a higher MAvG, but the
maximumMAvG is obtained using the full covariance structure in the clustering model. The same
can be said for the number of components: without clustering, we have a higher average, but the
maximum is obtained when the number of components is three. Finally, on average, the log-log
link function produces the highest MAvG. Table 7 shows the top five models based on MAvG. We
see that the optimal model does not incorporate PCA variables, the number of components equals
three, the covariance structure is full, and the log-log link function is used.

Table 7. MAvG of the test set for the top 5 models

PCA Number of Components Covariance Structure Link Function MAvG

Not Included 3 Full loglog 0.719

Not Included 2 Spherical loglog 0.716

Not Included 2 Full loglog 0.716

Not Included 8 Tied logit 0.716

Not Included 6 Full logit 0.716

Table 8. Mean, standard error, and 95% confidence intervals for variables in the optimal regression models. All variables
are statistically significant at the 5% level

Cluster 0

Variable Mean Standard Error 95% CI

Intercept −1.1978 0.015 [−1.226, −1.169]

Total_miles_driven 0.1787 0.016 [0.147, 0.210]

I(Years_noclaims ** 3) −0.0478 0.007 [−0.062, −0.034]

I(Total_days_driven ** 3) 0.0800 0.008 [0.065, 0.095]

Cluster 1

Variable Mean Standard Error 95% CI

Intercept −1.0788 0.091 [−1.257, −0.900]

Total_miles_driven 0.3934 0.062 [0.271, 0.516]

Duration 0.4148 0.136 [0.148, 0.682]

Cluster 2

Variable Mean Standard Error 95% CI

Intercept −1.1065 0.055 [−1.215, −0.998]

I(Total_days_driven ** 3) 0.0607 0.005 [0.051, 0.071]

Total_miles_driven 0.1221 0.009 [0.104, 0.140]

Credit_score −0.0684 0.008 [−0.085, −0.052]

I(Brake_12miles ** 3) 173.5526 48.343 [78.801, 268.304]

I(Car_age ** 3) −0.0261 0.004 [−0.034, −0.019]

I(Duration ** 3) 0.0228 0.005 [0.013, 0.032]

Right_turn_intensity11 4.8672 2.099 [0.754, 8.981]

I(Accel_06miles ** 3) 0.0285 0.011 [0.007, 0.050]
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Since our selection procedure so far does not consider the significance of the coefficient values,
we perform some additional fine-tuning of the models to remove variables with coefficient values
that were not statistically different from zero. For Cluster 0’s regression model, we removed the
number of sudden brakes with intensity 11 mph/s per 1,000 miles, cubed. For Cluster 1’s
regression model, we removed the age of the insured, the duration of the policy cubed, and the
number of left turns per 1,000 miles with intensity 9 mph/s, cubed. For Cluster 2’s regression
model, we removed the number of right turns per 1,000 miles with intensity 8 mph/s, the
percentage of time spent driving in rush hour cubed, and the percentage of time spent driving on

Table 9. Cut-off points for the optimal regression model. Optimal cut-off points based on the ROC curve so that it
maximises the difference between the recall and the false positive rate

Cluster 0 Cluster 1 Cluster 2

Cut-Off 0.04354 0.06147 0.03595

Figure 10. Partial dependence plots for Cluster 0’s regression model.
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weekdays cubed. The final model output can be seen in Table 8. Since the numerical variables have
been standardised, we interpret the coefficients based on changes in a standard deviation rather
than a unit change. This model tuning produces an MAvG of 0.717, which is slightly lower than
before but still represents the optimal model compared to others tested. Table 9 shows the cut-off
points to decide whether a policy will produce a claim or not.

To better understand the relationship between the covariates and the response variable, we
produced partial dependence plots in Figures 10, 11, and 12 for the respective clusters. The claim
probability for Cluster 0 depends on total miles driven, number of years with no claim, total days
driven, and the number of sudden brakes at 9 mph/s per 1,000 miles. It can be said that
policyholders that have similar driving profiles and get assigned to this cluster can expect their
claim probability to increase with the total miles they drive, the total days they drive, and the
number of sudden brakes they make, while it will decrease with the number of years they have
without a claim.

The claim probability for policyholders in Cluster 1 depends only on the total miles they have
driven and the duration of their policy. We recall that this cluster had the highest claim rate,
although it was close to that of Cluster 0. While claim probability in this cluster also increases with
total miles driven, it does so at a much steeper rate than in Cluster 0. We also note that this cluster
had the fewest policyholders and the smallest average number of miles driven compared to the
other clusters.

Finally, the largest cluster, Cluster 2, also produces the most complex regression model. The
claim probability increases with total miles driven, total days driven, policy duration, sudden
accelerations, sudden brakes, and the number of right turns at larger intensities, while it decreases
with credit score and car age.

4.5. Calibration

To inspect how well-calibrated the regression model is, we examine the predicted probabilities in
the context of the observed proportions. We divided the probabilities output from the regression
models into 100 bins. For example, if an observation is assessed as having a 5.5% chance of making
a claim then it is placed into the bin with other observations that range from 5% to 6% probability.
To calculate the observed proportions for each bin, we sum the number of claims of the
observations within each bin and divide by the total number of observations in that bin. Figure 13

Figure 11. Partial dependence plots for Cluster 1’s regression model.
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Figure 12. Partial dependence plots for Cluster 2’s regression model.
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shows this plot. A perfectly calibrated model produces a plot that tracks the dashed line. For
example, observations with a predicted claim probability between 5% and 6% would have an
observed proportion of 5.5%. We removed instances with fewer than two observations in a bin as
observed proportions of 0, 0.5, or 1.0 are not informative due to the small sample size.

We also included a histogram with kernel density estimation of the test set, with observations
grouped by claim or no claim. In Figure 14, over 98% of observations are assigned probabilities
below 0.20. Referring back to the calibration plot, if we focus on the predicted probabilities
between 0.0 and 0.20, which account for the majority of observations, we see that the models
perform close to the perfectly calibrated line. Outside this region, there is a lot of variation in the
observed proportions, but this is based on a small sample.

In addition to inspecting the results visually, we used the Hosmer–Lemeshow statistic (Hosmer
& Lemesbow, 1980) to measure the goodness-of-fit of the probabilities. Under the null hypothesis,
which states that the observed and expected proportions are the same, the Hosmer–Lemeshow
statistic follows a χ2

gi�2 distribution where gi is the number of groups that the probabilities of
cluster i are divided into. The statistic is given by

C ��
X

gi
j�1

�oj � njπj�2
njπj 1 � πj

� � ; (12)

where oj is the number of observed claims in group j, nj is the number of observations in group j
and πj is the average predicted claim probability in group j. As recommended by Paul et al. (2013),
we set gi � 10 for samples smaller than 1,000. For samples between 1,000 and 25,000, we let

Figure 13. Calibration plot for regression probabilities in the test set for the optimal model.
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gi � max 10;min
O
2
;
N � O

2
; 2� 8

N
1000


 �
2


 �
 �
; (13)

where N is the number of samples in cluster i and O is the number of observed claims in cluster i.
This is a method of standardising the power of the Hosmer–Lemeshow test so that the results are
comparable across clusters of different sizes. The results in Table 10 show that all clusters produce
test statistics that are not statistically significant at the 5% level, meaning we fail to reject the null
hypothesis that the observed and expected probabilities are the same.

Figure 14. Histogram with kernel density estimation for claims (1) and no claims (0) in the test set based on predictions
from the optimal model.

Table 10. Hosmer–Lemeshow statistics, p-values, and degrees of freedom for the optimal regression model on the test set

Cluster 0 Cluster 1 Cluster 2

χ2 135.43 6.08 292.5

p 0.64 0.64 0.32

df 142 8 245
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5. Conclusion
In this article, we examine how clustering can be used to segment policyholders into different risk
bands. Clustering accounts for the heterogeneous nature of the data and effectively builds driving
profiles. Rather than dividing policyholders based on conditional statements, we can divide them
in a more sophisticated statistically robust manner. While clustering assignments are more
complex, they consider all variables simultaneously. This differs from a more traditional practice
of grouping policyholders based on isolated variables such as demographic information, primarily
age. With clustering, we can also incorporate telematics data, which is more informative about a
policyholder’s driving ability and characteristics. The premiums, which are a function of claim
risk, offered using telematics information are inherently fairer than traditional methods, as they
are based on factors policyholders can control. Drivers may not be able to alter some of their
decisions, such as the percentage of time spent driving on the weekend, but they can alter the
number of sudden accelerations or sudden brakes. It also directly incentivises safer driving
practices.

The two-stage approach allows differential pricing by letting rates vary for customers despite
them having the same value for an underlying variable. For example, we found a different
relationship between claim probability and total miles driven between clusters. Despite Cluster 0
and Cluster 1 having similar claim rates, claim probability increased at a much steeper rate with
total miles driven for Cluster 1. The effects of the coefficient showed that drivers in Cluster 1 who
had accrued the same number of miles as drivers in Cluster 0 were at greater risk of making a
claim. The modelling that was performed offers explainable results and probabilistic estimates in
terms of both clustering assignments and claim risk.

Further investigation on using telematics information for insurance pricing and risk
assessment could focus on implementing real-time updates. The work completed so far takes a
year’s worth of data from a policyholder to estimate their probability of making a claim. This
allows insurers to produce better estimates of claim frequency and claim severity, provided they
have historical telematics data or estimates for the features in the following year. A future topic of
research could therefore be incorporating a Bayesian framework to make predictions for new
policyholders that do not have historical telematics data, or for making adjustments to current
policyholders’ estimates when they alter their driving habits and tendencies significantly during
the duration of the policy.

Data availability. Codes and data for reproducing the analysis in this paper are available at https://github.com/JamesHanno
n97/statistical-models-for-improving-insurance-risk-assessment-using-telematics.
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Appendix A
Appendix A.1. Descriptive Statistics

This appendix contains tables with descriptive statistics for the variables used in this paper. Table A1 shows the mean,
standard deviation, minimum, 1st quartile, median, 3rd quartile, and maximum of the telematics variables. The same summary
statistics are shown in Table A2 for the traditional auto insurance variables that are numerical, while a breakdown of the
categorical variables can be seen in Table A3. Table A4 shows the summary statistics for the principal components used in
this paper.

Table A1. Descriptive statistics for telematics variables used in this paper

Variable Mean Std Dev Min Q1 Median Q3 Max

% Driving Rush Hours 23.5 12.2 0.0 15.1 21.0 29.6 100.0

% Driving Weekdays 75.0 8.3 0.0 71.0 75.2 79.5 100.0

% Driving Within 2 Hours 0.4 0.8 0.0 0.0 0.1 0.5 45.6

% Driving Within 3 Hours 0.1 0.4 0.0 0.0 0.0 0.1 32.4

% Driving Within 4 Hours 0.0 0.3 0.0 0.0 0.0 0.0 26.6

Total Miles Driven 4833.6 4545.9 0.1 1529.9 3468.3 6779.9 47282.6

Total Days Driven 182 109 0 90 179 275 365

Left Turn Intensity (8 mph/s) 915.7 16330.9 0 7 66 361 794740

Left Turn Intensity (9 mph/s) 718.1 15666.1 0 2 22 146 794676

Left Turn Intensity (10 mph/s) 551.6 14687.9 0 0 3 30 794380

Left Turn Intensity (11 mph/s) 487.3 14198.3 0 0 1 9 793926

Left Turn Intensity (12 mph/s) 447.8 13719.8 0 0 0 2 793170

Right Turn Intensity (8 mph/s) 843.5 11630.2 0 11 122 680 841210

Right Turn Intensity (9 mph/s) 565.1 10657.4 0 3 43 321 841207

Right Turn Intensity (10 mph/s) 326.7 9460.2 0 0 7 81 841200

Right Turn Intensity (11 mph/s) 246.7 8977.6 0 0 2 27 841176

Right Turn Intensity (12 mph/s) 198.8 8585.2 0 0 0 9 841144

Sudden Brake (6 mph/s) 83.7 80.2 0 33 60 107 621

Sudden Brake (8 mph/s) 9.6 18.1 0 3 6 11 621

Sudden Brake (09 mph/s) 3.1 12.7 0 1 2 3 621

Sudden Brake (11 mph/s) 1.3 10.6 0 0 1 1 621

Sudden Brake (12 mph/s) 0.6 9.1 0 0 0 0 621

Sudden Brake (14 mph/s) 0.4 8.2 0 0 0 0 621

Sudden Accelerations (06 mph/s) 43.1 62.1 0 9 24 52 621

Sudden Accelerations (08 mph/s) 4.5 19.5 0 0 1 3 621

Sudden Accelerations (09 mph/s) 1.8 14.6 0 0 0 1 621

Sudden Accelerations (11 mph/s) 0.9 11.9 0 0 0 0 621

Sudden Accelerations (12 mph/s) 0.5 9.7 0 0 0 0 621

Sudden Accelerations (14 mph/s) 0.4 8.4 0 0 0 0 621
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Appendix A.2. Univariate Normality Tests

The following univariate normality tests are used in the paper:

• The Shapiro–Wilk test is a test of normality. The null hypothesis is that the sample, x1; . . . ; xn comes from a
normally distributed population. The test statistic is given by

W � �Pn
i�1 aix i� ��2P

n
i�1 �xi � x�2 (A1)

where x i� � is the ith order statistic and x is the sample mean. The coefficients, ai , are given by mTV�1
C , where C is

vector norm, C � �mTV�1V�1m�12, m is a vector comprised of the expected values of the order statistics of
independent and identically distributed random variables sampled from a normal distribution, and V is the
covariance matrix of the normal order statistics. The cut-off values for W are calculated through a Monte Carlo
simulation. Additional investigation of the effect size is recommended, for example, via Q–Q plots.

Table A2. Descriptive statistics for traditional numerical auto insurance variables used in this paper

Variable Mean Std Dev Min Q1 Median Q3 Max

Insured Age 51.4 15.5 16 39 51 63 103

Car Age 5.6 4.1 −2 2 5 8 20

Years With No Claims 28.8 16.1 0 15 29 41 79

Credit Score 800.9 83.4 422 766 825 856 900

Duration 314.2 79.7 27 200 365 366 366

Table A3. Breakdown of traditional categorical auto insurance variables used in this paper

Variable

Car Use Commute Private Commercial Farmer

49.8% 46.1% 2.6% 1.4%

Response No Claim Claim

95.7% 4.3%

Insured Sex Female Male

53.9% 46.1%

Marital Single Married

69.9% 30.1%

Region Rural Urban

78.1% 21.9%

Table A4. Descriptive statistics for principal components used in this paper

Variable Mean Std Dev Min Q1 Median Q3 Max

PC1 −0.0106 2.7645 −1.6884 −0.4857 −0.3018 0.0195 162.7900

PC2 0.0029 2.2857 −1.3973 −0.1244 −0.1161 −0.0846 111.2978

PC3 −0.0031 2.1381 −58.9494 −0.0383 −0.0329 −0.0088 165.0523
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• The Kolmogorov–Smirnov test is a nonparametric test of the equality of continuous one-dimensional probability
distributions that can be used to test whether a sample came from a given reference probability distribution. The
empirical distribution function Fn for n independent and identically distributed ordered observations Xi is defined as

Fn x� � � 1
n

X
n
i�1

1 �∞ ;x� 
 Xi� � (A2)

where 1 �∞ ;x� 
 Xi� � is an indicator function, equal to 1 ifXi ≤ x, and 0 otherwise. The test statistic for a given cumulative
distribution function F x� � is

Dn � sup
X

Fn x� � � F x� �j j (A3)

where supX is the supremum of the set of distances.

Table A5. Univariate tests of normality for clustering variables in the training data set

Training Set Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Sudden Accelerations (6 mph/s) 0.60 <1 × 10�2 0.24 <1 × 10�2

Sudden Accelerations (8 mph/s) 0.17 <1 × 10�2 0.41 <1 × 10�2

Sudden Accelerations (9 mph/s) 0.07 <1 × 10�2 0.45 <1 × 10�2

Sudden Accelerations (11 mph/s) 0.04 <1 × 10�2 0.47 <1 × 10�2

Sudden Accelerations (12 mph/s) 0.02 <1 × 10�2 0.48 <1 × 10�2

Sudden Accelerations (14 mph/s) 0.02 <1 × 10�2 0.48 <1 × 10�2

Sudden Brake (6 mph/s) 0.75 <1 × 10�2 0.16 <1 × 10�2

Sudden Brake (8 mph/s) 0.32 <1 × 10�2 0.30 <1 × 10�2

Sudden Brake (9 mph/s) 0.11 <1 × 10�2 0.40 <1 × 10�2

Sudden Brake (11 mph/s) 0.05 <1 × 10�2 0.45 <1 × 10�2

Sudden Brake (12 mph/s) 0.02 <1 × 10�2 0.47 <1 × 10�2

Sudden Brake (14 mph/s) 0.01 <1 × 10�2 0.48 <1 × 10�2

Car Age 0.96 <1 × 10�2 0.10 <1 × 10�2

Credit Score 0.88 <1 × 10�2 0.14 <1 × 10�2

Duration 0.6 <1 × 10�2 0.40 <1 × 10�2

Insured Age 0.98 <1 × 10�2 0.05 <1 × 10�2

Left Turn Intensity (8 mph/s) 0.02 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (9 mph/s) 0.02 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (10 mph/s) 0.02 <1 × 10�2 0.49 <1 × 10�2

Left Turn Intensity (11 mph/s) 0.01 <1 × 10�2 0.50 <1 × 10�2

Left Turn Intensity (12 mph/s) 0.01 <1 × 10�2 0.50 <1 × 10�2

% Driving Within 2 Hours 0.43 <1 × 10�2 0.32 <1 × 10�2

% Driving Within 3 Hours 0.16 <1 × 10�2 0.42 <1 × 10�2

% Driving Within 4 Hours 0.05 <1 × 10�2 0.46 <1 × 10�2

% Driving Rush Hours 0.93 <1 × 10�2 0.09 <1 × 10�2

% Driving Weekdays 0.93 <1 × 10�2 0.07 <1 × 10�2

Right Turn Intensity (8 mph/s) 0.02 <1 × 10�2 0.47 <1 × 10�2

(Continued)
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Table A5. (Continued )

Training Set Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Right Turn Intensity (9 mph/s) 0.02 <1 × 10�2 0.48 <1 × 10�2

Right Turn Intensity (10 mph/s) 0.01 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (11 mph/s) 0.01 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (12 mph/s) 0.01 <1 × 10�2 0.49 <1 × 10�2

Total Days Driven 0.94 <1 × 10�2 0.10 <1 × 10�2

Total Miles Driven 0.84 <1 × 10�2 0.14 <1 × 10�2

Years With No Claims 0.97 <1 × 10�2 0.07 <1 × 10�2

Table A6. Univariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 0

Cluster 0 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Sudden Accelerations (6 mph/s) 0.78 <1 × 10�2 0.25 <1 × 10�2

Sudden Accelerations (8 mph/s) 0.55 <1 × 10�2 0.41 <1 × 10�2

Sudden Accelerations (9 mph/s) 0.50 <1 × 10�2 0.45 <1 × 10�2

Sudden Accelerations (11 mph/s) 0.53 <1 × 10�2 0.47 <1 × 10�2

Sudden Accelerations (12 mph/s) 0.46 <1 × 10�2 0.48 <1 × 10�2

Sudden Accelerations (14 mph/s) 0.37 <1 × 10�2 0.48 <1 × 10�2

Sudden Brake (6 mph/s) 0.83 <1 × 10�2 0.17 <1 × 10�2

Sudden Brake (8 mph/s) 0.71 <1 × 10�2 0.31 <1 × 10�2

Sudden Brake (9 mph/s) 0.69 <1 × 10�2 0.40 <1 × 10�2

Sudden Brake (11 mph/s) 0.65 <1 × 10�2 0.45 <1 × 10�2

Sudden Brake (12 mph/s) 0.52 <1 × 10�2 0.47 <1 × 10�2

Sudden Brake (14 mph/s) 0.41 <1 × 10�2 0.48 <1 × 10�2

Car Age 0.98 <1 × 10�2 0.11 <1 × 10�2

Credit Score 0.89 <1 × 10�2 0.12 <1 × 10�2

Duration 0.59 <1 × 10�2 0.40 <1 × 10�2

Insured Age 0.98 <1 × 10�2 0.11 <1 × 10�2

Left Turn Intensity (8 mph/s) 0.76 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (9 mph/s) 0.71 <1 × 10�2 0.41 <1 × 10�2

Left Turn Intensity (10 mph/s) 0.62 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (11 mph/s) 0.56 <1 × 10�2 0.50 <1 × 10�2

Left Turn Intensity (12 mph/s) 0.49 <1 × 10�2 0.50 <1 × 10�2

% Driving Within 2 Hours 0.42 <1 × 10�2 0.32 <1 × 10�2

% Driving Within 3 Hours 0.23 <1 × 10�2 0.42 <1 × 10�2

(Continued)
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Table A6. (Continued )

Cluster 0 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

% Driving Within 4 Hours 0.11 <1 × 10�2 0.46 <1 × 10�2

% Drive Rush Hours 0.94 <1 × 10�2 0.07 <1 × 10�2

% Drive Weekdays 0.93 <1 × 10�2 0.05 <1 × 10�2

Right Turn Intensity (8 mph/s) 0.80 <1 × 10�2 0.47 <1 × 10�2

Right Turn Intensity (9 mph/s) 0.76 <1 × 10�2 0.48 <1 × 10�2

Right Turn Intensity (10 mph/s) 0.69 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (11 mph/s) 0.63 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (12 mph/s) 0.56 <1 × 10�2 0.49 <1 × 10�2

Total Days Driven 0.93 <1 × 10�2 0.11 <1 × 10�2

Total Miles Driven 0.81 <1 × 10�2 0.19 <1 × 10�2

Years With No Claims 0.96 <1 × 10�2 0.14 <1 × 10�2

Table A7. Univariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 1

Cluster 1 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Sudden Accelerations (6 mph/s) 0.83 <1 × 10�2 0.41 <1 × 10�2

Sudden Accelerations (8 mph/s) 0.62 <1 × 10�2 0.41 <1 × 10�2

Sudden Accelerations (9 mph/s) 0.46 <1 × 10�2 0.45 <1 × 10�2

Sudden Accelerations (11 mph/s) 0.36 <1 × 10�2 0.47 <1 × 10�2

Sudden Accelerations (12 mph/s) 0.30 <1 × 10�2 0.48 <1 × 10�2

Sudden Accelerations (14 mph/s) 0.24 <1 × 10�2 0.48 <1 × 10�2

Sudden Brake (6 mph/s) 0.84 <1 × 10�2 0.32 <1 × 10�2

Sudden Brake (8 mph/s) 0.56 <1 × 10�2 0.33 <1 × 10�2

Sudden Brake (9 mph/s) 0.41 <1 × 10�2 0.40 <1 × 10�2

Sudden Brake (11 mph/s) 0.33 <1 × 10�2 0.45 <1 × 10�2

Sudden Brake (12 mph/s) 0.28 <1 × 10�2 0.47 <1 × 10�2

Sudden Brake (14 mph/s) 0.22 <1 × 10�2 0.48 <1 × 10�2

Car Age 0.97 <1 × 10�2 0.22 <1 × 10�2

Credit Score 0.91 <1 × 10�2 0.13 <1 × 10�2

Duration 0.65 <1 × 10�2 0.31 <1 × 10�2

Insured Age 0.97 <1 × 10�2 0.13 <1 × 10�2

Left Turn Intensity (8 mph/s) 0.43 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (9 mph/s) 0.41 <1 × 10�2 0.48 <1 × 10�2

Left Turn Intensity (10 mph/s) 0.38 <1 × 10�2 0.48 <1 × 10�2
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Table A7. (Continued )

Cluster 1 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Left Turn Intensity (11 mph/s) 0.36 <1 × 10�2 0.49 <1 × 10�2

Left Turn Intensity (12 mph/s) 0.35 <1 × 10�2 0.49 <1 × 10�2

% Driving Within 2 Hours 0.37 <1 × 10�2 0.35 <1 × 10�2

% Driving Within 3 Hours 0.11 <1 × 10�2 0.43 <1 × 10�2

% Driving Within 4 Hours 0.18 <1 × 10�2 0.48 <1 × 10�2

% Drive Rush Hours 0.89 <1 × 10�2 0.08 <1 × 10�2

% Drive Weekdays 0.92 <1 × 10�2 0.13 <1 × 10�2

Right Turn Intensity (8 mph/s) 0.29 <1 × 10�2 0.47 <1 × 10�2

Right Turn Intensity (9 mph/s) 0.27 <1 × 10�2 0.48 <1 × 10�2

Right Turn Intensity (10 mph/s) 0.23 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (11 mph/s) 0.21 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (12 mph/s) 0.19 <1 × 10�2 0.49 <1 × 10�2

Total Days Driven 0.90 <1 × 10�2 0.27 <1 × 10�2

Total Miles Driven 0.68 <1 × 10�2 0.38 <1 × 10�2

Years With No Claims 0.95 <1 × 10�2 0.19 <1 × 10�2

Table A8. Univariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 2

Cluster 2 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Sudden Accelerations (6 mph/s) 0.81 <1 × 10�2 0.30 <1 × 10�2

Sudden Accelerations (8 mph/s) 0.70 <1 × 10�2 0.44 <1 × 10�2

Sudden Accelerations (9 mph/s) 0.62 <1 × 10�2 0.49 <1 × 10�2

Sudden Accelerations (11 mph/s) 0.41 <1 × 10�2 0.49 <1 × 10�2

Sudden Accelerations (12 mph/s) 0.21 <1 × 10�2 0.48 <1 × 10�2

Sudden Accelerations (14 mph/s) 0.13 <1 × 10�2 0.49 <1 × 10�2

Sudden Brake (6 mph/s) 0.86 <1 × 10�2 0.23 <1 × 10�2

Sudden Brake (8 mph/s) 0.82 <1 × 10�2 0.32 <1 × 10�2

Sudden Brake (9 mph/s) 0.78 <1 × 10�2 0.40 <1 × 10�2

Sudden Brake (11 mph/s) 0.74 <1 × 10�2 0.46 <1 × 10�2

Sudden Brake (12 mph/s) 0.40 <1 × 10�2 0.48 <1 × 10�2

Sudden Brake (14 mph/s) 0.13 <1 × 10�2 0.50 <1 × 10�2

Car Age 0.96 <1 × 10�2 0.13 <1 × 10�2

Credit Score 0.88 <1 × 10�2 0.16 <1 × 10�2

Duration 0.60 <1 × 10�2 0.40 <1 × 10�2
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Appendix A.3. Multivariate Normality Tests

The following multivariate normality tests are used in the paper:

• The Henze–Zirkler test is a multivariate test for normality. Let X1; . . . ;Xn be independent identically distributed
random vectors in Rd , d ≥ 1, with sample mean X and sample covariance matrix S. The test statistic is given by,

HZβ � 4n; if S is singular
Dn;β; otherwise

�
(A4)

where Dn;β � 1
n

P
n
j;k�1 exp�� β2

2 jjYj � Ykjj2� � n�1� 2β2��d
2 � 2

�1�β2�d2
P

n
j�1 exp

�β2 jjYjkj2
2 1�β2� �


 �
,

jYj � Ykjj2 � �xj � xk�TS xj � xk
� �

and β � 1��
2

p �n 2d�1� �
4 � 1

d�4. The null hypothesis is rejected when HZβ is too large, or when
S is singular.

• The Mardia test investigates whether the skewness and kurtosis are consistent with a multivariate normal
distribution. Let X1; . . . ;Xn be independent identically distributed random vectors in Rd , d ≥ 1, with sample mean
X and sample covariance matrix S. Then

skew � 1
n2

X
n
i�1

X
n
j�1

��Xi � X�TS�1�Xj � X��3 (A5)

kurt � 1
n

X
n
i�1

X
n
j�1

��Xi � X�TS�1�Xj � X��2 (A6)

Table A8. (Continued )

Cluster 2 Shapiro–Wilk Kolmogorov–Smirnov

Variable Test Statistic p-value Test Statistic p-value

Insured Age 0.98 <1 × 10�2 0.07 <1 × 10�2

Left Turn Intensity (8 mph/s) 0.68 <1 × 10�2 0.49 <1 × 10�2

Left Turn Intensity (9 mph/s) 0.63 <1 × 10�2 0.50 <1 × 10�2

Left Turn Intensity (10 mph/s) 0.56 <1 × 10�2 0.51 <1 × 10�2

Left Turn Intensity (11 mph/s) 0.51 <1 × 10�2 0.51 <1 × 10�2

Left Turn Intensity (12 mph/s) 0.44 <1 × 10�2 0.51 <1 × 10�2

% Driving 2 Hours 0.71 <1 × 10�2 0.32 <1 × 10�2

% Driving 3 Hours 0.53 <1 × 10�2 0.42 <1 × 10�2

% Driving 4 Hours 0.29 <1 × 10�2 0.46 <1 × 10�2

% Drive Within Rush 0.93 <1 × 10�2 0.10 <1 × 10�2

% Drive Weekdays 0.93 <1 × 10�2 0.08 <1 × 10�2

Right Turn Intensity (8 mph/s) 0.71 <1 × 10�2 0.47 <1 × 10�2

Right Turn Intensity (9 mph/s) 0.66 <1 × 10�2 0.48 <1 × 10�2

Right Turn Intensity (10 mph/s) 0.59 <1 × 10�2 0.49 <1 × 10�2

Right Turn Intensity (11 mph/s) 0.54 <1 × 10�2 0.50 <1 × 10�2

Right Turn Intensity (12 mph/s) 0.49 <1 × 10�2 0.50 <1 × 10�2

Total Days Driven 0.94 <1 × 10�2 0.09 <1 × 10�2

Total Miles Driven 0.85 <1 × 10�2 0.14 <1 × 10�2

Years With No Claims 0.98 <1 × 10�2 0.07 <1 × 10�2
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where S � 1
n

P
n
j�1 Xj � X

� ��Xj � X�T . For the skewness test, under the null hypothesis that the sample comes from
a multivariate normal distribution, we would expect n6 skew � χ2 df

� �
where df � d d�1� � d�2� �

6 . For the kurtosis test,
under the null hypothesis that the sample comes from a multivariate normal distribution, we would expect
kurt� d d � 2� �� �

�������������
n

8d d�2� �
q

� N 0; 1� �.

Appendix A.4. Clustering

Table A13 shows the average silhouette scores for each clustering solution, with and without PCA, where we allowed the
covariance structure and number of components to vary. Figures A1 and A2 show the silhouette scores for each observation
when we have a full covariance structure and 3 components, with and without PCA. In both figures, the large negative values
for Cluster 1 show that the observations may be clustered better in a different cluster. Figures A3 and A4 show the adjusted
Rand index for the aforementioned clustering solutions. We ran the clustering algorithm 10 times with different initialisations
to see how closely the final solutions were to our chosen one. An adjusted Rand index close to 1 indicates that the algorithm
arrives at similar results, despite different initialisations. This indicates stability in the clustering algorithm. We also show the
standard deviation of the adjusted Rand index, with smaller values preferred. If we recorded the same adjusted Rand index 10
times, then there was no standard deviation to record, which explains why there is a standard deviation of 0 in some cases.

Table A9. Multivariate tests of normality for clustering variables in the training set. note that n � 60; 000 and d � 34

Test Statistic p-value

Henze–Zirkler 5.22 <1 × 10�2

Mardia Skewness 7,205,584.58 <1 × 10�2

Mardia Kurtosis 10,559.31 <1 × 10�2

Table A10. Multivariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 0. Note that n � 15; 990 and d � 34

Test Statistic p-value

Henze–Zirkler 1.23 <1 × 10�2

Mardia Skewness 165,919,544,009.21 <1 × 10�2

Mardia Kurtosis 308,842.45 <1 × 10�2

Table A11. Multivariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 1. Note that n � 807 and d � 34

Test Statistic p-value

Henze–Zirkler 2.63 <1 × 10�2

Mardia Skewness 391,467.71 <1 × 10�2

Mardia Kurtosis 886.41 <1 × 10�2

Table A12. Multivariate tests of normality for clustering variables in the training set, using only observations assigned to
cluster 2. Note that n � 43; 203 and d � 34

Test Statistic p-value

Henze–Zirkler 8000.00 <1 × 10�2

Mardia Skewness �3:79 × 1035 1.0

Mardia Kurtosis 4:92 × 1021 <1 × 10�2
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Table A13. Table of the average silhouette scores for the clustering solutions

Covariance Components Average Silhouette (without PCA) Average Silhouette (with PCA)

Tied 2 0.923 0.955

Tied 3 0.139 0.164

Tied 4 0.924 0.172

Tied 5 0.142 0.173

Tied 6 0.142 0.170

Tied 7 0.142 0.171

Tied 8 0.143 0.172

Tied 9 0.138 0.172

Tied 10 0.140 0.078

Tied 11 0.140 0.142

Tied 12 0.105 0.084

Spherical 2 0.732 0.878

Spherical 3 0.133 0.178

Spherical 4 0.130 0.174

Spherical 5 0.129 0.129

Spherical 6 0.118 0.129

Spherical 7 0.097 0.132

Spherical 8 0.098 0.131

Spherical 9 0.077 0.106

Spherical 10 0.076 0.097

Spherical 11 0.094 0.102

Spherical 12 0.084 0.102

Diag 2 0.391 0.439

Diag 3 0.052 0.125

Diag 4 0.010 0.089

Diag 5 0.033 0.015

Diag 6 −0.005 0.003

Diag 7 −0.013 0.007

Diag 8 −0.032 0.005

Diag 9 −0.023 −0.001

Diag 10 −0.043 −0.015

Diag 11 −0.042 −0.011

Diag 12 −0.045 −0.018

Full 2 0.512 0.448

Full 3 0.093 0.120

Full 4 0.069 0.094

(Continued)
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Table A13. (Continued )

Covariance Components Average Silhouette (without PCA) Average Silhouette (with PCA)

Full 5 0.030 0.031

Full 6 0.012 0.029

Full 7 0.033 0.017

Full 8 −0.004 −0.004

Full 9 0.007 −0.007

Full 10 −0.013 −0.010

Full 11 −0.014 −0.015

Full 12 0.010 −0.029

Figure A1. The silhouette plot for the three clusters using the full covariance structure on the data set without PCA. The red
dashed line represents the average silhouette score across all observations.
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Figure A2. The silhouette plot for the three clusters using the full covariance structure on the data set with PCA. The red
dashed line represents the average silhouette score across all observations.

Figure A3. The adjusted Rand index for the three clusters using the full covariance structure on the data set without PCA.
Ten initialisations were used to assess the stability of the clustering solution. The line plot represents the average, while the
bars represent the standard deviation.
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Figure A4. The adjusted Rand index for the three clusters using the full covariance structure on the data set with PCA. Ten
initialisations were used to assess the stability of the clustering solution. The line plot represents the average, while the bars
represent the standard deviation.
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