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Multi-linear forms, graphs, and
Lp-improving measures in Fd

q

Pablo Bhowmik, Alex Iosevich , Doowon Koh , and Thang Pham

Abstract. The purpose of this paper is to introduce and study the following graph-theoretic
paradigm. Let

TK f (x) = ∫ K(x , y) f (y)dμ(y),

where f ∶ X → R, X a set, finite or infinite, and K and μ denote a suitable kernel and a measure,
respectively. Given a connected ordered graph G on n vertices, consider the multi-linear form

ΛG( f1 , f2 , . . . , fn) = ∫
x 1 , . . . ,x n∈X

∏
(i , j)∈E(G)

K(x i , x j)
n
∏
l=1

f l(x l)dμ(x l),

where E(G) is the edge set of G. Define ΛG(p1 , . . . , pn) as the smallest constant C > 0 such that the
inequality

ΛG( f1 , . . . , fn) ≤ C
n
∏
i=1
∣∣ f i ∣∣L pi (X ,μ)(0.1)

holds for all nonnegative real-valued functions f i , 1 ≤ i ≤ n, on X. The basic question is, how does
the structure of G and the mapping properties of the operator TK influence the sharp exponents in
(0.1). In this paper, this question is investigated mainly in the case X = Fd

q , the d-dimensional vector
space over the field with q elements, K(x i , x j) is the indicator function of the sphere evaluated at
x i − x j , and connected graphs G with at most four vertices.

1 Introduction

One of the fundamental objects in harmonic analysis is the operator of the form

TK f (x) = ∫
Rd

K(x , y) f (y)d y,(1.1)
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2 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

where K ∶ Rd ×R
d → R is a suitable kernel and f is a locally integrable function.

See [16] and the references contained therein for a variety of manifestations of
operators of this type and their bounds.

The purpose of this paper is to study operators from (1.1) in the context of vector
spaces over finite fields. LetFq denote the finite field with q elements, and let Fd

q be the
d-dimensional vector space over this field. Let K ∶ Fd

q × F
d
q → C be a suitable kernel,

and define

TK f (x) = ∑
y∈Fd

q

K(x , y) f (y).

Operators of this type have been studied before [4, 11–13]. In particular, the operator
TK with K(x , y) = St(x − y), where St is the indicator function of the sphere

St = {x ∈ Fd
q ∶ ∣∣x∣∣ = t},

∣∣x∣∣ = x2
1 + x2

2 + ⋅ ⋅ ⋅ + x2
d , comes up naturally in the study of the Erdős–Falconer dis-

tance problem in vector spaces over finite fields, namely the question of how large a
subset E ⊂ F

d
q needs to be to ensure that if

Δ(E) = {∣∣x − y∣∣ ∶ x , y ∈ E},

then ∣Δ(E)∣ ≥ q
2 . Here and throughout, ∣S∣, with S a finite set, denotes the number of

elements in this set. See, for example, [3, 5, 8, 10, 15].
If one is interested in studying more complicated geometric objects than distances,

an interesting modification of the spherical averaging operator needs to be made.
Indeed, let E ⊂ F

d
q , and suppose that we want to know how many equilateral triangles

of side-length 1 it determines. The quantity that counts such triangles is given by

∑
x , y ,z∈Fd

q

K(x , y)K(x , z)K(y, z)E(x)E(y)E(z),(1.2)

where K(x , y) = S1(x − y).
Let us interpret the quantity (1.2) in the following way. Let us view x , y, z as vertices,

and let us view the presence of K(x , y) as determining the edge connecting x and y,
and so on. In this way, the quantity (1.2) is associated with the graph K3, the complete
graph on three vertices (Figure 1b).

Another natural example is the following. Let K(x , y) = S1(x − y), and consider
the quantity that counts rhombi of side-length 1, i.e.,

∑
x , y ,z ,w∈Fd

q

K(x , y)K(y, z)K(z, w)K(w , x)E(x)E(y)E(z)E(w).(1.3)

Arguing as above, we associate this form with the graph C4, the cycle on four vertices
(Figure 1e).

In general, let K be a kernel function, and let G be a connected ordered graph on n
vertices. Define

ΛG( f1 , f2 , . . . , fn) =
1

N(G) ∑
x 1 , . . . ,x n∈Fd

q

∏
(i , j)∈E(G)

K(x i , x j)
n
∏
l=1

f l(x l),(1.4)
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Figure 1:

where E(G) is the edge set of G and N(G) is the normalizing factor defined as the
number of distinct embeddings of G in F

d
q . Notice that N(G) is the number of tuples

(x 1 , . . . , xn) ∈ (Fd
q)n such that∏(i , j)∈E(G) K(x i , x j) = 1. We will call the operator ΛG

as the G form on F
d
q .

We note in passing that the paradigm we just introduced extends readily to the
setting of hypergraphs. If we replace our basic object, the linear operator TK , by
an m-linear operator MK , the problem transforms to the setting where the edges
dictated by the kernel K are replaced by hyperedges induced by the multi-linear kernel
K(x 1 , . . . , xm+1). We shall address this formulation of the problem in the sequel.

The norm ∣∣ f ∣∣p , 1 ≤ p < ∞, is defined to be associated with normalizing counting
measure on F

d
q . More precisely, given a function f on F

d
q , we define

∣∣ f ∣∣p ∶=
⎛
⎜
⎝

q−d ∑
x∈Fd

q

∣ f (x)∣p
⎞
⎟
⎠

1
p

(1 ≤ p < ∞), and ∣∣ f ∣∣∞ ∶= max
x∈Fd

q

∣ f (x)∣.
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4 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

Definition 1.1 Let n and d be nonnegative integers. For each finite field Fq , we
consider a connected ordered graph G on n vertices in F

d
q . For any numbers

1 ≤ p i ≤ ∞, i = 1, . . . , n, we define ΛG(p1 , . . . , pn) as the smallest number such that
the following inequality

ΛG( f1 , . . . , fn) ≤ ΛG(p1 , . . . , pn)
n
∏
i=1
∣∣ f i ∣∣p i

(1.5)

holds for all nonnegative real-valued functions f i , 1 ≤ i ≤ n, on F
d
q .

Notice that the graph G in the above definition is chosen based on the underlying
finite field Fq . Hence, the operator norm ΛG(p1 , . . . , pn) may depend on q, the size
of the underlying finite field Fq so that it can grow with q. However, if there exists
a constant C, independent of q, such that ΛG(p1 , . . . , pn) ≤ C, then we will denote
ΛG(p1 , . . . , pn) ≲ 1.

The main purpose of this paper is to determine all numbers 1 ≤ p i ≤ ∞,
i = 1, 2, . . . , n, such that the operator norm ΛG(p1 , . . . , pn) is not allowed to grow
with q, that is, ΛG(p1 , . . . , pn) ≲ 1. We will refer to this problem as the boundedness
problem for the operator ΛG on F

d
q .

For the remainder of this paper, the kernel function K(x , y) is assumed to be
St(x − y) with t ≠ 0. In addition, when the dimension d is 2, we assume that the
number 3 in Fq is a square number so that we can exclude the trivial case in which the
shape of an equilateral triangle in F

2
q does not occur.

We shall mainly confine ourselves to the following connected graphs G with at most
four vertices: K2 (the graph with two vertices and one edge), K3 (the cycle with three
vertices and three edges), K3 + tail (a kite), P2 (the path of length 2), P3 (the path of
length 3), C4 (the cycle with four vertices and four edges), C4 + diagonal, Y-shape
(a space station). In particular, we have avoided the K4 (the complete graph with four
vertices) since there is no K4 distance graph on F

2
q . However, it would be interesting

to investigate the case when the graph G is a K4 in higher dimensions, a graph with
more than four vertices, or a disconnected graph. Despite the difficulties posed by this
case, we anticipate that experts in this field will address advanced results in the near
future.

When the graph G is the K2 , the complete answer to the boundedness problem will
be given in all dimensions. To deduce the result, we will invoke the spherical averaging
estimates over finite fields (see Theorem 3.3).

When the number of the vertices of the graph G is 3 or 4, we will obtain reasonably
good boundedness results in two dimensions. In particular, in the case when the
degree of each vertex is at least 2 (K3 , C4+ a diagonal, and C4), we shall prove sharp
results (up to the endpoints) for the operators on F

2
q (see Theorems 4.7, 6.5, and 7.5).

While the proofs for the graphs K2 and K3 use standard results in the literature, in
other cases, a new approach will be introduced. We also note that there are several
papers in the literature studying the distribution of the graphs P2 , P3, and Y-shape in
a large set (see [2, 9] for example); however, the techniques in those papers are not
helpful for the question raised in this paper. For three and higher dimensions, the
boundedness problem is not simple and we will address partial results.

https://doi.org/10.4153/S0008414X2300086X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2300086X


Multi-linear forms, graphs, and Lp-improving measures in F
d
q 5

It is very natural to ask whether or not one can prove a general theorem that
addresses all connected graphs on n vertices. Unfortunately, such a result is beyond
the scope of this paper. The main difficulties arise when the maximal degree is large
or the edge set is dense, or if the graph contains a cycle or not. All of these issues will
be illustrated in the proofs of our results.

We also study the boundedness relation between the operators associated with a
graph G and its subgraph G′ with n-vertices. Throughout the paper, we always assume
that the graph G and its subgraph G′ are connected ordered graphs with ∣G∣ = ∣G′∣ in
F

d
q , and two vertices x , y in G is connected if ∣∣x − y∣∣ = t ≠ 0.

In Theorem 5.5, we will see that any exponents 1 ≤ p1 , p2 , p3 ≤ ∞ with
ΛK3(p1 , p2 , p3) ≲ 1 satisfy that ΛP2(p1 , p2 , p3) ≲ 1. Notice that P2 can be considered
as a subgraph of K3 , and the operators ΛP2 and ΛK3 are related to the graphs P2
and K3 , respectively. Hence, in view of Theorem 5.5, one may have a question that,
“Compared to a graph G, does the operator associated with its subgraph yield less
restricted mapping exponents?” More precisely, one may pose the following question.

Question 1.2 Suppose that G′ is a subgraph of the graph G with n vertices in F
d
q . Let

1 ≤ p i ≤ ∞, 1 ≤ i ≤ n. If ΛG(p1 , . . . , pn) ≲ 1, is it true that ΛG′(p1 , . . . , pn) ≲ 1?

Somewhat surprisingly, the answer turns out to be no! When G = K3 and G′ = P2 ,
the answer to Question 1.2 is positive as Theorem 5.5 shows. However, it turns out
that there exist a graph G and its subgraph G′ yielding a negative answer, although the
answers are positive for the most graphs which we consider in this paper. For example,
the answer to Question 1.2 is negative when G is the C4 + diagonal and G′ is the C4
(see Proposition 7.6).

Since the general answer to Question 1.2 is not always positive, we pose the
following natural question.

Problem 1.3 Find general properties of the graph G and its subgraph G′ which yield a
positive answer to Question 1.2.

The main goal of this paper is to address a conjecture on this problem and to
confirm it in two dimensions. To precisely state our conjecture on the problem, let
us review the standard definition and notation for the minimal degree of a graph.

Definition 1.4 The Minimum Degree of a graph G, denoted by δ(G), is defined as
the degree of the vertex with the least number of edges incident to it.

We propose the following conjecture which can be a solution of Problem 1.3.

Conjecture 1.5 Let G′ be a subgraph of the graph G in F
d
q , d ≥ 2, with n vertices, and

let 1 ≤ p i ≤ ∞, 1 ≤ i ≤ n. In addition, assume that

min{δ(G), d} > δ(G′).(1.6)

Then, if ΛG(p1 , . . . , pn) ≲ 1, we have ΛG′(p1 , . . . , pn) ≲ 1.

Note that the condition (1.6) in Conjecture 1.5 is equivalent to the following:

(i) δ(G) > δ(G′) and (ii) d > δ(G′).(1.7)
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We have some comments and further questions below, regarding the above conjecture
and our main theorems which we will state and prove in the body of this paper.
• Our results in this paper confirm Conjecture 1.5, possibly up to endpoints, for all

graphs G and their subgraphs G′ on n = 3, 4 vertices in F
2
q (see Theorem 10.7).

Also note that when d = 2 and n = 3, 4, the condition (1.6) is equivalent to the first
condition (i) in (1.7) since δ(G) ≤ 2 (see the figures above).

• It will be shown that the conclusion of Conjecture 1.5 cannot be reversed at least
for n = 3, 4 in two dimensions (see Remark 5.6 for n = 3, and see Remarks 8.9, 8.12,
9.11, and 10.5 for n = 4.)
It is worth investigating whether the key hypothesis (1.6) of Conjecture 1.5 can be

relaxed.
• The conclusion of Conjecture 1.5 does not hold in general if the > in the assumption

(1.6) is replaced by ≥. To see this, consider G = C4+diagonal and G′ = C4 on 4 ver-
tices in F

d
q , with d = 2. It is obvious that G′ is a subgraph of G and min{δ(G), d} =

δ(G′) = 2. However, Proposition 7.6(ii) implies that the conclusion of Conjecture
1.5 is not true.

• We are not sure what can we say about the conclusion of Conjecture 1.5 if the main
hypothesis (1.6) of Conjecture 1.5 is relaxed by the second one of the conditions
(1.7). To be precise, when (1.6) is replaced by the second statement of (1.7), that
is, d > δ(G′), we do not have a definitive answer even for n = 4 in F

2
q . For

instance, let G = Y-shape and G′ = K3+ a tail on F
2
q . Then it is clear that d = 2 >

δ(G′) = 1 and 1 = δ(G) = δ(G′) and so this provides an example that does not
satisfy the assumption (1.6) of Conjecture 1.5 but satisfy the second statement
of (1.7). Unfortunately, in this paper, we have not found any inclusive boundedness
relations between the operators corresponding to such graphs. In order to exclude
this uncertain case, both conditions in (1.7) were taken as the hypothesis for
Conjecture 1.5, namely the condition (1.6).

Notation:
• We denote ΛG(p1 , . . . , pn) ⪅ 1 if the inequality (1.5) holds true for all characteristic

functions on F
d
q .

• By F
∗
q , we mean the set of all nonzero elements in Fq .

• For t ∈ F∗q , we denote by Sn−1
t the sphere of radius t centered at the origin in F

n
q ∶

Sn−1
t ∶= {x ∈ Fn

q ∶ ∣∣x∣∣ = t}.

Unless otherwise specified in this paper, d represents the general dimension of
F

d
q , d ≥ 2. When n = d, we write St instead of Sd−1

t for simplicity.
• We identify the set St with its indicator function 1S t , namely, St(x) = 1S t(x).
• We write δ0 for the indicator function of the set of the zero vector in F

d
q .

• For positive numbers A, B > 0, we write A ≲ B if A ≤ CB for some constant
C > 0 independent of q, the size of the underlying finite fieldFq . The notation A ∼ B
means that A ≲ B and B ≲ A.
The rest of this paper is organized as follows: In Section 2, we recall known results

on the spherical averaging operator, which functions as a fundamental tool to prove
our theorems. Sections 3–10 are devoted to the presentation and proofs of our main
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results associated with the graphs mentioned above. The Appendix contains some
technical lemmas on the number of intersection points of two spheres in F

d
q .

2 The spherical averaging problem

In the finite field setting, Carbery, Stones, and Wright [4] initially formulated and stud-
ied the averaging problem over the varieties defined by vector-valued polynomials.
This problem for general varieties was studied by Chun-Yen Shen and the third-listed
author [12]. Here, we introduce the standard results on the averaging problem over
the spheres. We adopt the notation in [12].

Let dx be the normalizing counting measure on F
d
q . For each nonzero t, we endow

the sphere St with the normalizing surface measure dσt . We recall that

dσt(x) = qd

∣St ∣
1S t(x)dx

so that we can identify the measure dσt with the function qd

∣S t ∣
1S t on F

d
q .

The spherical averaging operator AS t is defined by

AS t f (x) = f ∗ dσt(x) = ∫
S t

f (x − y)dσt(y) = 1
∣St ∣

∑
y∈S t

f (x − y),(2.1)

where f is a function on F
d
q . By a change of variables, we also have

AS t f (x) = 1
∣St ∣

∑
y∈Fd

q

St(x − y) f (y).(2.2)

For 1 ≤ p, r ≤ ∞, we define AS t(p → r) to be the smallest number such that the
averaging estimate

∣∣ f ∗ dσt ∣∣Lr(Fd
q ,dx) ≤ AS t(p → r)∣∣ f ∣∣Lp(Fd

q ,dx)(2.3)

holds for all functions f on F
d
q .

Problem 2.1 (Spherical averaging problem) Determine all exponents 1 ≤ p, r ≤ ∞
such that

AS t(p → r) ≲ 1.

Notation 2.2 From now on, we simply write A for the spherical averaging operator AS t .

By testing (2.3) with f = δ0 and by using the duality of the averaging operator, it is
not hard to notice that the necessary conditions for the boundedness of A(p → r) are
as follows: (1/p, 1/r) is contained in the convex hull of points (0, 0), (0, 1), (1, 1), and
( d

d+1 , 1
d+1 ).

Using the Fourier decay estimate on St and its cardinality, it can be shown that these
necessary conditions are sufficient. For the reader’s convenience, we give a detail proof
although the argument is standard, as is well known in the literature such as [4, 12].

Theorem 2.3 Let 1 ≤ p, r ≤ ∞ be numbers such that (1/p, 1/r) lies on the convex hull
of points (0, 0), (0, 1), (1, 1), and ( d

d+1 , 1
d+1 ). Then we have A(p → r) ≲ 1.
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8 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

Proof Since both dσt and dx have total mass 1, it follows from Young’s inequality
for convolution functions that if 1 ≤ r ≤ p ≤ ∞, then

∥ f ∗ dσt∥Lr(Fd
q ,dx) ≤ ∥ f ∥Lp(Fd

q ,dx).(2.4)

We notice that these results do not hold for the Euclidean Averaging problem.
By the interpolation and the duality, we only need to establish the following critical

estimate:

A(d + 1
d

→ d + 1) ≲ 1.

It is well known that for nonzero t,

∣(dσt)∨(m)∣ ∶=
�����������

1
∣St ∣

∑
x∈S t

χ(m ⋅ x)
�����������
≲ q−

(d−1)
2 for all m ≠ (0, . . . , 0),

where χ denotes a nontrivial additive character of Fq (see the proof of Lemma 2.2
in [10]).

Since ∣St ∣ ∼ qd−1 , we complete the proof by combining this Fourier decay estimate
with the following well-known lemma (see Lemma 6.1 in [12]).

Lemma 2.4 Let dσ be the normalized surface measure on an variety S in F
d
q with

∣S∣ ∼ qd−1 . If ∣(dσ)∨(m)∣ ≲ q− k
2 for all m ∈ Fd

q/(0, . . . , 0) and for some k > 0, then we
have

A( k + 2
k + 1

→ k + 2) ≲ 1. ∎

The boundary points of the convex hull play an important role in the application
of Theorem 2.3. More precisely, we will apply the following result, which is a direct
consequence of Theorem 2.3.

Lemma 2.5 Let 1 ≤ p, r ≤ ∞, and let A denote the averaging operator over the sphere
St , t ≠ 0, in F

d
q , d ≥ 2.

(i) If 1 ≤ 1
p ≤

d
d+1 and 1

r =
1

d p , then A(p → r) ≲ 1.
(ii) If d

d+1 ≤
1
p ≤ 1 and 1

r =
d
p − d + 1, then A(p → r) ≲ 1.

3 Sharp mapping properties for the K2 form

In this section, we provide the sharp mapping properties of the operator associated
with the graph K2 . To this end, as described below, we relate the problem to the
spherical averaging problem.

As usual, the inner product of the nonnegative real-valued functions f , g on F
d
q is

defined as

< f , g >∶= ∣∣ f g∣∣1 =
1

qd ∑
x∈Fd

q

f (x)g(x).
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Let t ∈ F∗q , and let f1 , f2 be nonnegative real-valued functions on F
d
q , d ≥ 2. Then the

K2 form ΛK2 on F
d
q is defined by

ΛK2( f1 , f2) =
1

qd ∣St ∣
∑

x 1 ,x2∈Fd
q

St(x 1 − x2) f1(x 1) f2(x2).(3.1)

Here, the quantity qd ∣St ∣ represents the normalizing factor N(G) in (1.4) when the
graph G is K2 . In other words, N(G) = qd ∣St ∣, which is the number of the pair
(x 1 , x2) ∈ Fd

q × F
d
q such that St(x 1 − x2) = 1.

By a change of variables, we can write

ΛK2( f1 , f2) =
1

qd ∑
x 1∈Fd

q

f1(x 1)
⎛
⎜
⎝

1
∣St ∣

∑
x2∈Fd

q

f2(x 1 − x2)St(x2)
⎞
⎟
⎠
=< f1 , Af2 >,(3.2)

where A denotes the averaging operator related to the sphere St . Likewise, we also
obtain that ΛK2( f1 , f2) =< Af1 , f2 > .

The main goal of this section is to address all numbers 1 ≤ p1 , p2 ≤ ∞ satisfying
ΛK2(p1 , p2) ≲ 1.

We begin with the necessary conditions for the boundedness of the K2 form ΛK2

on F
d
q .

Proposition 3.1 Let 1 ≤ p1 , p2 ≤ ∞. Suppose that ΛK2(p1 , p2) ≲ 1. Then we have

1
p1
+ d

p2
≤ d and d

p1
+ 1

p2
≤ d .

Proof By symmetry, it is clear that ΛK2(p1 , p2) ≲ 1 ⇐⇒ ΛK2(p2 , p1) ≲ 1. Hence, it
suffices to prove the first listed conclusion that 1

p1
+ d

p2
≤ d .

From (3.2) and our assumption that ΛK2(p1 , p2) ≲ 1, we must have

ΛK2( f1 , f2) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 .

We test this inequality with f1 = 1S t and f2 = δ0 . Then

ΛK2( f1 , f2) =
1

qd ∑
x 1∈S t

1
∣St ∣

= q−d ,

and

∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∼ (q−d ∣St ∣)1/p1(q−d)1/p2 ∼ q−
1

p1
− d

p2 .

By a direct comparison, we get the desired result. ∎

Remark 3.2 For 1 ≤ p1 , p2 ≤ ∞, one can note that 1
p1
+ d

p2
≤ d and d

p1
+ 1

p2
≤ d if

and only if (1/p1 , 1/p2) ∈ [0, 1] × [0, 1] lies on the convex hull of points (0, 0), (0, 1),
( d

d+1 , d
d+1 ), (1, 0).

Let us move to the sufficient conditions on the exponents 1 ≤ p1 , p2 ≤ ∞ such that
ΛK2(p1 , p2) ≲ 1. We now show that the necessary conditions are in fact sufficient
conditions for ΛK2(p1 , p2) ≲ 1.
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Theorem 3.3 (Sharp boundedness result for the K2 form on F
d
q ) Let 1 ≤ p1 , p2 ≤ ∞.

Then we have

ΛK2(p1 , p2) ≲ 1 if and only if 1
p1
+ d

p2
≤ d , d

p1
+ 1

p2
≤ d .

Proof By Proposition 3.1, it will be enough to prove that ΛK2(p1 , p2) ≲ 1 for all
1 ≤ p1 , p2 ≤ ∞ satisfying

1
p1
+ d

p2
≤ d , d

p1
+ 1

p2
≤ d .

By the interpolation theorem and the nesting property of the norm, it suffices to
establish the estimates on the critical endpoints (1/p1 , 1/p2) ∈ [0, 1] × [0, 1], which
are (0, 1), (1, 0), and (d/(d + 1), d/(d + 1)). In other words, it remains to prove the
following estimates:

ΛK2(∞, 1) ≲ 1, ΛK2(1,∞) ≲ 1, ΛK2 (
d + 1

d
, d + 1

d
) ≲ 1.

Since ΛK2( f1 , f2) =< f1 , Af2 >, it follows by Hölder’s inequality that if A(p2 →
p′1) ≲ 1 with 1 ≤ p1 , p2 ≤ ∞, then ΛK2(p1 , p2) ≲ 1. Thus, matters are reduced to
establishing the following averaging estimates:

A(1 → 1) ≲ 1, A(∞ →∞) ≲ 1, A(d + 1
d

→ d + 1) ≲ 1.

However, these averaging estimates are clearly valid by Theorem 2.3, and thus the proof
is complete. ∎

The following result is a special case of Theorem 3.3, but it is very useful in practice.

Corollary 3.4 For any dimensions d ≥ 2, we have ΛK2 ( d+1
d , d+1

d ) ≲ 1.

Proof Notice that if p1 = p2 = d+1
d , then it satisfies that 1

p1
+ d

p2
≤ d and d

p1
+ 1

p2
≤ d .

Hence, the statement follows immediately from Theorem 3.3. ∎

4 Boundedness problem for the K3 form

Let t ∈ F∗q . The K3 form ΛK3 on F
d
q can be defined as

ΛK3( f1 , f2 , f3)=
1

qd
1

∣St ∣∣Sd−2
t ∣ ∑

x 1 ,x2 ,x3∈Fd
q

St(x 1 − x2)St(x2 − x3)St(x3 − x 1)
3
∏
i=1

f i(x i),

(4.1)

where each f i , i = 1, 2, 3, is a nonnegative real-valued function on F
d
q , and the

quantity qd ∣St ∣∣Sd−2
t ∣ stands for the normalizing factor N(G) in (1.4) when G = K3 .

More precisely, N(G) is the number of (x 1 , x2 , x3) ∈ (Fd
q)3 such that St(x 1 − x2)

St(x2 − x3)St(x3 − x 1) = 1.
The purpose of this section is to find the numbers 1 ≤ p1 , p2 , p3 ≤ ∞ such that

ΛK3(p1 , p2 , p3) ≲ 1.
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When the dimension d is 2, we will settle this problem up to the endpoint estimate.
To this end, we relate our problem to the estimate of the Bilinear Averaging Operator
(see (4.3)) for which we establish the sharp bound.

On the other hand, as we shall see, in three and higher dimensions d ≥ 3, it is not
easy to deduce the sharp results. However, when one of the exponents p1 , p2 , p3 is∞,
we will be able to obtain the optimal results. This will be done by applying Theorem 3.3,
the boundedness result for the K2 form ΛK2 on F

d
q .

We begin by deducing necessary conditions for our problem in F
d
q , d ≥ 2. Recall

that for d = 2, we pose an additional restriction that 3 ∈ Fq is a square number.

Proposition 4.1 (Necessary conditions for the boundedness of ΛK3 ) Let 1 ≤ p1 ,
p2 , p3 ≤ ∞. Suppose that ΛK3(p1 , p2 , p3) ≲ 1. Then we have

d
p1
+ 1

p2
+ 1

p3
≤ d , 1

p1
+ d

p2
+ 1

p3
≤ d , 1

p1
+ 1

p2
+ d

p3
≤ d .

In particular, when d = 2, it can be shown by Polymake1 [1, 6] that (1/p1 , 1/p2 , 1/p3)
is contained in the convex hull of the points: (0, 0, 1), (0, 1, 0), (2/3, 2/3, 0),
(1/2, 1/2, 1/2), (2/3, 0, 2/3), (1, 0, 0), (0, 0, 0), (0, 2/3, 2/3).

Proof We only prove the first inequality in the conclusion since we can establish
other inequalities by symmetric property of ΛK3 f1 , f2 , f3 . We will use the simple fact
that x ∈ St if and only if −x ∈ St . In the definition (4.1), taking f1 = δ0 , f2 = 1S t , and
f3 = 1S t , we see that

∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣∣ f3∣∣p3 ∼ q−
d
p1 q−

1
p2 q−

1
p3 ,

ΛK3( f1 , f2 , f3) =
1

qd
1

∣St ∣∣Sd−2
t ∣

⎛
⎝ ∑

x2 ,x3∈S t ∶∣∣x2−x3 ∣∣=t
1
⎞
⎠
∼ q−d ,

where the last similarity above follows from Corollary A.4 in the Appendix with our
assumption that 3 ∈ Fq is a square number for d = 2.

By the direct comparison of these estimates, we obtain the required necessary
condition. ∎
Remark 4.2 In order to prove that the necessary conditions in Proposition 4.1 are
sufficient conditions for d = 2, we only need to establish the following critical endpoint
estimates: ΛK3(2, 2, 2) ≲ 1, ΛK3(∞,∞,∞) ≲ 1, ΛK3 1,∞,∞) ≲ 1, ΛK3(∞, 1,∞) ≲ 1,
ΛK3(∞,∞, 1) ≲ 1, ΛK3 ( 3

2 , 3
2 ,∞) ≲ 1, ΛK3 ( 3

2 ,∞, 3
2) ≲ 1, ΛK3 (∞, 3

2 , 3
2) ≲ 1. In fact,

this claim follows by interpolating the critical points given in the second part of
Proposition 4.1.

4.1 Boundedness results for ΛK3 on F
d
q

The graph K2 can be obtained by removing any one of three vertices in the graph K3 .
Therefore, the boundedness of ΛK2(p1 , p2) can determine the boundedness of

1Polymake is software for the algorithmic treatment of convex polyhedra.
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ΛK3(p1 , p2 ,∞). Using this observation, in the case when one of p1 , p2 , p3 is ∞, we
are able to obtain sharp boundedness results for ΛK3(p1 , p2 , p3).

Theorem 4.3 Let 1 ≤ a, b ≤ ∞ satisfy that 1
a +

d
b ≤ d and d

a +
1
b ≤ d . Then we have

ΛK3(a, b,∞) ≲ 1, ΛK3(a,∞, b) ≲ 1, and ΛK3(∞, a, b) ≲ 1.

Proof The statement of the theorem follows immediately by combining Theorem 3.3
and the following claim: If ΛK2(a, b) ≲ 1, then

ΛK3(a, b,∞) ≲ 1, ΛK3(a,∞, b) ≲ 1, and ΛK3(∞, a, b) ≲ 1.

It suffices by symmetry to prove that if ΛK2(a, b) ≲ 1, then ΛK3(a, b,∞) ≲ 1.
Since f i , i = 1, 2, 3, are nonnegative real-number functions on F

d
q , it follows that

ΛK3( f1 , f2 , f3) ≤
1

∣Sd−2
t ∣

⎛
⎜
⎝

max
∣∣x 1−x2 ∣∣=t

∑
x3∈Fd

q ∶∣∣x2−x3 ∣∣=t=∣∣x3−x 1 ∣∣

f3(x3)
⎞
⎟
⎠

ΛK2( f1 , f2).

Since ∣Sd−2
t ∣ ∼ qd−2 and ΛK2( f1 , f2) ≲ ∣∣ f1∣∣a ∣∣ f2∣∣b , it suffices to prove that the maxi-

mum value in the above parenthesis is ≲ qd−2∣∣ f3∣∣∞. Let us denote by I the maximum
above.

By a change of variables, x = x 1 , y = x 1 − x2 , we see that

I ≤
⎛
⎜
⎝

max
x∈Fd

q , y∈S t
∑

x3∈Fd
q ∶∣∣x−y−x3 ∣∣=t=∣∣x3−x ∣∣

1
⎞
⎟
⎠
∣∣ f3∣∣∞.

By another change of variables by putting z = x − x3, we get

I ≤
⎛
⎝

max
x∈Fd

q , y∈S t
∑

z∈S t ∶∣∣z−y∣∣=t
1
⎞
⎠
∣∣ f3∣∣∞ =

⎛
⎝

max
y∈S t

∑
z∈S t ∶∣∣z−y∣∣=t

1
⎞
⎠
∣∣ f3∣∣∞.

Now, applying Corollary A.4 in the Appendix, we conclude that I ≲ qd−2∣∣ f3∣∣∞ as
required. ∎

It is not hard to see from Proposition 4.1 that Theorem 4.3 cannot be improved in
the case when one of the exponents p1 , p2 , p3 is∞. In particular, the following critical
endpoint estimates follows immediately from Theorem 4.3:

ΛK3 (
d + 1

d
, d + 1

d
,∞) ≲ 1, ΛK3 (

d + 1
d

,∞, d + 1
d

) ≲ 1, ΛK3 (∞, d + 1
d

, d + 1
d

) ≲ 1,

ΛK3(∞,∞,∞) ≲ 1, ΛK3(1,∞,∞) ≲ 1, ΛK3(∞, 1,∞) ≲ 1, ΛK3(∞,∞, 1) ≲ 1.
(4.2)

Remark 4.4 From (4.2) and Remark 4.2, we see that to completely solve the problem
on the boundedness of ΛK3(p1 , p2 , p3) for d = 2, we only need to establish the
following critical endpoint estimate

ΛK3 (
d + 2

d
, d + 2

d
, d + 2

d
) = ΛK3(2, 2, 2) ≲ 1.
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4.2 Sharp restricted strong-type estimates in two dimensions

Although Theorem 4.3 is valid for all dimensions d ≥ 2, it is not sharp, compared to the
necessary conditions given in Proposition 4.1. In this subsection, we will deduce the
sharp boundedness results up to the endpoints for ΛK3(p1 , p2 , p3) in two dimensions.
To this end, we need the following theorem, which can be proven by modifying the
Euclidean argument introduced in Section 7 of [7].

Theorem 4.5 Let ΛK3 be the K3 form on F
2
q . Then, for all subsets E, F , H of F2

q , the
following estimate holds: ΛK3(E , F , H) ≲ ∣∣E∣∣2∣∣F∣∣2∣∣H∣∣2 .

For 1 ≤ p1 , p2 , p3 ≤ ∞, we say that the restricted strong-type ΛK3(p1 , p2 , p3)
estimate holds if the estimate

ΛK3(E , F , H) ≲ ∣∣E∣∣p1 ∣∣F∣∣p2 ∣∣H∣∣p3

is valid for all subsets E , F , H of F2
q . In this case, we write ΛK3(p1 , p2 , p3) ⪅ 1.

Proof The proof proceeds with some reduction. When d = 2, by a change of variables
by letting x = x3 , y = x3 − x 1 , z = x3 − x2 , (4.1) becomes

ΛK3( f1 , f2 , f3) =
1

q2 ∑
x∈F2

q

f3(x)
⎡⎢⎢⎢⎢⎣

1
∣St ∣

∑
y ,z∈F2

q

St(z − y)St(z)St(y) f1(x − y) f2(x − z)
⎤⎥⎥⎥⎥⎦

.

We define B( f1 , f2)(x) as the value in the bracket above, namely,

B( f1 , f2)(x) ∶= 1
∣St ∣

∑
y ,z∈S t ∶∣∣z−y∣∣=t

f1(x − y) f2(x − z).(4.3)

We refer to this operator B as “the bilinear averaging operator.” It is clear that

ΛK3( f1 , f2 , f3) =
1

q2 ∑
x∈F2

q

B( f1 , f2)(x) f3(x) =< B( f1 , f2), f3 > .

By Hölder’s inequality, we have

ΛK3( f1 , f2 , f3) ≤ ∣∣B( f1 , f2)∣∣2∣∣ f3∣∣2 .

Thus, Theorem 4.5 follows immediately from the reduction lemma below ∎

Lemma 4.6 Let B( f1 , f2) be the bilinear averaging operator defined as in (4.3). Then,
for all subsets E, F of F2

q , we have

∣∣B(E , F)∣∣2 ≲ ∣∣E∣∣2∣∣F∣∣2 .

Proof We begin by representing the bilinear averaging operator B( f1 , f2). From
(4.3), note that

B( f1 , f2)(x) = 1
∣St ∣

∑
y∈S t

f1(x − y)
⎛
⎝ ∑

z∈S t ∶∣∣z−y∣∣=t
f2(x − z)

⎞
⎠

.
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For each y ∈ St , let Θ(y) ∶= {z ∈ St ∶ ∣∣z − y∣∣ = t}. With this notation, the bilinear
averaging operator is written as

B( f1 , f2)(x) = 1
∣St ∣

∑
y∈S t

f1(x − y)
⎛
⎝ ∑

z∈Θ(y)
f2(x − z)

⎞
⎠

.

Let η denote the quadratic character of F∗q . Recall that η(s) = 1 for a square number s
in F

∗
q , and η(s) = −1 otherwise. Notice from Corollary A.4 in the Appendix that Θ(y)

is the empty set for all y ∈ St if d = 2 and η(3) = −1. In this case, the problem is trivial
since B( f1 , f2)(x) = 0 for all x ∈ F2

q . Therefore, when d = 2, we always assume that
η(3) = 1.

Notice that ∣Θ(y)∣ = 2 for all y ∈ St , which follows from the last statement of
Corollary A.4 in the Appendix. More precisely, for each y ∈ St , we can write

Θ(y) = {θ y, θ−1 y},

where θ y denotes the rotation of y by “60 degrees,” and ∣∣y − θ y∣∣ = t = ∣∣y − θ−1 y∣∣.
From these observations, the bilinear averaging operator B( f1 , f2) can be repre-

sented as follows:

B( f1 , f2)(x) = Bθ( f1 , f2)(x) + Bθ−1( f1 , f2)(x).(4.4)

Here, we define

Bθ( f1 , f2)(x) ∶= 1
∣St ∣

∑
y∈S t

f1(x − y) f2(x − θ y),(4.5)

and

Bθ−1( f1 , f2) ∶=
1
∣St ∣

∑
y∈S t

f1(x − y) f2(x − θ−1 y).

In order to complete the proof of the lemma, it suffices to establish the following
two estimates: for all subsets E , F of Fd

q ,

∣∣Bθ(E , F)∣∣2 ≲ ∣∣E∣∣2∣∣F∣∣2 ,(4.6)

and

∣∣Bθ−1(E , F)∣∣2 ≲ ∣∣E∣∣2∣∣F∣∣2 .(4.7)

We will only provide the proof of the estimate (4.6) since the proof of (4.7) is the
same.

Now we start proving the estimate (4.6). Since ∣∣E∣∣22 = q−2∣E∣ and ∣∣F∣∣22 = q−2∣F∣, it
is enough to prove that

∣∣Bθ(E , F)∣∣22 ≲ q−4∣E∣∣F∣.(4.8)

Without loss of generality, we may assume that ∣E∣ ≤ ∣F∣. By the definition, it follows
that

∣∣Bθ(E , F)∣∣22 = q−2∣St ∣−2 ∑
x∈F2

q

∑
y , y′∈S t

E(x − y)E(x − y′)F(x − θ y)F(x − θ y′) = I + II,
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where the first term I is the value corresponding to the case where y = y′, whereas the
second term II is corresponding to the case where y ≠ y′ . We have

I = q−2∣St ∣−2 ∑
y∈S t

∑
x∈F2

q

E(x − y)F(x − θ y).

Applying a change of variables by replacing x with x + y, we see that

I = q−2∣St ∣−2 ∑
y∈S t

∑
x∈F2

q

E(x)F(x + y − θ y) = q−2∣St ∣−2 ∑
x∈E

⎛
⎝∑y∈S t

F(x + y − θ y)
⎞
⎠

.

Observe that y − θ y ≠ y′ − θ y′ for all y, y′ in St with y ≠ y′ . Then we see that the value
in the parentheses above is bounded above by ∣St ∩ F∣ ≤ ∣F∣. Therefore, we obtain the
desired estimate:

I ≤ q−2∣St ∣−2∣E∣∣F∣ ∼ q−4∣E∣∣F∣.

Next, it remains to show that II ≲ q−4∣E∣∣F∣. Since we have assumed that ∣E∣ ≤ ∣F∣, it
suffices to show that II ≲ q−4∣E∣2 .

By the definition of II, it follows that

II = q−2∣St ∣−2 ∑
x∈F2

q

∑
y , y′∈S t ∶y≠y′

E(x − y)E(x − y′)F(x − θ y)F(x − θ y′).

It is obvious that

II ≤ q−2∣St ∣−2 ∑
y , y′∈S t ∶y≠y′

∑
x∈F2

q

E(x − y)E(x − y′).

We use a change of variables by replacing x with x + y. Then we have

II ≤ q−2∣St ∣−2 ∑
x∈F2

q

E(x)
⎛
⎝ ∑

y , y′∈S t ∶y≠y′
E(x + y − y′)

⎞
⎠

= q−2∣St ∣−2 ∑
x∈F2

q

E(x)
⎛
⎜
⎝
∑

0≠u∈F2
q

E(x + u)W(u)
⎞
⎟
⎠

,

where W(u) denotes the number of pairs (y, y′) ∈ St × St such that u = y − y′ and
y ≠ y′ . It is not hard to see that for any nonzero vector u ∈ F2

q , we have W(u) ≤ 2. So
we obtain that

II ≲ q−2∣St ∣−2 ∑
x∈F2

q

E(x)
⎛
⎜
⎝
∑

0≠u∈F2
q

E(x + u)
⎞
⎟
⎠
≲ q−4∣E∣2 ,

as required. ∎

In two dimensions, we are able to obtain the optimal boundedness of
ΛK3(p1 , p2 , p3) except for one endpoint. Indeed, we have the following result.

https://doi.org/10.4153/S0008414X2300086X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2300086X


16 P. Bhowmik, A. Iosevich, D. Koh, and T. Pham

Theorem 4.7 Let 1 ≤ p1 , p2 , p3 ≤ ∞, and let ΛK3 be the K3 form on F
2
q .

(i) If ΛK3(p1 , p2 , p3) ≲ 1, then
2
p1
+ 1

p2
+ 1

p3
≤ 2, 1

p1
+ 2

p2
+ 1

p3
≤ 2, 1

p1
+ 1

p2
+ 2

p3
≤ 2.(4.9)

(ii) Conversely, if (p1 , p2 , p3) satisfies all three inequalities (4.9), then
ΛK3(p1 , p2 , p3) ≲ 1 for (p1 , p2 , p3) ≠ (2, 2, 2), and we have ΛK3(2, 2, 2) ⪅ 1.

Proof The first part of the theorem is the special case of Proposition 4.1 with d = 2.
Now we prove the second part. As stated in Proposition 4.1, one can notice by using
Polymake [1, 6] that all the points ( 1

p1
, 1

p2
, 1

p3
) ∈ [0, 1]3 satisfying all three inequalities

(4.9) are contained in the convex hull of the critical points

(1/2, 1/2, 1/2), (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2
3

, 2
3

, 0) , (2
3

, 0, 2
3
) , (0, 2

3
, 2

3
) .

Notice from Theorem 4.5 with d = 2 that the restricted strong-type estimate for the
operator ΛK3 holds for the point (1/p1 , 1/p2 , 1/p3) = (1/2, 1/2, 1/2). In addition, notice
from the estimates (4.2) with d = 2 that ΛK3(p1 , p2 , p3) ≲ 1 for the above critical points
(1/p1 , 1/p2 , 1/p3) except for (1/2, 1/2, 1/2). Hence, the statement of the second part
follows immediately by invoking the interpolation theorem. ∎

5 Boundedness results for the P2 form

For t ∈ F∗q and functions f i , i = 1, 2, 3, on F
d
q , the P2 form ΛP2 on F

d
q is defined by

ΛP2( f1 , f2 , f3) =
1

qd ∣St ∣2
∑

x 1 ,x2 ,x3∈Fd
q

St(x 1 − x2)St(x2 − x3) f1(x 1) f2(x2) f3(x3),(5.1)

where the quantity qd ∣St ∣2 stands for the normalizing factor N(G) in (1.4) when
G = P2. Note that this can be written as

ΛP2( f1 , f2 , f3) =< f2 , Af1 ⋅ Af3 > .(5.2)

In this section, we study the problem determining all numbers 1 ≤ p1 , p2 , p3 ≤ ∞
satisfying ΛP2(p1 , p2 , p3) ≲ 1. Compared to the K3 form ΛK3 , this problem is much
hard to find the optimal answers. Based on the formula (5.2) with the averaging
estimates in Lemma 2.5, we are able to address partial results on this problem (see
Theorem 5.3).

Proposition 5.1 (Necessary conditions for the boundedness of ΛP2 ) Let 1 ≤ p1 , p2 ,
p3 ≤ ∞. Suppose that ΛP2(p1 , p2 , p3) ≲ 1. Then we have

1
p1
+ d

p2
+ 1

p3
≤ d , d

p1
+ 1

p2
≤ d , 1

p2
+ d

p3
≤ d , d

p1
+ 1

p2
+ d

p3
≤ 2d − 1.

Also, under this assumption when d = 2, it can be shown by Polymake [1, 6]
that (1/p1 , 1/p2 , 1/p3) is contained in the convex hull of points: (0, 1, 0), (1/2, 0, 1),
(1, 0, 1/2), (1, 0, 0), (5/6, 1/3, 1/2), (1/2, 1/3, 5/6), (2/3, 2/3, 0), (0, 2/3, 2/3), (0, 0, 0),
(0, 0, 1).
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Proof Suppose that ΛP2(p1 , p2 , p3) ≲ 1. Then, for all functions f i , i = 1, 2, 3, on F
d
q ,

we have

ΛP2( f1 , f2 , f3) =
1

qd ∣St ∣2
∑

x 1 ,x2 ,x3∈Fd
q

St(x 1 − x2)St(x2 − x3) f1(x 1) f2(x2) f3(x3)

≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 .

We test the above inequality with f2 = δ0 , f1 = f3 = 1S t . It is plain to note that

∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 = (q−d ∣St ∣)
1

p1 q−
d

p2 (q−d ∣St ∣)
1

p3 ∼ q−
1

p1
− d

p2
− 1

p3 ,

and

ΛP2( f1 , f2 , f3) = q−d .

Therefore, we obtain that q−d ≲ q−
1

p1
− d

p2
− 1

p3 . This implies the first inequality in the
conclusion that 1

p1
+ d

p2
+ 1

p3
≤ d .

To obtain the second inequality in the conclusion, we choose f1 = δ0 , f2 = 1S t , and
f3 = 1Fd

q
. Then it is easy to check that

∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∼ q−
d
p1
− 1

p2 ,

and

ΛP2( f1 , f2 , f3) =
1

qd ∣St ∣2
∑

x2∈S t

∑
x3∈Fd

q

St(x2 − x3) = q−d .

Comparing these estimates gives the second inequality in the conclusion.
The third inequality in the conclusion can be easily obtained by switching the roles

of f1 and f3 in the proof of the second one.
To deduce the last inequality in the conclusion, we take f1 = f3 = δ0 and f2 = 1S t .

Then

∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∼ q−
d
p1
− 1

p2
− d

p3 ,

and

ΛP2( f1 , f2 , f3) =
1

qd ∣St ∣
∼ q−2d+1 .

From these, we have the required result that d
p1
+ 1

p2
+ d

p3
≤ 2d − 1. ∎

By symmetry, it is not hard to note that ΛP2(p1 , p2 , p3)≲ 1 ⇐⇒ ΛP2(p3 , p2 , p1) ≲ 1.
In the following lemma, we prove that the boundedness question for the P2 form Λ is
closely related to the spherical averaging problem over finite fields.

Lemma 5.2 Suppose that 1
r1
+ 1

p2
+ 1

r3
= 1, A(p1 → r1) ≲ 1, and A(p3 → r3) ≲ 1 for

some 1 ≤ p1 , p2 , p3 , r1 , r3 ≤ ∞. Then we have ΛP2(p1 , p2 , p3) ≲ 1.

Proof Since ΛP2( f1 , f2 , f3) =< f2 , Af1 ⋅ Af3 >, we obtain by Hölder’s inequality with
the first assumption that

ΛP2( f1 , f2 , f3) ≤ ∣∣Af1∣∣r1 ∣∣ f2∣∣p2 ∣∣Af3∣∣r3 ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ,
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where the averaging assumption was used for the last inequality. Hence,
ΛP2(p1 , p2 , p3) ≲ 1, as required. ∎

Now we state and prove our boundedness results of ΛP2(p1 , p2 , p3) on F
d
q .

Theorem 5.3 Let 1 ≤ p1 , p2 , p3 ≤ ∞. Then, for the P2 form ΛP2 on F
d
q , the following

four statements hold:
(i) If 0 ≤ 1

p1
, 1

p3
≤ d

d+1 and 1
p1
+ d

p2
+ 1

p3
≤ d, then ΛP2(p1 , p2 , p3) ≲ 1.

(ii) If 0 ≤ 1
p1
≤ d

d+1 ≤
1

p3
≤ 1 and 1

d p1
+ 1

p2
+ d

p3
≤ d, then ΛP2(p1 , p2 , p3) ≲ 1.

(iii) If 0 ≤ 1
p3
≤ d

d+1 ≤
1
p1
≤ 1 and d

p1
+ 1

p2
+ 1

d p3
≤ d, then ΛP2(p1 , p2 , p3) ≲ 1.

(iv) If d
d+1 ≤

1
p1

, 1
p3
≤ 1 and d

p1
+ 1

p2
+ d

p3
≤ 2d − 1, then ΛP2(p1 , p2 , p3) ≲ 1.

Proof We proceed as follows.
(i) By the nesting property of the norm, it suffices to prove it in the case when

0 ≤ 1
p1

, 1
p3
≤ d

d+1 and 1
p1
+ d

p2
+ 1

p3
= d . This equation can be rewritten as 1

d p1
+

1
p2
+ 1

d p3
= 1. Since 0 ≤ 1

p1
, 1

p3
≤ d

d+1 , we see from Lemma 2.5 (i) that letting
1
r1
= 1

d p1
, 1

r3
= 1

d p3
, we have A(p1 → r1) ≲ 1 and A(p3 → r3) ≲ 1.

Since 1
r1
+ 1

p2
+ 1

r3
= 1, applying Lemma 5.2 gives the required result.

(ii) As in the proof of the first part of the theorem, it will be enough to
prove Λ(p1 , p2 , p3) ≲ 1 in the case when 0 ≤ 1

p1
≤ d

d+1 ≤
1

p3
≤ 1 and 1

d p1
+ 1

p2
+

d
p3
= d . Let 1

r1
= 1

d p1
and 1

r3
= d

p3
− d + 1. Then, by Lemma 2.5, it follows that

A(p1 → r1) ≲ 1 and A(p3 → r3) ≲ 1. Also, notice that 1
r1
+ 1

p2
+ 1

r3
= 1. Hence,

Theorem 5.3(ii) follows from Lemma 5.2.
(iii) Switching the roles of p1 , p2, the proof is exactly the same as that of the second

part of this theorem.
(iv) As before, it suffices to prove the case when d

d+1 ≤
1
p1

, 1
p3
≤ 1 and d

p1
+ 1

p2
+

d
p3
= 2d − 1. Put 1

rk
= d

pk
− d + 1 for k = 1, 3. Then we see from Lemma 2.5(ii)

that A(pk → rk) ≲ 1 for k = 1, 3. Notice that 1
r1
+ 1

p2
+ 1

r3
= 1. Therefore, using

Lemma 5.2, we finish the proof. ∎
As a special case of Theorem 5.3, we obtain the following.

Corollary 5.4 For any dimensions d ≥ 2, we have ΛP2 ( d+1
d , d+1

d−1 , d+1
d ) ≲ 1.

Proof This clearly follows from Theorem 5.3 by taking p1 = p3 = d+1
d , and p2 =

d+1
d−1 . ∎

When d = 2, Theorem 5.3 does not cover some points such as (1, 0, 1/2) from
the convex hull in the necessary conditions by Proposition 5.1. However, it cannot
be concluded that Theorem 5.3 is not sharp because the necessary conditions can
be improved. While we do not know whether Theorem 5.3 is optimal or not, the
result will play a crucial role in proving the following theorem which implies that
Conjecture 1.5 is true for the graph K3 and its subgraph P2 in all dimensions d ≥ 2
(see Corollary 5.7 below).
Theorem 5.5 Let ΛK3 and ΛP2 be the operators associated with K3 and P2, respectively,
on F

d
q . Then, if ΛK3(p1 , p2 , p3) ≲ 1 for 1 ≤ p1 , p2 , p3 ≤ ∞, we have ΛP2(p1 , p2 , p3) ≲ 1.
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Proof Suppose that ΛK3(p1 , p2 , p3) ≲ 1 for 1 ≤ p1 , p2 , p3 ≤ ∞. Then, by Proposition
4.1, the exponents p1 , p2 , p3 satisfy the following three inequalities:

d
p1
+ 1

p2
+ 1

p3
≤ d , 1

p1
+ d

p2
+ 1

p3
≤ d , 1

p1
+ 1

p2
+ d

p3
≤ d .(5.3)

To complete the proof, it remains to show that ΛP2(p1 , p2 , p3) ≲ 1. We will prove this
by considering the four cases depending on the sizes of p1 and p3 .

Case 1: Suppose that 0 ≤ 1
p1

, 1
p3
≤ d

d+1 . The condition (5.3) clearly implies that
1
p1
+ d

p2
+ 1

p3
≤ d . Thus, by Theorem 5.3(i), we obtain the required conclusion that

ΛP2(p1 , p2 , p3) ≲ 1.

Case 2: Suppose that 0 ≤ 1
p1
≤ d

d+1 ≤
1

p3
≤ 1. By Theorem 5.3(ii), to prove that

ΛP2(p1 , p2 , p3) ≲ 1, it will be enough to show that

1
d p1

+ 1
p2
+ d

p3
≤ d .

However, this inequality clearly follows from the third inequality in (5.3) since d ≥ 2.

Case 3: Suppose that 0 ≤ 1
p3
≤ d

d+1 ≤
1
p1
≤ 1. By Theorem 5.3(iii), it suffices to show

that d
p1
+ 1

p2
+ 1

d p3
≤ d . However, this inequality can be easily obtained from the first

inequality in (5.3).

Case 4: Suppose that d
d+1 ≤

1
p1

, 1
p3
≤ 1. By Theorem 5.3(iv), to show that

ΛP2(p1 , p2 , p3) ≲ 1, we only need to prove that

d
p1
+ 1

p2
+ d

p3
≤ 2d − 1.

However, this inequality can be easily proven as follows:

d
p1
+ 1

p2
+ d

p3
= ( d

p1
+ 1

p2
+ 1

p3
) + d − 1

p3
≤ d + d − 1

p3
≤ 2d − 1,

where the first inequality follows from the first inequality in (5.3), and the last
inequality follows from a simple fact that 1 ≤ p3 ≤ ∞. ∎

Remark 5.6 The reverse statement of Theorem 5.5 cannot be true. Indeed, we know
by Corollary 5.4 that ΛP2 ( d+1

d , d+1
d−1 , d+1

d ) ≲ 1. However, ΛK3 ( d+1
d , d+1

d−1 , d+1
d ) cannot

be bounded, which can be easily shown by considering Proposition 4.1, namely, the
necessary conditions for the boundedness of ΛK3(p1 , p2 , p3).

We invoke Theorem 5.5 to deduce the following result.

Corollary 5.7 Conjecture 1.5 is true for the graph K3 and its subgraph P2 in F
d
q , d ≥ 2.

Proof It is clear that P2 is a subgraph of K3 in F
d
q . Sine δ(K3) = 2, d ≥ 2, and

δ(P2) = 1, we have min{δ(K3), d} = 2 > δ(P2) = 1. Hence, all assumptions of
Conjecture 1.5 are satisfied for K3 and P2 . Then the statement of the corollary follows
immediately from Theorem 5.5. ∎
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6 Mapping properties for the (C4 + t) form

We investigate the mapping properties of the operator associated with the graph C4 +
diagonal. Throughout the remaining sections, we assume that t is a nonzero element
in F

∗
q . Let f i , 1 ≤ i ≤ 4, be nonnegative real-valued functions on F

d
q .

The operator Λ♢t is associated with the graph C4 + diagonal t (Figure 1d), and we
define Λ♢t( f1 , f2 , f3 , f4) as the quantity

1
qd ∣St ∣∣Sd−2

t ∣2 ∑
x 1 ,x2 ,x3 ,x4∈Fd

q

St(x 1 − x2)St(x2 − x3)St(x3 − x4)St(x4 − x 1)St(x 1 − x3)
4
∏
i=1

f i(x i).

(6.1)

The operator Λ♢t is referred to as the (C4 + t) form on F
d
q . Here, notice that we

take the quantity qd ∣St ∣∣Sd−2
t ∣2 as the normalizing factor N(G) in (1.4).

Applying a change of variables by letting x = x 1 , u = x 1 − x2 , v = x 1 − x3 ,
w = x 1 − x4 , we see that

Λ♢t( f1 , f2 , f3 , f4) =
1

qd ∑
x∈Fd

q

f1(x)T( f2 , f3 , f4)(x) =< f1 , T( f2 , f3 , f4) >,(6.2)

where the operator T( f2 , f3 , f4) is defined by

T( f2 , f3 , f4)(x) ∶=
1

∣St ∣∣Sd−2
t ∣2

∑
u ,v ,w∈S t

St(v − u)St(w − v) f2(x − u) f3(x − v) f4(x −w).

(6.3)

We are asked to find 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that

Λ♢t( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4(6.4)

holds for all nonnegative real-valued functions f i , 1 ≤ i ≤ 4, on F
d
q . In other words,

our main problem is to determine all numbers 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that
Λ♢t(p1 , p2 , p3 , p4) ≲ 1.

Lemma 6.1 (Necessary conditions for the boundedness of Λ♢t(p1 , p2 , p3 , p4)) Let
Λ♢t be the (C4 + t) form on F

d
q . If Λ♢t(p1 , p2 , p3 , p4) ≲ 1, then we have

1
p1
+

1
p2
+

d
p3
+

1
p4
≤ d , d

p1
+

1
p2
+

1
p3
+

1
p4
≤ d , and 1

p1
+

d
p2
+

1
p3
+

d
p4
≤ 2d − 2.

Also, under this assumption when d = 2, it can be shown by Polymake [1, 6] that (1/p1 ,
1/p2 , 1/p3 , 1/p4) is contained in the convex hull of the points (0, 0, 1, 0), (0, 1, 0, 0),
(0, 0, 0, 1),(1/2, 0, 1/2, 1/2),(2/3, 2/3, 0, 0),(1, 0, 0, 0),(2/3, 0, 2/3,0),(1/2, 1/2, 1/2,0),
(2/3, 0, 0, 2/3), (0, 2/3, 2/3, 0), (0, 0, 0, 0), (0, 0, 2/3, 2/3).

Proof Taking f1 = f2 = f4 = 1S t , and f3 = δ0 in (6.4), we obtain the first conclusion

1
p1
+ 1

p2
+ d

p3
+ 1

p4
≤ d .(6.5)
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The second conclusion follows by symmetry from the first conclusion. Finally, one
can easily prove the third conclusion, that is, 1

p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 2, by testing the

inequality (6.4) with f1 = f3 = 1S t and f2 = f4 = δ0 . ∎

6.1 Boundedness results for Λ♢t on F
d
q

Given a rhombus with a fixed diagonal (the graph C4 + diagonal), we will show that
by removing the vertex x2 or the vertex x4 ,

Λ♢t( f1 , f2 , f3 , f4) ≲ ∣∣ f2∣∣∞ΛK3( f1 , f3 , f4) and Λ♢t( f1 , f2 , f3 , f4) ≲ ∣∣ f4∣∣∞ΛK3( f1 , f2 , f3).

Hence, upper bounds of Λ♢t(p1 ,∞, p3 , p4) and Λ♢t(p1 , p2 , p3 ,∞) can be controlled
by upper bounds of the ΛK3(p1 , p3 , p4) and ΛK3(p1 , p2 , p3), respectively. More
precisely, we have the following relation.

Proposition 6.2 Suppose that ΛK3(p, s, r) ≲ 1 for 1 ≤ p, s, r ≤ ∞. Then we have

Λ♢t(p,∞, s, r) ≲ 1 and Λ♢t(p, s, r,∞) ≲ 1.

Proof Since ΛK3(p, s, r) ≲ 1 for 1 ≤ p, s, r ≤ ∞, we see that for all nonnegative func-
tions f , g , h on F

d
q , ΛK3( f , g , h) ≲ ∣∣ f ∣∣p ∣∣g∣∣s ∣∣h∣∣r . Thus, to complete the proof, it

will be enough to establish the following estimates: For all nonnegative functions
f i , i = 1, 2, 3, 4,

Λ♢t( f1 , f2 , f3 , f4) ≲ ∣∣ f2∣∣∞ΛK3( f1 , f3 , f4)(6.6)

and

Λ♢t( f1 , f2 , f3 , f4) ≲ ∣∣ f4∣∣∞ΛK3( f1 , f2 , f3).(6.7)

Since the proofs of both (6.6) and (6.7) are the same, we only provide the proof
of the estimate (6.7). Notice by the definition of Λ♢t( f1 , f2 , f3 , f4) in (6.1) that
Λ♢t( f1 , f2 , f3 , f4) can be written as the form

1
qd ∣St ∣∣Sd−2

t ∣ ∑
x 1 ,x2 ,x3∈Fd

q

∶∣∣x 1−x2 ∣∣=∣∣x2−x3 ∣∣=∣∣x 1−x3 ∣∣=t

(
3
∏
i=1

f i(x i))
⎡⎢⎢⎢⎢⎢⎣

1
∣Sd−2

t ∣ ∑x4∈Fd
q

St(x3 − x4)St(x4 − x 1) f4(x4)
⎤⎥⎥⎥⎥⎥⎦

.

For each x 1 , x3 ∈ Fd
q with ∣∣x 1 − x3∣∣ = t, we define M(x 1 , x3) as the value in the

above bracket. Then, recalling the definition of ΛK3( f1 , f2 , f3) given in (4.1), we see
that

Λ♢t( f1 , f2 , f3 , f4) ≤
⎛
⎜⎜⎜
⎝

max
x 1 ,x3∈Fd

q

∶∣∣x 1−x3 ∣∣=t

M(x 1 , x3)
⎞
⎟⎟⎟
⎠

ΛK3( f1 , f2 , f3).

Hence, the estimate (6.7) follows immediately by proving the following claim:

M ∶= max
x 1 ,x3∈Fd

q

∶∣∣x 1−x3 ∣∣=t

1
∣Sd−2

t ∣ ∑x4∈Fd
q

St(x3 − x4)St(x4 − x 1) ≲ 1.(6.8)
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To prove this claim, we first apply a change of variables by letting x = x 1 , y = x 1 − x3 .
Then it follows that

M = max
x∈Fd

q , y∈S t

1
∣Sd−2

t ∣ ∑x4∈Fd
q

St(x − y − x4)St(x4 − x).

Letting z = x − x4 , we have

M = max
x∈Fd

q , y∈S t

1
∣Sd−2

t ∣ ∑
z∈S t ∶∣∣z−y∣∣=t

1 ∼ 1
qd−2 max

y∈S t
∑

z∈S t ∶∣∣z−y∣∣=t
1.

By Corollary A.4 in the Appendix, we conclude that M ≲ 1, as required. ∎

In arbitrary dimensions d ≥ 2, we have the following consequences.

Theorem 6.3 Suppose that 1 ≤ a, b ≤ ∞ satisfy that

1
a
+ d

b
≤ d and d

a
+ 1

b
≤ d .(6.9)

Namely, let (1/a, 1/b) be contained in the convex hull of points (0, 0), (0, 1), (d/(d + 1),
d/(d + 1)), (1, 0). Then we have Λ♢t(a,∞, b,∞) ≲ 1, Λ♢t(a, b,∞,∞) ≲ 1, Λ♢t(a,∞,
∞, b) ≲ 1, Λ♢t(∞,∞, a, b) ≲ 1, Λ♢t(∞, a, b,∞) ≲ 1.

Proof From Theorem 4.3, we know that the assumption (6.9) implies that
ΛK3(a, b,∞) ≲ 1, ΛK3(a,∞, b) ≲ 1, and ΛK3(∞, a, b) ≲ 1. Hence, the statement of the
theorem follows immediately by combining these and Proposition 6.2. ∎

6.2 Sharp boundedness results up to endpoints for Λ♢t on F
2
q

In this subsection, we collect our boundedness results for the operator Λ♢t in two
dimensions.

Theorem 6.4 Let Λ♢t be the (C4 + t) form on F
2
q . Let 1 ≤ p1 , p2 , p3 ≤ ∞.

(i) Suppose that (p1 , p2 , p3) ≠ (2, 2, 2) satisfies the following equations:
2
p1
+ 1

p2
+ 1

p3
≤ 2, 1

p1
+ 2

p2
+ 1

p3
≤ 2, 1

p1
+ 1

p2
+ 2

p3
≤ 2.

Then we have Λ♢t(p1 ,∞, p2 , p3) ≲ 1 and Λ♢t(p1 , p2 , p3 ,∞) ≲ 1.
(ii) In addition, we have Λ♢t(2,∞, 2, 2) ⪅ 1 and Λ♢t(2, 2, 2,∞) ⪅ 1, where ⪅ is used to

denote that the boundedness of ♢t holds for all indicator test functions.

Proof Notice that Proposition 6.2 still holds after replacing ≲ by ⪅ . Hence, the
statement of the theorem is directly obtained by combining Proposition 6.2 and
Theorem 4.7(ii). ∎

Theorem 6.4 guarantees the sharp boundedness for the operator◇t up to endpoints.
Indeed, we have the following result.

Theorem 6.5 Let ♢t be the (C4 + t) form on F
2
q . The necessary conditions for

♢t(p1 , p2 , p3 , p4) ≲ 1 given in Lemma 6.1 are sufficient except for the two points
(p1 , p2 , p3 , p4) = (2, 2, 2,∞), (2,∞, 2, 2).
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In addition, we have

♢t(2,∞, 2, 2) ⪅ 1 and ♢t(2, 2, 2,∞) ⪅ 1.(6.10)

Proof The statement (6.10) was already proven in Theorem 6.4(ii). Hence, using the
interpolation theorem and the second part of Lemma 6.1, the matter is reducing to
proving♢t(p1 , p2 , p3 , p4) ≲ 1 for the critical endpoints (1/p1 , 1/p2 , 1/p3 , 1/p4) includ-
ing all the following points: (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(2/3, 2/3, 0, 0), (2/3, 0, 2/3, 0), (2/3, 0, 0, 2/3), (0, 2/3, 2/3, 0), (0, 0, 2/3, 2/3).

In other words, the proof will be complete by proving the following estimates:
♢t(∞,∞,∞,∞) ≲ 1, ♢t(1,∞,∞,∞) ≲ 1, ♢t(∞, 1,∞,∞) ≲ 1, ♢t(∞,∞, 1,∞) ≲ 1,
♢t(∞,∞,∞, 1) ≲ 1, ♢t(3/2, 3/2,∞,∞) ≲ 1, ♢t(3/2,∞, 3/2,∞) ≲ 1, ♢t(3/2,∞,
∞, 3/2) ≲ 1, ♢t(∞, 3/2, 3/2,∞) ≲ 1, ♢t(∞,∞, 3/2, 3/2) ≲ 1.

However, by a direct computation, these estimates follow immediately from
Theorem 6.4(i). ∎

7 Boundedness problem for the C4 form

Let t ∈ F∗q . Given nonnegative real-valued functions f i , 1 ≤ i ≤ 4, on F
d
q , we define

ΛC4( f1 , f2 , f3 , f4) to be the following value:

1
qd ∣St ∣2∣Sd−2

t ∣ ∑
x 1 ,x2 ,x3 ,x4∈Fd

q

St(x 1 − x2)St(x2 − x3)St(x3 − x4)St(x4 − x 1)
4
∏
i=1

f i(x i),

(7.1)

where the quantity qd ∣St ∣2∣Sd−2
t ∣ stands for the normalizing factor N(G) in (1.4) when

G = C4 .
Main problem is to find all exponents 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that the inequality

ΛC4( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4(7.2)

holds for all nonnegative real-valued functions f i , 1 ≤ i ≤ 4, on F
d
q . In other words,

our main problem is to determine all numbers 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that
ΛC4(p1 , p2 , p3 , p4) ≲ 1.

Lemma 7.1 (Necessary conditions for the boundedness of ΛC4(p1 , p2 , p3 , p4)) Sup-
pose that (7.2) holds, namely ΛC4(p1 , p2 , p3 , p4) ≲ 1. Then we have

1
p1
+

1
p2
+

1
p3
+

d
p4
≤ d + 1, 1

p1
+

1
p2
+

d
p3
+

1
p4
≤ d + 1, 1

p1
+

d
p2
+

1
p3
+

1
p4
≤ d + 1,

d
p1
+ 1

p2
+ 1

p3
+ 1

p4
≤ d + 1,

d
p1
+ 1

p2
+ d

p3
+ 1

p4
≤ 2d − 2, and

1
p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 2.

In particular, when d = 2, it can be shown by Polymake [1, 6] that (1/p1 , 1/p2 ,
1/p3 , 1/p4) is contained in the convex hull of the points (0, 0, 1, 0), (0, 0, 0, 1),
(0, 1, 0, 0), (2/3, 0, 0, 2/3), (2/3, 2/3, 0, 0), (1, 0, 0, 0), (0, 0, 0, 0),(0, 2/3, 2/3, 0),(0, 0,
2/3, 2/3).

Remark 7.2 When d = 2, 3, the first four inequalities in the conclusion are not
necessary. We only need the last two.
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Proof The six inequalities in the conclusion can be easily deduced by testing the
inequality (7.2) with the following specific functions, respectively: We leave the proofs
to the readers.

1) f1 = f2 = f3 = 1S t , and f4 = δ0 . 2) f1 = f2 = f4 = 1S t , and f3 = δ0 .
3) f1 = f3 = f4 = 1S t , and f2 = δ0 . 4) f2 = f3 = f4 = 1S t , and f1 = δ0 .
5) f2 = f4 = 1S t , and f1 = f3 = δ0 . 6) f1 = f3 = 1S t , and f2 = f4 = δ0 . ∎

7.1 Boundedness results for ΛC4 on F
d
q

In this subsection, we provide some exponents 1 ≤ p i ≤ ∞, 1 ≤ i ≤ 4, such that
ΛC4(p1 , p2 , p3 , p4) ≲ 1 in the specific case when one of p i is ∞, but it is valid for all
dimensions d ≥ 2. In general, it is very hard to deduce nontrivial boundedness results
for the C4 form on F

d
q .

We begin by observing that an upper bound of ΛC4( f1 , f2 , f3 , f4) can be controlled
by estimating for both the K2 form and the P2 form.

Lemma 7.3 For all nonnegative functions f i , i = 1, 2, 3, 4, on F
d
q , d ≥ 2, we have

ΛC4( f1 , f2 , f3 , f4) ≲

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
∣Sd−2

t ∣
L( f1 f3 , f2) + Λ( f1 , f2 , f3)) ∣∣ f4∣∣∞,

( 1
∣Sd−2

t ∣
L( f2 f4 , f1) + Λ( f4 , f1 , f2)) ∣∣ f3∣∣∞,

( 1
∣Sd−2

t ∣
L( f1 f3 , f4) + Λ( f3 , f4 , f1)) ∣∣ f2∣∣∞,

( 1
∣Sd−2

t ∣
L( f2 f4 , f3) + Λ( f2 , f3 , f4)) ∣∣ f1∣∣∞.

Proof We only provide the proof of the first inequality,

ΛC4( f1 , f2 , f3 , f4) ≲
1

∣Sd−2
t ∣

ΛK2( f1 f3 , f2)∣∣ f4∣∣∞ + ΛP2( f1 , f2 , f3)∣∣ f4∣∣∞,(7.3)

since other inequalities can be easily proven in the same way by replacing the role of
f4 with f3 , f2 , f1 , respectively. By definition, the value of ΛC4( f1 , f2 , f3 , f4) is equal to

1
qd ∣St ∣2∣Sd−2

t ∣ ∑
x 1 ,x2 ,x3∈Fd

q

St(x 1 − x2)St(x2 − x3)(
3
∏
i=1

f i(x i))

×
⎛
⎜
⎝
∑

x4∈Fd
q

St(x3 − x4)St(x4 − x 1) f4(x4)
⎞
⎟
⎠

.

For fixed x 1 , x3 ∈ Fd
q , the sum in the above bracket can be estimated as follows:

∑
x4∈Fd

q

St(x3 − x4)St(x4 − x 1) f4(x4) ≲ { ∣St ∣∣∣ f4∣∣∞, if x 1 = x3 ,
qd−2∣∣ f4∣∣∞, if x 1 ≠ x3 .

Notice that this estimates are easily obtained by invoking Corollary A.4 in the
Appendix after using a change of variables.
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Let ΛC4( f1 , f2 , f3 , f4) =∶ ◇1 +◇2 , where ◇1 denotes the contribution to
ΛC4( f1 , f2 , f3 , f4) when x 1 = x3 , and ◇2 does it when x 1 ≠ x3 . Then it follows
that

◇1 ≲
∣∣ f4∣∣∞

qd ∣St ∣∣Sd−2
t ∣ ∑

x 1 ,x2∈Fd
q

St(x 1 − x2)( f1 f3)(x 1) f2(x2) = 1
∣Sd−2

t ∣
ΛK2( f1 f3 , f2)∣∣ f4∣∣∞,

◇2 ≲
∣∣ f4 ∣∣∞
qd ∣St ∣2

∑
x 1 ,x2 ,x3∈Fd

q ∶x 1≠x3

St(x 1 − x2)St(x2 − x3) f1(x 1) f2(x2) f3(x3) ≲ ΛP2( f1 , f2 , f3)∣∣ f4 ∣∣∞ .

Hence, we obtain the required estimate (7.3). ∎

In Lemma 7.3, we obtained four different kinds of the upper bounds of the
ΛC4( f1 , f2 , f3 , f4). Using each of them, we are able to deduce exponents p1 , p2 , p3 , p4
with ΛC4(p1 , p2 , p3 , p4) ≲ 1, where at least one of p j , j = 1, 2, 3, 4, takes ∞.

The following result can be proven by applying the first upper bound of
ΛC4( f1 , f2 , f3 , f4) in Lemma 7.3 together with Theorems 3.3 and 5.3.

Proposition 7.4 Let 1 ≤ p1 , p2 , p3 ≤ ∞. For the C4 form ΛC4 on F
d
q , d ≥ 2, the follow-

ing statements are true.
(i) If 1

p1
+ d

p2
+ 1

p3
≤ d and d

p1
+ 1

p2
+ d

p3
≤ d, then ΛC4(p1 , p2 , p3 ,∞) ≲ 1.

(ii) If d
p1
+ 1

p2
+ 1

p4
≤ d and 1

p1
+ d

p2
+ d

p4
≤ d, then ΛC4(p1 , p2 ,∞, p4) ≲ 1.

(iii) If 1
p1
+ 1

p3
+ d

p4
≤ d and d

p1
+ d

p3
+ 1

p4
≤ d, then ΛC4(p1 ,∞, p3 , p4) ≲ 1.

(iv) If 1
p2
+ d

p3
+ 1

p4
≤ d and d

p2
+ 1

p3
+ d

p4
≤ d, then ΛC4(∞, p2 , p3 , p4) ≲ 1.

Proof We will only provide the proof of the first part of the theorem since the
proofs of other parts are the same in the sense that the proof of the first part uses
the first upper bound of Lemma 7.3 and the proofs of other parts can also use their
corresponding upper bounds of Lemma 7.3 to complete the proofs.

Let us start proving the first part of the theorem. To complete the proof, we aim to
show that for all nonnegative functions f i , i = 1, 2, 3, 4, on F

d
q ,

ΛC4( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣∞,

whenever the exponents 1 ≤ p1 , p2 , p3 ≤ ∞ satisfy the following conditions:

1
p1
+ d

p2
+ 1

p3
≤ d and d

p1
+ 1

p2
+ d

p3
≤ d .(7.4)

By the first part of Lemma 7.3, it follows that

ΛC4( f1 , f2 , f3 , f4) ≲ (
1

∣Sd−2
t ∣

L( f1 f3 , f2) + Λ( f1 , f2 , f3)) ∣∣ f4∣∣∞.

Therefore, under the assumptions (7.4), our problem is reducing to establishing the
following two estimates:

ΛK2( f1 f3 , f2) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ,(7.5)

ΛP2( f1 , f2 , f3) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 .(7.6)
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For 1 ≤ p1 , p3 ≤ ∞, let 1/r = 1/p1 + 1/p3 . Then the conditions (7.4) are the same as

1
r
+ d

p2
≤ d and d

r
+ 1

p2
≤ d .

So these conditions enable us to invoke Theorem 3.3 so that we obtain the estimate
(7.5) as follows:

ΛK2( f1 f3 , f2) ≲ ∣∣ f1 f3∣∣r ∣∣ f2∣∣p2 ≤ ∣∣ f1∣∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ,

where we used Hölder’s inequality in the last inequality.
It remains to prove the estimate (7.6) under the assumptions (7.4). To do this, we

shall use Theorem 5.3, which gives sufficient conditions for ΛP2(p1 , p2 , p3) ≲ 1. We
directly compare the conditions (7.4) with the assumptions of Theorem 5.3. Then it is
not hard to observe the following statements.
• (Case 1) In the case when 0 ≤ 1

p1
, 1

p3
≤ d

d+1 , the conditions (7.4) imply the hypothesis
of the first part of Theorem 5.3.

• (Case 2) In the case when 0 ≤ 1
p1
≤ d

d+1 ≤
1

p3
≤ 1, the conditions (7.4) imply the

hypothesis of the second part of Theorem 5.3. To see this, notice that if d/p1 + 1/p2 +
d/p3 ≤ d, then 1/(d p1) + 1/p2 + d/p3 ≤ d .

• (Case 3) In the case when 0 ≤ 1
p3
≤ d

d+1 ≤
1
p1
≤ 1, the conditions (7.4) imply the

hypothesis of the third part of Theorem 5.3.
• (Case 4) In the case when d

d+1 ≤
1
p1

, 1
p3
≤ 1, the conditions (7.4) imply the hypothesis

of the fourth part of Theorem 5.3.
Hence, we conclude from Theorem 5.3 that ΛP2(p1 , p2 , p3) ≲ 1 under the assump-

tions (7.4), as desired. ∎

7.2 Sharp boundedness results for ΛC4 on F
2
q

Recall that Proposition 7.4 provides sufficient conditions for ΛC4(p1 , p2 , p2 , p4) ≲ 1
in any dimensions d ≥ 2. In this section, we show that Proposition 7.4 is sharp in two
dimensions. More precisely, using Proposition 7.4, we will prove the following optimal
result.

Theorem 7.5 Let ΛC4 be the C4 form on F
2
q . For 1 ≤ p i ≤ ∞, 1 ≤ i ≤ 4, we have

ΛC4(p1 , p2 , p3 , p4) ≲ 1 if and only if
2
p1
+ 1

p2
+ 2

p3
+ 1

p4
≤ 2, and

1
p1
+ 2

p2
+ 1

p3
+ 2

p4
≤ 2.

Proof The necessary conditions for ΛC4(p1 , p2 , p3 , p4) ≲ 1 follow immediately from
Lemma 7.1 for d = 2 (see Remark 7.2).

Conversely, suppose that 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ satisfy the following two
inequalities:

2
p1
+ 1

p2
+ 2

p3
+ 1

p4
≤ 2, and 1

p1
+ 2

p2
+ 1

p3
+ 2

p4
≤ 2.(7.7)

Then, as mentioned in Lemma 7.1, it can be shown by Polymake [1, 6] that
(1/p1 , 1/p2 , 1/p3 , 1/p4) is contained in the convex hull of the points (0, 0, 1, 0),
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(0, 0, 0, 1), (0, 1, 0, 0), (2/3, 0, 0, 2/3), (2/3, 2/3, 0, 0), (1, 0, 0, 0), (0, 0, 0, 0), (0, 2/3,
2/3, 0), (0, 0, 2/3, 2/3).

By interpolating the above nine critical points, to prove ΛC4(p1 , p2 , p3 , p4) ≲ 1 for
all p i , 1 ≤ i ≤ 4 satisfying the inequalities in (7.7), it will be enough to prove it for
the nine critical points (1/p1 , 1/p2 , 1/p3 , 1/p4). This can be easily proven by using
Proposition 7.4. For example, for the point (1/p1 , 1/p2 , 1/p3 , 1/p4) = (2/3, 0, 0, 2/3),
a direct computation shows that the assumptions in Proposition 7.4(ii) are satisfied
and thus ΛC4(p1 , p2 , p3 , p4) = ΛC4(3/2,∞,∞, 3/2) ≲ 1. For other critical points, we
can easily prove them in the same way so that we omit the detail proofs. ∎

Notice that the graph C4 is a subgraph of the graph C4 + diagonal, and they
are associated with the operators ΛC4 and Λ♢t , respectively. Hence, the following
proposition shows that the answer to Question 1.2 is negative when G is the C4 +
diagonal, and G′ is the C4 . However, this does not mean that Conjecture 1.5 is not
true since the C4 and the C4 + diagonal do not satisfy the main hypothesis (1.6) of
Conjecture 1.5.

Proposition 7.6 Let Λ♢t , ΛC4 be the (C4 + t) form and the C4 form onF
2
q , respectively.

Let 1 ≤ p1 , p2 , p3 , p4 ≤ ∞. Then the following statements hold.

(i) If ΛC4(p1 , p2 , p3 , p4) ≲ 1, then Λ♢t(p1 , p2 , p3 , p4) ≲ 1.
(ii) Moreover, there exist exponents 1 ≤ a, b, c, d ≤ ∞ such that Λ♢t(a, b, c, d) ≲ 1 but

ΛC4(a, b, c, d) is not bounded.

Proof First, let us prove the statement (ii) in the conclusion. To prove this, we
choose (a, b, c, d) = (3/2,∞, 3/2,∞). From Theorem 6.4(i), we can easily note
that Λ♢t(3/2,∞, 3/2,∞) ≲ 1. However, it is impossible that ΛC4(3/2,∞, 3/2,∞) ≲ 1,
which can be shown from Theorem 7.5.

Next, let us prove the first conclusion of the theorem. Suppose that
ΛC4(p1 , p2 , p3 , p4) ≲ 1 for 1 ≤ p i ≤ ∞, 1 ≤ i ≤ 4. Then, as mentioned in the second
conclusion of Lemma 7.1, the point (1/p1 , 1/p2 , 1/p3 , 1/p4) lies on the convex
body with the critical endpoints: (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 0, 0), (2/3, 0, 0, 2/3),
(2/3, 2/3, 0, 0), (1, 0, 0, 0), (0, 0, 0, 0), (0, 2/3, 2/3, 0), (0, 0, 2/3, 2/3).

Invoking the interpolation theorem, to prove the conclusion that
Λ♢t(p1 , p2 , p3 , p4) ≲ 1, it will be enough to establish the boundedness only for
those nine critical points (1/p1 , 1/p2 , 1/p3 , 1/p4). More precisely, it remains to
establish the following estimates:

Λ♢t(∞,∞,∞,∞) ≲ 1, Λ♢t(1,∞,∞,∞) ≲ 1, Λ♢t(∞, 1,∞,∞) ≲ 1, Λ♢t(∞,∞,
1,∞) ≲ 1, Λ♢t(∞,∞,∞, 1) ≲ 1, Λ♢t(3/2, 3/2,∞,∞) ≲ 1, Λ♢t(3/2,∞,∞, 3/2) ≲ 1,
Λ♢t(∞, 3/2, 3/2,∞) ≲ 1, Λ♢t(∞,∞, 3/2, 3/2) ≲ 1.

However, these estimates follow by applying Theorem 6.4(i). ∎

8 Boundedness problem for the P3 form

For t ∈ F∗q and nonnegative real-valued functions f i , i = 1, 2, 3, 4, on F
d
q , we define

ΛP3( f1 , f2 , f3 , f4) as the following value:
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1
qd ∣St ∣3

∑
x 1 ,x2 ,x3 ,x4∈Fd

q

St(x 1 − x2)St(x2 − x3)St(x3 − x4)
4
∏
i=1

f i(x i).(8.1)

This operator ΛP3 will be named the P3 form on F
d
q since it is related to the graph P3

with vertices in F
d
q , d ≥ 2. Note that in the definition of ΛP3( f1 , f2 , f3 , f4), we take the

normalizing fact qd ∣St ∣3, which is corresponding to N(G) in (1.4) when G is the P3 .
We want to determine 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that

ΛP3( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4(8.2)

holds for all nonnegative real-valued functions f i , i = 1, 2, 3, 4, on F
d
q . In other

words, our main problem is to find all numbers 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that
ΛP3(p1 , p2 , p3 , p4) ≲ 1.

Lemma 8.1 (Necessary conditions for ΛP3(p1 , p2 , p3 , p4) ≲ 1) Suppose that
ΛP3(p1 , p2 , p3 , p4) ≲ 1. Then we have 1

p1
+ d

p2
+ 1

p3
≤ d , 1

p2
+ d

p3
+ 1

p4
≤ d , d

p1
+ 1

p2
+

1
p3
+ 1

p4
≤ d + 2, 1

p1
+ 1

p2
+ 1

p3
+ d

p4
≤ d + 2, 1

p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 1, d

p1
+ 1

p2
+ d

p3
+

1
p4
≤ 2d − 1, and d

p1
+ 1

p2
+ 1

p3
+ d

p4
≤ 2d

In particular, when d = 2, by using Polymake [1, 6], it can be shown that (1/p1 , 1/p2 ,
1/p3 , 1/p4) is contained in the convex hull of the points: (0, 1, 0, 1/2), (0, 1, 0, 0),
(1/2, 0, 1/2, 1), (1/2, 0, 1, 0), (1, 1/2, 0, 0), (1, 0, 0, 0), (1, 1/3, 1/3, 0), (1, 0, 1/2, 0), (1/2,
1/3, 5/6, 0), (1, 0, 0, 1), (1/2, 1/2, 1/2, 1/2), (1, 1/2, 0, 1/2), (0, 5/6, 1/3, 1/2), (0, 0, 0, 1),
(0, 1/2, 0, 1), (0, 2/3, 2/3, 0), (0, 1/3, 1/3, 1), (0, 0, 1/2, 1), (0, 0, 1, 0), (0, 0, 0, 0).

Remark 8.2 When d = 2, the third, fourth, and seventh inequalities above are not
necessary. When d = 3, the third and fourth inequalities above are not necessary.

Proof As in the proofs of Propositions 3.1, 4.1, and 5.1, the conclusions of the
statement follow by testing the inequality (8.2) with the following specific functions,
respectively:

1) f1 = f3 = 1S t , f2 = δ0 , and f4 = 1Fd
q
. 2) f1 = 1Fd

q
, f2 = f4 = 1S t , and f3 = δ0 .

3) f2 = f3 = f4 = 1S t , and f1 = δ0 . 4) f1 = f2 = f3 = 1S t , and f4 = δ0 .
5) f1 = f3 = 1S t , and f2 = f4 = δ0 . 6) f2 = f4 = 1S t , and f1 = f3 = δ0 .
7) f2 = f3 = 1S t , and f1 = f4 = δ0 . ∎

8.1 Boundedness results for ΛP3 on F
d
q

We begin by observing that an upper bound of ΛP3( f1 , f2 , f3 , f4) can be controlled by
the value ΛP2( f1 , f2 , f3).

Proposition 8.3 Let 1 ≤ a, b, c ≤ ∞. If ΛP2(a, b, c) ≲ 1, then ΛP3(a, b, c,∞),
ΛP3(∞, a, b, c) ≲ 1.

Proof For all nonnegative functions f i , i = 1, 2, 3, 4, on F
d
q , our task is to prove the

following inequalities:
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ΛP3( f1 , f2 , f3 , f4) ≲ {
ΛP2( f1 , f2 , f3) ∣∣ f4∣∣∞,
∣∣ f1∣∣∞ Λ( f2 , f3 , f4).(8.3)

We will only prove the first inequality, that is,

ΛP3( f1 , f2 , f3 , f4) ≲ ΛP2( f1 , f2 , f3) ∣∣ f4∣∣.(8.4)

By symmetry, the second inequality can be easily proven in the same way. By definition
in (8.1), we can write ΛP3( f1 , f2 , f3 , f4) as

1
qd ∣St ∣2

∑
x 1 ,x2 ,x3∈Fd

q

St(x 1 − x2)St(x2 − x3)(
3
∏
i=1

f i(x i))
⎛
⎜
⎝

1
∣St ∣

∑
x4∈Fd

q

f4(x4)St(x3 − x4)
⎞
⎟
⎠

.

Since the value in the above bracket is Af4(x3), which is clearly dominated by ∣∣Af4∣∣∞,
the required estimate (8.4) follows immediately from the definition of ΛP2( f1 , f2 , f3)
in (5.1). ∎

The following lemma can be deduced from Proposition 8.3 and Theorem 5.3.

Lemma 8.4 Consider the P3 form ΛP3 on F
d
q . Suppose that the exponents 1 ≤ a, b,

c ≤ ∞ satisfy one of the following conditions:

(i) 0 ≤ 1
a , 1

c ≤
d

d+1 and 1
a +

d
b +

1
c ≤ d,

(ii) 0 ≤ 1
a ≤

d
d+1 ≤

1
c ≤ 1, and 1

d a +
1
b +

d
c ≤ d,

(iii) 0 ≤ 1
c ≤

d
d+1 ≤

1
a ≤ 1, and d

a +
1
b +

1
dc ≤ d,

(iv) d
d+1 ≤

1
a , 1

c ≤ 1 and d
a +

1
b +

d
c ≤ 2d − 1.

Then we have ΛP3(a, b, c,∞) ≲ 1 and ΛP3(∞, a, b, c) ≲ 1.

Proof Using Theorem 5.3 with p1 = a, p2 = b, p3 = c, it is clear that ΛP2(a, b, c) ≲ 1
for all exponents a, b, c in our assumption. Hence, the statement follows immediately
from Proposition 8.3. ∎

Now we prove that the value ΛP3( f1 , f2 , f3 , f4) can be expressed in terms of the
averaging operator over spheres. For functions f , g , h on F

d
q , let us denote

< f , g , h >∶= ∣∣ f gh∣∣1 =
1

qd ∑
x∈Fd

q

f (x)g(x)h(x).

Proposition 8.5 Let f i , i = 1, 2, 3, 4, be nonnegative real-valued functions on F
d
q . Then

we have

ΛP3( f1 , f2 , f3 , f4) =< Af1 , f2 , A( f3 ⋅ Af4) >=< A( f2 ⋅ Af1), f3 , Af4 > .

Proof By symmetry, to complete the proof, it suffices to prove the first equality,
that is,

ΛP3( f1 , f2 , f3 , f4) =< Af1 , f2 , A( f3 ⋅ Af4) > .
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Combining the definition in (8.1) and the definition of the spherical averaging
operator A, it follows that

ΛP3( f1 , f2 , f3 , f4) =
1

qd ∑
x2∈Fd

q

f2(x2)Af1(x2)
⎡⎢⎢⎢⎢⎣

1
∣St ∣

∑
x3∈Fd

q

f3(x3)St(x2 − x3)Af4(x3)
⎤⎥⎥⎥⎥⎦

= 1
qd ∑

x2∈Fd
q

f2(x2)Af1(x2)A( f3 ⋅ Af4)(x2).

This gives the required estimate. ∎

Combining Proposition 8.5 and the averaging estimate over spheres, we are able to
deduce sufficient conditions for the boundedness of the P3 form ΛP3 on F

d
q .

Lemma 8.6 Let 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ be exponents satisfying one of the following
conditions:

(i) 0 ≤ 1
p1

, 1
p4

, 1
p3
+ 1

d p4
≤ d

d+1 , and 1
d p1

+ 1
p2
+ 1

d p3
+ 1

d2 p4
≤ 1.

(ii) 0 ≤ 1
p1

, 1
p4
≤ d

d+1 ≤
1

p3
+ 1

d p4
≤ 1, and 1

d p1
+ 1

p2
+ d

p3
+ 1

p4
≤ d .

(iii) 0 ≤ 1
p1

, 1
p3
+ d

p4
− d + 1 ≤ d

d+1 ≤
1

p4
≤ 1, and 1

p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 1.

(iv) 0 ≤ 1
p1
≤ d

d+1 ≤
1

p4
, 1

p3
+ d

p4
− d + 1 ≤ 1, and 1

d p1
+ 1

p2
+ d

p3
+ d2

p4
≤ d2 .

(v) 0 ≤ 1
p4

, 1
p3
+ 1

d p4
≤ d

d+1 ≤
1
p1
≤ 1, and d

p1
+ 1

p2
+ 1

d p3
+ 1

d2 p4
≤ d .

(vi) 0 ≤ 1
p4
≤ d

d+1 ≤
1
p1

, 1
p3
+ 1

d p4
≤ 1, and d

p1
+ 1

p2
+ d

p3
+ 1

p4
≤ 2d − 1.

(vii) 0 ≤ 1
p3
+ d

p4
− d + 1 ≤ d

d+1 ≤
1
p1

, 1
p4
≤ 1, and d2

p1
+ d

p2
+ 1

p3
+ d

p4
≤ d2 + d − 1.

(viii) d
d+1 ≤

1
p1

, 1
p4

, 1
p3
+ d

p4
− d + 1 ≤ 1, and d

p1
+ 1

p2
+ d

p3
+ d2

p4
≤ d2 + d − 1.

Then we have ΛP3(p1 , p2 , p3 , p4) ≲ 1 and ΛP3(p4 , p3 , p2 , p1) ≲ 1.

Proof By symmetry, it will be enough to prove the first part of conclusions, that is,
ΛP3(p1 , p2 , p3 , p4) ≲ 1. To complete the proof, we will first find the general conditions
that guarantee this conclusion. Next, we will demonstrate that each of the hypotheses
in the theorem satisfies the general conditions.

To derive the first general condition, we assume that 1 ≤ r1 , p2 , r ≤ ∞ satisfy that

1
r1
+ 1

p2
+ 1

r
≤ 1.(8.5)

Then, by Proposition 8.5 and Hölder’s inequality,

ΛP3( f1 , f2 , f3 , f4) ≤ ∣∣Af1∣∣r1 ∣∣ f2∣∣p2 ∣∣A( f3 ⋅ Af4)∣∣r ,

where we also used the nesting property of norms associated with the normalizing
counting measure. Assume that 1 ≤ p1 , s ≤ ∞ satisfy the following averaging estimates
over spheres:

A(p1 → r1) ≲ 1 and A(s → r) ≲ 1.(8.6)
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It follows that ΛP3( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3 ⋅ Af4∣∣s . Now we assume that
1 ≤ p3 , t ≤ ∞ satisfy that

1
s
= 1

p3
+ 1

t
.(8.7)

Then, by Hölder’s inequality, we see that

ΛP3( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣Af4∣∣t .

Finally, if we assume that 1 ≤ p4 ≤ ∞ satisfies the following averaging estimate

A(p4 → t) ≲ 1,(8.8)

then we obtain that ΛP3( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4 .
In summary, we see that ΛP3(p1 , p2 , p3 , p4) ≲ 1 provided that the numbers

1 ≤ p i ≤ ∞, i = 1, 2, 3, 4, satisfy all the conditions (8.5)–(8.8). Thus, to finish the proof,
we will show that each of the eight hypotheses in the theorem satisfies all these
conditions.

Given 1 ≤ p1 , p4 ≤ ∞, by Lemma 2.5, we can chose 1 ≤ r1 , t ≤ ∞ such that the first
averaging estimate in (8.6) and the averaging estimate (8.8) hold, respectively. More
precisely, we can select 0 ≤ 1/r1 , 1/t ≤ 1 as follows:
• If 0 ≤ 1

p1
≤ d

d+1 , then we take 1/r1 = 1/(d p1).
• If 0 ≤ 1

p4
≤ d

d+1 , then we take 1/t = 1/(d p4).
• If d

d+1 ≤
1
p1
≤ 1, then we choose 1/r1 = d/p1 − d + 1.

• If d
d+1 ≤

1
p4
≤ 1, then we choose 1/t = d/p4 − d + 1.

In the next step, we determine 1 ≤ r ≤ ∞ by using the condition (8.7) and the second
averaging estimate in (8.6). Since two kinds of t values can be chosen as above, the
condition (8.7) becomes

1
s
= 1

p3
+ 1

d p4
or 1

s
= 1

p3
+ d

p4
− d + 1.

Combining these s values with the second averaging estimate in (8.6), the application
of Lemma 2.5 enables us to choose 1/r values as follows:
• If 0 ≤ 1

s =
1

p3
+ 1

d p4
≤ d

d+1 , then we take 1
r =

1
d p3

+ 1
d2 p4

.
• If d

d+1 ≤
1
s =

1
p3
+ 1

d p4
≤ 1, then we take 1

r =
d
p3
+ 1

p4
− d + 1.

• If 0 ≤ 1
s =

1
p3
+ d

p4
− d + 1 ≤ d

d+1 , then we take 1
r =

1
d p3

+ 1
p4
− 1 + 1

d .
• If d

d+1 ≤
1
s =

1
p3
+ d

p4
− d + 1 ≤ 1, then we take 1

r =
d
p3
+ d2

p4
− d2 + 1.

Finally, use the condition (8.5) together with previously selected two values for r1 and
four values for r. Then we obtain the required remaining conditions. ∎
Remark 8.7 Notice that Lemma 8.4 is a special case of Lemma 8.6. However, the
proof of Lemma 8.4 is much simpler than that of Lemma 8.6.

We do not know if the consequences from Lemmas 8.4 and 8.6 imply the sharp
boundedness results for the P3 form ΛP3 on F

d
q . However, they play an impor-

tant role in proving the proposition below, which states that the exponents for
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ΛP3(p1 , p2 , p3 , p4) ≲ 1 are less restricted than those for Λ♢t(p1 , p2 , p3 , p4) ≲ 1. The
precise statement is as follows.

Theorem 8.8 Let Λ♢t and ΛP3 be the operators acting on the functions on F
2
q . If

Λ♢t(p1 , p2 , p3 , p4) ≲ 1 for 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, then ΛP3(p1 , p2 , p3 , p4) ≲ 1.

Proof Assume that Λ♢t(p1 , p2 , p3 , p4) ≲ 1 for 1 ≤ p1 , p2 , p3 , p4 ≤ ∞. Then, by
Lemma 6.1, the point (1/p1 , 1/p2 , 1/p3 , 1/p4) is contained in the convex hull of the
following points: (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1), (1/2, 0, 1/2, 1/2), (2/3, 2/3, 0, 0),
(1, 0, 0, 0), (2/3, 0, 2/3, 0), (1/2, 1/2, 1/2, 0), (2/3, 0, 0, 2/3),(0, 2/3, 2/3, 0),(0, 0, 0, 0),
(0, 0, 2/3, 2/3).

To complete the proof, by the interpolation theorem, it suffices to show that for
each of the above critical points (1/p1 , 1/p2 , 1/p3 , 1/p4), we have

ΛP3(p1 , p2 , p3 , p4) ≲ 1.

To prove this, we will use Lemma 8.6 and Lemma 8.4. By Lemma 8.6 with the
hypothesis (i), one can notice that ΛP3(3/2,∞,∞, 3/2) ≲ 1, which is corresponding
to the point (1/p1 , 1/p2 , 1/p3 , 1/p4) = (2/3, 0, 0, 2/3). Similarly, Lemma 8.6 with the
hypothesis (ii) can be used for the point (1/2, 0, 1/2, 1/2), namely, ΛP3(2,∞, 2, 2) ≲ 1.

For any other points, we can invoke Lemma 8.4. More precisely, we can apply
Lemma 8.4 with the hypothesis (i) for the points (0, 1, 0, 0), (2/3, 2/3, 0, 0), (2/3,
0, 2/3, 0), (1/2, 1/2, 1/2, 0), (0, 2/3, 2/3, 0), (0, 0, 0, 0), (0, 0, 2/3, 2/3). The points
(0, 0, 1, 0), (0, 0, 0, 1) can be obtained by Lemma 8.4 with the hypothesis (ii). Finally,
for the point (1, 0, 0, 0), we can prove that ΛP3(1,∞,∞,∞) ≲ 1 by using Lemma 8.4
with the hypothesis (iii). This completes the proof. ∎

Remark 8.9 The reverse statement of Theorem 8.8 is not true in general. As a
counterexample, we can take p1 = 3/2, p2 = 3, p3 = 3/2, p4 = ∞. Indeed, the assump-
tion (i) of Lemma 8.4 with d = 2 implies that ΛP3(3/2, 3, 3/2,∞) ≲ 1. However,
Λ♢t(3/2, 3, 3/2,∞) cannot be bounded, which follows from Lemma 6.1.

We obtain the following consequence of Theorem 8.8.

Corollary 8.10 Conjecture 1.5 is valid for the graph C4 + diagonal and its subgraph P3
in F

2
q .

Proof It is obvious that the P3 is a subgraph of C4 + diagonal in F
2
q . For d = 2, it is

plain to notice that min{δ(C4 + diagonal), d} = 2 > δ(P3) = 1. Thus, the graph C4
+ diagonal and its subgraph P3 satisfy all assumptions of Conjecture 1.5. Then the
statement of the corollary follows immediately from Theorem 8.8 since the operators
♢t and ΛP3 are related to the C4 + diagonal and its subgraph P3, respectively. ∎

The following theorem provides a concrete example for a positive answer to
Question 1.2 since the operators◇ and ΛP3 are related to the graph C4 and its subgraph
P3 , respectively. Furthermore, the graphs also satisfy Conjecture 1.5 (see Corollary 8.13
below).

Theorem 8.11 Let ΛC4 and ΛP3 be the operators acting on the functions on F
2
q . If

ΛC4(p1 , p2 , p3 , p4) ≲ 1, 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, then ΛP3(p1 , p2 , p3 , p4) ≲ 1.
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Proof By Proposition 7.6(i), if ΛC4(p1 , p2 , p3 , p4) ≲ 1, then Λ♢t(p1 , p2 , p3 , p4) ≲ 1.
By Theorem 8.8, if Λ♢t(p1 , p2 , p3 , p4) ≲ 1, then ΛP3(p1 , p2 , p3 , p4) ≲ 1. Hence, the
statement follows. ∎

Remark 8.12 The reverse statement of Theorem 8.11 cannot hold. As in Remark 8.9, if
we can take p1 = 3/2, p2 = 3, p3 = 3/2, p4 = ∞, then ΛP3(3/2, 3, 3/2,∞) ≲ 1. However,
ΛC4(3/2, 3, 3/2,∞) cannot be bounded, which follows from Theorem 7.5.

Corollary 8.13 Conjecture 1.5 holds true for the graph C4 and its subgraph P3 on F
2
q .

Proof The main hypothesis (1.6) of Conjecture 1.5 is satisfied for the graph C4 and
its subgraph P3 on F

2
q ∶

min{δ(C4), 2} = 2 > 1 = δ(P3).

Since the operators ΛC4 and ΛP3 are associated with the graph C4 and its subgraph P3 ,
respectively, the statement of the corollary follows from Theorem 8.11. ∎

9 Operators associated with the graph K3 + tail (a kite)

Given t ∈ F∗q and functions f i , i = 1, 2, 3, 4, on F
d
q , we define Λ⊴( f1 , f2 , f3 , f4) as the

following value:

1
qd ∣St ∣2∣Sd−2

t ∣ ∑
x 1 ,x2 ,x3 ,x4∈Fd

q

St(x 1 − x2)St(x2 − x3)St(x3 − x4)St(x3 − x 1)
4
∏
i=1

f i(x i).

Note that this operator Λ⊴ is related to the graph K3 + tail (Figure 1g), and so the
normalizing factor N(G) in (1.4) can be taken as the quantity qd ∣St ∣2∣Sd−2

t ∣.
Here, our main problem is to determine all exponents 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such

that

Λ⊴( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4(9.1)

holds for all nonnegative real-valued functions f i , i = 1, 2, 3, 4, on F
d
q . In other

words, we are asked to determine all numbers 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that
Λ⊴(p1 , p2 , p3 , p4) ≲ 1.

Recall that when d = 2, we assume that 3 ∈ Fq is a square number.

Lemma 9.1 (Necessary conditions for the boundedness of Λ⊴(p1 , p2 , p3 , p4)) Sup-
pose that (9.1) holds, namely Λ⊴(p1 , p2 , p3 , p4) ≲ 1. Then we have

1
p1
+ 1

p2
+ d

p3
+ 1

p4
≤ d , 1

p1
+ d

p2
+ 1

p3
≤ d , d

p1
+ 1

p2
+ 1

p3
≤ d ,

1
p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 1, and d

p1
+ 1

p2
+ 1

p3
+ d

p4
≤ 2d − 1.

In particular, if d = 2, then it can be shown by Polymake [1, 6] that (1/p1 , 1/p2 ,
1/p3 , 1/p4) is contained in the convex hull of the points: (0, 0, 1, 0), (0, 1, 0, 0),
(0, 1, 0, 1/2), (2/3, 0, 2/3, 0), (1/2, 1/2, 1/2, 0), (5/6, 0, 1/3, 1/2), (1, 0, 0, 0), (1/3, 0,
1/3, 1), (5/8, 5/8, 1/8, 1/2), (1/2, 0, 0, 1), (1/4, 1/4, 1/4, 1), (1/3, 1/3, 0, 1), (1, 0, 0, 1/2),
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(2/3, 2/3, 0, 1/2), (2/3, 2/3, 0, 0), (0, 1/2, 0, 1), (0, 1/3, 1/3, 1), (0, 0, 0, 1), (0, 5/6,
1/3, 1/2), (0, 0, 1/2, 1), (0, 0, 0, 0), (0, 2/3, 2/3, 0).
Proof To deduce the first inequality, we test (9.1) with f1 = f2 = f4 = 1S t and f3 = δ0 .
To obtain the second one, we test (9.1) with f1 = f3 = 1S t , f2 = δ0 , and f4 = 1Fd

q
. To

get the third one, we test (9.1) with f1 = δ0 , f2 = f3 = 1S t , and f4 = 1Fd
q
. To prove the

fourth one, we test (9.1) with f1 = f3 = 1S t and f2 = f4 = δ0 . Finally, to obtain the fifth
inequality, we test (9.1) with f1 = f4 = δ0 and f2 = f3 = 1S t . ∎

9.1 Sufficient conditions for the boundedness of Λ⊴ on F
d
q

When one of exponents p1 , p2 , p4 is ∞, the boundedness problem of Λ⊴(p1 , p2 ,
p3 , p4) can be reduced to that for the K3 form ΛK3 or the P2 form ΛP2 .
Proposition 9.2 Let 1 ≤ a, b, c ≤ ∞.
(i) If ΛK3(a, b, c) ≲ 1, then Λ⊴(a, b, c,∞) ≲ 1.

(ii) If ΛP2(a, b, c) ≲ 1, then Λ⊴(∞, a, b, c) ≲ 1 and Λ⊴(a,∞, b, c) ≲ 1.
Proof For all nonnegative functions f i , i = 1, 2, 3, 4, on F

d
q . we aim to prove the

following inequalities:

Λ⊴( f1 , f2 , f3 , f4) ≲
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΛK3( f1 , f2 , f3) ∣∣ f4∣∣∞,
∣∣ f1∣∣∞ ΛP2( f2 , f3 , f4),
∣∣ f2∣∣∞ ΛP2( f1 , f3 , f4).

(9.2)

By the definition, Λ⊴( f1 , f2 , f3 , f4) can be expressed as

1
qd ∣St ∣∣Sd−2

t ∣ ∑
x 1 ,x2 ,x3∈Fd

q

St(x 1 − x2)St(x2 − x3)St(x3 − x 1)(
3
∏
i=1

f i(x i))

×
⎛
⎜
⎝

1
∣St ∣

∑
x4∈Fd

q

St(x3 − x4) f4(x4)
⎞
⎟
⎠

.

The sum in the above bracket is clearly dominated by ∣∣ f4∣∣∞ for all x3 ∈ Fd
q . Hence,

recalling the definition of ΛK3( f1 , f2 , f3) in (4.1), we get the first inequality in (9.2):

Λ⊴( f1 , f2 , f3 , f4) ≤ ΛK3( f1 , f2 , f3)∣∣ f4∣∣∞.

Now we prove the second and third inequalities in (9.2). We will only provide the
proof of the second inequality, that is,

Λ⊴( f1 , f2 , f3 , f4) ≤ ∣∣ f1∣∣∞ ΛP2( f2 , f3 , f4).(9.3)

The third inequality can be similarly proved by switching the roles of variables x1 , x2 .
We write Λ⊴( f1 , f2 , f3 , f4) as follows:

1
qd ∣St ∣2

∑
x2 ,x3 ,x4∈Fd

q

St(x2 − x3)St(x3 − x4)(
4
∏
i=2

f i(x i))

×
⎛
⎜
⎝

1
∣Sd−2

t ∣ ∑x 1∈Fd
q

St(x 1 − x2)St(x3 − x 1) f1(x 1)
⎞
⎟
⎠

.
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Recall the definition of ΛP2( f2 , f3 , f4) in (5.1). Then, to prove the inequality (9.3), it
will be enough to show that for all x2 , x3 ∈ Fd

q with ∣∣x2 − x3∣∣ = t ≠ 0, the value in the
above bracket is ≲ ∣∣ f1∣∣∞. Now, by a simple change of variables, the value in the above
bracket is the same as

1
∣Sd−2

t ∣ ∑x 1∈S t

St((x3 − x2) − x 1) f1(x 1 + x2).

This is clearly dominated by

1
∣Sd−2

t ∣ ∑x 1∈S t

St((x3 − x2) − x 1)∣∣ f1∣∣∞.

Since ∣∣x3 − x2∣∣ = t ≠ 0, applying Corollary A.4 in the Appendix gives us the desirable
estimate. ∎

We address sufficient conditions for the boundedness of Λ⊴ on F
d
q .

The following result can be obtained from Proposition 9.2(i).

Lemma 9.3 Let Λ⊴ be defined on the functions onF
d
q , d ≥ 2. Suppose that 1 ≤ a, b ≤ ∞

satisfies the following equations:

1
a
+ d

b
≤ d and d

a
+ 1

b
≤ d .

Then we have Λ⊴(a, b,∞,∞) ≲ 1, Λ⊴(a,∞, b,∞) ≲ 1, Λ⊴(∞, a, b,∞) ≲ 1.

Proof The statement follows immediately by combining Proposition 9.2(i) with
Theorem 4.3. ∎

Proposition 9.2(ii) can be used to deduce the following result.

Lemma 9.4 Let Λ⊴ be defined on the functions on F
d
q , d ≥ 2. Suppose that 1 ≤ a, b, c ≤

∞ satisfies one of the following conditions:
(i) 0 ≤ 1

a , 1
c ≤

d
d+1 and 1

a +
d
b +

1
c ≤ d ,

(ii) 0 ≤ 1
a ≤

d
d+1 ≤

1
c ≤ 1, and 1

d a +
1
b +

d
c ≤ d ,

(iii) 0 ≤ 1
c ≤

d
d+1 ≤

1
a ≤ 1, and d

a +
1
b +

1
dc ≤ d ,

(iv) d
d+1 ≤

1
a , 1

c ≤ 1 and d
a +

1
b +

d
c ≤ 2d − 1.

Then we have Λ⊴(∞, a, b, c) ≲ 1 and Λ⊴(a,∞, b, c) ≲ 1.

Proof From our assumptions on the numbers a, b, c, Theorem 5.3 implies that
ΛP2(a, b, c) ≲ 1. Hence, the statement follows by applying Proposition 9.2(ii). ∎

9.2 Boundedness of Λ⊴ in two dimensions

Lemmas 9.3 and 9.4 provide nontrivial results available in higher dimensions. In this
section, we will show that further improvements can be made in two dimensions.
Before we state and prove the improvements, we collect the results in two dimensions,
which can be direct consequences of Lemmas 9.3 and 9.4.

To deduce the following result, we will apply Lemma 9.3 with d = 2.
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Corollary 9.5 Let Λ⊴ be defined on functions on F
2
q . Then we have

Λ⊴(p1 , p2 , p3 , p4) ≲ 1 provided that (p1 , p2 , p3 , p4) is one of the following points:
(∞,∞,∞,∞),(1,∞,∞,∞),(∞, 1,∞,∞),(∞,∞, 1,∞), (3/2, 3/2,∞,∞),(3/2,∞,
3/2,∞), (∞, 3/2, 3/2,∞).

Proof Using the first conclusion of Lemma 9.3 with d = 2, we see that Λ⊴(p1 ,
p2 , p3 , p4) ≲ 1 whenever (p1 , p2 , p3 , p4) takes the following points: (∞,∞,∞,∞),
(1,∞,∞,∞), (∞, 1,∞,∞), (3/2, 3/2,∞,∞).

Next, the second conclusion of Lemma 9.3 with d = 2 implies that Λ⊴(p1 , p2 ,
p3 , p4) ≲ 1 for the points (p1 , p2 , p3 , p4) = (∞,∞, 1,∞), (3/2,∞, 3/2,∞). Finally, it
follows from the third conclusion of Lemma 9.3 with d = 2 that Λ⊴(p1 , p2 , p3 , p4) ≲ 1
for (p1 , p2 , p3 , p4) = (∞, 3/2, 3/2,∞). Hence, the proof is complete. ∎

The following theorem will be proven by applying Lemma 9.4 with d = 2.

Corollary 9.6 Let Λ⊴ be defined on the functions on F
2
q . Suppose that (p1 , p2 ,

p3 , p4) is one of the following points: (∞,∞,∞, 1), (2,∞, 2, 2), (3/2,∞,∞, 3/2),
(∞,∞, 3/2, 3/2). Then we have Λ⊴(p1 , p2 , p3 , p4) ≲ 1.

Proof We get that Λ⊴(∞,∞,∞, 1) ≲ 1 by using the assumption (ii) and the first
conclusion of Lemma 9.4. Invoking the assumption (i) and the second conclusion of
Lemma 9.4, one can directly note that Λ⊴(2,∞, 2, 2) ≲ 1 and Λ⊴(3/2,∞,∞, 3/2) ≲ 1.
Finally, to prove that Λ⊴(∞,∞, 3/2, 3/2) ≲ 1, one can use the assumption (i) and the
first conclusion of Lemma 9.4. ∎

We now introduce the connection between Λ⊴( f1 , f2 , f3 , f4) and the bilinear
averaging operator.

Proposition 9.7 Let B be the bilinear operator defined as in (4.3). Then, for any
nonnegative real-valued functions f i , i = 1, 2, 3, 4, on F

2
q , we have

Λ⊴( f1 , f2 , f3 , f4) = ∣∣B( f1 , f2) ⋅ f3 ⋅ Af4∣∣1 ,

where A denotes the averaging operator over the circle in F
2
q .

Proof In two dimensions, Λ⊴( f1 , f2 , f3 , f4) can be rewritten as the following form:

1
q2∣St ∣2

∑
x 1 ,x2 ,x3 ,x4∈F2

q

St(x 1 − x2)St(x3 − x2)St(x3 − x4)St(x3 − x 1)
4
∏
i=1

f i(x i).

By the change of variables by putting y1 = x3−x 1 , y2 = x3−x2 , y3 = x3 , y4 = x3 − x4 ,
the value Λ⊴( f1 , f2 , f3 , f4) becomes

1
q2 ∣St ∣2

∑
y1 , y2 , y3 , y4∈F2

q

St(y2 − y1)St(y2)St(y4)St(y1) f1(y3 − y1) f2(y3 − y2) f3(y3) f4(y3 − y4).

This can be expressed as follows:

1
q2 ∑

y3∈F2
q

f3(y3)
⎛
⎝

1
∣St ∣

∑
y4∈S t

f4(y3 − y4)
⎞
⎠
⎛
⎝

1
∣St ∣

∑
y1 , y2∈S t ∶∣∣y2−y1 ∣∣=t

f1(y3 − y1) f2(y3 − y2)
⎞
⎠

.
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Recalling the definitions of the averaging operator in (2.1) and the bilinear averaging
operator in (4.3), it follows that

Λ⊴( f1 , f2 , f3 , f4) =
1

q2 ∑
y3∈F2

q

f3(y3)Af4(y3)B( f1 , f2)(y3).

By the definition of the normalized norm ∣∣ ∣∣1, the statement follows. ∎

For 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, recall that the notation Λ⊴(p1 , p2 , p3 , p4) ⪅ 1 is used if
the following estimate holds for all subsets E , F , G , H of F2

q :

Λ⊴(E , F , G , H) ≲ ∣∣E∣∣p1 ∣∣F∣∣p2 ∣∣G∣∣p3 ∣∣H∣∣p4 ,

and this estimate is referred to as the restricted strong-type Λ⊴(p1 , p2 , p3 , p4)
estimate.

The following theorem is our main result in two dimensions, which gives a new
restricted strong-type estimate for the boundedness on the operator Λ⊴.

Theorem 9.8 Let Λ⊴ be defined on functions on F
2
q . Let 1 ≤ p3 , p4 ≤ ∞. Then the

following statements are valid for all subsets E , F of F2
q and all nonnegative functions

f3 , f4 on F
2
q .

(i) If 2 ≤ p3 ≤ ∞, 3/2 ≤ p4 ≤ ∞, and 1
p3
+ 1

2p4
≤ 1

2 , then we have

Λ⊴(E , F , f3 , f4) ≲ ∣∣E∣∣2∣∣F∣∣2∣∣ f3∣∣p3 ∣∣ f4∣∣p4 .

(ii) If 2 ≤ p3 ≤ ∞, 4/3 ≤ p4 ≤ 3/2, and 1
p3
+ 2

p4
≤ 3

2 , then we have

Λ⊴(E , F , f3 , f4) ≲ ∣∣E∣∣2∣∣F∣∣2∣∣ f3∣∣p3 ∣∣ f4∣∣p4 .

Proof Let E , F be subsets ofF2
q and f , g be nonnegative real-valued functions onF

2
q .

By Proposition 9.7 and Hölder’s inequality, it follows that for 2 ≤ p3 ≤ ∞,

Λ⊴(E , F , f3 , f4) ≤ ∣∣B(E , F)∣∣2∣∣ f3∣∣p3 ∣∣Af4∣∣ 2p3
p3−2

.

Here, we also notice that 2 ≤ 2p3
p3−2 ≤ ∞. Since ∣∣B(E , F)∣∣2 ≲ ∣∣E∣∣2∣∣F∣∣2 by Lemma 4.6,

we see that

Λ⊴(E , F , f3 , f4) ≤ ∣∣E∣∣2∣∣F∣∣2∣∣ f3∣∣p3 ∣∣Af4∣∣ 2p3
p3−2

.

Hence, to complete the proof, it suffices to show that for all exponents p3 , p4 satisfying
the assumptions of the theorem, we have

A(p4 →
2p3

p3 − 2
) ≲ 1.(9.4)

To prove this, we first recall from Theorem 2.3 with d = 2 that A(p → r) ≲ 1 for
any numbers 1 ≤ p, r ≤ ∞ such that (1/p, 1/r) lies on the convex hull of points
(0, 0), (0, 1), (1, 1), and ( 2

3 , 1
3 ). Also, invoke Lemma 2.5 to find the equations indi-

cating the endpoint estimates for A(p → r) ≲ 1. Using those averaging estimates with
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p = p4 , r = 2p3
p3−2 , the inequality (9.4) can be obtained by a direct computation, where

we also use the fact that 2 ≤ r = 2p3
p3−2 ≤ ∞. ∎

The following corollary is a direct consequence of Theorem 9.8.

Corollary 9.9 Let Λ⊴ be defined on functions on F
2
q . Then we have Λ⊴(2, 2, 2,∞) ⪅ 1.

Proof The statement follows by a direct application of Theorem 9.8(i). ∎

The lemma below shows that the exponents for Λ♢t(p1 , p2 , p3 , p4) ≲ 1 are more
restricted than those for Λ⊴(p1 , p2 , p3 , p4) ≲ 1 up to the endpoints. This also provides
a positive answer to Question 1.2 since the graph K3 + tail is a subgraph of the graph
C4 + diagonal.

Lemma 9.10 Let Λ♢t and Λ⊴ be the operators acting on the functions on F
2
q . Sup-

pose that Λ♢t(p1 , p2 , p3 , p4) ≲ 1 for 1 ≤ p1 , p2 , p3 , p4 ≤ ∞. Then we have Λ⊴(p1 , p2 ,
p3 , p4) ≲ 1 except for the point (2, 2, 2,∞). In addition, we have Λ⊴(2, 2, 2,∞) ⪅ 1.

Proof Assume that Λ♢t(p1 , p2 , p3 , p4) ≲ 1 for 1 ≤ p1 , p2 , p3 , p4 ≤ ∞. Then, by
Lemma 6.1, the point (1/p1 , 1/p2 , 1/p3 , 1/p4) is contained in the convex hull of the
following points: (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1), (1/2, 0, 1/2, 1/2), (2/3, 2/3, 0, 0),
(1, 0, 0, 0), (2/3, 0, 2/3, 0),(1/2, 1/2, 1/2, 0),(2/3, 0, 0, 2/3),(0, 2/3, 2/3, 0),(0, 0, 0, 0),
(0, 0, 2/3, 2/3).

By Corollaries 9.5 and 9.6, the strong-type estimate Λ⊴(p1 , p2 , p3 , p4) ≲ 1 holds
for all the above points (1/p1 , 1/p2 , 1/p3 , 1/p4) except for (1/2, 1/2, 1/2, 0). Moreover,
we know from Corollary 9.9 that Λ⊴(2, 2, 2,∞) ⪅ 1. Hence, the statement follows by
interpolating those points. ∎

Remark 9.11 The reverse statement of Lemma 9.10 is not true. To see this, observe
from Theorem 9.8(ii) that Λ⊴(2, 2, 6, 3/2) ⪅ 1. In addition, by Lemma 6.1, notice that
Λ♢t(2, 2, 6, 3/2) cannot be bounded.

Corollary 9.12 Conjecture 1.5 holds up to endpoints for the graph C4 + diagonal and
its subgraph K3 + tail in F

2
q .

Proof The operators Λ♢t and Λ⊴ are associated with the C4 + diagonal and its
subgraph K3 + tail in F

2
q , respectively. Hence, invoking Lemma 9.10, the proof is

reduced to showing that the C4 + diagonal and its subgraph K3 + tail satisfy the main
hypothesis (1.6) of Conjecture 1.5. However, it is clear that

min{δ(C4 + diagonal), 2} = 2 > 1 = δ(K3 + tail).

Thus, the proof is complete. ∎

The following result shows that there exists an inclusive relation between bound-
edness exponents for the operators corresponding to the graphs C4 and K3 + tail,
although they are not subgraphs of each other.

Lemma 9.13 Let ΛC4 and Λ⊴ be defined on functions on F
2
q and let 1 ≤ p1 , p2 , p3 ,

p4 ≤ ∞. Then if ΛC4(p1 , p2 , p3 , p4) ≲ 1, we have Λ⊴(p1 , p2 , p3 , p4) ≲ 1.

https://doi.org/10.4153/S0008414X2300086X Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X2300086X


Multi-linear forms, graphs, and Lp-improving measures in F
d
q 39

Proof First, by Theorem 7.5, note that ΛC4(2, 2, 2,∞) cannot be bounded. Now
suppose that ΛC4(p1 , p2 , p3 , p4) ≲ 1. Then (p1 , p2 , p3 , p4) ≠ (2, 2, 2,∞). Using
Proposition 7.6, we get Λ♢t(p1 , p2 , p3 , p4) ≲ 1. Then the statement follows
immediately from Lemma 9.10. ∎

By combining Remark 9.11 and Proposition 7.6, it is clear that the reverse of
Lemma 9.13 does not hold. Notice that Lemma 9.13 provides an example to satisfy
Conjecture 1.5 without the hypothesis that G′ is a subgraph of the graph G .

10 Boundedness problems for the Y-shaped graph

In this section, we study the boundedness of the operator for the Y-shaped graph in
Figure 1h. For t ∈ F∗q , the Y-shaped form ΛY is defined by

ΛY( f1 , f2 , f3 , f4) =
1

qd ∣St ∣3
∑

x 1 ,x2 ,x3 ,x4∈Fd
q

St(x3 − x 1)St(x3 − x2)St(x3 − x4)
4
∏
i=1

f i(x i),

(10.1)

where functions f i , i = 1, 2, 3, 4, are defined onF
d
q . Note that this operator ΛY is related

to the Y-shaped graph, and so the normalizing factor N(G) in (1.4) can be taken as
qd ∣St ∣3 .

We aim to find all numbers 1 ≤ p1 , p2 , p3 , p4 ≤ ∞ such that ΛY(p1 , p2 , p3 , p4) ≲ 1.

Lemma 10.1 (Necessary conditions for the boundedness of ΛY(p1 , p2 , p3 , p4))
Let 1 ≤ p i ≤ ∞, 1 ≤ i ≤ 4. Suppose that ΛY(p1 , p2 , p3 , p4) ≲ 1. Then all the follow-
ing inequalities are satisfied: 1

p1
+ 1

p2
+ d

p3
+ 1

p4
≤ d , d

p1
+ d

p2
+ 1

p3
+ d

p4
≤ 3d − 2, d

p1
+

d
p2
+ 1

p3
≤ 2d − 1, d

p1
+ 1

p3
+ d

p4
≤ 2d − 1, d

p2
+ 1

p3
+ d

p4
≤ 2d − 1, d

p1
+ 1

p3
≤ d , d

p2
+ 1

p3
≤

d , 1
p3
+ d

p4
≤ d .

In particular, if d = 2, then it can be shown by Polymake [1, 6] that (1/p1 , 1/p2 ,
1/p3 , 1/p4) is contained in the convex hull of the points: (0, 0, 1, 0), (1, 0, 0, 1/2),
(1, 0, 1/2, 0), (1/2, 1, 0, 1/2), (1, 1/2, 0, 1/2), (1/2, 1/2, 0, 1), (1, 0, 1/3, 1/3), (1/2, 5/6,
1/3, 0), (1, 1/2, 0, 0), (1/2, 0, 1/3, 5/6), (1/2, 1, 0, 0), (1, 1/3, 1/3, 0), (1/2, 0, 0, 1), (1, 0,
0, 0), (0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 2/3, 2/3), (0, 5/6, 1/3, 1/2), (0, 1, 0, 1/2),
(0, 1/2, 1/3, 5/6), (0, 1/2, 0, 1), (0, 2/3, 2/3, 0).

Proof By a direct computation, the conclusions of the lemma easily follow by testing
the inequality

ΛY( f1 , f2 , f3 , f4) ≤ ΛY(p1 , p2 , p3 , p4)∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4 ,

with the following specific functions, respectively:

1) f1 = f2 = f4 = 1S t , f3 = δ0 . 2) f1 = f2 = f4 = δ0 , f3 = 1S t .
3) f1 = f2 = δ0 , f3 = 1S t , f4 = 1Fd

q
. 4) f1 = f2 = δ0 , f2 = 1Fd

q
, f3 = 1S t .

5) f1 = 1Fd
q
, f2 = f4 = δ0 , f3 = 1S t . 6) f1 = δ0 , f2 = f4 = 1Fd

q
, f3 = 1S t .

7) f1 = f4 = 1Fd
q
, f2 = δ0 , f3 = 1S t . 8) f1 = f2 = 1Fd

q
, f3 = 1S t , f4 = δ0 . ∎
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10.1 Sufficient conditions for the boundedness of ΛY on F
d
q

It is not hard to observe that the boundedness problem for the Y-shaped form can
be reduced to the spherical averaging estimate. Indeed, the value ΛY( f1 , f2 , f3 , f4) in
(10.1) can be written by

ΛY( f1 , f2 , f3 , f4) =
1

qd ∑
x3∈Fd

q

f3(x3) ∏
i=1,2,4

⎛
⎜
⎝

1
∣St ∣

∑
x i∈Fd

q

St(x3 − x i) f i(x i)
⎞
⎟
⎠

.

Invoking the definition of the averaging operator A = AS t in (2.2), we get

ΛY( f1 , f2 , f3 , f4) =
1

qd ∑
x3∈Fd

q

f3(x3)Af1(x3)Af2(x3)Af4(x4) = ∣∣Af1 ⋅ Af2 ⋅ f3 ⋅ Af4∣∣1 .

By Hőlder’s inequality and the nesting property of the norm ∣∣ ⋅ ∣∣p , we get

ΛY( f1 , f2 , f3 , f4) ≤ ∣∣Af1∣∣r1 ∣∣Af2∣∣r2 ∣∣ f ∣∣p3 ∣∣Af4∣∣r4 if 1
r1
+ 1

r2
+ 1

p3
+ 1

r4
≤ 1.(10.2)

Proposition 10.2 Let 1 ≤ p1 , p2 , p3 , p4 , r1 , r2 , r4 ≤ ∞ be extended real numbers which
satisfy the following assumptions: 1

r1
+ 1

r2
+ 1

p3
+ 1

r4
≤ 1 and A(p i → r i) ≲ 1 for all i =

1, 2, 4. Then we have
ΛY(p1 , p2 , p3 , p4) ≲ 1.

Proof By combining the inequality (10.2) with our assumptions on the averaging
estimates, it follows that for all functions f i , i = 1, 2, 3, 4, on F

d
q ,

ΛY( f1 , f2 , f3 , f4) ≲ ∣∣ f1∣∣p1 ∣∣ f2∣∣p2 ∣∣ f3∣∣p3 ∣∣ f4∣∣p4 .

This completes the proof. ∎
The following result provides lots of sufficient conditions for the boundedness of

the Y-shaped form.
Proposition 10.3 Let 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, and let ΛY be the Y-shaped form on F

d
q .

Then ΛY(p1 , p2 , p3 , p4) ≲ 1 provided that one of the following conditions is satisfied:
(i) 0 ≤ 1

p1
, 1

p2
, 1

p4
≤ d

d+1 and 1
p1
+ 1

p2
+ d

p3
+ 1

p4
≤ d .

(ii) 0 ≤ 1
p1

, 1
p2
≤ d

d+1 ≤
1

p4
and 1

d p1
+ 1

d p2
+ 1

p3
+ d

p4
≤ d .

(iii) 0 ≤ 1
p1

, 1
p4
≤ d

d+1 ≤
1

p2
≤ 1 and 1

d p1
+ d

p2
+ 1

p3
+ 1

d p4
≤ d .

(iv) 0 ≤ 1
p2

, 1
p4
≤ d

d+1 ≤
1
p1
≤ 1 and d

p1
+ 1

d p2
+ 1

p3
+ 1

d p4
≤ d .

(v) 0 ≤ 1
p1
≤ d

d+1 ≤
1

p2
, 1

p4
≤ 1 and 1

d p1
+ d

p2
+ 1

p3
+ d

p4
≤ 2d − 1.

(vi) 0 ≤ 1
p2
≤ d

d+1 ≤
1
p1

, 1
p4
≤ 1 and d

p1
+ 1

d p2
+ 1

p3
+ d

p4
≤ 2d − 1.

(vii) 0 ≤ 1
p4
≤ d

d+1 ≤
1
p1

, 1
p2
≤ 1 and d

p1
+ d

p2
+ 1

p3
+ 1

d p4
≤ 2d − 1.

(viii) d
d+1 ≤

1
p1

, 1
p2

, 1
p4
≤ 1 and d

p1
+ d

p2
+ 1

p3
+ d

p4
≤ 3d − 2.

Proof The proof uses Proposition 10.2 and the sharp averaging estimates in
Lemma 2.5. The proof of this theorem is similar to that of Theorem 5.3. Therefore,
we leave the detail of the proof to readers. ∎

Conjecture 1.5 is also supported by the following theorem.
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Theorem 10.4 Let Λ♢t and ΛY be the operators acting on the functions on F
2
q . If

Λ♢t(p1 , p2 , p3 , p4) ≲ 1 with 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, then ΛY(p1 , p2 , p3 , p4) ≲ 1.

Proof Assume that Λ♢t(p1 , p2 , p3 , p4) ≲ 1. Then, by Lemma 6.1, (1/p1 , 1/p2 ,
1/p3 , 1/p4) is contained in the convex hull of the points (0, 0, 1, 0), (0, 1, 0, 0),
(0, 0, 0, 1), (1/2, 0, 1/2, 1/2), (2/3, 2/3, 0, 0), (1, 0, 0, 0), (2/3, 0, 2/3, 0), (1/2, 1/2,
1/2, 0), (2/3, 0, 0, 2/3), (0, 2/3, 2/3, 0), (0, 0, 0, 0), (0, 0, 2/3, 2/3). By interpolating
those critical points, it suffices to check that each critical point above satisfies
one of the eight hypotheses of Proposition 10.3 with d = 2. However, this can
be easily shown by a direct computation. For example, for the critical point
(1/p1 , 1/p2 , 1/p3 , 1/p4) = (1/2, 1/2, 1/2, 0), we can invoke the hypothesis (i) of
Proposition 10.3 with d = 2 and obtain that ΛY(2, 2, 2,∞) ≲ 1. In the same way, it can
be easily proven for other critical points. ∎

Remark 10.5 The reverse statement of Theorem 10.4 is not true. To find a coun-
terexample, we can take p1 = p3 = ∞, p2 = p4 = 3/2. Indeed, by the hypothesis
(5) of Proposition 10.3 with d = 2, we see that ΛY(∞, 3/2,∞, 3/2) ≲ 1. However,
Λ♢t(∞, 3/2,∞, 3/2) is not bounded, which follows from Lemma 6.1 with d = 2.

The following corollary proposes some possibility that the assumption of the
subgraph in Conjecture 1.5 can be dropped.

Corollary 10.6 Let ΛC4 and ΛY be the operators acting on the functions on F
2
q . If

ΛC4(p1 , p2 , p3 , p4) ≲ 1 with 1 ≤ p1 , p2 , p3 , p4 ≤ ∞, then ΛY(p1 , p2 , p3 , p4) ≲ 1.

Proof The statement of the corollary follows immediately by combining Proposition
7.6 and Theorem 10.4. ∎

Combining all the results obtained so far, we get the following theorem:

Theorem 10.7 When d = 2 and n = 3, 4, Conjecture 1.5 is true, where we accept
boundedness results up to endpoints in the case when G is the C4 + diagonal and its
subgraph G′ is the K3 + tail .

Proof By Corollary 5.7 for n = 3, and by Corollaries 8.10, 8.13, 9.12, and 10.6 for n = 4,
we have proven that for d = 2 and n = 3, 4, there is the required inclusive boundedness
relationship between any two operators corresponding to arbitrary connected ordered
graph G and its subgraph G′ except for the following three cases:

(I) G = C4 + diagonal and G′ = C4 .
(II) K3 + tail and G′ = Y-shape.

(III) G = K3 + tail and G′ = P3 .
However, since δ(G) = δ(G′) for each case of (I), (II), and (III), they do not satisfy
the main hypothesis (1.6) of Conjecture 1.5. Hence, they cannot be counterexamples
contradicting Conjecture 1.5 and so there is no counterexample against Conjecture 1.5,
as required. ∎
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A Appendix

In this appendix, we introduce the number of intersection points of two spheres inF
d
q .

Let η denote the quadratic character of F∗q , namely, η(s) = 1 for a square number s in
F
∗
q , and η(s) = −1 otherwise.

Definition A.1 Given a nonzero vector m in F
d
q , and t, b ∈ Fq , we define N(m, t, b)

to be the number of common solutions x ∈ Fd
q of the following equations: ∣∣x∣∣ = t, m ⋅

x = b.

Notice that the value of N(m, t, b) is the number of all intersection points between
the sphere St and the plane {x ∈ Fd

q ∶ m ⋅ x = b}. The explicit value of it is well known
as follows.

Lemma A.2 Let b, t ∈ Fq , and let m be a nonzero element in F
d
q , d ≥ 2. Then the

following statements hold:

(i) If ∣∣m∣∣ ≠ 0 and b2 − t∣∣m∣∣ = 0, then

N(m, t, b) =
⎧⎪⎪⎨⎪⎪⎩

qd−2 , if d is even,
qd−2 + q d−3

2 (q − 1)η ((−1) d−1
2 ∣∣m∣∣) , if d is odd.

(ii) If ∣∣m∣∣ ≠ 0 and b2 − t∣∣m∣∣ ≠ 0, then

N(m, t, b) =
⎧⎪⎪⎨⎪⎪⎩

qd−2 + q d−2
2 η ((−1) d

2 (b2 − t∣∣m∣∣)) , if d is even,
qd−2 − q d−3

2 η ((−1) d−1
2 ∣∣m∣∣) , if d is odd.

(iii) If ∣∣m∣∣ = 0 = b2 − t∣∣m∣∣, then

N(m, t, b) =
⎧⎪⎪⎨⎪⎪⎩

qd−2 + ν(t)q d−2
2 η ((−1) d

2 )) , if d is even,
qd−2 − q d−1

2 η ((−1) d−1
2 t) , if d is odd,

where ν(t) = −1 if t ∈ F∗q and ν(0) = q − 1.
(iv) If ∣∣m∣∣ = 0 and b2 − t∣∣m∣∣ ≠ 0, then N(m, t, b) = qd−2 .

Proof See Exercises 6.31–6.34 in [14], or one can prove it by using the discrete Fourier
analysis with the explicit value of the Gauss sum. ∎

By a direct application of Lemma A.2, one can find the explicit number of the
intersections of two spheres over finite fields. Precisely, we have the following result.

Theorem A.3 Given a nonzero vector m ∈ Fd
q and t, j ∈ Fq , let

Θ(m, t, j) ∶= {x ∈ St ∶ ∣∣x −m∣∣ = j}∣.

If m ∈ S� , then ∣Θ(m, t, j)∣ = N (m, t, t+�− j
2 ) .
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Proof Since ∣∣x −m∣∣ = t + � − 2m ⋅ x for x ∈ St , m ∈ S� , it is clear that Θ(m, t, j) is
the number of common solutions x of the following equations:

∣∣x∣∣ = t, m ⋅ x = t + � − j
2

.

Hence, by the definition of N, we obtain the required conclusion. ∎
Corollary A.4 Let t ∈ F∗q and � ∈ Fq . Then, for every nonzero vector m ∈ S� , we have

∑
x∈S t ∶∣∣x−m∣∣=t

1 ∼ qd−2

excepting for the following three cases:

1) d = 2, � ≠ 0, η(t� − �2/4) = −1. 2) d = 2, � = 0, η(−1) = 1.
3) d = 3, � = 0, η(−t) = 1.

For each of those three cases, the value in the above sum takes zero. On the other hand,
if d = 2, � ≠ 0, and η(t� − �2/4) = 1, the value in the above sum is exactly two.

Proof It follows from Theorem A.3 that for any ∣∣m∣∣ = �,

∑
x∈S t ∶∣∣x−m∣∣=t

1 = N (m, t, �
2
) ,

and so the corollary is a direct consequence of Lemma A.2(i)–(iii). ∎
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