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Abstract

Under the appropriate physical hypotheses, the problem of determining the pressure
distribution in a gas-filled slider bearing becomes a singular perturbation problem as
A, the bearing number, tends to infinity. This paper extends the results of an earlier
one by the author to consider the case where the film profile has jump discontinuities
in slope at points interior to the bearing. Application of the methods of general
singular perturbation theory establishes the appropriate existence-uniqueness
results for this problem, and a means is devised by which uniformly valid asymptotic
approximations to the pressure distribution may be obtained for large values of A.

1. Introduction

A standard problem in gas lubrication theory is that of determining the pressure
distribution in a thin gas film flowing between two rigid nonparallel surfaces that are
in constant relative motion. Of particular interest is the case where this flow occurs
under compressible and isothermal conditions, while the bounding surfaces consist
of the plane z = 0 and a surface z = h(x, y) in the region z > 0 with motion occurring
parallel to the x-axis. When this arrangement, usually termed a slider bearing, is such
that h is independent of y and the bearing is of infinite extent in the y direction, and
while leakage of gas in this direction may be neglected, we may write the problem for
the pressure p(x,e) in the film as a nonlinear two-point boundary-value problem

e(h(x)3pp'y-(h(x)p)' = 0, xe(0,l), (1.1)

p((U) = p ( U ) = l . (1.2)

In the above, x, p(x, e) and h(x) have all been appropriately scaled, so that £ is a
positive dimensionless parameter, that is, in fact, the reciprocal of the bearing number
for the flow, A, a parameter depending on the geometry of the bearing, the physical
properties of the gas, and the relative motion of the surfaces.

Many writers have noted that, for small z (and hence large A), the problem (1.1),
(1.2) is a singular perturbation problem, in the sense that the reduced problem,
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obtained by formally setting e = 0 in (1.1), has no solution that will satisfy both
boundary conditions (1.2) for arbitrarily assigned film profiles h(x). This feature has
prompted the investigation of this problem for small values of e by the so-called
method of matched asymptotic expansions, to obtain an asymptotic representation
for p(x, e) valid as e -»0. Under the assumption that h(x) is at least continuously
differentiable on [0,1], Di Prima [1] has applied this technique to obtain a first
approximation w(x,e) that is such that, formally,

p(x,s)-w(x,e) = 0(e), (1.3)

uniformly with respect to x on [0,1]. Moreover, by making further assumptions
about the differentiability of h(x) on [0,1], he was able, in [2], to improve the
(formal) degree of this approximation.

In a more recent article, Schmitt and Di Prima [6] have applied this type of
analysis to the problem where h(x) is only piecewise differentiable on [0,1], but is
sufficiently differentiable on subintervals of [0,1]. By applying appropriate juncture
conditions at the points of discontinuity of h'(x), they are able to establish the general
form of a function that has analogous properties to that of w(x, e) described above.

While these results are quite useful, and have been applied to a number of
situations, they have their foundation on heuristic arguments, so that questions
relating to the existence and uniqueness of solutions of (1.1), (1.2), and to the validity
of the relation (1.3) become pertinent. The first answers to such questions were
provided by Steinmetz [9] who, in a penetrating study of (1.1), (1.2), applied a
shooting technique to establish the existence of a solution p(x,e) for all e > 0, that
satisfies

0 < hmjhmax < p(x,e) ^ hmjhmin, (1.4)

with an auxiliary proof establishing uniqueness in the above class. Further, he was
able to validate (1.3), as well as to provide a corresponding nonuniform estimate for
p'(x,e)-w'(x,e).

In a later analysis of this problem [8], and under similar hypotheses to those
assumed by Steinmetz, the present author examined these questions afresh, with a
view to developing a rigorously based construction for the solution p(x,e). By
applying the Contraction Mapping Theorem, he was able to demonstrate, for
sufficiently small e, the existence of a unique solution p(x,e) that satisfied (1.3),
together with a corresponding uniform estimate for p\x, e) — w'(x, e). Exploitation of
Steinmetz's global uniqueness result extended this local uniqueness to the class (1.4).
Moreover, it was demonstrated that w(x,e) was only the initial term in a uniformly
valid asymptotic development for p(x, e), and an iterative process was constructed to
generate this expansion.

Fundamental to both these investigations was the assumption that h(x) was (at
least) twice piecewise continuously differentiable on [0,1]. While Steinmetz's
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existence-uniqueness proof did in fact require only that h'(x) be piecewise
continuous, his validation of (1.3) required that h"(x) be piecewise continuous.
Similarly, the methods of [8] required that h"(x) be continuous on [0,1], although
this condition was excessive, and could be relaxed to one comparable with that of
Steinmetz.

Finally, a recent analysis of the problem by Habets [3] has established the
existence of a solution p(x, e) by topological degree methods that impose quite weak
restrictions on h(x), while separate proofs establish the uniqueness of this solution,
and its asymptotic structure on subintervals of [0,1] on which h(x) has
appropriately smooth behaviour. His existence proof and the construction of the
solution are, however, quite separate processes.

Thus, there appear to be no rigorously based methods comparable to those of [8]
that provide, in a single process, the desired existence, uniqueness and asymptotic
structure results for the problem (1.1), (1.2) in the case where h'(x) experiences a
discontinuity at some point interior to [0,1]. It is our aim in this paper to adapt the
methods of [8] to provide just such results under these conditions. In doing this, we
will make repeated use of the results of the above reference, so that some results will
be presented without proof, or with a proof outline only. In such cases, the
application of the appropriate result of [8] to the proof at hand should be obvious.

It will turn out to suit our purpose best to consider the slightly more general
problem

e(h(x)3pp')'-(h{x)py = 0, xe(xo,Xl), (1.5)

p(xo,e) = a(e), (1.6)

p(xus) = P(e), (1.7)

where x0, x,, a and /? are all positive, with x0 and x, independent of e, while <x(e) and
P{s) are continuous in ee(0,eo]. We will denote the problem defined above by the
symbol Pt([x0,x1],a,/5) to display its dependence on these quantities. Thus, the
problem defined by (1.1), (1.2) becomes P£([0,1], 1,1).

In terms of problems such as this, the procedure to be adopted when h'(x) has a
point of discontinuity at ae(0,1) is reasonably straightforward. We set up the
problems P£([0, a], 1, k) and Pe{[_a, 1], k, 1), where k is a value to be constructed and,
by using the techniques of [8], construct k and solutions to both problems that have
continuously joining derivatives at x = a. This then furnishes our solution to the
original problem P£([0,1], 1,1). Because our method is an iterative one, we obtain a
construction that provides us with successively closer approximations to this
solution, as well as giving us insight into the structure of these approximations.
These results may be compared with those obtained by Schmitt and Di Prima [6].

In the following sections we will consider solutions p(x,e) of PJiLx^x^a, P) that
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are positive on [ x ^ x j , and so will find it convenient to expand (1.5) in the form

-2p'p-1 = 0, xe(x0 )x,), (1.8)

(1.9)

p(xl,e) = P(el (1.10)

and refer to this as Pl{[_xQ,xl],a.6) also.

2. Results for smooth profiles

When the film profile h(x) is twice continuously differentiable on the interval

[xo>xi]> a n d the ratio

o = h{x0)/h(xl) (2.1)

satisfies a condition a ̂  a*, for an appropriately defined <r*e(0,1), we may prove,
by an elementary adaptation of the methods of [8] that, for small enough values of e,
the problem PC{[XO,X{],OL,P) has a unique solution p(x,e) that satisfies the estimate

||p(x)£)-w(x,£)||K = 0(e), (2.2)

for a suitably defined norm ||. ||K and choices of K and the function w(x,s).
The norm ||. ||K is defined, for each K > 0, by

11011,= sup \<Kx,e)\+ sup \<j)'(x,eyp(x,e)\, (2.3)
[*O.*ll [*O.*l]

where <f> is continuously differentiable with respect to x on [x o ,x , ] , while

p(x, e) = 1 + e " J exp {— K(X , — x)/e}. (2.4)

A suitable function w(x, e) may be constructed by the methods of [1], and is given
explicitly by

w(x, 8) = a(e) h(xo)/h(x) + P((x, - x)/e, j8) -a(e) a, (2.5)

where P(T, J?) is a function defined and twice continuously differentiable with respect
to T e [0, oo) for each ft > 0, that satisfies P(0, /?) = /?, and is defined by

P(T, P)-p + <xo log | (P - ao)Hfi - ao) | = - h(x,)" 2 T. (2.6)

Various properties of P may be established (see [9]), but the two below will suffice
for our present purpose :

min {OC<T, J?} sS P(T, J?) < max {aff, P] (2.7)

and

acr-P = (aa-P)exp{(p'-P)/aa}exp{-T/<xoh(x1)
2}. (2.8)
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These together show that the two last terms in (2.5) comprise a boundary layer
correction that is exponentially small as e -»0 throughout [ x o . x j except for the
region x — Xi = O(e), where it is significant. Moreover, the derivatives of this
correction become unbounded in this region as E -»0. The first term of (2.5) is
obviously the solution of the reduced problem P0([x0,Xi],a,/?) that satisfies the
boundary condition at x = 0.

The solution p(x,e) referred to above may be expressed in the form

p(x, e) = w(x, e) + u(x, e), (2.9)

where u{x, e) is the solution of the simultaneous integral equations

u(x,e) = g{x,e) + (Hf)(x,e) + (HR[,u,u'Mx,e) (2.10)

and

u'(x, e) = g\x, e) + (Hf)'(x, e) + (HR[u, u'])'(x, S), (2.11)

with primes denoting derivatives taken with respect to x. In the above, H is an
integral operator defined by

,e) = \h(x,s,e)(t>(s,s)ds, (2.12)

with h(x, s, e) the Green's function for the linear differential operator

LEu = eu" - a(x, e) u' + b(x, E) U, (2.13)

where a(x, e) and b(x, e) are given by

a(x,e) = h~2 w"1 -3eh'h~l
 -2EW'W-1 (2.14)

and

b(x,e) = -ew'2w-2 + w'w-2h-2, (2.15)

respectively. The function g(x,e) is known, while/(x,e) and /?[«,u'] are given by

f{x,e) = -Ntw (2.16)

and

K["."'] = — w"2 h~2uu' — e(w~' u'2 — w~2uu'2 — 2w'w~2 uu')

+ w-2(u + w)-l(h~2(u' + w')-e{u' + W')2)U2, (2.17)

respectively.
There are a number of properties of the quantities defined above that we will

find to be of considerable use in subsequent sections. These have already been
exploited in [8] to establish results for the problem P£([0,1], 1,1) but we briefly
review them and some extensions of them here. They may be stated by means of two
fundamental lemmas.
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LEMMA 1. There exist positive constants K0, a* and e0, all independent of s, but
dependent upon a and ft, with ff*e(0,1), such that, for all /ce(0,/c0), a ^ a* and
ee(0,e0], the following estimates apply:

\\g\\K = O(exp(-(x1 -xoye«h(xo)h(Xl))l (2.18)

(2.19)

\\l, (2.20)
and

|| HR[uu ii',] - HRlu2, u'2] \\K = 0(1) max {|| Ml ||K, || u2 ||K} || u, - u2 \\K, (2.21)

for arbitrary continuously differentiable functions u(x,e). These estimates hold
uniformly with respect to a. and Pfor values of these parameters lying in any closed,
bounded interval of positive values.

PROOF. This follows the same lines as that for the corresponding results obtained
by the author in [8]. Basically, it involves the specific properties of the kernel
h(x, s, e), and the estimation of integrals involving h, hp, hx and hx p. The details may
be obtained from an examination of Section 5 of [8], where the case a = /? = 1 is
considered, and they are omitted from the present discussion.

REMARK. The constants K0 and a* may be written down explicitly, and are defined
by

K0 = min{minw"1^"2,(a/i(x0)/2(x1))"1} (2.22)

and

<r* > 2/?a-1[l + V(l + 4a-1/1(x1)//2max)r \ (2.23)

where / j m a x is the maximum value of h{x) on [xo,Xj]. In most bearings of physical
interest, a > 1, so that (2.23) is satisfied automatically while, when a < 1, this
prescribes strict limits on the bearing geometry for the above results to hold. It
should be noted that while K0 and a* do depend on a and /?, they do not do so
critically when these quantities are bounded above and below by positive limits, so
that K0 and a* may be chosen to be independent of these parameters under such
conditions.

It is clear that the estimates of Lemma 1 are sufficient for the Contraction
Mapping Theorem to be applied to (2.10), (2.11) to deduce the existence of a solution
p(x, e) satisfying (2.2). This is the procedure adopted in [8]. For our present purposes
we require a little more, and thus seek estimates on the variation of g and Hf with
respect to the parameters a and j?. While the existence result above would imply
continuity in these, we are able to go further, and deduce Lipschitz continuity in
terms of the norm II. IL This is the result of Lemma 2 below.
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LEMMA 2. There exist positive constants K0, a* and e0, independent of e, but
dependent upon a and /?, with ff*e(O,1) such that, for all K€(0,K0), a ^ a* and
£e(0,£0],

( ) { \ a 2 \ + \pl-P2\} (2.24)

and

1 - a 2 | + | i J 1 - / 5 2 | } , (2.25)

uniformly with respect to a1,/31,a2,j52 lying in a closed bounded interval of positive
values, and with

a = max{ai,a2}. (2.26)

PROOF. We note from [8] that g(x, s, a, ft) takes the form

g(x, e) = [aa - P((x { - xo)/e, 0)] £0(x, e), (2.27)

where £0 is a function such that

|| £0 \\K = 0(1) a s e ^ O , (2.28)

uniformly with respect to a and /? for bounded positive values of these quantities, and
for a suitable (positive) choice of K. The result (2.24) now follows on application of
the result (2.8) to (2.27).

The second result (2.25) follows from an adaptation of the proof of Lemma 3.2 of
[8] (essentially a proof of (2.19)) to make due allowance for the dependence on a and
/? of quantities occurring in Ne w, and application of (2.8).

REMARKS. 1. We have, for convenience, suppressed the dependence on a and /? of
the / f s in (2.25), although this is obviously true. However, for a and /? restricted as in
the hypotheses, the properties of these operators remain unchanged and so we see no
objection to deleting this dependence.

2. It is also evident from the lemma above that K0 and a* depend on both ctupi
and <x2, P2, and thus we would select K0 and a* from two sets of criteria analogous to
(2.22) and (2.23). As it will turn out, we will make most use of this under
circumstances where a, - a 2 = 0(e) and Pi~P2 = 0(e), so that these two criteria
become one in the limit as e -• 0.

3. One situation that will be of considerable significance occurs when
a<7 = P + O(s), which corresponds to the case a = 1 + O(e) in the case where
a = P = 1. When this is so, it is clear that

, e) = a(£) h(xo)/h(x) + O(s), (2.29)
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that is, w(x, 6) is essentially the "outer solution" <X(E) h(xo)/h(x). Further, w'{x, e) is not
unbounded as e -»0 anywhere on [xo,x,],this phenomenon only occurring in the
derivative w"(x, e). Even then, ew"(x, e) is bounded as e -* 0. The most significant
result of this is that

(2.30)

which may be established by the methods used in Lemma 1, on noting that

| Nc w | ^ k, {e +1 a<r - fi | exp (-(x, - x)/eah{x0) h(x,))}

+ /c2(x1-x)e~1|a<T-i?|exp(-(x1-x)/£a/i(x0)/i(x1)) (2.31)

for positive constants /c, and k2 independent of e. The estimate (2.30) is also readily
shown to be uniform with respect to positive bounded a and /?, a fact that is
significant in the next section.

4. While our uniqueness result for the solution p(x, e) extends only to the class
(2.2), we may apply Steinmetz' global uniqueness result, adapted to the problem at
hand, to show that p(x, e) is, in fact, unique in the class

^ {«,)?} ^ p(x,e) ^ J ^ m a x {a, j3}, (2.32)
min

where hmin, hmax are the minimum and maximum values of h(x) on [xo,X|].
5. We also note that, although we have assumed h"(x) to be continuous, the proof

of existence of the solution p(x,s) as demonstrated in [8] requires only that h"(x) be
bounded and integrable, so that we could relax our hypotheses regarding this
function to its being piecewise continuous on [ x ^ x j .

6. It is important to observe that the derivatives p' and W may not be close as
£ -> 0 uniformly on [xo,Xj], but may differ at x = x, by a quantity that is 0(1) as
e -* 0. For the particular case OLO = p\ we may apply the arguments of [9], Corollary
3.1, to show that

u'(xue) = «Mxo)"lff3W*i)-'«'(*o)} + O(eX (2-33)

which does not vanish as e -> 0 unless /i'(*i) = h'(x0). This would seem to indicate
that, in general circumstances, (2.2) is the best estimate obtainable.

3. Piecewise smooth profiles

We now apply the results of the preceding section to the problem of establishing
existence, uniqueness and asymptoticity properties for the problem P£([0, l],a, /?)
when h(x), the film profile, exhibits a single finite jump discontinuity in slope at
x = a, for some 0 < a < 1. We will find it convenient to define this jump in slope at
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x = a as Aa h'(x), where

Aah'(x) = h'(a-O)-h'(a + O), (3.1)

so that Aa h'(x) ^ °° f° r all £ 6 (0, £0]- We will further assume that h"{x) is sufficiently
well behaved on the intervals [0,a] and [a, 1] for the theory of the previous section
to apply. In general, this will amount to a requirement that h"(x) be piecewise
continuous on these subintervals, although we might expect that h"(x) be continuous
as a more general rule.

We will denote quantities relevant to the subintervals [0, a] and [a, 1] by the
subscripts 1 and 2, respectively. With this notation, the results of Section 2 tell us
that, for any appropriate l(e), the problems Pg([0,a],a,A) and Pe{[_a, 1], A, ft) have
unique solutions pt(x,e) and p2{x,e), respectively. Moreover, if we can demonstrate
that there exists a choice of A such that p\(a, e) = p'2{a, e), where the derivatives are to
be interpreted in the one-sided sense, we will have demonstrated the existence of a
function p[x,e) that is continuously differentiate on [0,1], with piecewise
continuous second derivative there : in fact, a solution of the problem P£([0,1], a, /?).

The considerations above provide us with the motivation for the methods to be
applied in this section, and we obtain the desired result by constructing A(e)
explicitly.

We begin by noting that, corresponding to pl and p2 as defined above, there
correspond functions WX(X,E) and W2(X,B), defined by

•[a-x)/e,X)-«(e)ou xe[O,a], (3.2)

and

w2(x, e) = X(s) h(a)/h(x) + P2((l - x)/e, f) - X(e) a2, x e [a, 1], (3.3)

respectively. Here, Px and P2 are functions defined by a relation of the form of (2.6),
with a = a, a = a^ and h(x{) = h(a) in the case of Pu and a = X, a = a2 and
h(xt) = /i(l) in the case of P2. The parameters <r, and a2 are defined by the ratios
h{0)/h(a) and h{a)/h(l) respectively.

The results of Section 2 prompt us to seek functions u r (x, e) and u2(x, e) defined by

Pi(x,e) = wl(x,e) + ul(x,e) (3.4)

and

p2(x, e) = w2(x, e) + u2(x, e), (3.5)

that are small in some sense. We define norms for these functions by

x,e)| (3.6)
" ' (0,o] [O.o] '

and

II "2 IL = SUPI ui(x, e) \ + sup\ u'2{x, e)/p2{x, e) |, (3.7)
[o, 1] [a, 1]
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where KUK2 > 0, and the functions pj and p2 are defined by

PI(X,E) = 1 +e~' exp { — Kt(a — x)/e} (3.8)

and
p2(x,e) = l+ £ - 1 exp{-K 2 ( l -x ) / £ } , (3.9)

respectively; we thus consider functions uu u2 that are small in terms of these norms.
For given positive X(s), we may apply the theory of Section 2 to this problem, and

write down integral equations for u j and u2 as follows :

ul{x,e) = gl(x,E) + (Hlfl)(x,e) + (HlR1[.uuu\-])(x,£), (3.10)

u\{x,e) = tfl(x,e) + {H1flY(x,e) + (HlRl[ul,u!lMx,e) (3.11)

and

Mx,c) = g2(x,e)+(H2f2)(x,e)+(H2R2[.u2,u'2])(x,£), (3.12)

u'2{x,e) = g'2(x,e) + (H2 f2)'(x,e) + (H2 K2[U2,U2]) ' (X,E) , (3.13)

respectively. In the above, gx and g2 are functions analogous to the g of Section 2,
while H, and H2 are integral operators defined over [0, a] and [a, 1] in an analogous
fashion to (2.12); R^ and R2 are defined by (2.17), with wt and w2 replacing w in their
respective expressions. Finally, we have

f1=-Ntw1 and / 2 = -N£w2, (3.14)

where the operator Nc is understood to be acting on functions defined on [0, a] and
[a, 1] in the appropriate case.

It is clear that the expressions gt, Ht ft and H, R,, for i = 1,2, satisfy the estimates
given in Lemmas 1 and 2, for positive bounded values of a, X and /?. However, it must
be noted that <J1 and <r2, as well as K1 and K2, are restricted in a like manner to that of
a and K of Section 2. Thus the above equations hold (together with the relevant
estimates on the integral operators involved) when al ^ erf, a2 > CTJ and
KX e(0,Kf), K2 e(0,K2*), where erf, o\, K\, and K | are appropriately defined. We will
return to this point later.

By our choice of the value Pi(a,e) = p2(a, e) = A(e), we have ensured that pt and p2

join continuously at x = a. (Note that this does not necessarily mean that w, and u2

do so.) However, to go further and ensure that the derivatives p\ and p'2 are joined
continuously at x = a, we must impose the condition

u'2(a,e)-u\(a,e) = w\{a,e)-w'2{a,e), (3.15)

where derivatives at x = a are to be interpreted in the one-sided sense.
Noting (3.2) and (3.3), we obtain, by an elementary calculation,

w'2(a, e) - w', (a, e) = - lh{a) h'(a + 0)/h{a)2 + ah(0) h\a - 0)/h{a)2

+e-lP\(0,X)-e-1P'2((l-a)/eJ), (3.16)
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and thus (3.15) becomes, on noting the form for the derivative P',(0,A),

{Xh(a) h\a + 0) - <xh(0) h'(a - 0)}/h(a)2 +e'1P'2((l- a)/e, /?)

= g'2(a,e)-g'l(a,e)+(H2 f2)\a,e)-(Hl fj(a,e)

+ (H2R2lu2,u'2])'(a,e)-(H1Rilu1,u'jy(a,e).

Rearranging this, we obtain

i-otff, = -eA[Ah(a)h'(a+0)-ah(0)h'(a-0)-]-Ah(a)2P2((l-a)/E,p)

+ eh(a)2 Xig'2(a,e)-g\(a,e) + (H2 f2)'(a,e)-(Hl fj&e) (3.17)

+ {H2R2[u2,u'2\)'(a,B)-{HlRliul,u\-])'{a,E)-].

We are now in a position to set up the framework within which to apply the
Contraction Mapping Theorem to the equations (3.10)-{3.13) and (3.17). For the
triplets (u,, u2, X) of continuously differentiate functions M, and u2 and scalar X, we
may define a norm given, for each e > 0, by

|| (ux, «2, A || = max {|| Ml ||K1, || u2 ||K2, | A | } . (3.18)

Then it is clear that the right-hand sides of (3.1OH3.13) and (3.17) define a map

on the metric space of such triplets normed in this way. We now consider the
properties of this map.

LEMMA 3. For al^a\, a2^a^ and K, e(0, Kf), K2e(0, K | ) where

a*, a*, K* and K* may be appropriately chosen, the map Jtt maps the ball

Wiu^u^-aoJW^me (3.19)

into itself for some positive m = 0(1) as e -> Ofor all e e (0, e0], with e0 sufficiently small

and positive bounded a and (].

P R O O F . By applying the results of L e m m a 2 to the interval [ 0 , a ] , we find from

equat ions (3.10) and (3.11) for any / in the ball (3.19) a n d for CT, ̂  <rf, K , e (0, /cf) that

| | i i . | U ^ O(exp(-a/£ afc(0)fc(a))) + O(£) + O ( l ) | | M l 1^ , (3.20)

while a similar inequal i ty may be obta ined from (3.12) and (3.13) for || u2 \\Kl. F r o m

(3.17) we obta in , on not ing the remark at the end of Section 2,

2||K
2

2. (3.21)

https://doi.org/10.1017/S0334270000002563 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002563


86 J. J. Shepherd [12]

Combining these results, we see that there exists an m that is 0(1) as e -> 0, and is such
that

||(S1,fi2,J-o(T,)||^fiie, (3.22)

which establishes the result.

LEMMA 4. Under the conditions of Lemma 3, the map Jtt is a contraction on the ball
of functions (3.19), with contraction parameter

Ue) = 0(e), as e -> 0. . (3.23)

PROOF. The results of Lemmas 1 and 2 show that the maps defined by the right-
hand sides of (3.10)—(3.13) are contractions on this ball, with contraction parameter
satisfying (3.23). If we examine the right-hand side of (3.17), it follows from the results
of Lemma 1 and the comment at the end of the previous section that the terms in the
last set of square braces are all 0(1) as e -> 0, uniformly with respect to X in (3.19).
Thus the last term is bounded by a term of the form O(e) X, and thus may be proved to
be contractive. In the second term, the X is multiplied by an exponentially small
factor, so this term, too, is a contraction. Finally, the first term is clearly a
contraction on (3.19). This establishes the result, together with the estimate (3.23) for
the contraction parameter. We are now able to establish the following lemma.

LEMMA 5. Under the conditions of Lemma 3, and for all e e (0, e0], with e0 sufficiently
small, the equations (3.10)-{3.13) and (3.19) have a unique solution (uuu2,X) that
satisfies

| | | L | | | | 2 and A = aa1+O(£) (3.24)

for appropriate choices ofKl and K2.

PROOF. By applying the Contraction Mapping Theorem [4], page 27, to the map
Jtt defined above, we see that, as a consequence of Lemmas 3 and 4, this map has a
unique fixed point in the ball (3.19).

By combining the results of this section, we arrive at our basic existence result for
the problem P£([0, l],a,/J) when h'{x) has a finite jump discontinuity at x = a.

THEOREM 1. Let h(x) be continuous on [0,1] and let h'(x) suffer a single finite jump
discontinuity at x = a, for ae(0,1). Let h"(x) be continuous on [0,a] and [a, 1]. Then
there exist positive constants a*, a*, K* and K*, independent of e, such that, for
ff! 5= o%, o2 ^ CT*>

 Ki 6 (0 , K?) and JC2e(0,Kj), and for all £e(0,eo] with eo sufficiently
small, there exists a unique function p(x, 8), continuously differentiate with respect to x
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on [0,1], with continuous second derivatives on [0, a] and [a, 1], which satisfies

Ncp = 0on (0, a), p(0, e) = a (3.25)

and

Ncp = 0on(a,l), p(l,e) = ft (3.26)

for given positive bounded a and ft Further, with wt(x, e) and w2{x, e) given by (3.2) and
(3.3), respectively, and k = cca^ + O(e), p satisfies the estimates

p(x,e)-Wl(x,E) = O(E) (3.27)

and

p'(x,e)-w'l(x,e) = O(e)Pl(x,e), (3.28)

uniformly on [0, a], while

P(x,e)-w2(x,e) = O(e) (3.29)

and

p'(x, e) - w'2(x, e) = O(e) p2(x, e), (3.30)

uniformly on [a, 1], where px and p2 are defined by (3.8) and (3.9), respectively.

REMARKS. 1. Note that p"(x,e) is not continuous at x = a. In fact, this may be
deduced from the equation Nt p = 0, with the result that

eAap"(x,e) = l3Ep'(a,E)h(a)-l-h(a)-3l Aah'(x), (3.31)

which is non-zero for Aa h'(x) # 0.
2. Up to this point, it has been tacitly asserted that the appropriate constants a\,

a%, K% and /c| do exist and have the properties ascribed to them. The theory of
Section 2 ensures that this is so, but we will write these constants (or bounds for
them) down here explicitly for completeness.

The results (2.22) shows us that

1} (3.32)
X

and
M 1 } . (3.33)

Clearly, these depend on the image point A of the map Mc. However, for X lying in the
ball (3.19), it is clear that these may be chosen to be positive and independent of e.

3. When k = aa, +O(e), the inequality for CT, corresponding to (2.23) reduces to
an identity for E -> 0, and thus may be removed from further consideration. We thus
have only the restriction on <x2, which becomes

* o;1 h(l)/hmaj]-1, (3.34)
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where /imax is the maximum value of h(x) on the second subinterval [a, 1]. This
inequality sets strict limits on the geometry of the bearing considered, for our theory
to apply. For example, in the case of a taper-flat slider bearing, we have o\ = 1, and
/i(l) = hma%, so that, for a = /? = 1, we obtain the condition that

<r, > 2/(1 + 7(1 +4ar1)). (3.35)

In practice, this is unlikely to be violated, since cr1 > 1 for such bearings, but it
demonstrates the implications of (3.34).

4. Retaining a and f} in (3.35), we obtain

a 1 > 2jSa- 1 [ l+V(l+4a- 1 ar 1 ) ]~ 1 , (3.36)

so that, for large values of a//?, we may decrease our lower bound on a,. Of course, it
should be borne in mind that these conditions are sufficient only, and their violation
does not rule out the possibility of the existence of solutions having the properties we
have discussed here.

5. Finally, it is worth noting that our theory readily encompasses the case when
h"(x) is piecewise continuous on (0, a) and (a, 1).

4. Asymptotic results

A direct consequence of our application of the Contraction Mapping Theorem to
the map Jtz is the existence of a sequence {£„}"= 0 (where we use the shorthand
notation £,„ = (ul"\ w(

2
n), A(n>)) which is defined by

S. = JltZ.-u n.= l,2,..., (4.1)

and which converges in the norm ||. || to the (unique) fixed point of Jfc lying in the
ball (3.19), for any choice of initial iterate £0 in this ball. What is more, standard
theory [4], page 28, gives us the error estimate for the nth iterate in terms of the
difference ||< 0̂ — £i || in the form

I l ^ - « l l < i 3 ^ l l « i - « o | | . " = 1,2,-.., (4.2)

where L(E) is the contraction parameter of the map J(z, which we have shown to be

If we choose our initial iterate £0 = (0,0, aa,), the scheme (4.1) applied to the
equations (3.10) and (3.11) yields

,)(*,£) (4.3)
and

U[1)'(X,E) = g\(x,s) + (H, /J(x,e). (4.4)
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Noting (2.18) applied to the case in hand, we see that both gx and g\ are
exponentially small as e -»0, uniformly with respect to x on [0, a], while the results
of (2.19) give

(Hlf1)(x,e) = 0(e) (4.5)

and
(H1fl)'(x,e) = O(E)pl(x,e), (4.6)

uniformly on [0,a]. Thus

|jM(1i)_M(0>||Ki = 0 ( e ) (4.7)

for KI e(0,K*) with /cjf suitably defined. Similarly, we obtain

K ' -HHK^OOO (4.8)

for K2e(0,K*).
Combining these results with the estimate (4.2), we obtain from (3.4), for example,

+ 1) , n = 1,2,.... (4.9)

Although this gives an approximate result, it is not of great use as it stands, since the
approximation w{ is that obtained from (3.2) by evaluation at the fixed point X olj{e,
a quantity known only to exist at present. However, it is a simple matter to prove,
from (3.2) and the results cited in Section 2, that, for iterates A(n) in the ball (3.19),

w,(x, e) - w<">(x, s) = O(\X- 2"" |), (4.10)

where w("\x,s) denotes the function w,(x,e) evaluated at A(n).
Under similar circumstances, we obtain

W\{x,£)-W
(?'(x,e) = Oi\i-^\)Pl(x,e) (4.11)

for jq e(0,Krf) and suitable *?. Thus we obtain the results that, for appropriate K,
and K2,

Pl(x,e) = w\"\x,E) + u\"\x,e) + 0(en+1), (4.12)

p\(x,e) = W\*'(x,e) + u\«'(x,e) + O(e"+ l)Pi(x,e) (4.13)

and

p2(x, e) = w(
2"»(x, e) + u(

2
n»(x, e) + O(en+»), (4.14)

p'2(x,e) = W
(
2

n)'(x,e) + u<2
n)'(x,e) + O(E"+ l)p2{x,s). (4.15)

In the above, the definitions of xf and K | (as well as CTJ) depend on w, and w2 but,
for all points I in the ball (3.19), the defining relations (3.32), (3.33) and (3.34) may be
replaced by ones involving w("\ w2

n) and A(n), in view of (4.10) and equivalent results
for w2. In fact, for small enough e, these relations would be suitable in a form
involving wf\ w2

0) and A<0) = aalt with no substantial effect on the results obtained.
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Noting that £0 = (0,0, a^) , we obtain from (3.2), (3.3) and (4.12)-(4.14), with p(x, e)
the solution of Theorem 1,

(ah{0)/h(x) + 0(e), xe[0,a],

\ ), xe[a,l], * ' '

and

/fc(x)2 + O(e ~ K l ( a" X)l% x e [0, a],

(4.17)

for fq e(0, K*), K2 e(0, K | ) , and

K* = min{min(a/i(0)/»(*))-\ (a/KO)^))"1}. (4-18)

KJ = min{min([w(
2

0)]~'/j"2), (a^OJ^l))-1}. (4.19)

The results above are as we might have expected, namely the "outer solution"
ah(0)/h(x) on the first interval is a good approximation throughout that interval,
while the approximation on the second exhibits the characteristic boundary-layer
structure at x = 1. The derivatives reflect these phenomena, with errors that are no
longer uniformly small as e -> 0.

To improve the above situation, we calculate the first iterates. From (3.17) we
obtain

A(1» = «ff, +ea2 /2(O)2 h(a)~l Aah'(x) + eh(a)2 <xa,{(H2 f2)'{a,e)-(Hl / J f a e ) } +»;,
(4.20)

where t] is a term that is exponentially small as e -»0. Similarly, noting the properties
of g, and g2, we obtain, correct to all algebraic orders, from (3.10) to (3.13),

e), tfl
l»{x,e) = (Hlfly(x,e) (4.21)

and

u^\x,e) = (H2f2)[x,e), u2»'(x,e) = {H2 /2)'(x,e), (4.22)

while, from (4.2),

| K , - « | | = O(e2). (4.23)

By adapting (2.8) we obtain

a a . - P , =(our1-X)exp{(k-Pl)/aal}exp{-(a-x)/eah{O)Ha)}, (4.24)

and, setting X = A(1), we obtain from this

aff j -P, =-E\l/exp{-(a-x)/Eixh{0)h(a)}+O{E2), (4.25)
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correct to leading orders in e, where i// is the O(e) part of (4.20). Thus

w\l)(x, E) = ah(0)/h(x)+zii exp {- (a - x)/Eah(0) h(a)} + O(s2). (4.26)

Differentiation and application of (4.20) gives

w V ' ^ e ) = -h(0)h\x)/h(x)2 + {<xh(0)h(a)-2 Aah'(x)+(H2 f2)'(a,s)

-(Hi fl)'(a,£) + O(£)}exp{-(a-x)/e<xh(0)h(a)}. (4.27)

The properties of H2 f2 may be applied to give

(H2f2)'(a,e) = O(£). (4.28)

On the second interval [a, 1] we obtain, by a similar process,

w2
l\x, e) = X*{h(a)/h(x) - h(a)/h(V)} + P2((l - x)/e, /?) + O(e2) (4.29)

and

where

2"'(x,e) = -X*h(a)K(x)/h{x)2-e-1F2((l-x)/e, (4.30)

X* = acr, +ea2 h(0)2 h(a)~l Aah'(x)-eh(a)2aa^//, fJ(a,E). (4.31)

By applying (4.26)-(4.31) to the relations (4.12)—(4.15), we arrive at the following
asymptotic result.

THEOREM 2. The solution p(x, E) of the problem P£([0,1], a, P),for given positive a and
p that are 0(1) as s —* 0, admits of the generalized asymptotic expansion below, where
the order symbols are assumed to hold uniformly with respect to x in the relevant
interval.

I ah(0)/h(x)

+ e{oc2h(O)2 Ka)'1 Aah'(x)-h(a)2 aa^H^ fj(a,e)}

x exp { - (a - x)/sah(0) h(a)}

+ (Hifi)(x,E) + O(E2), x e [0 , a ] ,

P(X,E) = { ah(0)/h(x)

+ P2((l-x)/E,p)-ah(0)/h(l)

+ e{h(a)/h(x)-h(a)/h(l)}

x{<x2h(0)2h(a)-lAah'(x)-h(a)2<

+ (H2f2)(x,E)

(4.32)

*,<:)}
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and

-<xh{0)h'(x)/h(x)2

P'(x,e) =

+ {a/i(O) Ma) ~2 Aa h'(x) - (H, fj(a, e)} exp {- (a - x/eafc(O) Ha)}

+ (Hl fj(x, e) + 0(e2) p ,(x, e), x e [0, a],

-<xh{0)h'{x)/h{x)2

-e{<x2 /i(0)2 /i(fl)-l A>'M-%)2a<Mtf

)p2(x,s), xe[_a, 1],

(4.33)

where Pi and p2 are defined by (3.8) and (3.9)/or jq e(0, KJ) wit/i K:J" and K\* defined by
(4.18) and (4.19), while a2 ^ CTJ w/iere a | is defined by a relation of the form o/(3.34).

It is of some interest to compare the results of Theorem 2 with those obtained by
Schmitt and Di Prima [6] for the case a = /? = 1, using the method of matched
asymptotic expansions. In both sets of results, the expansions on [0, a] contain a
term

O(s) Aah'(x)exp {-(a-x)/sh(0)h(a)}, (4.34)

which represents a higher-order boundary layer at x = a. In particular, this vanishes
when Aa h'(x) = 0, which is as we would expect. The result of [6] contains no other
boundary layer term at the O(e) level, the remaining term being the uniform
correction

a{h'(0)-h'(x)}h(0)2/h(x), (4.35)

while all further boundary layer effects are relegated to higher orders in e. The
remaining O(e) term in (4.32) is

(Hl f1)(x,e)-h(a)h(0)(H1 /,)'(*,e)exp{-(a-x)M(0)/<«)}, (4.36)

where we have set a = 1 and CT, = h(0)/h(a). If we note that the function H, / ,
satisfies the boundary-value problem

W / . ) = / i , (//1/1)(0,£) = 0 and (H1fl)(a,e) = 0, (4.37)

where L^c is the linear operator analogous to (2.13) with w(^ replacing w, we may
apply the self-same matching techniques to this problem to show that, formally,

(H1 /!)(x,£) = e{h'(0)-h'(x)}h(0)2/h(x)

+ eh(0)h(a)(H, fj(a,e)exp {-(a-x)/eh(0)h(a)} + O(e2),
(4.38)

uniformly on [0, a], while, again formally,

(H, fj(a,e) =-{h'(0)-h'(a-0)} h(0)h(a)-2 +O(e). (4.39)

An analogous result holds for the derivative (if, fj(x,e).
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We may combine these to obtain the following (formal) results for p(x,e) and
P'(X,E) on [0,a], namely,

p(x,e) = h(0)/h(x) + s{h'(0)-h'(x)} h(0)2/h(x)

+ h(0)2 h(a) ~1 Aa h\x) exp {-(a- x)/eh(0) h(a)} + O(e2) (4.40)

and
p'(x,e) = -h(0)h'(x)/h(x)2

+ h(0)h{ay2Aah'(x)exp { -(a-x)/eh(0)Ka)} + O(e), (4.41)

which are in complete agreement with those obtained in [6].
Comparison of results on the second interval [a, 1] is not quite as straightforward,

but still may be carried out as below. It is an elementary matter to show that,
formally,

(H 2 f2) (x, e) = eh(0)2{h'(a + 0) - h'{x)}/h(x) + O(e2) + d(x, e), (4.42)

where 6 is a boundary-layer term relevant to the region 1 — x = O(s). Noting (4.39)
and the definition of Aa h'(x), we may write

h(0)2 h(a)-' Aah'(x)-h(a)2 al(Hl /,)'(«,£) = sh(0)2 h(a)-l{h'(0)-hXa + 0)} + O(e2).

(4.43)

Applying these results to the second part of (4.32), we obtain, on [a, 1], formally,

Eh(0)2{h'(0)-h'(x)}/h(x)

2), (4.44)

where k* is given by (4.31) with a = 1. A similar result may be obtained for the
derivatives of the above.

Since X = X* + O(e2), the last terms in (4.44) represent a boundary layer situated at
x = 1. If we define the function P2((l—x)/e, 1) in an analogous way to the P2 above,
by a relation of the form of (2.6), with the exception that

(4.45)

as e -»0 for any 5 > 0 and independent of e, we may write this boundary layer term
in (4.44) as

{P2((l -x)/s, l)-h(O)/h(l)} + G((1 -x)/e, \)-{X*-a,)a2 +O(e2), (4.46)
with

G = P2-P2 + 9. (4.47)

The first term in (4.46) appears in the expansion on [a, 1] obtained in [6] while, as
we can see, the second term satisfies

(4.48)
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and represents a boundary layer at x = 1. This term is given explicitly in [6], and has
identical properties to those we have described here. As we would expect, analogous
results hold for the derivative p'(x,e) on [a, 1].

Thus the rigorously derived expansions of Theorem 2 reduce to those obtained by
the method of matched expansions, under appropriate conditions. Moreover,
although we have been at pains to point out that our procedure was formal only, the
expansions like (4.38) derived to make this reduction may be validated rigorously,
since the theory of Section 2 has given us the required detailed knowledge about the
behaviour of linear operators like L,c occurring in (4.37). Thus a procedure
somewhat like that adopted by Rosenblat [5] could be applied to verify these
approximations.

Evidently the process could be continued indefinitely, with validation of the
procedure at each step. However, we will content ourselves here with the results
obtained in Theorem 2.

5. Conclusion

The thrust of the discussion of this paper is significant in a number of ways. It
presents a method by which existence-uniqueness results may be obtained for the
problem PE([0,1], a, f$), while at the same time it develops a rigorously based
iterative procedure by which an asymptotic representation for this solution may be
constructed, valid for small a uniformly with respect to x on [0,1]. While the
technical details have, at times, been rather complex, the basic ideas have been kept
quite simple, and although the calculations would be somewhat involved, the above
scheme could be applied, in principle, to any order in e. We have already shown this
in Section 4, to a limited degree.

The question naturally arises as to whether the technique used in Section 3 is to be
favoured over the matching techniques applied to this problem by Schmitt and
DiPrima [6]. Clearly, although Theorem 2 provides us with a uniformly valid
expansion for the pressure, we must resort to heuristic methods to appreciate the
significance of the terms generated. Thus it would seem that, within the context of
useful and easily applied expansions, the answer to the question above should be in
the negative. However, the very techniques by which the existence result of Theorem
1 has been obtained provide us with a powerful tool for checking the validity of these
(formal) results, so that the expansions of Theorem 2 may with confidence be
expressed in terms of expansions obtained by formal arguments. This then is the
main role played by the constructions of Section 4.

The iterative scheme (4.1) may be used to provide other results about the general
structure of the solution p(x, e). Application of the argument applied in Section 7 of
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[8] to this reveals that the solution on [0, a] has a structure of the form

£ £ 1), (5.1)
r=O r=O

for n = 1,2,..., and K, satisfying (3.32), while anr and £>„,. are functions that are 0(1)
as e -> 0, uniformly on [0, a]. A corresponding result holds for the derivative p'(x, e),
as well as analogous expansions on [a, 1]. It is apparent that (5.1) consists of an
"outer" expansion and a "boundary layer correction". When x is bounded away
from a as £ -> 0, the second term and all its derivatives vanish exponentially as £ -> 0
and, if we assume that each of the anr has a Poincare type expansion in powers off in
this region, we arrive at a statement of the existence of the "outer expansion"
constructed in the matching process. When a — x = O(e), we set a — x = e£, and then
(5.1) becomes

p(a-eC,e) = Z eran.r(a-Ei;,e) + e-*>< £ e'bn.r(a-e{,e) + O(e"+l), (5.2)
r=0 r=0

which, with further assumptions about the expansibility of an r and bnr as Poincare
series in ( and £, gives us our "inner" or "boundary layer" expansion.

Throughout the paper there have been a number of assumptions made that are, in
general, sufficient for the theory to hold. Thus, while K1 and K2 have been restricted
to the open intervals (0, Kf) and (0, K| ) respectively, it should be noted that these have
been sufficient to make the error estimates of Theorem 2 upper bounds only. As we
have seen later in Section 4, explicit evaluation of terms could (and probably would)
lead to an enlargement of these intervals. We have also had to restrict o2 (and a{ as it
turns out) by the inequality (3.34), but we note that this is sufficient to cover all
bearing geometries that are of physical interest. Finally, we recall that we may relax
our assumptions about h"(x) to allow it to be piecewise continuous on [0, a] and
la, 1].

The extension of the results obtained to the case where h'(x) has a finite number of
jump discontinuities in (0,1) is now obvious. If we assume that these occur at
0 < a, < ... < an < 1, we merely set up the sequence of problems

Nepi = 0, xe(a; ,aI +i) , i = 0,1,...,«, (5.3)

where a0 = 0 and an+, = 1,

po(0, e) = a, po(a,, e) = A,, (5.4)

pn(l,e) = P, pJLame) = Xm (5.5)

p,-(flf,e) = 4 p,{ai+ !,£) = Ai+ „ / = l ,2,. . . ,n-1 (5.6)

and

i,z), J = 0 , 1 n— 1. (5.7)
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By linearizing about the appropriate function W;(x,e), i = 0,..., n, constructed as in
Section 2, converting to a system of integral equations as in Section 3, and by
applying the Contraction Mapping Theorem to the ball denned by

|| (Po - wO'Pi - wi»-. Pn ~ wn, At -<xou A2 - A, <T2, ...) || ^ me (5.8)

for some m, where the ai are defined in an analogous way to ex, and <x2, we may
develop our existence-uniqueness theory, as well as construct expansions for the
solution.

The problem may be extended in other directions. There has been some interest
lately in pressure calculations at high bearing numbers when the gas flowing in the
bearing is assumed to have limited slip at the bearing walls. In this case the
governing equation is

x 6(0,1), (5.9)

with

p(0,£) = p(l ,£)=l ) (5.10)

where k is a dimensionless parameter termed the Knudsen number, and the other
symbols have their usual meanings. This problem has been analyzed, for small e and
moderate k, by Sereny and Castelli [7], who used matching techniques to obtain
results that are very similar to those of [1]. This is as we would expect. We would
also envisage no difficulty in extending the existence-uniqueness theory of the
present paper to the problem (5.9) and (5.10) in cases where h'(x) exhibits jump
discontinuities, as well as for the case of continuous h'(x).
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