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1. Introduction

For an inverse semigroup S we will consider the lattice of inverse subsemigroups of S,
denoted L(S). A major problem in algebra has been that of finding to what extent an
algebra is determined by its lattice of subalgebras. (See, for example, the survey article
[9]). By a lattice isomorphism (L-isomorphism, structural isomorphism, or projectivity)
of an inverse semigroup S onto another T we shall mean an isomorphism @ of I(S)
onto I(T). A mapping ¢ from S to T is said to induce ® if AD=A¢ for all A in L(S).
We say that S is strongly determined by L(S) if every lattice isomorphism of S onto T is
induced by an isomorphism of S onto T.

In previous papers, P. R. Jones and the author have investigated the structure of
LF(S), the lattice of full inverse subsemigroups of S [2,3,4]. We call S modular
{distributive] if LF(S) is. In [5] Jones showed that any simple distributive inverse
semigroup S is strongly determined by L(S). Indeed, each lattice isomorphism is induced
by a unique isomorphism of S. Here we will extend this result and show that any simple
modular inverse semigroup § is strongly determined by L(S) and is induced by a unique
isomorphism.

Throughout this paper we will assume that S and T are inverse semigroups with
semilattices of idempotents Eg and E; respectively, and ® an L-isomorphism of S onto T.
For basic properties of inverse semigroups the reader is referred to [1,8]. If (P, <) is a
poset, we write p||q if p and q are incomparable, and pjlg otherwise. We now state a
preliminary result.

Result 1 ([6, Theorem 2.1]). Let S be a simple inverse semigroup. If L(S)~I(T)
then T is also simple. Furthermore, Eg~ E, under the mapping ¢z: Es— Eq given by {e}®=
{edg} for all ecE;.

2. Simple modular inverse semigroups

We now consider the lattice LF, and basic facts about modular inverse semigroups
needed later. An element x of S is called strictly right (left) regular if
xx~'>x"1x[x"'x>xx"1]. Such an element generates a bicyclic subsemigroup. Es is
Archimedean in S if for any ee Eg and strictly right regular element x, x ™ "x" < e for some
positive integer n. We let K;=ker o, where ¢ is the minimum group congruence on S.
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Result 2 ([2]). A simple inverse semigroup S which is not a group is modular if and
only if

(i) S is combinatorial,

(i) Egis Archimedean in S,

(iii) S/o is locally cyclic, and :

(iv) the poset of idempotents of each D-class of S is either a chain or contains exactly one
pair of incomparable elements, each of which is maximal.

In the proof that simple distributive inverse semigroups are strongly determined by
their lattice isomorphisms, much use was made of the fact that these semigroups are E-
unitary, and hence Kg=Es. This is not necessarily true in the modular case, so the
kernel of g, K, will be of interest.

Result 3 ([2, Propositions 3.1 and 4.2]). If S is a simple modular inverse semigroup
which is not a group, then Ks={x:xx"'||x"'x} u Es={x:x2=x3}, and for each ecEjs,
|[KsnR,|<2.

If S is a simple modular inverse semigroup which is not a group and ® a lattice
isomorphism of S onto T, then by Result 1, Eq®=E;. Thus @ restricts naturally to an
isomorphism of LF(S) onto LF(T), and therefore T cannot be a group. T must therefore
also be a modular inverse semigroup, not a group, which is simple by Result 1, meaning
it satisfies the hypotheses of Result 2. Since S is combinatorial, we can now construct a
bijection from S onto T.

Result 4 ([6, Proposition 1.6]). If S is combinatorial, for each x in S there is a unique
element y of T such that (x)® =y, (xx Npg=yy ' and (x " 'x)pz=y !y.

We may now define ¢:S—T by letting x¢ be the unique element y as above.
Properties of ¢ are given in the next result.

Result 5 ({6, Proposition 1.7]). If S is combinatorial then so is T, and ¢ is a one-to-
one map of S onto T which extends ¢g. Further, ¢ and ¢! are R- and L-preserving. If 6
is a homorphism of S onto T which induces ®, then 6= ¢.

We can now show that ¢ preserves the kernel of g, Kg, in modular inverse semigroups.
Throughout the remainder of this paper we will assume that S is not a group.

Theorem 6. If S is a simple modular inverse semigroup, then Kq® =K ;.

Proof. Take any ue K. If ue E;, then ue E® < Ky®. So assume u¢ Ey. Now u=x¢
for some xeS by Result 5 and from Result 3, uu™'||u"'u. It follows that
(xx "¢ ||(x"'x)¢ by Result 4, and since ¢ is an isomorphism on Es, xx~'||x~'x.
Applying Result 3 again xe€ K yielding K< K ®.

Similarly, Ksc K,;® !, and the proof is complete.
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In a simple modular inverse semigroup S, every element x not in Ky is either strictly
right or left regular, and therefore generates a bicyclic subsemigroup. Thus properties of
L(B) for the bicyclic semigroup B are bound to play an important role.

Result 7 ([5,6]). The bicyclic semigroup is strongly determined by its lattice of inverse
subsemigroups. In fact every lattice isomorphism of B onto T is induced by a unique
isomorphism of B onto T.

If S is a simple modular inverse semigroup and x is an element not in K, then ®
restricted to (x) is a lattice isomorphism of (x> onto {x¢>, which from Results 4, 5
and 7 is induced by ¢, and ¢ must be the isomorphism from {x) onto {x¢)>. Note that
Result 4 shows that an element x is strictly right [left] regular if and only if x¢ is.

The following generalization of Lemma 4.6 of [5] will be useful.

Lemma 8. Let S be a simple modular inverse semigroup. (i) If a is a strictly right [left]
regular element of S, then so is ea for every idempotent e <aa™". (ii) If aob for a,bes, then
a is strictly right [left] regular if and only if b is.

Proof. (i) Take any strictly right regular element a of S and any idempotent
e<aa™!. Then a¢ Kg by Result 3 and so also ea¢ Ks. Clearly eaRe. Since Eg is
Archimedean, a "a"<e for some n>0, whence a "ea"<a "a"<e. By way of contra-
diction, assume ea is left regular; that is, a 'ea=(ea) '(ea)>e. Then a 2ea’=
a Y a lea)a>a " 'ea>e, and by induction, a "ea">e which is impossible. Thus ea is
strictly right regular. The proof for strictly left regular is similar.

(ii) Take a,be S with acb and suppose a is strictly right regular. Now a¢ Kg=kero so
also b¢ K, hence b must be strictly right or left regular. Since acb there is an e Eg
such that ea=eb, and without loss of generality we may take e<aa!. By (i) above, ea
is strictly right regular and thus so is eb. Again using (i), b cannot be strictly left regular,
so the desired result follows.

Before proceeding further we will need several technical results.

Result 9 ([2, Proposition 2.9)). If S is a simple modular inverse semigroup, then S/o is
a torsion-free abelian group.

Result 10 ([2, Lemma 1.8]). Let S be an inverse semigroup and beS, b¢ Eg. If x is a
nonidempotent in {Eg,b) then x=xx"1b" for some non-zero integer n.

Lemma 11. If x and z are strictly right regular elements of a simple modular inverse
semigroup S and {x)a={z)0, then xoz.

Proof. We must have xow for some we{z) S{Es, Z). By Result 10, w=ww™'z" for
some non-zero integer n, so xgz". Similarly, zox™ for some m+0, and it follows that
xox™. Since x¢ Kg,{x) is torsion-free by Result 9, so xo =(x0)™" implies mn =1, whence
n= +1. This gives us xoz*!, but since z~! is strictly left regular, we cannot have xoz !
by Lemma 8(ii). It now follows that xoz.
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Lemma 12. If S is a simple modular inverse semigroup and z= fx where x,ze S\Kg,
then ({z)®)o =({x)D)o.

Proof. From Results 4 and 5, c=z¢ and a=x¢ are such that c,ae T\K . Now since
z=fx,” (2)S(Eg,x)=E, v {(x), 50 (c)={2DP<SEsD v {x)P=E; v {a)={(Er,a).
Thus by Result 10, c=cc™'a", for some non-zero n, and hence coa”. Let y=
(@) tedadd ' ={x). Now {yd>c=<(x)> and {(z)={c)®P '<=(E a0 '=E 0 '=
E @1 v {(a")® !=(Eg,y). Applying Result 10 again, z=zz"!y™, for some non-zero m,
and so xazoy™.

Since the mapping ¢ restricted to (x> is an isomorphism onto <{a), y=(a"¢ '=
(ap~Y)"=x", and combining this with xoy™ gives xox™. We know that {xo) is
torsion-free since x ¢ K, so as in the previous proof, n=+ 1. From this we get a=a*?,
so {a")=<a), and finally ({z)®)o ={c)da=<{a"Ya={a)e=({x)P)o as desired.

Notice that if asb in a simple modular inverse semigroup S, and a,b¢ K, then
ea=eb ¢ K for some idempotent e. The above lemma shows that ({ea)®)o=({ad)P)o=
(Kb>®)a, or equivalently, {a¢d>a=<{bd>s. Applying Lemma 11, (a¢)a(b¢d). Thus we
have proved:

Corollary 13. If S is a simple modular inverse semigroup and a,be S, then ach implies

(ag)o(be)).
We know that ¢ is R-, L- and o-preserving on a simple modular inverse semigroup S,

and that ¢ is an isomorphism on Eg. These results will be crucial in proving our main
theorems.

Theorem 14. If S is is a simple modular inverse semigroup, then ¢ is a homomorphism.

Proof. Take any a,beS and put f=(a ‘a)(bb™!). Then (ab)R(af)L(f)R(fb)L(ab),
and since ¢ is R- and L-preserving.

(ab)pR(af )pL(f$)R(f b)pL{ab)$.

By a result of Miller and Clifford [7],

(ab)oH(af )p(f b)¢,

and since T is combinatorial,

(ab)¢ =(af)$(S D). (1

But (fb)ob, so (fb)pa(bo)o(f P)(bg), and since ¢ is an isomorphism on Eg and is R-
preserving, f¢ <(bb~ )¢ =(b¢)(bp) !, so that

(fb)g.(fP)(b))eR N a. @
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We will show that (fb)¢=(f ¢)(b¢j. To do this we now consider two cases.

Case 1. The element b is in Kg. Then fbeKg,b¢pe Ky, and so (fb)¢ and (f¢)(be)
are in K. Suppose (fb)p=f¢.

Notice that if x is any element of Kg (or K;), Result 3 tells us that x>=x>. From this
we can see that x? is idempotent, for

N2 =x3x=x2x=x3=x2

(x

Also note that
=x"2x"!'=x"3=x3=x?, and thus

x IxIx T =(x " Ix)(xx ") =x%

Applying this to b and b¢ we have
(b*)p=[(b"'b)(bb™")1¢=(b"'b)$(bb™ )¢
=(bg) ™' (bd)(b)(bd) ™! =(bg) '(bg)*(bp) ~* = (b)>.

We previously assumed that (fb)=f¢, and since ¢ is a bijection, fb=f, and we can
calculate fb*=fb=f. Therefore (f¢)(bd)=(fb*)p(bd)=(f$)(b*d)(bd) =(f$)(bd)*(bd) =
(f9)(bg) € Er so that (f¢)(b)=(fb)p=f¢, as required.

If we assume rather that (f¢)(bd)=f¢, then let e= f¢ and c=b¢. Then (f¢)(bd)=
f ¢ becomes ec=e, and (2) is

((e)d ™', (ed™ V) cd ) eRna

since ¢! is R- and o-preserving. Thus the same argument as above, applied to ¢~ ?,
yields (ec)¢ ™' =(e¢~')(c¢ '), in other words f = fb as before. Thus, (fb)d=(f¢)(bd)
in this case also.

Since, by Result 3 |Kyn R;,|<2, if neither (fb)¢ nor (f¢)(bd)=f, then (fb)¢ and
(f ¢)(b¢) must be equal.

Case II. The element b is not in K,. Let U=(Eg,b). Now Un Kg=Eg, forif xis a
nonidempotent in {Eg,b), x=xx"'b" for some non-zero integer n by Result 10. Then
the subgroup {xo)»=(b"%) of S/o is nontrivial since ba#1 and S/s is torsion-free, and
so x¢ Kg. From this it follows that U is E-unitary. Recall that ((fb)¢,(f¢)(bp))eRNno

(in T), and it easy to verify that also ((fb)¢,(f$)(bd)) € Ryy N oy,
By [6, Theorem 3.4] U¢ is E-unitary. From [8, Proposition I11.7.2], that U¢ is
E-unitary implies that Ry, oy, is the identical relation on U¢. Hence we get get

(fb)¢ =(f¢)(be), as desired. A similar argument yields (af)¢ =(ad)(f¢).
Now we have that (1) is equivalent to

(ab)d =(ad)(f $)(b). 3
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But since f=(a"'a)(bb™"), f$p=(a"'a)p(bb™")p=(ad) *(ad)(bg)(b$)~*, and replacing
f ¢ with this in (3) gives (ab)¢ =(ad)(b¢).
Combining this last theorem with Result 5 we can now state the main result of this

paper.

Theorem 15. Let S be a simple modular inverse semigroup which is not a group. Then
each isomorphism of L(S) onto L(T) is induced by a unique isomorphism of S onto T.
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