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Abstract

In this paper, we give an explicit formula as well as a practical algorithm for computing
the Cassels–Tate pairing on Sel2(J) × Sel2(J) where J is the Jacobian variety of a genus two
curve under the assumption that all points in J[2] are K-rational. We also give an explicit
formula for the Obstruction map Ob:H1(GK , J[2]) → Br(K) under the same assumption.
Finally, we include a worked example demonstrating that we can improve the rank bound
given by a 2-descent via computing the Cassels–Tate pairing.

2020 Mathematics Subject Classification: 11G30 (Primary); 11G10 (Secondary)

1. Introduction

For any principally polarised abelian variety A defined over a number field K, Cassels and
Tate [Cas59], [Cas62] and [Tat62] constructed a pairing

X(A)×X(A)→Q/Z,

that is nondegenerate after quotienting out by the maximal divisible subgroup of X(A).
This pairing is called the Cassels–Tate pairing and it naturally lifts to a pairing on Selmer
groups. One application of this pairing is in improving the bound on the Mordell–Weil rank
r(A) obtained by performing a standard descent calculation. More specifically, since the map
X(A)/nX(A)→ (X(A)[n])∗ is injective, which is the middle vertical map in the diagram
on page 88 of [Mil06], the kernel of the Cassels–Tate pairing on Seln(A) × Seln(A) is equal to
the image of the natural map Seln

2
(A) → Seln(A) induced from the map A[n2]

n−→ A[n]. This
shows that carrying out an n-descent and computing the Cassels–Tate pairing on Seln(A) ×
Seln(A) gives the same rank bound as obtained from n2-descent where Seln

2
(A) needs to be

computed.
There have been many results on computing the Cassels–Tate pairing in the case of ellip-

tic curves, such as [Cas98], [Don15], [Fis16], [vB], [vBF18], [Fis03], [FN14]. We are
interested in the natural problem of generalising the different algorithms for computing the
Cassels–Tate pairing for elliptic curves to compute the pairing for abelian varieties of higher
dimensions.

In Section 2, we give the preliminary results needed for the later sections, including the
homogeneous space definition of the Cassels–Tate pairing. In Section 3, we state and prove
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2 J. YAN

an explicit formula for the pairing 〈 , 〉CT on Sel2(J) × Sel2(J) where J is the Jacobian vari-
ety of a genus two curve under the assumption that all points in J[2] are K-rational. In
Section 4, we describe a practical algorithm for computing the pairing 〈 , 〉CT using the for-
mula in Section 3. In Section 5, we also give an explicit formula for the Obstruction map
Ob : H1(GK , J[2]) → Br(K) under the assumption that all points in J[2] are defined over K
generalising the result in the elliptic curve case [O’N02, proposition 3·4], [Cla05, theo-
rem 6]. Finally, in Section 7, we include a worked example demonstrating that computing
the Cassels–Tate pairing can indeed improve the rank bound coming from a 2-descent to
the rank bound coming from a 4-descent. The content of this paper is based on Chapter 4 of
the thesis of the author [Yan].

2. Preliminary Results
2·1. The set-up

In this paper, we are working over a number field K. For any field k, we let k̄ denote its
algebraic closure and let μn ⊂ k̄ denote the nth roots of unity in k̄. We let Gk denote the
absolute Galois group Gal(k̄/k).

Let C be a general genus two curve defined over K, which is a smooth projective curve. It
can be given in the following hyperelliptic form:

C : y2 = f (x) = f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0,

where fi ∈ K, f6 �= 0 and the discriminant 	(f ) �= 0, which implies that f has distinct roots in
K̄. Note that we choose to not use the quintic representation of the genus 2 curve because
using the degree 6 form simplifies some computations and makes the final formula slightly
more symmetric and elegant.

We let J denote the Jacobian variety of C, which is an abelian variety of dimension two
defined over K that can be identified with Pic0(C). We denote the identity element of J by
OJ . We also denote the two points at infinity on C by ∞+, ∞−. Via the natural isomorphism
Pic2(C) → Pic0(C) sending [P1 + P2] �→ [P1 + P2 − ∞+ − ∞−], a point P ∈ J can be iden-
tified with an unordered pair of points of C, {P1, P2}. This identification is unique unless P =
OJ , in which case it can be represented by any pair of points on C in the form {(x, y), (x, −y)}
or {∞+, ∞−}. Suppose the roots of f are denoted by ω1, ...,ω6 and let (ω1, 0), ..., (ω6, 0) be
all the Weierstrass points on C. Then J[2] = {OJ , {(ωi, 0), (ωj, 0)} for i �= j}. Also, for a point
P ∈ J, we let τP : J → J denote the translation by P on J.

As described in [CF96, chapter 3, section 3], suppose {P1, P2}and {Q1, Q2} represent
P, Q ∈ J[2] where P1, P2, Q1, Q2 are Weierstrass points. Then the Weil paring is given by
the formula

e2(P, Q) = (−1)|{P1,P2}∩{Q1,Q2}|.

2·2. Theta divisor and Kummer surface

A theta divisor, denoted by �, is defined to be any divisor on J that is the image of the
divisor {P} × C + C × {P} on Sym2C under the birational morphism Sym2C → J, for some
Weierstrass point P ∈ C. The Jacobian variety J is a principally polarised abelian variety via
λ : J → J∨ sending Q ∈ J to [τ ∗

Q�−�]. It can be checked that 2�∼�+ +�−, where �+
denotes the divisor on J that corresponds to the divisor {∞+} × C + C × {∞+} on C × C
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and similarly for �−. In particular, this implies that the divisor class of 2n� is defined over
the base field K, for any positive integer n.

The Kummer surface, denoted by K, is the quotient of J via the involution [−1] : P �→ −P.
The fixed points under the involution are the 16 points of order dividing 2 on J and these map
to the 16 nodal singular points of K (the nodes). General theory, as in [Mil08, theorem 11·1],
[Mum70, page 150], shows that the linear system of n� on J has dimension n2. Moreover,
|2�| is base point free and induces a morphism from J to P3 defined over K while |4�| is
very ample and induces an embedding from J to P15 defined over K.

2·3. Explicit embeddings of J and K
From Section 2·2, we know that dim L(2�) = 4 and 2�∼�+ +�−. Let {k1, k2, k3, k4}

denote the basis of L(�+ +�−) as defined in [CF96, chapter 3, section 1]. We will restate
the definition here for completeness. Denote a generic point on the Jacobian J of C by
{(x, y), (u, v)}. There is then a morphism from J to P3 given by

k1 = 1, k2 = (x + u), k3 = xu, k4 = β0,

where

β0 = F0(x, u) − 2yv

(x − u)2

with F0(x, u) = 2f0 + f1(x + u) + 2f2(xu) + f3(x + u)(xu) + 2f4(xu)2 + f5(x + u)(xu)2 +
2f6(xu)3. The image of this morphism is the Kummer surface K⊂ P3 defined by the
vanishing of the quartic polynomial G(k1, k2, k3, k4) as specified in [CF96, chapter 3,

section 1]. From now on, we denote this morphism by J
|2�|→ K⊂ P3. We note that it maps

OJ to (0 : 0 : 0 : 1).

Remark 2·1. Suppose P ∈ J[2]. Since the polarisation map λ is a group homomorphism, we
have τ ∗

P(2�) ∼ 2�. This implies that translation by P on J induces a linear isomorphism on
K⊂ P3.

We now look at the embedding of J in P15 induced by |4�|. Let kij = kikj, for 1 ≤ i ≤ j ≤ 4.
Since K is irreducible and defined by a polynomial of degree 4, k11, k12, ..., k44 are 10
linearly independent even elements in L(2�+ + 2�−). Six further odd basis elements
b1, b2, ...b6 in L(2�+ + 2�−) are given explicitly in [FTvL12, section 3]. A function g
on J is even when it is invariant under the involution [−1] : P �→ −P and is odd when
g ◦ [−1] = −g.

Unless stated otherwise, we will use the basis k11, k12, ..., k44, b1, ..., b6 for L(2�+ +
2�−) to embed J in P15. The following theorem gives the defining equations of J.

THEOREM 2·2 ([Fly90, therorem 1·2], [Fly93, therorem 1·2]). Let J be the Jacobian variety
of the genus two curve C defined by y2 = f6x6 + ... + f1x + f0. The 72 quadratic forms over
Z[f0, ..., f6] given in [Fly90, appendix A] are a set of defining equations for the projective
variety given by the embedding of J in P15 induced by the basis of L(2�+ + 2�−) with
explicit formulae given in [Fly90, definition 1·1] or [Fly93, definition 1·1]. The change
of basis between this basis of L(2�+ + 2�−) and k11, k12, ..., k44, b1, ..., b6 is given in
[FTvL12, section 3].
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2·4. Principal homogeneous spaces and 2-coverings

A principal homogeneous space or torsor for J defined over a field K is a variety
V together with a morphism μ : J × V → V , both defined over K, that induces a simply
transitive action on the K̄-points.

We say (V1,μ1) and (V2,μ2) are isomorphic over a field extension K1 of K if there is an
isomorphism φ : V1 → V2 defined over K1 that respects the action of J.

A 2-covering of J is a variety X defined over K together with a morphism π : X → J
defined over K, such that there exists an isomorphism φ : X → J defined over K̄ with π =
[2] ◦ φ. An isomorphism (X1, π1) → (X2, π2) between two 2-coverings is an isomorphism
h : X1 → X2 defined over K with π1 = π2 ◦ h. We sometimes denote (X, π) by X when the
context is clear.

It can be checked that a 2-covering is a principal homogeneous space. The short exact

sequence 0 → J[2] → J
2−→ J → 0 induces the connecting map in the long exact sequence

δ : J(K) → H1(GK , J[2]). (2·1)

The following two propositions are proved in [FTvL12].

PROPOSITION 2·3 [FTvL12, lemma 2·14] Let (X, π) be a 2-covering of J defined over K
and choose an isomorphism φ : X → J such that π = [2] ◦ φ. Then for each σ ∈ GK, there is
a unique point P ∈ J[2](K̄) satisfying φ ◦ σ (φ−1) = τP. The map σ �→ P is a cocycle whose
class in H1(GK , J[2]) does not depend on the choice of φ. This yields a bijection between
the set of isomorphism classes of 2-coverings of J and the set H1(GK , J[2]).

PROPOSITION 2·4 [FTvL12, proposition 2·15] Let X be a 2-covering of J corresponding to
the cocycle class ε ∈ H1(GK , J[2]). Then X contains a K-rational point (equivalently X is a
trivial principal homogeneous space) if and only if ε is in the image of the connecting map
δ in (2·1).

We also state and prove the following proposition which is useful for the computation of
the Cassels–Tate pairing later in Sections 4·2 and 4·3. A Brauer–Severi variety is a variety
defined over K that is isomorphic to a projective space over K̄.

PROPOSITION 2·5. Let (X, π) be a 2-covering of J, with φ ◦ [2] = π . Then the linear system
|φ∗(2�)| determines a map X → S defined over K, where S is a Brauer–Severi variety. Also,
there exists an isomorphism ψ defined over K̄ making the following diagram commute:

X S

J P3.

|φ∗(2Θ)|

φ ψ

|2Θ|
(2·2)

In particular, if (X, π) corresponds to a Selmer element via the correspondence in
Proposition 2·3, then the Brauer–Severi variety S is isomorphic to P3.

Proof. Since (X, π) is a 2-covering of J, by Proposition 2·3, we have that for each σ ∈ GK ,
φ ◦ (φ−1)σ = τP for some P ∈ J[2]. By Remark 2·1, we have τ ∗

P(2�) ∼ 2� which implies
that φ∗(2�) ∼ (φσ )∗(2�), hence the morphism induced by |φ∗(2�)| is defined over K.
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Now if (X, π) corresponds to a Selmer element, then X everywhere locally has a point by
Proposition 2·4, and hence S everywhere locally has a point. Since the Hasse principle holds
for Brauer–Severi varieties by [CM96, corollary 2·6], we know that S has a point over K
and hence it is isomorphic to P3 by [GS06, theorem 5·1·3].

We now make some observations and give some notation.

Remark 2·6. Let ε ∈ Sel2(J), and let (Jε , πε) denote the 2-covering corresponding to ε.
There exists an isomorphism φε defined over K̄ such that [2] ◦ φε = πε . Then, by Proposition
2·5, we have the following commutative diagram:

Jε P3

J P3.

|φ∗
ε (2Θ)|

φε ψε

|2Θ|
(2·3)

The image of Jε under the morphism induced by |φ∗
ε (2�)| is a surface, denoted by Kε ,

which we call the twisted Kummer surface corresponding to ε. Also ψε is a linear isomor-
phism P3 → P3 defined over K̄, and ψε |Kε : Kε →K is also an isomorphism over K̄. For
simplicity of notation later, we may also refer to this map from Kε →K as ψε

Notation 2·7 Suppose (Jε , πε) is the 2-covering of J corresponding to ε ∈ H1(GK , J[2]). The
involution [−1] : P �→ −P on J induces an involution ιε on Jε such that φε ◦ ιε = [−1] ◦ φε ,
where [2] ◦ φε = πε . Moreover, the degree two morphism Jε

|φ∗
ε (2�)|−−−−−→Kε ⊂ P3 in (2·3) is

precisely the quotient by ιε and so an alternative definition of Kε is as the quotient of Jε by
ιε . We call a function g on Jε even if it is invariant under ιε and odd if g ◦ ιε = −g.

2·5. Definition of the Cassels–Tate Pairing

There are four definitions of the Cassels–Tate pairing stated and proved equivalent in
[PS99]. In this paper we will only be using the homogeneous space definition of the
Cassels–Tate pairing. We recall this definition now. Suppose a, a′∈X(J). Via the polariza-
tion λ, we get a′ �→ b where b ∈X(J∨) Let X be the (locally trivial) principal homogeneous
space defined over K representing a. Then Pic0(XK̄) is canonically isomorphic as a GK-
module to Pic0(JK̄) = J∨(K̄). Therefore, b ∈X(J∨)⊂H1(GK , J∨) represents an element in
H1(GK , Pic0(XK̄)).

Now consider the exact sequence:

0 → K̄(X)∗/K̄∗ → Div0(XK̄) → Pic0(XK̄) → 0.

We can then map b to an element b′ ∈ H2(GK , K̄(X)∗/K̄∗) using the long exact sequence
associated to the short exact sequence above. Since K is a number field, we know that
H3(GK , K̄∗) = 0 as proved in [CF67, chapter VII, section 11·4]. So b′ has a lift f ′ ∈
H2(GK , K̄(X)∗) via the long exact sequence induced by the short exact sequence 0 → K̄∗ →
K̄(X)∗ → K̄(X)∗/K̄∗ → 0 :

H2(GK , K̄∗) → H2(GK , K̄(X)∗) → H2(GK , K̄(X)∗/K̄∗) → H3(GK , K̄∗) = 0. (2·4)
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Next we show that f ′
v ∈ H2(GKv , K̄v(X)∗) is the image of an element cv ∈ H2(GKv , K̄v

∗). This
is because b ∈X(J∨) is locally trivial which implies its image b′ is locally trivial. Then the
statement is true by the exactness of local version of sequence (2·4).

We then can define

〈a, b〉 =
∑

v

invv(cv) ∈Q/Z.

The Cassels–Tate pairing X(J)×X(J)→Q/Z is defined by

〈a, a′〉CT : = 〈a, λ(a′)〉.
We sometimes refer to invv(cv) above as the local Cassels–Tate pairing between a, a′

X(J) for a place v of K. Note that the local Cassels–Tate pairing depends on the choice of
f ′ ∈ H2(GK , K̄(X)∗). We make the following remarks that are useful for the computation of
the Cassels–Tate pairing.

Remark 2·8.

(i) By [PS99], we know that the homogeneous space definition of the Cassels–Tate
pairing is independent of all the choices we make.

(ii) Via the map 2(J)→X(J)[2]Sel , the definition of the Cassels–Tate pairing on
X(J)[2]×X(J)[2] naturally lifts to a pairing on Sel2(J) × Sel2(J). In fact, from now
on, we will only be considering 〈ε, η〉CT for ε, η ∈ Sel2(J). The principal homoge-
neous space X in the definition is always taken to be the 2-covering of J corresponding
to ε. One can compute cv by evaluating f ′

v at a point in X(Kv) provided that one avoids
the zeros and poles of f ′

v. Note that X(Kv) �= ∅ by Proposition 2·4.

2·6. Explicit 2-coverings of J

Let ω1, ...,ω6 denote the 6 roots of f . Recall, as in Proposition 2·3, that the isomorphism
classes of 2-coverings of J are parameterised by H1(GK , J[2]). For the explicit computation
of the Cassels–Tate pairing, we need the following result on the explicit 2-coverings of J
corresponding to elements in Sel2(J). We note that this theorem in fact works over any field
of characteristic different from 2.

THEOREM 2·9 [FTvL12, proposition 7·2, theorem 7·4, appendix B] Let J be the Jacobian
variety of a genus two curve defined by y2 = f (x) where f is a degree 6 polynomial and
ε ∈ Sel2(J). Embed J in P15 via the coordinates k11, k12, ..., k44, b1, ..., b6. There exists
Jε ⊂ P15 defined over K with Galois invariant coordinates u0, ..., u9, v1, ..., v6 and a linear
isomorphism φε : Jε → J defined over K̄ such that (Jε , [2] ◦ φε) is a 2-covering of J whose
isomorphism class corresponds to the cocycle class ε. Moreover, φε can be explicitly rep-

resented by the 16 × 16 matrix R =
⎡
⎣R1 0

0 R2

⎤
⎦ for some 10 × 10 matrix R1 and some 6 × 6

matrix R2.

Remark 2·10. The explicit formula for φε is given in the beginning of [FTvL12, section
7] and it depends only on ε and the underlying genus two curve. Note that the coordinates
u0, ..., u9, v1, ..., v6 are derived from another set of coordinates c0, ..., c9, d1, ..., d6 defined in
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[FTvL12, definitions 6·9, 6·11] where c0, ..., c9 are even and d1, ..., d6 are odd. This set of
coordinates are in general not Galois invariant, however, they are in the case where all points
of J[2] are defined over the base field. More details can be found in [Yan, remark 1·11·2].

3. Formula for the Cassels–Tate Pairing

From now on we assume that our genus 2 curve C is defined by y2 = f (x) where all roots
of f are defined over K. In other words C has all its Weierstrass points defined over K. This
is equivalent to the condition that all points in J[2] are defined over K. In this section, under
the above assumption, we state and prove an explicit formula for the Cassels–Tate pairing
on Sel2(J) × Sel2(J).

Let the genus two curve C be of the form

C : y2 = λ(x −ω1)(x −ω2)(x −ω3)(x −ω4)(x −ω5)(x −ω6),

where λ,ωi ∈ K and λ �= 0. Its Jacobian variety is denoted by J.
The two-torsion subgroup J[2] has basis

P = {(ω1, 0), (ω2, 0)}, Q = {(ω1, 0), (ω3, 0)},
R = {(ω4, 0), (ω5, 0)}, S = {(ω4, 0), (ω6, 0)}.

By the discussion at the end of Section 2·1, the Weil pairing is given relative to this
basis by:

W =

⎡
⎢⎢⎣

1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1

⎤
⎥⎥⎦ . (3·1)

More explicitly, Wij denotes the Weil pairing between the ith and jth generators.
We now show that this choice of basis determines an isomorphism H1(GK , J[2]) ∼=

(K∗/(K∗)2)4. Consider the map J[2]
w2−→ (μ2(K̄))4, where w2 denotes taking the Weil pairing

with P, Q, R, S. Since P, Q, R, S form a basis for J[2] and the Weil pairing is a nondegen-
erate bilinear pairing, we get that w2 is injective. This implies that w2 is an isomorphism as
|J[2]| = |(μ2(K̄))4| = 16. We then get

H1(GK , J[2])
w2,∗−−→ H1(GK , (μ2(K̄))4) ∼= (K∗/(K∗)2)4, (3·2)

where w2,∗ is induced by w2 and ∼= is the Kummer isomorphism derived from Hilbert’s
Theorem 90. Since the map (3·2) is an isomorphism, we can represent elements in
H1(GK , J[2]) by elements in (K∗/(K∗)2)4.

Before stating and proving the formula for the Cassels–Tate pairing, we first state and
prove the following lemma.

LEMMA 3·1. For ε ∈ Sel2(J), let (Jε , πε) denote the corresponding 2-covering of J. Hence,
there exists an isomorphism φε : Jε → J defined over K̄ such that [2] ◦ φε = πε . Suppose
T ∈ J(K) and T1 ∈ J(K̄) satisfy 2T1 = T. Then:

(i) there exists a K-rational divisor DT on Jε which represents the divisor class of
φ∗
ε (τ ∗

T1
(2�));
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(ii) let D and DT be K-rational divisors on Jε representing the divisor class of φ∗
ε (2�)

and φ∗
ε (τ ∗

T1
(2�)) respectively. Then DT − D ∼ φ∗

ε (τ ∗
T�−�). Suppose T is a two-

torsion point. Then 2DT − 2D is a K-rational principal divisor. Hence, there exists
a K-rational function fT on Jε such that div(fT ) = 2DT − 2D.

Proof. By the definition of a 2-covering, [2] ◦ φε = πε is a morphism defined over K.
Also, by Proposition 2·3, φε ◦ (φ−1

ε )σ = τεσ for all σ ∈ GK , where (σ �→ εσ ) is a cocy-
cle representing ε. Since [2] ◦ τT1 ◦ φε = τT ◦ [2] ◦ φε = τT ◦ πε and τT is defined over K,
(Jε , τT ◦ πε) is also a 2-covering of J. We compute τT1 ◦ φε ◦ ((τT1 ◦ φε)−1)σ = τT1 ◦ φε ◦
(φ−1
ε )σ ◦ τ−σ (T1) = τεσ ◦ τT1 ◦ τ−σ (T1), for all σ ∈ GK . This implies the 2-covering (Jε , τT ◦

πε) corresponds to the element in H1(GK , J[2]) that is represented by the cocycle (σ �→
εσ + T1 − σ (T1)). Hence, (Jε , τT ◦ πε) is the 2-covering of J corresponding to ε + δ(T),
where δ is the connecting map as in (2·1). By Proposition 2·5, there exists a commutative
diagram:

Jε P3

J P3,

|φ∗
ε (τ∗

T1
(2Θ))|

τT1
◦φε ψε

|2Θ|

where the morphism Jε
|φ∗
ε (τ∗

T1
(2�))|

−−−−−−−→ P3 is defined over K. So the pull back of a hyperplane
section via this morphism gives us a rational divisor DT representing the divisor class of
φ∗
ε (τ ∗

T1
(2�)) as required by (i).

Since the polarisation λ : J → J∨ is an isomorphism and 2T1 = T , we have[
φ∗
ε (τ ∗

T�−�)
] = φ∗

ε (λ(T)) = 2φ∗
ε (λ(T1)) = [

φ∗
ε (τ ∗

T1
(2�)) − φ∗

ε (2�)
] = [DT − D].

The fact that T is a two-torsion point implies that 2φ∗
ε (λ(T)) = 0. Hence, 2DT − 2D is a

K-rational principal divisor which gives (ii).
The following remark explains how we will use Lemma 3·1 in the formula for the Cassels–

Tate pairing on Sel2(J) × Sel2(J).

Remark 3·2. Applying Lemma 3·1(i) with T =OJ , P, Q, R, S ∈ J[2] gives divisors D = DOJ

and DP, DQ, DR, DS. Then by Lemma 3·1(ii), there exist K-rational functions fP, fQ, fR, fS on
Jε such that div(fT ) = 2DT − 2D for T = P, Q, R, S.

THEOREM 3·3. Let J be the Jacobian variety of a genus two curve C defined over a number
field K where all points in J[2] are defined over K. For any ε, η ∈ Sel2(J), let (Jε , [2] ◦ φε)
be the 2-covering of J corresponding to ε where φε : Jε → J is an isomorphism defined over
K̄. Fix a choice of basis P, Q, R, S for J[2], such that the Weil pairing is given relative
to this basis by the matrix (3·1). Let (a, b, c, d) denote the image of η via H1(GK , J[2]) ∼=
(K∗/(K∗)2)4, where this is the isomorphism induced by taking the Weil pairing with P, Q,
R, S. Let fP, fQ, fR, fS be the K-rational functions on Jε defined in Remark 3·2. Then the
Cassels–Tate pairing 〈 , 〉CT : Sel2(J) × Sel2(J) → {±1} is given by

〈ε, η〉CT =
∏

place v

(fP(Pv), b)v(fQ(Pv), a)v(fR(Pv), d)v(fS(Pv), c)v,
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where ( , )v denotes the Hilbert symbol for a given place v of K and Pv is an arbitrary choice
of a local point on Jε(Kv) avoiding the zeros and poles of fP, fQ, fR, fS.

Proof. We know η ∈ H1(GK , J[2]) corresponds to (a, b, c, d) ∈ (K∗/(K∗)2)4 via taking the
Weil pairing with P, Q, R, S. Hence, η is represented by the cocycle

σ �→ b̃σP + ãσQ + d̃σR + c̃σS,

where σ ∈ GK and for each element x ∈ K∗/(K∗)2, we define x̃σ ∈ {0, 1} such that (−1)x̃σ =
σ (

√
x)/

√
x.

Then the image of η in H1(GK , Pic0(Jε)) is represented by the cocycle that sends σ ∈ GK

to

b̃σφ
∗
ε [τ ∗

P�−�] + ãσφ
∗
ε [τ ∗

Q�−�] + d̃σφ
∗
ε [τ ∗

R�−�] + c̃σφ
∗
ε [τ ∗

S�−�].

By Remark 3·2, there exist K-rational divisors DP, DQ, DR, DS on Jε such that the above
cocycle sends σ ∈ GK to

b̃σ [DP − D] + ãσ [DQ − D] + d̃σ [DR − D] + c̃σ [DS − D].

We need to map this element in H1(GK , Pic0(Jε)) to an element in H2(GK , K̄(Jε)∗/K̄∗)
via the connecting map induced by the short exact sequence

0 → K̄(Jε)
∗/K̄∗ → Div0(Jε) → Pic0(Jε) → 0.

Hence, by the formula for the connecting map and the fact that the divisors D, DP, DQ, DR,
DS are all K-rational, we get that the corresponding element in H2(GK , K̄(Jε)∗/K̄∗) has
image in H2(GK , Div0(Jε)) represented by the following cocycle:

(σ , τ ) �→(b̃τ − b̃στ + b̃σ )(DP − D) + (ãτ − ãστ + ãσ )(DQ − D)

+ (d̃τ − d̃στ + d̃σ )(DR − D) + (c̃τ − c̃στ + c̃σ )(DS − D),

for σ , τ ∈ GK .
It can be checked that, for x ∈ K∗/(K∗)2 and σ , τ ∈ GK , we get x̃τ − x̃στ + x̃σ = 2 if both

σ and τ flip
√

x and otherwise it is equal to zero. Define ισ ,τ ,x = 1 if both σ and τ flip
√

x
and otherwise ισ ,τ ,x = 0. Note that the map that sends x ∈ K∗/(K∗)2 to the class of (σ , τ ) �→
ισ ,τ ,x explicitly realizes the map K∗/(K∗)2 ∼= H1(GK , 1

2Z/Z) ⊂ H1(GK , Q/Z) → H2(GK , Z).
Then, for σ , τ ∈ GK , the cocycle in the last paragraph sends (σ , τ ) to

ισ ,τ ,b · 2(DP − D) + ισ ,τ ,a · 2(DQ − D) + ισ ,τ ,d · 2(DR − D) + ισ ,τ ,c · 2(DS − D).

Hence, by Remark 3·2, the corresponding element in H2(GK , K̄(Jε)∗/K̄∗) is repre-
sented by

(σ , τ ) �→
[
f
ισ ,τ ,b
P · f

ισ ,τ ,a
Q · f

ισ ,τ ,d
R · f

ισ ,τ ,c
S

]
,

for all σ , τ ∈ GK .
For each place v of K, following the homogeneous space definition of 〈ε, η〉CT as given in

Section 2·5, we obtain an element in H2(GKv , K̄∗
v ) from the long exact sequence induced by

the short exact sequence 0 → K̄∗
v → K̄v(Jε)∗ → K̄v(Jε)∗/K̄v

∗ → 0. The long exact sequence
is the local version of (2·4) with X replaced by Jε . By Remark 2·8(ii), this element in
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H2(GKv , K̄v
∗) can be represented by

(σ , τ ) �→ fP(Pv)ισ ,τ ,b · fQ(Pv)ισ ,τ ,a · fR(Pv)ισ ,τ ,d · fS(Pv)ισ ,τ ,c ,

for all σ , τ ∈ GK and some local point Pv ∈ Jε(Kv) avoiding the zeros and poles of
fP, fQ, fR, fS.

Hence, the above element in Br(Kv) ∼= H2(GKv , K̄v
∗) is the class of the tensor product of

quaternion algebras

(fP(Pv), b) ⊗ (fQ(Pv), a) ⊗ (fR(Pv), d) ⊗ (fS(Pv), c).

Then, by identifying 1
2Z/Z with μ2 = {1, −1}, we have that

inv
(
(fP(Pv), b) ⊗ (fQ(Pv), a) ⊗ (fR(Pv), d) ⊗ (fS(Pv), c)

)
= (fP(Pv, b)v(fQ(Pv), a)v(fR(Pv), d)v(fS(Pv), c)v,

where ( , )v denotes the Hilbert symbol: K∗
v × K∗

v → {1, −1}, as required.

Remark 3·4. In Section 6, we will directly show that the formula for the Cassels–Tate pairing
on Sel2(J) × Sel2(J) given in Theorem 3·3 is a finite product.

Remark 3·5. The formula in Theorem 3·3 is analogous to that in the elliptic curve case
when all the two torsion points of the elliptic curve is defined over K. By section 6
in [FSS10], the pairing defined by Cassels in [Cas98] is the Cassels–Tate pairing and
takes the following form as in section 4 in [FSS10]. Let C → E be a 2 covering rep-
resenting ε ∈ Sel2(E). Let Sel2(E) ↪−→ (K∗/K∗2)3 be the corresponding embedding to the
standard embedding of E[2] ↪−→μ3

2 via the Weil paring. Suppose η ∈ Sel2(E) is represented
by η= (a1, a2, a3) ∈ (K∗/K∗2)3 with a1a2a3 a square in K. Then there are K-rational func-
tions f1, f2, f3 on C such that f1f2f3 = h2 for some function h on C and the Cassels–Tate
pairing takes the form

〈ε, η〉CT =
∏

place v

(f1(pv), a1)v(f2(pv), a2)v(f3(pv), a3)v.

Here ( , )v denotes the Hilbert symbol: K∗
v × K∗

v → {1, −1} and pv is a local point on
C, which exists since C everywhere locally has a point. Now using the fact that a1a2a3

is a square and f1f2f3 = h2 and bilinearity of the Hilbert symbol, the above formula
simplifies to

〈ε, η〉CT =
∏

place v

(f1(pv), a2)v(f2(pv), a1)v,

which is indeed very similar to the formula given in Theorem 3·3.

4. Explicit Computation

In this section, we explain how we explicitly compute the Cassels–Tate pairing on
Sel2(J) × Sel2(J) using the formula given in Theorem 3·3, under the assumption that all
points in J[2] are defined over K. We fix ε ∈ Sel2(J) and (Jε , [2] ◦ φε), the 2-covering of J
corresponding to ε where φε : Jε → J is the isomorphism defined over K given by a linear
change of coordinates on P15 as in Theorem 2·9. The statement of Theorem 3·3 suggests
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that we need to compute the K-rational divisors D, DP, DQ, DR, DS on Jε and the K-rational
functions fP, fQ, fR, fS on Jε , as in Remark 3·2.

4·1. Computing the twist of the Kummer surface

We describe a practical method for computing a linear isomorphism ψε : P3 → P3 cor-
responding to ε, which maps Kε →K. More explicitly, we need to compute ψε such that
ψε(ψ−1

ε )σ is the action of translation by εσ ∈ J[2] on K and (σ �→ εσ ) is a cocycle repre-
senting ε. Since all points in J[2] are defined over K, the coboundaries in B1(GK , J[2]) are
trivial. Therefore, these conditions determine ψε uniquely up to precomposing by a linear
change of coordinates defined over K.

For each T ∈ J[2], we have an explicit formula for MT ∈ GL4(K), given in [CF96, chap-
ter 3, section 2], representing the action of translation by T ∈ J[2] on the Kummer surface
K⊂ P3. It can be checked that {MT , T ∈ J[2]} form a basis of Mat4(K). Let cP, cQ, cR, cS ∈
K be such that M2

P = cPI, M2
Q = cQI, M2

R = cRI, and M2
S = cSI. The explicit formulae for

cP, cQ, cR, cS can also be found in [CF96, chapter 3, section 2]. Moreover, by [CF96, chap-
ter 3, section 3] and the Weil pairing relationship among the generators P, Q, R, S of J[2]
specified by (3·1), we know that [MP, MQ] = [MR, MS] = −I and the commutators of the
other pairs are trivial.

Suppose (a, b, c, d) ∈ (K∗/(K∗)2)4 represents ε. Let A ∈ GL4(K̄) represent the linear iso-
morphism ψε and let M′

T = A−1MTA ∈ GL4(K̄) represent the action of T on the twisted
Kummer Kε . It can be checked, see [Yan, lemma 3·2·1] for details, that the set of matri-
ces in PGL4(K̄) that commute with MT in PGL4(K̄) for all T ∈ J[2] is {[MT ], T ∈ J[2]}.
This implies that any B ∈ GL4(K̄) such that [M′

T ] = [B−1MTB] ∈ PGL4(K̄) for all T ∈ J[2] is
equal to a multiple of MT0 composed with A for some T0 ∈ J[2] and so also represents ψε .
Hence, it will suffice to compute the matrices M′

T .
Consider [M′

T ] ∈ PGL4(K̄) and σ ∈ GK . We have

[M′
T ]([M′

T ]−1)σ = [A−1MTA(A−1)σM−1
T Aσ ] ∈ PGL4(K̄).

Recall that for each element x ∈ K∗/(K∗)2, we define x̃σ ∈ {0, 1} such that (−1)x̃σ =
σ (

√
x)/

√
x. Since [A(A−1)σ ] = [Mb̃σ

P Mãσ
Q Md̃σ

R Mc̃σ
S ] and MT commutes with MP, MQ, MR, MS

in PGL4(K), we get that [M′
T ]([M′

T ]−1)σ = I ∈ PGL4(K̄) for all σ ∈ GK . Therefore we have
[M′

T ] is in PGL4(K). This means that we can redefine M′
T = λTA−1MTA for some λT ∈ K̄

such that M′
T ∈ GL4(K), by choosing a K defined representative.

Let NP = 1/
√

cPMP, NQ = 1/
√

cQMQ, NR = 1/
√

cRMR, NS = 1/
√

cSMS. Then N2
T = I for

T = P, Q, R, S. Define N′
T = A−1NTA ∈ GL4(K̄) for T = P, Q, R, S. We note that N′

T , M′
T rep-

resent the same element in PGL4(K̄) and N′2
T = I for each T = P, Q, R, S. Suppose M′2

P =
αPI, M′2

Q = αQI, M′2
R = αRI, M′2

S = αSI. Then N′
T = 1/

√
αTM′

T for each T = P, Q, R, S. Note
that there might be some sign issues here but they will not affect the later computation.
Since

N′
P(N′−1

P )σ = A−1NPA(A−1)σ (N−1
P )σAσ ,

via NP = 1/
√

cPMP, N′
P = 1/

√
αPM′

P with MP, M′
P ∈ GL4(K), the fact that [A(A−1)σ ] =

[Mb̃σ
P Mãσ

Q Md̃σ
R Mc̃σ

S ], and the fact that MP commutes with MP, MR, MS ∈ GL4(K) and
MPMQ = −MQMP, we can derive that
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σ (
√
αP)√
αP

= (−1)ãσ
σ (

√
cP)√

cP
= σ (

√
a)√

a

σ (
√

cP)√
cP

,

and similar equations hold for Q,R,S too.
This implies that αP = cPa up to squares in K and so via rescaling M′

P by elements in K,
we have M′2

P = cPaI. Similarly, M′2
Q = cQbI, M′2

R = cRcI, M′2
S = cSdI. We note that we also

have [M′
P, M′

Q] = [M′
R, M′

S] = −I and the commutators of the other pairs are trivial. This
implies that

Mat4(K) ∼= (cPa, cQb) ⊗ (cRc, cSd)

M′
P �→ i1 ⊗ 1, M′

Q �→ j1 ⊗ 1, M′
R �→ 1 ⊗ i2, M′

S �→ 1 ⊗ j2,

where (cPa, cQb) and (cRc, cSd) are quaternion algebras with generators i1, j1 and i2, j2
respectively. In Section 5, we will interpret this isomorphism as saying that the image of
ε via the obstruction map is trivial.

Let A = (cPa, cQb), B = (cRc, cSd). By the argument above, we know A ⊗ B represents
the trivial element in Br(K) and an explicit isomorphism A ⊗ B ∼= Mat4(K) will give us the
explicit matrices M′

P, M′
Q, M′

R, M′
S we seek. Since the classes of A, B are in Br[2], we have A,

B representing the same element in Br(K). This implies that A ∼= B over K, by Wedderburn’s
Theorem. We have the following lemma.

LEMMA 4·1. Consider a tensor product of two quaternion algebras A ⊗ B, where A =
(α, β), B = (γ , δ), with generators i1, j1 and i2, j2 respectively. Suppose there is an isomor-
phism ψ : B

∼−→ A given by

i2 �→ a1 · 1 + b1 · i1 + c1 · j1 + d1 · i1j1,

j2 �→ a2 · 1 + b2 · i1 + c2 · j1 + d2 · i1j1.

Then there is an explicit isomorphism

A ⊗ B ∼= Mat4(K)

given by

i1 ⊗ 1 �→ Mi1 : =

⎡
⎢⎢⎢⎢⎣

0 α 0 0
1 0 0 0
0 0 0 α

0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

j1 ⊗ 1 �→ Mj1 : =

⎡
⎢⎢⎣

0 0 β 0
0 0 0 −β
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦

1 ⊗ i2 �→ Mi2 : =

⎡
⎢⎢⎣

a1 b1 · α c1 · β −d1 · αβ
b1 a1 −d1 · β c1 · β
c1 d1 · α a1 −b1 · α
d1 c1 −b1 a1

⎤
⎥⎥⎦
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1 ⊗ j2 �→ Mj2 : =

⎡
⎢⎢⎣

a2 b2 · α c2 · β −d2 · αβ
b2 a2 −d2 · β c2 · β
c2 d2 · α a2 −b2 · α
d2 c2 −b2 a2

⎤
⎥⎥⎦

Proof. We have that A ⊗ Aop is isomorphic to a matrix algebra. More specifically, A ⊗ Aop ∼=
EndK(A) via u ⊗ v �→ (x �→ uxv), which makes A ⊗ Aop ∼= Mat4(K) after picking a basis for
A. Hence,

A ⊗ Bop ∼= Mat4(K)

u ⊗ v �→ (x �→ uxψ(v)).

More explicitly, fixing the basis of A to be {1, i1, j1, i1j1}, the isomorphism is as given in the
statement of the lemma.

By taking A = (cPa, cQb), B = (cRc, cSd) in Lemma 4·1, we know that the matrices
M′

P, M′
Q, M′

R, M′
S and Mi1 , Mj1 , Mi2 , Mj2 are equal up to conjugation by a matrix C ∈ GL4(K)

via the Noether Skolem Theorem. After a change of coordinates for Kε ⊂ P3 according
to C, we have that M′

P, M′
Q, M′

R, M′
S are equal to Mi1 , Mj1 , Mi2 , Mj2 . Lemma 4·1 therefore

reduces the problem of computing the M′
T to that of computing an isomorphism between

the two quaternion algebras. See [Yan, corollary 4·2·3] for the description of an explicit
algorithm. Finally we solve for a matrix A such that M′

T = λTA−1MTA for some λT ∈ K̄ and
T = P, Q, R, S by linear algebra.

4·2. Explicit computation of D

In this section, we explain a method for computing the K-rational divisor D on Jε rep-
resenting the divisor class φ∗

ε (2�). The idea is to compute it via the commutative diagram
(2·3) in Remark 2·6.

By Theorem 2·9, there is an explicit isomorphism φε : Jε → J defined over K given by
a linear change of coordinates on P15. We write u0, ..., u9, v1, ..., v6 for the coordinates on
the ambient space of Jε ⊂ P15 and write k11, k12, ..., k44, b1, ..., b6 for the coordinates on the
ambient space of J ⊂ P15. By the same theorem, φε is represented by a block diagonal matrix
consisting of a block of size 10 corresponding to the even basis elements and a block of size 6
corresponding to the odd basis elements. Following Section 4·1, we can compute an explicit
isomorphism ψε : P3 → P3, that maps Kε →K, where Kε is the twisted Kummer surface
corresponding to ε. We write k′

1, ..., k′
4 for the coordinates on the ambient space of Kε ⊂ P3.

Recall that since all points in J[2] are defined over K, all coboundaries in B1(GK , J[2]) are
trivial. So, we have that φε(φ−1

ε )σ and ψε(ψ−1
ε )σ both give the action of translation by some

εσ ∈ J[2] such that (σ �→ εσ ) represents ε ∈ Sel2(J).
Define k′

ij = k′
ik

′
j. The isomorphism ψε : P3

k′
i
→ P3

ki
, induces a natural isomorphism

ψ̃ε : P9
k′

ij
→ P9

kij
. More explicitly, suppose ψε is represented by the 4 × 4 matrix A

where
(
k′

1 : ..., k′
4

) �→
(∑4

i=1 A1ik′
i : ... :

∑4
i=1 A4ik′

i

)
. Then ψ̃ε : P9

k′
ij
→ P9

kij
is given by(

k′
11 : k′

12 : ... : k′
44

) �→
(∑4

i,j=1 A1iA1jk′
ij :

∑4
i,j=1 A1iA2jk′

ij : ... :
∑4

i,j=1 A4iA4jk′
ij

)
.
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On the other hand, the isomorphism φε : P15{ui,vi} → P15
{kij,bi} induces a natural isomor-

phism φ̃ε : P9
ui

→ P9
kij

represented by the 10 × 10 block of the matrix representing φε . Since

φε(φ−1
ε )σ and ψε(ψ−1

ε )σ both give the action of translation by some εσ ∈ J[2], we get

φ̃ε(φ̃ε
−1

)σ = ψ̃ε(φ̃ε
−1

)σ . Therefore, ψ̃ε
−1
φ̃ε is defined over K.

Now let v : P3 → P9 be the Veronese embedding that sends (x0 : x1 : x2 : x3) to
(x2

0 : x0x1 : ... : x2
3) and let KP9

kij
and Kε,P9

k′ij
be the corresponding image of K and Kε in P9

kij

and P9
k′

ij
via the Veronese embedding. Furthermore, let Kε,P9

ui
be the image of Jε via the pro-

jection map P15
ui,vi

→ P9
ui

. The various maps between projective spaces are summarised in the
following commutative diagram.

P15
{ui,vi} P9

ui
P9

k′
ij

P15
{kij ,bi} P9

kij

proj

φε

(ψ̃ε)−1φ̃ε

φ̃ε

ψ̃ε
proj

(4·1)

Restricting these maps to J, K and their twists (and using the same names for these
restricted maps) we obtain the following commutative diagram that decomposes the standard
commutative diagram (2·3).

Jε Kε,P9
ui

Kε,P9
k′
ij

Kε

J KP9
kij

K

proj

φε

(ψ̃ε)−1φ̃ε

φ̃ε

ψ̃ε

g2

ψε

proj g1

(4·2)

Here g1 : (k11 : ... : k44) �→ (k11 : ... : k14) and g2 : (k′
11 : ... : k′

44) �→ (k′
11 : ... : k′

14) are the
projection maps, which are the one sided inverse of Veronese embedding. The composi-

tion of the morphisms on the bottom row gives the standard morphism J
|2�|−−→K⊂ P3 and

the composition of the morphisms on the top row gives Jε
|φ∗
ε (2�)|−−−−−→Kε ⊂ P3.

Let D be the pull back on Jε via the horizontal map, as in diagram (4·2), Jε →Kε of
the hyperplane section given by k′

1 = 0. This implies that D is a K-rational divisor on Jε
representing the class of φ∗

ε (2�). Moreover, the pull back on Jε via the map Jε →Kε,P9
k′ij

as

in (4·2) of the hyperplane section given by k′
11 = 0 is 2D.

4·3. Explicit computation of DP, DQ, DR, DS

In this section, we explain how to compute the K-rational divisors DP, DQ, DR, DS defined
in Remark 3·2. More explicitly, for T ∈ J[2], we give a method for computing a K-rational
divisor DT on Jε representing the divisor class of φ∗

ε (τ ∗
T1

(2�)) for some T1 on J such that
2T1 = T . Recall that we assume all points in J[2] are defined over K and we have an explicit
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isomorphism φε : Jε → J such that (Jε , [2] ◦ φε) is the 2-covering of J corresponding to ε ∈
Sel2(J). Recall δ : J(K) → H1(GK , J[2]) in (2·1). We first prove the following lemma.

LEMMA 4·2. Let T ∈ J(K). Suppose φε+δ(T) : Jε+δ(T) → J is an isomorphism over K̄ and
(Jε+δ(T), [2] ◦ φε+δ(T)) is the 2-covering of J corresponding to ε + δ(T) ∈ H1(GK , J[2]). Let
T1 ∈ J such that 2T1 = T. Then, φ−1

ε+δ(T) ◦ τT1 ◦ φε : Jε → Jε+δ(T) is defined over K.

Proof. Using the same argument as in the proof of Lemma 3·1(i), we know that (Jε , [2] ◦
τT1 ◦ φε) is the 2-covering of J corresponding to ε + δ(T) ∈ H1(GK , J[2]). Since all points
in J[2] are defined over K, we have τT1 ◦ φε ◦ ((τT1 ◦ φε)−1)σ = φε+δ(T) ◦ (φ−1

ε+δ(T))
σ , as

required.

Let T ∈ J(K) with 2T1 = T . Consider the commutative diagram below which is formed
of two copies of the standard diagram (2·3). In this diagram all the horizontal maps are
defined over K. By Lemma 4·2, the composition of the three vertical maps on the left is
defined over K, even though the individual maps are only defined over K. The composition
of the four wavy arrows is therefore defined over K. Pulling back a hyperplane section
on Kε+δ(T) ⊂ P3 via this composition gives a K-rational divisor DT on Jε representing the
divisor class φ∗

ε (τ ∗
T1

(2�)). If we further assume that T ∈ J[2] then the composition of the

three vertical maps on the left is given by a change of coordinates on P15 and so by a
16 × 16 matrix defined over K.

P15 ⊃ Jε
|φ∗

ε (2Θ)|

φε

Kε ⊂ P3

ψε

P15 ⊃ J
|2Θ|

τT1

K ⊂ P3

P15 ⊃ J
|2Θ| K ⊂ P3

ψε+δ(T )

P15 ⊃ Jε+δ(T )

|φ∗
ε+δ(T )

(2Θ)|
(φε+δ(T ))

−1

Kε+δ(T ) ⊂ P3

(4·3)

The bottom horizontal morphism Jε+δ(T)
|φ∗
ε+δ(T)(2�)|−−−−−−−→Kε+δ(T) ⊂ P3 can be explicitly com-

puted using the algorithm in Section 4·2 with the Selmer element ε replaced by ε + δ(T).
Also, by Theorem 2·9, we have explicit formulae for φε and φε+δ(T). Hence, to explicitly
compute DT , we need to compute a pullback by τT1 , for some T1 such that 2T1 = T .

Since we need to apply the above argument for T running over our basis P, Q, R, S for
J[2], it would suffice to compute the translation maps τT1 : J → J when T1 ∈ J[4]. Each of
these translation maps is given by a change of coordinates on P15 and so by a 16 × 16 matrix.
We show how to compute a 10 × 16 submatrix in the following proposition. We then explain
below why this is sufficient for our purposes.

PROPOSITION 4·3. Suppose T1 ∈ J[4]. Given the coordinates of T1 ∈ J ⊂ P15
{kij,bi}, we can

compute a 10 × 16 matrix representing the composition of maps (say �) in the second row
of the following commutative diagram.
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16 J. YAN

J
τT1

J

P15
{kij ,bi} P15

{kij ,bi}
proj

P9
kij

(4·4)

Proof. Let T = 2T1 ∈ J[2]. Recall that we let MT denote the action of translation by T on
K⊂ P3. Then for any P ∈ J, we have ki(P + T) = ∑4

j=1 (MT )ijkj(P) projectively as a vector
of length 4, and projectively as a vector of length 10, kij(P + T1) is equal to

ki(P + T1)kj(P + T1) = ki(P + T1)
4∑

l=1

(MT )jlkl(P − T1) =
4∑

l=1

(MT )jlkl(P − T1)ki(P + T1).

By [Fly93, theorem 3.2], there exists a 4 × 4 matrix of bilinear forms φij(P, T1) that is
projectively equal to the matrix ki(P − T1)kj(P + T1). Moreover explicit formulae are given
for these bilinear forms. Since we have an explicit formula for MT in in [CF96, chapter 3,
section 2], we can compute a 10 × 16 matrix representing � as claimed in the statement of
the proposition.

Remark 4·4. Suppose 2T1 = T ∈ J[2]. From the doubling formula on K as in [Fly93,
appendix C], we can compute the coordinates of the image of T1 on K⊂ P3 from the coor-
dinates of the image of T on K⊂ P3. This gives the 10 even coordinates, kij(T1) and we can
solve for the odd coordinates using the 72 defining equations of J as given in Theorem 2·2.
Note that by Lemma 4·2, we know the field of definition of T1 is contained in the composi-
tion of the field of definition of φε and φε+δ(T). Hence, we can compute this field explicitly
which helps solving for this point using MAGMA [BCP97].

Consider T ∈ J[2] with T1 ∈ J[4] such that 2T1 = T . We follow the discussion in Section
4·2 with ε replaced by ε + δ(T). This gives a diagram analogous to (4·2). Let k′

1,T , ..., k′
4,T

be the coordinates on the ambient space of Kε+δ(T) ⊂ P3 and let u0,T , ..., u9,T , v1,T , ..., v6,T

be the coordinates on the ambient space of Jε+δ(T) ⊂ P15. Let k′
ij,T = k′

i,Tk′
j,T . Decomposing

the lower half of the diagram (4·3) gives the commutative diagram below.

P15
{ui,vi} ⊃ Jε

|φ∗
ε (2Θ)| ��

φε

��

Kε ⊂ P3
k′

i

ψε

��
P15
{kij ,bi} ⊃ J

|2Θ| ��

τT1

��

Ψ

��

K ⊂ P3
ki

P15
{kij ,bi} ⊃ J

proj
�� KP9

kij

g1 ��

(ψ̃ε+δ(T ))
−1

��

K ⊂ P3
ki

ψε+δ(T )

��

P15
{ui,T ,vi,T } ⊃ Jε+δ(T )

��

φε+δ(T )

��

Kε+δ(T ),P9
k′
ij

,T

g2 �� Kε+δ(T ) ⊂ P3
k′

i,T

(4·5)
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Computing the Cassels-Tate pairing for genus two jacobians 17

Recall Proposition 4·3 explains how� can be explicitly computed and the composition of
the wavy arrows in (4·5) is defined over K by Lemma 4·2. Let DT be the pull back on Jε via
the wavy arrows in (4·5) of the hyperplane section given by k′

1,T = 0. This implies that DT

is a K-rational divisor on Jε representing the class of φ∗
ε (τ ∗

T1
(2�)). Moreover the pull back

on Jε via the composition of the first three wavy arrows in (4·5) of the hyperplane section
given by k′

11,T = 0 is 2DT .
We now apply the above discussion with T = P, Q, R, S and obtain the divisors

DP, DQ, DR, DS on Jε described in Remark 3·2 as required.

Remark 4·5. From the above discussion and the discussion in Section 4·2, the K-rational
functions fP, fQ, fR, fS in the formula for the Cassels–Tate pairing in Theorem 3·3 are quo-
tients of linear forms in the coordinates of the ambient space of Jε ⊂ P15. They all have the
same denominator, this being the linear form that cuts out the divisor 2D.

5. The Obstruction Map

In this section, we will state and prove an explicit formula for the obstruction map
Ob : H1(GK , J[2]) → Br(K). See below for the definition of this map. This generalizes
a formula in the elliptic curve case due to O’Neil [O’N02, proposition 3·4], and later
refined by Clark [Cla05, theorem 6]. Although this is not needed for the computation of
the Cassels–Tate pairing, it explains why we needed to work with quaternion algebras in
Section 4·1.

Definition 5·1. The obstruction map

Ob : H1(GK , J[2]) → H2(GK , K̄∗) ∼= Br(K)

is the composition of the map H1(GK , J[2]) → H1(GK , PGL4(K̄)) induced by the action
of translation of J[2] on K⊂ P3, and the injective map H1(GK , PGL4(K̄)) → H2(GK , K̄∗)
induced from the short exact sequence 0 → K̄∗ → GL4(K̄) → PGL4(K̄) → 0.

THEOREM 5·2. Let J be the Jacobian variety of a genus two curve defined over a
field K with char(K) �= 2. Suppose all points in J[2] are defined over K. For ε ∈
H1(GK , J[2]), represented by (a, b, c, d) ∈ (K∗/(K∗)2)4 as in Section 3, the obstruction map
Ob : H1(GK , J[2]) → Br(K) sends ε to the class of the tensor product of two quaternion
algebras:

Ob(ε) = (cPa, cQb) ⊗ (cRc, cSd),

where cP, cQ, cR, cS ∈ K are such that M2
P = cPI, M2

Q = cQI, M2
R = cRI, and M2

S = cSI as
defined in Section 4·1.

Proof. Let NP = 1/
√

cPMP, NQ = 1/
√

cQMQ, NR = 1/
√

cRMR, NS = 1/
√

cSMS ∈ GL4(K̄).
Then NP is a normalised representation in GL4(K̄) of [MP] ∈ PGL4(K). Similar statements
are true for Q, R, S. Notice that N2

P = N2
Q = N2

R = N2
S = I. So there is a uniform way of pick-

ing a representation in GL4(K̄) for the translation induced by α1P + α2Q + α3R + α4S for
αi ∈Z, namely Nα1

P Nα2
Q Nα3

R Nα4
S .

https://doi.org/10.1017/S0305004124000318 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000318


18 J. YAN

Since ε ∈ H1(K, J[2]) is represented by (a, b, c, d) ∈ (K∗/K∗2)4 and P, Q, R, S satisfy the
Weil pairing matrix (3·1), a cocycle representation of ε is:

σ �→ b̃σP + ãσQ + d̃σR + c̃σS,

where for each element x ∈ K∗/(K∗)2, we define x̃σ ∈ {0, 1} such that (−1)x̃σ = σ (
√

x)/
√

x.
Now consider the following commutative diagram of cochains:

C1(GK , K̄∗) C1(GK , GL4) C1(GK , PGL4)

C2(GK , K̄∗) C2(GK , GL4) C2(GK , PGL4).

d d d

Defining Nσ = Nb̃σ
P Nãσ

Q Nd̃σ
R Nc̃σ

S , we have

H1(K, J[2]) → H1(GK , PGL4)

(a, b, c, d) �→ (σ �→ [Nσ ]).

Then (σ �→ [Nσ ]) ∈ C1(GK , PGL4) lifts to (σ �→ Nσ ) ∈ C1(GK , GL4) which is then
mapped to (

(σ , τ ) �→ (Nτ )σN−1
στ Nσ

)
∈ C2(GK , GL4).

Note that

NσP =
(

1√
cP

MP

)σ
= 1

σ (
√

cP)
MP =

√
cP

σ (
√

cP)
NP = (−1)(c̃P)σ NP,

treating cP in K∗/(K∗)2. Similar results also hold for Q, R, S. Observe that for any x ∈
K∗/(K∗)2 and σ , τ ∈ GK , we have x̃τ − x̃στ + x̃σ is equal to 0 or 2. Since N2

P = N2
Q = N2

R =
N2

S = I, [NP, NQ] = [NR, NS] = −I and the commutators of the other pairs are trivial, we have

(Nτ )σN−1
στ Nσ =

(
Nb̃τ

P Nãτ
Q Nd̃τ

R Nc̃τ
S

)σ · N−c̃στ
S N−d̃στ

R N−ãστ
Q N−b̃στ

P · Nb̃σ
P Nãσ

Q Nd̃σ
R Nc̃σ

S

= (−1)(c̃P)σ ·b̃τ · (−1)(c̃Q)σ ·ãτ · (−1)(c̃R)σ ·d̃τ · (−1)(c̃S)σ ·c̃τ

· Nb̃τ
P Nãτ

Q · Nd̃τ
R Nc̃τ

S N−c̃στ
S N−d̃στ

R · N−ãστ
Q N−b̃στ

P Nb̃σ
P Nãσ

Q · Nd̃σ
R Nc̃σ

S

= (−1)(c̃P)σ ·b̃τ · (−1)(c̃Q)σ ·ãτ · (−1)(c̃R)σ ·d̃τ · (−1)(c̃S)σ ·c̃τ

· Nb̃τ
P Nãτ

Q N−ãστ
Q N−b̃στ

P Nb̃σ
P Nãσ

Q · Nd̃τ
R Nc̃τ

S N−c̃στ
S N−d̃στ

R Nd̃σ
R Nc̃σ

S

= (−1)(c̃P)σ ·b̃τ · (−1)(c̃Q)σ ·ãτ · (−1)(c̃R)σ ·d̃τ · (−1)(c̃S)σ ·c̃τ · (−1)ãσ ·b̃τ

· (−1)c̃σ ·d̃τ · I.

On the other hand, (cP, cQ) ⊗ (cR, cS) is isomorphic to 〈MP, MQ, MR, MS〉 = Mat4(K)
which represents the identity element in the Brauer group. Hence, we have

(cPa, cQb) ⊗ (cRc, cSd) = (a, b) ⊗ (c, d) ⊗ (cP, b) ⊗ (cQ, a) ⊗ (cR, d) ⊗ (cS, c),
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which is precisely represented by a cocycle that sends (σ , τ ) to

(−1)(c̃P)σ ·b̃τ · (−1)(c̃Q)σ ·ãτ · (−1)(c̃R)σ ·d̃τ · (−1)(c̃S)σ ·c̃τ · (−1)ãσ ·b̃τ · (−1)c̃σ ·d̃τ ,

for all σ , τ ∈ GK as required.

6. Bounding the Set of Primes

In this section, we directly show that the formula for 〈ε, η〉CT in Theorem 3·3 is actually
always a finite product, as mentioned in Remark 3·4. Since for a local field with odd residue
characteristic, the Hilbert symbol between x and y is trivial when the valuations of x, y are
both 0, it suffices to find a finite set S of places of K, such that outside S the first arguments
of the Hilbert symbols in the formula for 〈ε, η〉CT have valuation 0 for some choice of the
local point Pv.

Let OK be the ring of integers for the number field K. By rescaling the variables, we
assume the genus two curve is defined by y2 = f (x) = f6x6 + · · · + f0 where the fi are in OK .

The first arguments of the Hilbert symbols in the formula for 〈ε, η〉CT are fP(Pv), fQ(Pv),
fR(Pv) or fS(Pv), where fP, fQ, fR, fS can be computed as the quotients of two linear forms in
P15 with the denominators being the same, as explained in Remark 4·5. Since we know that
the Cassels–Tate pairing is independent of the choice of the local points Pv as long as these
are chosen to avoid all the zeros and poles, it suffices to make sure that there exists at least
one local point Pv on Jε for which the values of the quotients of the linear forms all have
valuation 0 for all v outside S. The idea is to first reduce the problem to the residue field.

By Theorem 2·9 and Remark 2·10, we have an explicit formula for the isomorphism

Jε
φε−→ J.

It is given by a change of coordinates on the ambient space P15 and is defined over
K′ = K(

√
a,

√
b,

√
c,

√
d) where ε = (a, b, c, d) ∈ (K∗/(K∗)2)4. Suppose φε is represented

by Mε ∈ GL16(K′). By scaling, we can assume that all entries of Mε are in OK′ , the ring of
integers of K′.

Notation 6·1. Let K be a local field with valuation ring OK , uniformiser π and residue
field k. Let X ⊂ PN be a variety defined over K and I(X) ⊂ K[x0, ..., xN] be the ideal of X.
Then the reduction of X, denoted by X̄, is the variety defined by the polynomials {f̄ : f ∈
I(X) ∩OK[x0, ..., xN]}. Here f̄ is the polynomial obtained by reducing all the coefficients of f
modulo π . Note that this definition of the reduction of a variety X ⊂ PN defined over a local
field K is equivalent to taking the special fibre of the closure of X in PN

S , where S = Spec OK .
Let S0 = {places of bad reduction for C} ∪ {places dividing 2} ∪ {infinite places}. Fix a

place v /∈ S0 of K and suppose it is above the prime p. We now treat J, Jε and C as vari-
eties defined over the local field Kv. Let Ov denote the valuation ring of Kv and Fq denote
its residue field, where q is some power of p. It can be shown that J̄ is also an abelian variety
as the defining equations of J are defined over Ov and are derived algebraically in terms of
the coefficients of the defining equation of the genus two curve C by Theorem 2·2. In fact, J̄
is the Jacobian variety of C̄, the reduction of C.

Now fix a place v′ of K′ above the place v of K. Let Ov′ and Fqr denote the valuation ring
and the residue field of K′

v′ . It can be checked that as long as v′ does not divide det Mε ∈OK′ ,
the reduction M̄ε of Mε over the residue field Fqr defines a linear isomorphism J̄ε → J̄.
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This linear isomorphism M̄ε implies that J̄ε is smooth whenever J̄ is. In this case, J̄ε
is a twist of J̄ and is in fact a 2-covering of J̄. Indeed, the surjectivity of the natural map
Gal(K′

v′/Kv) → Gal(Fqr/Fq) shows that Mε(M−1
ε )σ = τPσ for all σ ∈ Gal(K′

v′/Kv) implies

that M̄ε(M̄ε
−1)σ̄ = τP̄σ̄ for all σ̄ ∈ Gal(Fqr/Fq). This means any principal homogeneous

space of J̄ over a finite field has a point by [Lan56, theorem 2] and so is trivial by Proposition

2·4. Therefore, there exists an isomorphism J̄ε
ψ−→ J̄ defined over Fq. Hence, as long as v /∈ S0

and v does not divide NK′/K( det Mε), J̄ε has the same number of Fq-points as J̄. It is well
known that the points on an abelian variety A of dimension g over the finite field Fq, satisfies
(
√

q − 1)2g ≤ |A(Fq)|. In our case, this means that the number of Fq-points on J̄ is bounded
below by (

√
q − 1)4.

On the other hand, let l1, ..., l5 be the 5 linear forms that appear as numerator or denom-
inator of fP, fQ, fR, fS. We can assume that the coefficients of li are in OK by scaling, for all
i = 1, ..., 5. Fix a place v of K that does not divide all the coefficients of li, for any i = 1, ..., 5.
Let Hi be the hyperplane defined by the linear form li and H̄i be its reduction, which is a
hyperplane defined over the residue field Fq. We need to bound the number of Fq-points of
J̄ε that lie on one of the hyperplanes H̄i. Let ri be the number of irreducible components of
J̄ε ∩ H̄i. By [Har77, chapter 1, theorem 7·2 (Projective dimension theorem) and Theorem
7·7], we know that each irreducible component Ci

j of J̄ε ∩ H̄i, where j = 1, ..., ri, is a curve
and the sum of degrees of all the irreducible components counting intersection multiplicity
is deg J̄ε = 32. Letting di

j = deg Ci
j, we have

∑ri
j=1 di

j ≤ 32 for all i.

LEMMA 6·2. Let C ⊂ PN be a curve of degree d. Then #C(Fq) ≤ d(q + 1).

Proof. We may assume that C is contained in no hyperplane. Then projection to the first two
coordinates gives a nonconstant morphism C → P1 of degree ≤ d. Since #P1(Fq) = q + 1,
this gives the required bound.

By applying the above lemma to each Ci
j, we get the number of Fq-points of J̄ε that lie on

one of the hyperplanes H̄i, i = 1, ..., 5, is no more than

5∑
i=1

ri∑
j=1

di
j · (q + 1) ≤ 160(q + 1).

We compute that for any x213, we have (
√

x − 1)4160(x + 1). Recall q is a power of
p. Hence, if v is a place of K above the prime p213 such that v /∈ S0 and v does not divide
NK′/K( det Mε) or all the coefficients of li for some i, we have a smooth Fq-point on J̄ε which
by Hensel’s Lemma [HS00, exercise C·9(c)] lifts to the point Pv as required. This implies
that the first arguments of the Hilbert symbols in the formula for the local Cassels–Tate pair-
ing of 〈ε, η〉CT have valuation 0. It can be checked that since v /∈ S0, the second arguments
of these Hilbert symbols also have valuation 0. Hence, the formula for the Cassels–Tate is
indeed always a finite product.

Note that in the case where K =Q or more generally if K has class number 1, we
can always make the linear forms primitive by scaling. Therefore, in this case, the subset
{places dividing all the coefficients of the denominator or the numerator of fP, fQ, fR or fS} is
empty.
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7. Worked Example

Now we demonstrate the algorithm with a worked example computed using MAGMA
[BCP97]. In particular, we will see with this example, that computing the Cassels–Tate
pairing on Sel2(J) × Sel2(J) does improve the rank bound obtained via a 2-descent. This
genus two curve was kindly provided by my PhD supervisor, Tom Fisher, along with a list
of other genus two curves for me to test the algorithm.

Consider the following genus two curve

C : y2 = −10x(x + 10)(x + 5)(x − 10)(x − 5)(x − 1).

Its Jacobian variety J has all its two-torsion points defined over Q. A set
of generators of J[2] compatible with the Weil pairing matrix (3·1) are P =
{(0, 0), (−10, 0)}, Q = {(0, 0), (−5, 0)}, R = {(10, 0), (5, 0)}, S = {(10, 0), (1, 0)}. We identify
H1(GQ, J[2]) = (Q∗/(Q∗)2)4 as in Section 3. Consider ε, η ∈ Sel2(J) represented by
(−33, 1, −1, −11) and (11, 1, −1, −11) respectively. The images of [P], [Q], [R], [S] via
δ : J(Q)/2J(Q) → H1(GQ, J[2]), computed via the explicit formula as in [CF96, chapter 6,
section 1], are δ([P]) = (−66, 1, 6, 22), δ([Q]) = (−1, 1, 3, 1), δ([R]) = (6, 3, 1, 3), δ([S]) =
(22, 1, −3, −11). Now following the discussions in Sections 4·2 and 4·3, we can com-
pute, using the coordinates c0, ..., c9, d1, ..., d6 for Jε ∈ P15 as described in Remark 2·10. We
have

k′
11 = 618874080c0 − 496218440c1 − 390547052c3 + 205551080c4

+ 384569291c6 + 52868640c8;

k′
11,P = −36051078800000c2 + 8111492730000c3 + 265237150000c7

− 196928587500c8 − 6786529337500c9 + 22531924250d2

− 126449158891d4 − 117221870375d5 + 937774963000d6;

k′
11,Q = 134800c1 + 235600c3 + 62000c4 + 52235c6 + 60016d1 − 5456d5;

k′
11,R = −30223125c6 + 4050000c8 − 49750d3 + 709236d4

k′
11,S = 4724524800c1 + 8557722360c3 + 13102732800c4 + 1258642935c6

+ 7291944000c9 − 2709362304d1 + 97246845d2 + 8475710d3

+ 30788208d5.

Hence, we have explicit formulae for

fP = k′
11,P

k′
11

, fQ = k′
11,Q

k′
11

, fR = k′
11,R

k′
11

, fS = k′
11,S

k′
11

.

In particular, they are defined over Q as claimed. From Section 6, we compute that
only primes below 213 can potentially contribute to 〈ε, η〉CT . Then, it turns out that the
only nontrivial local Cassels–Tate pairings between ε and η are at places 11, 19, ∞ and
〈ε, η〉CT = −1.

We find that Sel2(J) has size 26 and is generated by (−33, 1, −1, −11), (11, 1, −1, −11),
(66, 1, 2, 22), (11, 1, 2, 22), (3, 3, 3, 3), (3, 1, 3, 1). Since C has rational points, the Cassels–

Tate pairing can be shown to be alternating using [PS99, corollary 7]. Since all the two-
torsion points on J are rational and 〈ε, η〉CT = −1, we get | ker〈 , 〉CT | = 24.
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Indeed, we verified that the Cassels–Tate pairing matrix, with the generators of Sel2(J)
listed above, is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 −1 −1

−1 1 1 −1 1 −1

1 1 1 1 1 1

1 −1 1 1 −1 −1

−1 1 1 −1 1 −1

−1 −1 1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a rank 2 matrix.
As shown in [Yan, remark 1·9·4(ii)], in the case where all points in J[2] are

defined over the base field, computing the Cassels–Tate pairing on Sel2(J) gives the
same rank bound as obtained from carrying out a 4-descent, i.e. computing Sel4(J),
which can potentially give a better rank bound than the one given by a 2-descent. Let
r = rank(J(Q)). In this example, the rank bound coming from 2-decent was r ≤ 2 as
2r = |J(Q)/2J(Q)|/|J(Q)[2]| ≤ |Sel2(J)|/|J(Q)[2]| = 22. Our calculations of the Cassels–
Tate pairing on Sel2(J) improves this bound and in fact shows that r = 0 as 2r =
|J(Q)/2J(Q)|/|J(Q)[2]| ≤ | ker〈 , 〉CT |/|J(Q)[2]| = 20.

Remark 7·1. As the referee points out, it is also possible to prove that the rank of J(Q) is
zero in this example by carrying out a 2-descent on one of the Richelot-isogenous Jacobians.
It would be interesting to find an example (still with full rational 2-torsion) where this does
not work, i.e. all the isogenous abelian surfaces have non-trivial 2-torsion in X.
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