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Abstract We show that all large enough positive integral surgeries on algebraic knots bound a
4-manifold with a negative definite plumbing tree, which we describe explicitly. Then we apply the
lattice embedding obstruction coming from Donaldson’s Theorem to classify the ones of the form
S3
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1. Introduction

Definition. For a manifold M, we say that a manifold N is a rational homology M if
M and N are of the same dimension and H∗(M ;Q) ∼= H∗(N ;Q).

One major problem in low-dimensional topology is to determine which rational homol-
ogy 3-spheres bound rational homology 4-balls. It is attributed to Casson and appears
as Problem 4.5 on Kirby’s list of important problems in the discipline [9]. While rational
homology 3-spheres abound, very few of them tend to bound rational homology balls.
This can be illustrated by the fact that while the n-surgery on a knot K ⊂ S3, denoted
S3
n(K), is a rational homology 3-sphere for all n 6=0 and knots K, Aceto and Golla showed

in [2, Theorem 1.2] that in fact, for each K, there are at most four possible integer values
of n such that S3

n(K) bounds a rational homology ball.
The first study of rational homology 3-spheres bounding rational homology 4-balls

was published in 1981 when Casson and Harer found several families of homology lens
spaces bounding rational homology 4-balls and homology 3-spheres bounding contractible
manifolds [5]. In 2007, Lisca classified all the lens spaces and connected sums of lens spaces
bounding rational homology 4-balls [12, 13], popularizing the technique of obstructing
bounding rational homology 4-balls with lattice embeddings. Many people have since then
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used lattice embeddings on various classes of 3-manifolds to classify the ones that admit
fillings with certain homological constraints. Examples include Lecuona’s study of double
branched covers of S 3 branched over some families of Montesinos knots [10], Aceto’s study
of rational homology S1 × S2’s bounding rational homology S1 × D3 [1] and Simone’s
classifying torus bundles on the circle bounding rational homology S1×D3 [18], which he
used to construct rational homology 3-spheres bounding rational homology 4-balls in [19].
Recently, Aceto, Golla, Larson and Lecuona managed to answer the rationally acyclic
filling question for positive integral surgeries on positive torus knots, a classification with
a whopping 18 cases [2, 3].
The idea of this fruitful technique called lattice embeddings is to represent the rational

homology 3-sphere as the boundary of a negative definite 4-manifold and to use the
following corollary of Donaldson’s theorem [6, Theorem 1]:

Proposition 1. Let Y be a rational homology 3-sphere and Y = ∂X for X a connected
smooth oriented negative definite 4-manifold. If Y = ∂W for a smooth rational homology
4-ball W, then there exists a lattice embedding (H2(X)/Torsion, QX) ↪→ (ZrkH2(X),− Id).

Here QX is the intersection form of X, and lattice embeddings are defined in § 2.
Proposition 1 also has a positive version, where X is positive definite and the embedding
goes into (ZrkH2(X), Id).
The author is trying to build on the works of Lisca, Lecuona, Aceto, Golla and Larson

and classify the positive surgeries on iterated torus knots bounding rational homology
balls. An iterated torus knot is a knot obtained from the unknot through repeated cabling
operations.

Definition. Let K ⊂ S3 be an oriented smooth knot. The boundary ∂(νK) of a tubular
neighbourhood νK of K is an embedded torus in S3. The meridian M and the longi-
tude L are oriented simple closed curves inside ∂(νK), determined up to isotopy by the
following homology and linking relations:

• [M ] = 0 and [L] = [K] in H1(νK), and
• lk(M,K) = 1 and lk(L,K) = 0.

Let p, q be relatively prime integers. We denote by Cp,q(K) ⊂ S3, the unique (up to
isotopy) simple closed curve in ∂(νK) with homology class p[L] + q[M ] ∈ H1(∂(νK)).
The curve Cp,q(K) is called the (p, q)-cable on K.

Definition. The iterated torus knot with k iterations T (p1, α1; p2, α2; · · · ; pk, αk)
is the knot

T (p1, α1; p2, α2; · · · ; pk, αk) = Cpk,αk
Cpk−1,αk−1

· · ·Cp1,α1
(O),

O being the unknot.

Iterated torus knots are interesting to consider because many of them, just like positive
torus knots, arise as links of cuspidal singularities of complex plane curves. We will call
the iterated torus knots that do arise as singularity links of cuspidal curves algebraic.
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Resolving the singularity using blow-ups allows us to obtain a plumbing description of a
4-manifold with low b+2 (the number of positive eigenvalues of QX) bounding the surgery
on the knot. Unfortunately, the author lacks the luxury of being able to push down
b+2 to 0 as easily as for torus knots, which slightly restricts the n for which we can
answer the question whether or not S3

n(K) bounds a rational homology ball, excluding
finitely many cases for each K from our study. When we do have a negative definite
filling of our 3-manifold, we need to investigate the existence of a lattice embedding
prescribed by Proposition 1. This can be a very difficult combinatorial problem. For
example, the classification of positive integral surgeries on positive torus knots T (p, q)
bounding rational homology balls contains a lattice embedding analysis well over 40 pages
long ([3, Section 6]), and this does not include the case when q ≡ ±1 (mod p), which
was studied in the earlier paper [2]. Also, minimal changes of the intersection form can
render former techniques for studying the lattice embedding useless. In this first paper on
integral surgeries on iterated torus knots bounding rational homology balls, we restrict
ourselves to algebraic iterated torus knots of the form T (p1, k1p1 + 1; p2, k2p2 ± 1). We
prove the following theorem:

Theorem 2. Let α1 ≡ 1 (mod p1), α2 ≡ ±1 (mod p2), α2/p2 > p1α1 and n ≥
2 + p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a rational
homology 4-ball if and only if the tuple (p1, α1; p2, α2;n) is one of the following:

1. (p1, p1 + 1; p2, p2(p1 + 1)2 − 1; p22(p1 + 1)2) or
2. (2, 7; p2, 16p2 − 1; 16p22).

Remark. The condition α2/p2 > p1α1 is equivalent to the algebraicity of the knot,
and n ≥ 2 + p2α2 is needed in order for S3

n(T (p1, α1; p2, α2)) to bound an H-shaped
negative definite plumbing of disc bundles over spheres. The conditions α1 ≡ 1 (mod p1)
and α2 ≡ ±1 (mod p2) are, analogously to the conditions of [2], there to simplify the
lattice embedding analysis.

It is interesting to compare this result to other work on surgeries on iterated torus
knots bounding rational homology 4-balls. We have already seen examples of ones that
do. One result in that vein is Theorem 1.3 of Aceto, Golla, Larson and Lecuona in
[3], which given a surgery on a knot K bounding a rational homology ball gives us
surgeries on infinitely many of its cables bounding rational homology balls. Another
work is of an algebro-geometric flavour. Bodnár classified in [4] all rational unicuspidal
complex curves C inside CP 2 with two Newton pairs. This is relevant to us because the
complement of a tubular neighbourhood of C, CP 2 − νC, is a rational homology 4-ball,
and ∂(CP 2 − νC) = ∂(νC) = S3

d2
(K) for K an iterated torus knot of two iterations and

d the degree of the curve. However, Theorem 2 is to the author’s knowledge the first
analysis that excludes potential examples of surgeries on iterated torus knots bounding
rational homology balls.
We note that only the “only if” part of Theorem 2 is new, whereas the “if” part

follows from [3, Theorem 1.3]. (The reason only one of the two families of cables with
positive surgeries bounding torus knots mentioned in [3, Theorem 1.3] appears is that the
other family has surgery coefficient lower than p2α2.) One may wonder if all surgeries on
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iterated torus knots that bound rational homology 4-balls arise from [3, Theorem 1.3],
that is whether the following is true:

Conjecture 3. Suppose that S3
n(T (p1, α1; p2, α2)) bounds a rational homology B4.

Then p22 divides n, S3
n
p22

T (p1, α1) bounds a rational homology ball and α2 = n
p2

± 1.

Bodnár’s examples [4] show that this is not true in general. However, the answer
is unknown if we make the additional assumption that n ≥ 2 + p2α2 and thus that
S3
n(T (p1, α1; p2, α2)) bounds a negative definite H-shaped plumbing of disc bundles

over spheres. This is because only examples (iii) and (iv) in [4, Theorem 3.1.1] give
us an S3

n(T (p1, α1; p2, α2)) satisfying the additional assumption, which both arise from
[3, Theorem 1.3]. Bodnár’s examples suggest that the finitely many integral surgery coef-
ficients per knot for which the surgery does not bound a negative definite plumbing are
the ones that are the most likely to give rise to a 3-manifold that bounds a rational
homology 4-ball.

1.1. Outline of Paper

In § 2, we give a brief introduction to lattice embeddings, directed at those new to the
area, while establishing the notation and terminology. We also prove a basic proposition
that we will use in § 4. In § 3, we find plumbing diagrams for surgeries on algebraic iterated
torus knots. In § 4, we analyse which plumbing graphs admit lattice embeddings.

2. Preliminaries on lattice embeddings

This section is to serve as a brief introduction to working with lattice embeddings. Recall
Proposition 1. In this paper, as well as many others, including [1, 3, 11–13], we are
working with X, a tree-shaped plumbing of disc bundles on spheres. Its second homology
is the free abelian group Z〈V1, . . . , Vk〉 on the vertices and the intersection form is

〈Vi, Vj〉QX
=


weight of Vi if i = j

1 if Vi is adjacent to Vj

0 otherwise.

A lattice embedding f : (H2(X)/Torsion, QX) ↪→ (ZrkH2(X),− Id) is a homomor-
phism of abelian groups f (by abuse of notation often called a linear map) such that
〈Vi, Vj〉QX

= 〈f(Vi), f(Vj)〉− Id. Sometimes we talk about lattice embeddings into other
ranks, meaning that f goes into (Zr,− Id) for some r not necessarily equal to rkH2(X).
We denote f(Vi) = vi. Usually, we mean 〈·, ·〉− Id when we write just 〈·, ·〉. When we
talk about basis vectors, we are referring to an orthonormal basis of Zr, that is the
codomain. We say that a basis vector e hits a vector vi if 〈vi, e〉 6= 0. We say that a
vector w is included in v, or that v contains w, if v = w+u and there is no basis vector
hitting both w and u. We call a lattice embedding f : (H2(X)/Torsion, QX) → (Zr,− Id)
essential if every basis vector of the image hits some vertex.
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Figure 1. A −2-chain of length 3 has two essential lattice embeddings, one into (Z4,− Id) and
one into (Z3,− Id).

When working with lattice embeddings of plumbing graphs, we often write the image
of each vertex at the vertex, as for example in Figure 1. We consider two embeddings
equivalent if they are the same up to signs and renaming of vertices, i.e. self-isometries
of (Zr,− Id), and we only consider embeddings up to equivalence.
As an exercise in working with lattice embeddings, the reader is invited to prove the

following standard fact:

Proposition 4. A −2-chain of length k 6= 3 (that is a linear/path-shaped graph of
length k with all weights equal to −2) has a unique lattice embedding, essential into
(Zk+1,− Id). A −2-chain of length 3 has two lattice embeddings, shown in Figure 1.

Proof sketch. The left embedding in Figure 1 easily generalizes to an essential embed-
ding of a −2-chain of length k into Zk+1. Given an embedded graph, any subgraph has an
induced embedding into some (Zr,− Id). Thus, an embedding of −2-chain of length k +1
has to be an extension of the embedding of a −2-chain of length k. If k ≥ 3, there is only
one possible extension of an embedding like in the left part of Figure 1. The embedding
in the right part cannot be extended at all. �

If the graphs Γ1 and Γ2 have embeddings into (Zk1 ,− Id) and (Zk2 ,− Id), respectively,
then the disjoint union of the graphs has an induced embedding into (Zk1+k2 ,− Id),
created by renaming the basis vectors of Zk2 so that they are distinct from the basis
vectors of Zk1 . The following corollary will be useful in § 4.

Corollary 4.1. An embedding of a disjoint union of −2-chains is, up to sign and
renaming of vertices, a disjoint union of embeddings

1. (e1 − e2, . . . , ek − ek+1),
2. (e1 − e2, e2 − e3,−e1 − e2) and
3. the embedding (e1 − e2), (e1 + e2) of the two-component graph consisting of two

disconnected vertices of weight −2.

Proof. Suppose that the embedding of the disjoint union of −2-chains has a compo-
nent with embedding (e1 − e2, e2 − e3,−e1 − e2). Let v = λ1e1 +λ2e2 +u, where u is not
hit by e1 or e2, be the image of a vertex in a different component. By orthogonality to
e1 − e2, λ1 = λ2, and by orthogonality to −e1 − e2, −λ1 = λ2. Thus, e1 and e2 hit no
other vertex. If e3 hits another vertex, then e2 must hit the same vertex by orthogonality
to e2 − e3, which cannot happen.
Suppose that the embedding of the disjoint union of −2-chains has a component with

embedding (e1 − e2, . . . , ek − ek+1) and one of the ei’s for 1 ≤ i ≤ k + 1 shows up again
in a vertex with embedding v in a different component. Since 〈v, ej − ej+1〉− Id = 0 for
all 1 ≤ j ≤ k, λ(e1 + · · ·+ ek+1) is included in v for some λ 6=0, giving v weight at most
−λ2(k+1). Since v has weight −2, k+1 = 2 and λ2 = 1. So components that can share
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basis vectors must both have length 1, the embedding of a pair of such vertices sharing
a basis vector being (e1 − e2), (e1 + e2) up to sign and renaming. These basis vectors
cannot occur in a third component by the same argument as above. �

3. Plumbings bounding surgeries on iterated Torus knots

Proposition 1 gives us an obstruction for a 3-manifold to bound a rational homology ball.
In this paper, we are interested in 3-manifolds of the form S3

n(T (p1, α1; p2, α2)). Non-zero
integral surgeries on knots in S 3 always bound a definite knot trace.

Notation. Let X be a 4-manifold with boundary S 3, K ⊂ ∂X a knot and n an
integer. Then Xn(K) is the manifold obtained from attaching a 2-handle to X along K
with framing n. Especially, when X = D4, Xn(K) is called the n-trace on K.

In particular, Y = S3
n(T (p1, α1; p2, α2)) bounds D

4
n(T (p1, α1; p2, α2)), which has inter-

section form n Id1. The only restriction that the positive version of Proposition 1 provides
us with is that n be a square, whereas Aceto and Golla proved in [2, Theorem 1.2] that Y
will bound a rational homology ball for at most two positive n, making the first restric-
tion seem futile. In this section, we therefore find a different, negative definite, manifold
X that Y bounds and whose intersection form is harder to embed.
The outline of this section is as follows. First, we use algebro-geometric facts to

show that large integer surgeries on algebraic knots have a negative definite plumbing
graph (Proposition 6). Then, we use some recipes provided by Eisenbud and Neumann
in [7] to explicitly describe the plumbing graphs of surgeries on iterated torus knots
(Proposition 7). Finally, for those iterated torus knots that are algebraic, we explicitly
describe the plumbing graphs with the lowest possible positive index, which must thus
be zero (Theorem 8). This section is largely based on a book by Eisenbud and Neumann
([7]) that provides several interesting recipes, including how to go from a singularity link
to its splicing graph and from a splicing graph to a plumbing graph.
In [7, Appendix to Chapter I], Eisenbud and Neumann summarize what we know about

singularities of plane curves, that is algebraic curves in CP 2 or C2.

Definition. Let f ∈ C[x, y] be a non-zero polynomial vanishing at 0. Also let C =
V (f) = {(x, y) ∈ C2 | f(x, y) = 0}. The singularity link Lε ⊂ S3

ε is the intersection of
C with a sphere S3

ε ⊂ C2 centred at 0 and with sufficiently small radius ε.

Singularity links are important because they describe plane curve singularities topo-
logically. A plane curve singularity is topologically a wedge of discs, embedded inside a
4-ball as the cone over the singularity link. If the plane curve has a self-intersection, then
the singularity link at the self-intersection point has several components. A singular point
that is not a self-intersection is called a cusp or a cuspidal singularity. Its singularity
link is thus a knot.

Definition. An algebraic knot is a one-component singularity link, that is the link
of a cuspidal singularity.

It is interesting to know what links are singularity links. To describes the singularity
link, we can try to solve f(x, y) = 0 for y in terms of x around 0. If there is a singularity
at 0, we cannot use the implicit function theorem and get y as a function of x, but we
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can in fact find solutions in terms of fractional power series called Puiseux series. Each of
these solutions describe a branch of the curve, and thus a component of the link. Different
Puiseux series, differing by a change of variable x 7→ ζx for ζ a root of unity, describe
the same branch. We can remove all but finitely many terms without changing the link
until we get a minimal series of the form

y = xq1/p1(a1 + xq2/(p1p2)(a2 + xq3/(p1p2p3)(· · · (ak−1 + xqk/(p1···pk)) · · · )

for pairs (pi, qi) satisfying pi, qi > 0 and gcd(pi, qi) = 1. (These pairs are called Newton
pairs.) Eisenbud and Neumann then show that the knot described by this Puiseux series
is exactly T (p1, α1; p2, α2; · · · ; pk, αk) for α1 = q1 and αi+1 = qi+1+ pi+1piαi. We obtain
the following alternative definition:

Proposition 5. A knot is algebraic if and only if it is an iterated torus knot

T (p1, α1; · · · ; pk, αk)

satisfying

• that pi, αi ≥ 2 for all 1 ≤ i ≤ k, and
• that αi+1 > pi+1piαi for all 1 ≤ i ≤ k − 1.

Using the algebro-geometric characterization of these special iterated torus knots, we
may prove the following:

Proposition 6. Let K = T (p1, α1; . . . ; pk, αk) be an algebraic knot and n ≥ pkαk +2.
Then S3

n(K) bounds a negative definite plumbing of disc bundles over spheres.

Proof. Let C ⊂ C2 be a curve with singularity link K at 0. We may resolve the
singularity using a sequence of blow-ups. In fact, by potentially blowing up a few more
times, we can ensure that the reduced total inverse image is a simple normal crossing
divisor. An example of this procedure can be seen in Figure 2. �

Fact. There exists a small 4-ball D4
ε ⊂ C2 around 0, a complex surface U ∼= D4

ε#kCP 2

and a map p : U → D4
ε such that

1. p|U−p−1(0) is a biholomorphic diffeomorphism onto D4
ε − {0},

2. p−1(0) = E1∪ · · ·∪Ek and (f ◦p)−1(0) = D∪E1∪ · · ·∪Ek where D is a smooth disc
called the proper transform of C and E1, . . . , Ek

∼= CP 1 are smooth spheres called
exceptional curves,

3. D,E1, . . . , Ek only have simple normal crossings, a.k.a. transverse double points, and
4. the graph of intersections is in fact a tree with D a leaf node.

Remark. Such a singularity resolution is called an embedded resolution.

Note that ∂U = S3 still, with the singularity link intact inside it, but X = Un(K) has
intersection form n Id1 ⊕ − Idk, which if n is positive means that the intersection form
has positive index 1.
We know that X has a Kirby diagram, which is a disjoint union of an n-framed K and k

unknots that are −1-framed, but we also have a more interesting representation. The way
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Figure 2. Minimal embedded resolution of the singularity y2 = x3.

D4
ε was a regular neighbourhood of 0, U is a regular neighbourhood of p−1(0) = E1∪· · ·∪

Ek, with all crossings simple and normal. That makes U a plumbing of sphere bundles,
each sphere bundle being a neighbourhood of an Ei. Inside U lies D, a smooth surface
that intersects exactly one Ei exactly once. (See Figure 2(d) for a great illustration.
There U is the red area, which is clearly a plumbing, and D is the curve in blue.)
Thus, X is a plumbing of sphere bundles obtained by adding one sphere bundle with
some Euler number N depending on n to U ’s plumbing representation. In fact, we know
more. Every blow-up we make to create the minimal embedded resolution happens on the
proper transform of the curve. Since a blow-up always decreases the self-intersection of a
curve and the self intersection of the last exceptional curve we have added is always −1,
the plumbing graph must have a shape as in Figure 3, that is a tree-shape, having
one leaf of weight N depending on n, one vertex of weight −1 and connected to the
vertex of weight N and the remaining vertices having weight no more than −2, and
satisfying that the plumbing subgraph induced by excluding the vertex of weight N has
boundary S 3.
We can determine N. Note that the process of desingularising C happens inside the

small ball D4
ε around 0 and only depends on the singularity link, not on n. Blowing

up decreases all self-intersections by a constant depending on where we blew up.
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Figure 3. The graph is a tree. All vertices inside the blue circle have weights at most −2. The
3-manifold represented by the piece of the graph inside the orange circle is S3.

Thus, N(n) = n− c for some positive constant c. Now, [7, Theorem 18.3.4] tells us that
the graph of Figure 3 and the piece inside the blue circle have the same boundary if
N =0, so if (and only if) N =0, S3

n(K) might be the connected sum of two different
graph manifolds, which Gordon [8] tells us in Theorem 7.5 only happens when n = pkαk

for k, the index of the last Newton pair. Thus, N = n− pkαk.

Proof. Recall that when n > 0, the X we have described in Figure 3 has positive index
1. If N ≥ 2, we can use the sequence of blow-ups and blow-downs in Figure 4 to transform
it into a chain of −2’s and the −1 into a −2. Since in the process we blow down a 1, this
lowers the positive index by 1, giving us a negative definite graph. �

Remark. If N is negative, then ∂X cannot bound a 4-manifold with a negative definite
plumbing tree by [15, Theorem 1.2] and Neumann’s plumbing calculus ([14, Theorem 3.2])
since the graph in Figure 3 is already in normal form and thus has the least positive index
out of all plumbing trees. This is why we in Theorem 2 restrict ourselves to the case when
N ≥ 2, that is n ≥ p2α2 + 2.

Now we know exactly when surgeries on algebraic torus knots have negative definite
plumbing graphs but not exactly what these plumbing graphs look like. Fortunately,
Eisenbud and Neumann have recipes for constructing them. In Chapter V of [7], they
describe an algorithm for computing a plumbing representation of a 3-manifold from a
splice diagram, which we have for S3

n(T (p1, α1; p2, α2)) from Appendix to Chapter I. We
would not need algebraicity in order to obtain such a graph, but we need algebraicity to
obtain a nice simplification.
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Figure 4. Positive index-lowering transformation of N into a sequence of −2’s.

Notation.

[a1, . . . , as]
− = a1 −

1

a2 −
1

. . . −
1

as

.

Proposition 7. Let K = T (p1, α1; p2, α2; . . . ; pk, αk) be a positive iterated torus knot.
Then S3

n(K) bounds a 4-manifold with a plumbing graph as in Figure 6, where N =
n − pkαk, and each Vi is the graph in Figure 7, with [ci,2, ci,3, . . . , ci,si ]

− =
αi

αi−pi
and

[di,1, di,2, . . . , di,ti ]
− =

αi
pi
. Moreover, if αi/pi > 2, then ci,2 = ci,3 = · · · = ci,di,1−1 = 2.

Note that [ci,2, ci,3, . . . , ci,si ]
− and [di,1, di,2, . . . , di,ti ]

− are related by the
Riemenschneider point rule ([17, Section 3] for the original source or [11, Section 3] for
an explanation in English). We may also point out that our unusual choice of indexing
of the c’s is due to the fact that [1, ci,2, ci,3, . . . , ci,si ]

− =
pi
αi
.

Proof. Chapter II and Appendix to Chapter 1 in [7] describe how to write down a
cabling using a splicing graph, the result being as shown in Figure 5. Section 22 in [7]
then gives a recipe for translating this graph into a plumbing graph. First, each plus
in the graph gets translated into the hook of Figure 7 using Theorem 22.1. The only
non-trivial part here is computing the number at the corner of the hook. According to
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Figure 5. Splicing diagram of an iterated torus knot.

Figure 6. Plumbing diagram of S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)).

Figure 7. Close-up diagram of each Vi part of the plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)) in Figure 7.

Theorem 22.1, it is the additive inverse of

1

piαi
+

1

[ci,si , . . . , ci,2]
− +

1

[di,ti , . . . , di,2]
− =

1

piαi
+

(αi − pi)
∗

αi
+

(
pi

⌈
αi
pi

⌉
− αi

)∗

pi
,

where 0 < a∗ < b in a∗
b is a number such that aa∗ ≡ 1 (mod b). The above computation

uses the fact that if [a1, . . . , al]
− = a/b for b< a, then [al, . . . , a1]

− = a/(b∗) from,
for example [16, Lemma 2.4]. The number above is a positive integer less than 2 since

1
piαi

+
(αi−pi)

∗
αi

< 1.

Figure 6 (with an arrow instead of an N ) is obtained from Theorem 22.2, the Addendum

to Theorem 22.1 and the fact that
⌈

pi
αi

⌉
= 1. That picture represents a knot inside a
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Figure 8. The minimal negative definite plumbing diagram of S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)).

Each Wi is a subgraph described by Figure 9. Here N = n− pkαk.

plumbed 3-manifold (boundary of a plumbed 4-manifold), which in our case is S 3. Note
that several different plumbings can represent the same 3-manifold, but they are related
to each other through blow-ups and blow-downs and some other 0-related moves by
Neumann’s plumbing calculus, whose formulation adapted to links in plumbing graphs is
[7, Theorem 18.3]. Thus, Figure 6 (with an arrow instead of an N ) is equivalent through
these moves to the graph of U in Figure 3 with an arrow sticking out of the −1-vertex.
We will see later exactly how to go from Figure 6 to the graph from algebraic geometry
sketched in Figure 3. What is important is that the graphs are related by blow-ups and
blow-downs happening away from the vertex of weight N, so the N ’s of Figure 6 and
Figure 3 are the same. �

The plumbing graph in Figure 6 is not “minimal”, that is, it contains vertices of
weight −1 that can be blown down. It cannot be the one obtained from a blow-up
resolution of a singularity since it is not of the form described in Figure 3. We note that
if K = T (p1, α1; p2, α2; . . . ; pk, αk) is an algebraic knot, then di+1 =

⌈αi+1
pi+1

⌉
≥ piαi+1, so

the sequence (ci+1,2, ci+1,3, . . . , ci+1,si
) is initiated by at least piαi − 1 twos. There must

also be a non-two in the sequence, as otherwise, by Riemenschneider’s point rule, αi/pi
would be an integer. Thus, for algebraic knots, we are going to strengthen Proposition 7
into the following theorem:

Theorem 8 Let K = T (p1, α1; p2, α2; . . . ; pk, αk) be an algebraic knot and let n ≥
pkαk + 2. Then S3

n(K) bounds a negative definite plumbed 4-manifold with the graph
shown in Figure 8, where each hook Wi is described by Figure 9. Again, N = n− pkαk,
[ci,2, ci,3, . . . , ci,si ]

− =
αi

αi−pi
and [di,1, di,2, . . . , di,ti ]

− =
αi
pi
.

Proof. Assuming that K is algebraic and thus that the sequence
(ci+1,2, ci+1,3, . . . , ci+1,si

) is initiated by at least piαi − 1 twos, Figure 10 shows
us a way to contract the plumbing graph, substituting it by one representing the
same 3-manifold. The first step is a sequence of piαi − 1 (−1)-blow-downs, the second
one is another −1-blow-down and the third one is a 0-absorption corresponding to
Theorem 18.3.3 in [7] or Section 1 in [15], which also describes the effect of these
operations on the index of the intersection form of the 4-manifold; in this case the
effect being that both the positive and the negative index is decreased by one. These
contractions, which happen far away from the arrow/N vertex, allow us to change our
plumbing to one where all vertices except maybe the one of weight N and the one
adjacent to it (of weight −1) are of weight at most −2, just like the graph in Figure 3.
In fact, our graph looks like the graph in Figure 8 but with the rightmost node having
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Figure 9. Close-up diagram of each Wi part of the plumbing diagram of
S3
n(T (p1, α1; p2, α2; . . . ; pk, αk)) in Figure 8. In order for this diagram to make sense at

the extremities, interpret p0α0 as 0 and −ck+1,pkαk+1 as −2.

weight −1 instead of −2 and just an N -weighted vertex instead of the rightmost chain
of N − 1 vertices of weight −2. Using that N ≥ 2 and the plumbing calculus of Figure 4,
we finally obtain Figure 8. The fact that the graph in Figure 8 is negative definite
follows from the existence of a negative definite plumbing graph, the fact that the graph
in Figure 8 is in normal form (defined on [15, Page 4]) and by the uniqueness theorems
of plumbing graphs in normal form [15, Theorem 1.2] and [7, Theorem 18.3]. �

When working with lattice embeddings, we often need different tools depending on
whether the trivalent vertices have weight −2 or if the weight is lower. In § 4, this is
relevant because if all trivalent vertices have weight −2, then none of the vertices with
weight less that −2 are adjacent. On the other hand, if every vertex in a graph has
weight at least its valency and one strictly greater, then its intersection form has a
weakly chained diagonally dominant matrix, whose determinant is always non-zero. This
can, for example, be used to argue that if such a graph has a lattice embedding, then
a basis vector hitting only one vertex must be hitting a vertex with weight exactly its
valency, something which has for example been used in [3]. Because of this difference
in available tools, we call the knot T (p1, α1; . . . ; pk, αk) super-algebraic if all of the

contractions in Figure 10 have a =2, that is di+1,1 − 1 =
⌈
αi+1
pi+1

⌉
− 1 ≥ piαi for all i.

We end this section by introducing the following terminology, based on The Human
Centipede: considering the negative definite graph of Figure 8, if we remove the trivalent
vertices, the rightmost horizontal segment will be called the tail, the rest of them will be
torsos numbered from left to right, and the vertical segments will be legs, also numbered
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Figure 10. Contracting the graph by blowing down

from left to right. The trivalent vertices will simply be called nodes, also numbered from
left to right. The union of Torso i, Leg i and Node i will be called Body i.

4. Existence of lattice embeddings

In this section, we check our negative definite lattices from § 3 for embeddability in order
to use the obstruction of Proposition 1. The reader should be warned about the technical
nature of lattice embeddings and that the easiest way of understanding a proof using
them is, just like for diagram chasing, to work it out on one’s own.
We will first prove the theorem carefully in the super-algebraic case (α2/p2 > p1α1+1

rather than α2/p2 > p1α1). We split the proof for the super-algebraic case into two
propositions depending on whether α2 ≡ −1 (mod p2) or α2 ≡ 1 (mod p2). The case
dα2/p2e = p1α1 + 1, proved in less detail as a separate proposition afterwards, is similar
but requires separate consideration due to some vertices of weight lower than −2 being
adjacent.

Proposition 9. Let α1 ≡ 1 (mod p1), α2 ≡ −1 (mod p2), α2/p2 > p1α1 + 1 and
n ≥ 2+p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a rational
homology 4-ball if and only if the tuple

(p1, α1; p2, α2;n)

is one of the following:

1. (p1, p1 + 1; p2, p2(p1 + 1)2 − 1; p22(p1 + 1)2) or
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Figure 11. Plumbing graph of S3
n(T (p1, k1p1 + 1; p2, k2p2 + (p2 − 1))) with N ≥ 2 and d2,1 =

k2 + 1 > p1α1 + 1.

2. (2, 7; p2, 16p2 − 1; 16p22).

Proof. We use the process described in Section 3 to show that S3
n(T (p1, k1p1 +

1; p2, k2p2 + (p2 − 1))) bounds the plumbing in Figure 11, potentially with k1 − 1 =
0. We do this by computing some negative continued fractions. First, we compute
that α1/p1 = [k1 + 1, 2, . . . , 2︸ ︷︷ ︸

p1−1

]− and thus Leg 1 has weights (−2, . . . ,−2︸ ︷︷ ︸
p1−1

) from bot-

tom to top, and by Riemenschneider’s point rule, we get that Torso 1 has weights
(−2, . . . ,−2︸ ︷︷ ︸

k1−1

,−(p1 + 1)) from left to right. We have α2/p2 = [k2 + 1, p2]
−, leaving Leg

2 with one vertex of weight −p2, whereas Riemenschneider’s point rule gives a Torso 2
the weights (−2, . . . ,−2︸ ︷︷ ︸

k2−1

,−3,−2, . . . ,−2︸ ︷︷ ︸
p2−2

) from left to right, but with the first p1α1 −2’s

cut off by the contraction described in Figure 10. Note that if we only had algebraicity
but not super-algebraicity, we would have the −3 in Node 1, adjacent to the vertex of
weight −(p1 + 1).
By Corollary 4.1, the embeddings of the −2-chains are forced as by Figure 11. Note

that every −2-chain in the graph is extended at the end by some vertex not necessarily
of weight −2, but we showed in the proof of Proposition 4 that the embedding (h1 −
h2, h2 − h3,−h1 − h2) can never be extended that way, which is why every −2-chain in
Figure 11 is embedded with one more basis vector than the number of vertices, no matter
the length. We have three vertices left to embed, with embeddings v, w and u marked
in blue in Figure 11. Note that there are at least 3 g ’s, at least 3 f ’s and either no or at
least 2 e’s. For the obstruction of Proposition 1 to fail, we need to be able to embed the
lattice of this graph in a lattice of the same rank as the number of vertices. If k1 > 1, our
partial embedding in red is already using as many basis vectors as we have access to. If
k1 = 1, we have access to one extra basis vector h.
There are three options for embedding w :

1. w = fp1+l+1 + h− g1, implying that k1 = 1,
2. w = fp1+l+1 + g2 + g3, implying that p2 = N = 2 and
3. w = −g1 − f1 − f2, implying that p1 = 2 and l =0.

We go through these cases one by one.
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1. If v is hit by fp1 , then v is hit by all vectors f1, . . . , fp1 . It must be hit by another
vector, which must be h since being hit by some g means being hit by them all.
However, that would mean 〈v, w〉 = 〈±h, h〉 = ±1, which is not the case. Thus, v is
hit only by the f ’s with index larger than p1, which together with orthogonality to
all the vectors but u and the adjacent vertex, plus intersection 1 with the adjacent
vertex, gives

v = (fp1+1 + · · ·+ fp1+l+1)− λ(g1 + · · ·+ gp2+N−1)− (1 + λ)h

for some λ.
If u is hit by gp2−1, it is also hit by all g1, . . . , gp2−2. There is only space left for one

basis vector, which must be h. The only possibility for orthogonality to w becomes
u = −(g1 + · · · + gp2−1) − h. Now 0 = 〈v, u〉 = −λ(p2 − 1) − (1 + λ). So 1 = −λp2,
which is impossible since p2 > 1. Thus, u is not hit by gp2−1, so it must be hit by
gp2 and thus also gp2+1, . . . , gp2+N−1. For orthogonality to the chains of −2’s and w,
we get

u = gp2 + · · ·+ gp2+N−1 + κ(f1 + · · ·+ fp1+l+1 − h).

It remains to make sure that 〈v, v〉 = −(p1 +1), 〈u, u〉 = −p2 and 〈v, u〉 = 0. We get:


− (p1 + 1) = −(l + 1)− λ2(N + p2 − 1)− (λ+ 1)2

−p2 = −N − κ2(l + p1 + 2)

0 = Nλ− κ(l + 1)− κ(λ+ 1)

Simplifying yields:

Now, if κ 6=0, Equation (2) implies that p2 > p1. If that is so, Equation (1) gives
that λ=0. Then Equation (3) gives that κ=0, which is a contradiction. Thus, κ=0,
implying through Equation (3) that λ=0, through Equation (2) that p2 = N and
through Equation (1) that l = p1 − 1. This solution corresponds to

(p1, α1, p2, α2, n) = (p1, p1 + 1, p2, p2(p1 + 1)− 1, p22(p1 + 1)2)

and is known to bound a rational homology ball by Theorem 1.3 in [3].
2. If w = fp1+l+1 + g2 + g3, then u cannot be hit by g2 as that would mean that

u = g2+ g3 and 〈w, u〉 = −2. Thus, u is hit by g1 and another basis vector. However,
since the e’s and the f ’s come in a package deal due to sitting in −2-chains orthogonal
to u, none of these can hit u, and we have k1 = 1 and u = h − g1. As in the case
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above, if fp1 hits v, then v = −(f1 + · · · + fp1) ± h, but then v intersects u. Thus,
v = fp1+1 + · · ·+ fp1+l+1 + · · · , through the −2-chain, but through orthogonality to
w, v must also be hit by one of g2 and g3. Through orthogonality to the tail vertex,
the g2 and g3 must have the same coefficient in v, and v ’s orthogonality to w says
that the coefficient of fp1+l+1 must be minus the double of the coefficient of g2, which
is impossible. Thus, there are no embeddings with w = fp1+l+1 + g2 + g3.

3. Suppose w = −g1 − f1 − f2, p1 = 2 and l =0. Then 〈v, v〉 = −3, so if v is hit by
f 2, it is hit by f 1 too with equal coefficient, and orthogonality to w is impossible.
Thus, v is hit by f 3 and two other basis vectors. Since there are at least 3 g ’s,
these must be e’s. We get k1 = 3 and v = −e1 − e2 + f3. Now u cannot be hit
by gp2−1 as it would be hit by all g1, . . . , gp2−1 and there would be only one space
left for another basis vector, whereas the e’s and f ’s come in packages of 3. Thus,
u = gp2 + · · ·+ gp2+N−1 + λ(e1 + e2 + e3) + κ(f1 + f2 + f3). Orthogonality of u to w
gives κ=0 and orthogonality of u and v then gives λ=0. This solution corresponds
to (p1, α1, p2, α2, n) = (2, 7, p2, 16p2 − 1, 16p22), which bounds a rational homology
ball by Theorem 1.3 in [3].

�

Now we consider the case where α2 ≡ 1 (mod p2) instead. The reader may note that
the only tuples (p1, α1; p2, α2;n) for which we find embeddings in this case have p2 = 2,
in which case α2 ≡ −1 (mod p2) if and only if α2 ≡ 1 (mod p2).

Proposition 10. Let α1 ≡ 1 (mod p1), α2 ≡ 1 (mod p2), α2/p2 > p1α1 + 1 and
n ≥ 2+p2α2. Then the rational homology 3-sphere S3

n(T (p1, α1; p2, α2)) bounds a rational
homology 4-ball if and only if

(p1, α1; p2, α2;n) = (2, 7; 2, 31; 64).

or

(p1, α1; p2, α2;n) = (p1, p1 + 1; 2, 2(p1 + 1)2 − 1; 4(p1 + 1)2).

Proof. Since αi/pi = [ki + 1, 2, . . . , 2︸ ︷︷ ︸
pi−1

]−, the recipe in Section 3 gives us a plumbing

graph with (pi − 1) −2’s in each leg. Riemenschneider’s point rule gives

[ci,2, ci,3, . . . , ci,si ]
− = [2, . . . , 2︸ ︷︷ ︸

ki−1

, pi + 1]−

and the contraction in Figure 10 shortens the Torso by (p1α1 − 1) −2’s, leaving us with
the negative definite graph in Figure 12. By Proposition 4, a sequence of −2’s has only
one possible embedding up to signs and renaming of elements, unless it has length 3,
in which case there is an embedding of the form (v1 − v2, v2 + v3,−v1 − v2), but this
embedding cannot be extended at its ends to a longer chain. Thus, unless N = p2 = 2,
the embedding of the −2-chains in Figure 12 must be the one in red. When p2 = 2,
α2 ≡ 1 (mod p2) if and only if α2 ≡ −1 (mod p2), a case that we have already dealt
with completely. Hence, we assume that p2 > 2 and the red partial embedding is forced.

https://doi.org/10.1017/S0013091523000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000342


574 L. Lokteva

Figure 12. Plumbing graph of S3
n(T (p1, k1p1 + 1; p2, k2p2 + 1)) with N ≥ 2 and d2,1 = k2 + 1 >

p1α1 + 1.

Figure 13. Plumbing graph of S3
n(T (p1, p1 + 1; p2, k2p2 + 1)) with N ≥ 2 and d2,1 = k2 + 1 >

p1α1 + 1.

If k1 − 1 > 0, we have already used more basis vectors than we have vertices in the
graph, and thus no embedding satisfying the requirements of Proposition 1 can exist. If
k1 = 1, our graph looks like in Figure 13. We have two vertices left to embed: v in Torso
1 and w in Torso 2. It is easy to see that v cannot be hit by b1, since that would force
v = −(b1 + · · ·+ bp2)+u for some basis vector u, but there is no option for what u could
be. Thus, v = h1 + · · ·+ hl+1 + λ(e1 + · · ·+ eN + g1 + · · ·+ gp2) for some λ. Now if w is
hit by g1, then w = −(g1 + · · · + gp2) + hl+1) by orthogonality to Leg 2 and having to
hook on to the −2-chain in Torso 2. But then 0 = 〈w, v〉 = −1+λp2, which is impossible.
Hence, our embedding must be of the form described in Figure 14.
There are 3 equations left to satisfy in order to obtain an embedding, determined

by the relationship between the vertices of weight −(p1 + 1) and −(p2 + 1), and their
relationship to themselves. These equations are

− (p1 + 1) = −(l + 1)− λ2(N + p2)

−(p2 + 1) = −N − (κ+ 1)2 − κ2(l + p1)

0 = −κl − (κ+ 1)− λN
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Figure 14. Embedding of S3
n(T (p1, p1 + 1; p2, kp2 + 1))

Simplifying them yields:

Suppose e1 shows up again in Body 1, meaning that λ2 ≥ 1. By Equation (4), p1 > p2.
Now, if κ2 ≥ 1, then by Equation (5), p2 > p1, which is a contradiction. However, if
κ=0, then Equation (6) degenerates into λN = −1, which contradicts that N ≥ 2. If
e1 does not show up again in Body 1, meaning that λ=0, then Equation (4) gives that
l = p1 and Equation (6) gives that −1 = κ(l+1) = κ(p1 +1), which is impossible. Thus,
the only embeddable cases are when p2 = 2, in which case we get the cases coming from
α2 ≡ −1 (mod p2). �

Proposition 11. Let α1 ≡ 1 (mod p1) and α2 ≡ ±1 (mod p2). Also let dα2/p2e =
p1α1+1 and n ≥ 2+p2α2. Then S3

n(T (p1, α1; p2, α2)) does not bound a rational homology
4-ball.

Proof. We start by the case where α2 ≡ −1 (mod p2), in which case the plumbing
graph of S3

n(T (p1, α1; p2, α2)) looks as in Figure 15. The proof is similar to the one of
Proposition 9, with the main difference being that here v and w are adjacent. As before,
there are three options for w, namely

1. w = −g1 + fp1 + h, and thus k1 = 1,
2. w = g2 + g3 + fp1 , and thus p2 = 2 = N , or
3. w = −f1 − f2 − g1, in which case p1 = 3.

We quickly go through these cases one by one:

1. If v is hit by fp1 , then v = ±(f1 + · · ·+ fp1)± h, by orthogonality to Leg 1 and the
only way to fill out a space of 1. However, this cannot have intersection 1 with w.
Thus, v = −h+ λ(g1 + · · ·+ gp2+N−1 + h). Now, either u = −(g1 + · · ·+ gp2−1)− h,
which cannot be orthogonal to v since 0 = 〈v, u〉 = λp2 − 1 has no solutions, or
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Figure 15. Embedding of S3
n(T (p1, k1p1 + 1; p2, (p1α1 + 1)p2 − 1)

u = gp2 + · · · + gp2+N−1 + κh + µ(f1 + · · · + fp1). By orthogonality to w, we get
κ = −µ. Orthogonality to v gives 〈v, u〉 = (λ − 1)µ − λN = 0. Now, it remains to
solve the system:

Note that λ=0 implies p2 = −2, which is not admissible. Thus, by Equation (7),
p1 ≥ p2. If µ 6=0, then by Equation (8), p2 > p1, which gives a contradiction. If µ=0,
then by Equation (9), λ=0 or N =0, both of which are impossible. Thus, we have
no solutions in this case.

2. If w = g2 + g3 + fp1 , then we have no options for u, which here satisfies −2 = 〈u, u〉.
Either u is hit by g2 and thus u = g2+g3, which is not orthogonal to w, or u = −g1+h.
Then k1 = 1. Now either v is hit by the f ’s, implying v = ±(f1+ · · ·+fp1)±h, which
is not orthogonal to u, or v = λ(h+ g1 + g2 + g3), which cannot have intersection 1
with w.

3. If w = −f1 − f2 − g1, we have p1 = 3 and −4 = 〈v, v〉. If v is hit by f ’s, we have
v = ±(f1+f2+f3)±h or v = ±(f1+f2+f3)+ek1 , none of which can have intersection
1 with w. Thus, (g1 + · · ·+ gp2+N−1) is included in v, and since p2 +N − 1 ≥ 3, we
have four options:
(a) We could have k1 ≥ 2, p2 = N = 2 and v = g1 + g2 + g3 + ek. Then either

u = g2 + g3, which is not orthogonal to v, or u includes −g1, but we cannot fill
in the gap of 1.

(b) A similar case is k1 = 1, p2 = N = 2 and v = g1 + g2 + g3 + h. Then u = g2 + g3
is still impossible, and u = h− g1 is not orthogonal to w.

(c) Alternatively, we could have p2 = 2, N =3 and v = g1 + · · ·+ g4. Then either u
is hit by g2 and includes g2 + g3 + g4, which has lower self-intersection than −2,
or u = −g1 + h, k1 = 1 and u is not orthogonal to v.

(d) Lastly, we could have p2 = 3, N =2 and v = g1 + g2 + g3 + g4. Then either
u = g3 + g4 + h, which is not orthogonal to v, or u = −g1 − g2 + h, which is still
not orthogonal to v.

Thus, there are no embeddings if α2 ≡ −1 (mod p2).
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Figure 16. Embedding of S3
n(T (p1, k1p1 + 1; p2, p1α1p2 + 1)

If α2 ≡ 1 (mod p2), S
3
n(T (p1, α1; p2, α2)) bounds the plumbing graph in Figure 16.

Once again, the main difference with Proposition 10 is that v and w are adjacent.
We assume that p2 ≥ 3 since the other case fits into the case of α2 ≡ −1 (mod p2).
Proposition 4 forces the partial embedding in red. If k1 > 1, we have used too many
vectors already, so Proposition 1 obstructs the existence of a rational homology 4-ball
bounding S3

n(T (p1, α1; p2, α2)) in this case. We assume k1 = 1. We have no basis vectors
available apart from the f ’s and g ’s.
No f can hit v since then all of them would, which would leave us with a gap of 1

that we cannot fill in. Thus, v = λ(g1 + · · · + gp2+N ). If w is hit by gp2 , then w =
fp1 − (g1 + · · ·+ gp2), which cannot have intersection 1 with v. Thus, w = gp2+1 + · · ·+
gp2+N+κ(f1+ · · ·+fp1), whose intersection with v is −λN , which cannot equal 1. Hence,
there are no embeddings when α2 ≡ 1 (mod p2) either. �
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