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SUMMARY

Ebola is a highly lethal virus, which has caused at least 14 confirmed outbreaks in Africa between

1976 and 2006. Using data from two epidemics [in Democratic Republic of Congo (DRC) in 1995

and in Uganda in 2000], we built a mathematical model for the spread of Ebola haemorrhagic

fever epidemics taking into account transmission in different epidemiological settings. We

estimated the basic reproduction number (R0) to be 2.7 (95% CI 1.9–2.8) for the 1995 epidemic

in DRC, and 2.7 (95% CI 2.5–4.1) for the 2000 epidemic in Uganda. For each epidemic, we

quantified transmission in different settings (illness in the community, hospitalization, and

traditional burial) and simulated various epidemic scenarios to explore the impact of control

interventions on a potential epidemic. A key parameter was the rapid institution of control

measures. For both epidemic profiles identified, increasing hospitalization rate reduced the

predicted epidemic size.

INTRODUCTION

Since its discovery in 1976, 14 confirmed outbreaks of

Ebola haemorrhagic fever (EHF) have been reported

[1–10], seven of which have occurred since 2000 (see

Table 1) [1–8]. Very little is known about the virus :

natural reservoirs are poorly identified but may

include fruit bats ; vaccine and therapeutic strategies

are under development [11–16]. The typical natural

history of the disease begins with an average incu-

bation period of 1–2 weeks. Patients present most

frequently with fever, asthenia, diarrhoea, abdominal

pain, headache, arthralgia, myalgia, sore throat, dys-

phagia, and conjunctivitis [1, 2, 8, 17–19]. One week

after the onset of symptoms a rash often appears

followed by haemorrhagic complications, leading to

death after an average of 10 days in 50–90% of

infections. Survivors may experience severe asthenia,

hearing loss, ocular signs and recovery usually occurs

in 2 weeks to 2 months after the onset of symptoms.

Most individuals acquire infection after direct contact

with blood, bodily secretions and tissues of infected ill

or dead humans and non-human primates [2, 20–22].

There is evidence that individuals (health-careworkers,

relatives) may become infected following contacts with

patients’ body fluids or direct contact with patients

during a visit at the hospital or participation in tra-

ditional burial ceremonies [20, 23, 24]. Ebola is un-

likely be transmitted during the incubation period and

transmissibility increases with duration of disease and

direct contact with infected individuals during the late

stages of illness [20, 21]. During the 1976 outbreak

in Democratic Republic of Congo (DRC, formerly

Zaire), 86 (26.7%) of the 318 cases were infected

either from a contaminated syringe or through needle-

stick injury [2]. However, for epidemics that occurred

after 1990, infection from contaminated syringes or

throughneedle-stick injuries hasnotbeendocumented.
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Although there is evidence of asymptomatic carriers,

the very low levels of virus detected in these in-

dividuals suggest they do not pose a significant source

of transmission [25, 26].

Two studies have proposed estimates of the average

number of secondary infections generated by one

primary case of Ebola in an entirely susceptible

population [27, 28] ; this quantity is called the basic

reproduction number and is denoted R0. The first

study proposed a compartmental model and fitted it

to historical data to estimate the R0. The second study

proposed estimates of R0 based on the chain binomial

model. These two works did not study the contri-

bution of the different settings for transmission (in the

community, in the hospital, during burial ceremonies)

in the estimation of R0.

Here, we analyse previously published EHF data

with a stochastic compartmental model which in-

corporates explicitly the settings of the transmission

in the community, in the hospital and during burial

ceremonies. Our goal is to better understand and to

provide insight into where control interventions

should be targeted in the future. We subdivided the

infectious phases into three stages to account for

transmission in the community, in the hospital (in-

cluding isolation wards), and after death during

traditional burial. We provide maximum-likelihood

estimates of R0 for EHF and the portion of each in-

fectious phase represented in this value. We propose

an analysis of the potential effects of control inter-

ventions on the dynamics of an Ebola epidemic.

METHODS

Data

We analysed data from two recent epidemics briefly

described below (Table 2).

Kikwit, DRC, 1995 [3, 29–31]

The epidemic took place in Kikwit (B200 000 in-

habitants) and its surroundings. A total of 315 cases

were identified with an 80% hospitalization rate

and an 81% case-fatality ratio (CFR). First inter-

ventions were implemented on 4 May 1995: cases

were placed in an isolation ward at hospital, body

burial was done by the International Committee of

the Red Cross, gloves and personal protection were

distributed in households and community education

concerning risk of transmission was implemented.

EHF was confirmed on 10 May 1995. We fitted the

model to the dates of onset of first symptoms which

were available (291 Ebola cases out of 315 cases).

These data are illustrated in Figure 1.

Gulu District, Uganda, 2000 [4, 5]

Most of the 425 presumptive cases (confirmed and

clinical) occurred in the district of Gulu (B470 000

inhabitants) and the CFR wasy53%. EHF was con-

firmed on 15 October 2000 but suspicion was strong

enough to set up an isolationward on 10October 2000.

Follow-up of contacts, community education and

cessation of traditional burial were implemented. We

fitted the model to the dates of onset of symptoms of

Table 1. Confirmed outbreaks of Ebola (excluding isolated cases)

Location Virus Year Cases CFR (%) Reference

DRC Ebola-Zaire 1976 318 88 [2, 6]
Sudan Ebola-Sudan 1976 284 53 [1, 6]

Sudan Ebola-Sudan 1979 34 65 [6]
Gabon Ebola-Zaire 1994 51 61 [6, 7]
DRC Ebola-Zaire 1995 315 81 [3, 6]

Gabon Ebola-Zaire Early 1996 31 68 [6]
Gabon Ebola-Zaire Late 1996 60 75 [6, 7]
Uganda Ebola-Sudan 2000 425 53 [4, 5, 8]

Gabon Ebola-Zaire 2001–2002 65 82 [6]

Congo Ebola-Zaire 2001–2002 58 76 [6]
Congo Ebola-Zaire Early 2003 143 89 [9]
Congo Ebola-Zaire Late 2003 35 83 http://www.who.int

Sudan Ebola-Sudan 2004 17 41 http://www.who.int
Congo Ebola-Zaire 2005 12 75 http://www.who.int

CFR, Case-fatality ratio ; DRC, Democratic Republic of Congo (formerly Zaire).
Bold text corresponds to the epidemics analysed in this paper.
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418 cases with available data. These data are illus-

trated in Figure 1.

The model

We developed a stochastic compartmental model

where individuals are classified as: (1) susceptible

individuals (S) who can be infected by Ebola virus

following a contact with infectious cases ; (2) exposed

individuals (E) who have been infected by Ebola virus

but are not yet infectious or symptomatic ; (3) symp-

tomatic and infectious individuals in the community

(I) ; (4) hospitalized Ebola cases (H) who are infec-

tious ; (5) dead Ebola cases (F) who may transmit the

disease during funerals ; and (6) individuals removed

from the chain of transmission (R, cured or dead
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Fig. 1.Observed data (%) and fitting curves (—) for (a) the 1995 DRC epidemic and (b) 2000 Uganda epidemic.

Table 2. The stochastic compartmental model

Transition Transition rate (li)

1 (S, E)p(S – 1, E+1) (bISI+bHSH+bFSF)/N
2 (E, I)p(E – 1, I+1) aE
3 (I, H)p(I – 1, H+1) chh1I
4 (H, F)p(H – 1, F+1) cdhd2H
5 (F, R)p(F – 1, R+1) cfF
6 (I, R)p(I – 1, R+1) ci(1 – h1)(1 – d1)I
7 (I, F)p(I – 1, F+1) d1(1 – h1)cdI
8 (H, R)p(H – 1, R+1) cih(1 – d2)H

S
1

E
2

I
3

7

H
4

F
5

R

6

8

S, Number of susceptible individuals ; E, number of exposed individuals ; I, number of infectious cases in the community ; H,

number of hospitalized cases ; F, number of cases who are dead but not yet buried; R, number of individuals removed from
the chain of transmission ; bI, transmission coefficient in the community ; bH, transmission coefficient at the hospital ; bF,
transmission coefficient during funerals. h1 is computed in order that h% of infectious cases are hospitalized. d1, d2 are

computed in order that the overall case-fatality ratio is d. The inverse of the mean duration of the incubation period is a. The
mean duration from symptom onset to hospitalization is ch

x1, cdh
x1 is the mean duration from hospitalization to death, and

ci
x1 denotes the mean duration of the infectious period for survivors. The mean duration from hospitalization to end of

infectiousness for survivors is cih
x1 and cf

x1 is the mean duration from death to burial. Values presented in days in Tables 3
and 5 were converted to weeks for computation. Transmission coefficients are expressed in weeksx1.
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and buried). The model structure, disease phases

and parameters definitions are described in Table 2.

Simulations of the model were performed using

Gillespie’s first reaction method [32]. A transition

rate, depending only on the present state of the popu-

lation, is allocated to each transition li (see Table 2).

At each iteration of the algorithm, a time ti is

drawn from an exponential distribution with par-

ameter li for each transition. The next transition m

is the transition that has the minimum time to

occurence (tm). Counts in each compartment are

updated accordingly.

Understanding the dynamics of the disease

We fitted the dynamic model to morbidity data

from the two epidemics described above. Parameter

estimates for the model were drawn from the litera-

ture where available and estimated otherwise. Table 3

provides epidemic specific parameters values used

Table 3. Epidemiological features of two outbreaks

Epidemiological features Value Reference

Democratic Republic of Congo (DRC) 1995, 315 cases

Size of the population (N) 200 000 [20]

Number of index cases 3 [3]
Date of intervention 4 May 1995 [29]
Duration of the incubation period (1/a) 7 days (mean) [18–20]

From onset to hospitalization (1/ch) 5 days (mean) [3]
From onset to death (1/cd) 9.6 days (mean) [3]
From onset to end of infectiousness
for survivors (1/ci)

10 days (mean) [20, 33]

From death to traditional burial (1/cf) 2 days (mean) —*
Proportion of cases hospitalized, h (%) 80 [3]

h1=
h ci 1xd1ð Þ+cdd1½ �

h ci 1xd1ð Þ+cdd1½ �+ 1xhð Þch
:

0.67

Case-fatality ratio, d (%) 81 [3]

d1=
dci

dci+ 1xdð Þcd
; 0.80

d2=
dcih

dcih+ 1xdð Þcdh
: 0.80

Uganda 2000, 425 cases

Size of the population (N) 470 000 [24]
Number of index cases 9 [5]

Date of intervention 15 October 2000 [4]
Duration of the incubation period (1/a) 12 days (mean) [8]
From onset to hospitalization (1/ch) 4.2 days (mean) [4]

From onset to death (1/cd) 8 days (mean) [4]
From onset to end of infectiousness
for survivors (1/ci)

10 days (mean) —#

From death to traditional burial (1/cf) 2 days (mean) —*
Proportion of cases hospitalized, h (%) 80 —$

h1 0.65
Case-fatality ratio, d (%) 53 [4]

d1 0.47
d2 0.42

* This is approximately the average duration from death to burial.
# No data was available for Uganda outbreak; the value used for DRC in 1995 was

applied. This value corresponds to the most infectious period.
$ No data was available for Uganda outbreak; the rate reported in DRC in 1995
was applied.
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for simulations. For both epidemics, we made the

following assumptions:

(a) The entire population was considered initially

susceptible.

(b) Interventions were completely efficient after the

date indicated in Table 3 and not efficient at all

before this date.

(c) Before interventions, the population was exposed

to cases within the community, hospitalized and

dead cases, as hospitals were open to the general

community prior to interventions.

(d) After interventions, no transmission occurred at

hospital or during burial and transmission in

the community decreased. Then, the transmission

coefficients at hospital and during burial are set

to 0 and the transmission coefficient in the com-

munity is decreased by a factor (1xz).

(e) After developing symptoms, the mean infectious

period for cases who survived was 10 days and

dead patients remained infectious for an average

of 2 days after their death.

(f) The model was initialized with the number of

index cases indicated in Table 3.

(g) All observed cases (except index cases) were

assumed to be related to human-to-human trans-

mission.

We estimated the transmission rate in the community

before interventions (bI), the transmission rate at

hospital (bH), the transmission rate during traditional

funerals (bF) and the efficacy of interventions in the

community (z) fitting the model to morbidity data

from the two aforementioned epidemics.We estimated

these four parameters using approximate maximum

likelihood. To evaluate the approximate likelihood

of one set of parameters, we assumed that the weekly

incidences were Poisson distributed with parameters

equal to the average weekly incidences over 700 runs

of the model (we verified that average incidences

were stable when we performed 700 runs of the model

with a given set of parameters). To determine the

maximum-likelihood estimates and their 95% con-

fidence intervals, we computed the likelihood of sets

of parameters generated by Latin Hypercube Sam-

pling (LHS) and we assumed that twice the difference

of log-likelihood values was x2 distributed with the

degrees of freedom equal to the number of estimated

parameters [34, 35]. LHS ensures that input data

for the parameter value identification simulations

cover the sampling space. The expression for R0 (see

Appendix) was determined following the method

of Diekmann & Heesterbeek [36, 37]. We found that

R0 can be written as the sum of three terms: a first

term relative to transmission in the community, a se-

cond term to transmission during hospitalization

and a third term to transmission during traditional

burial.

Simulation of scenarios of control measures

To evaluate the impact of control interventions on

the two epidemic profiles, we performed two multi-

variate uncertainty and sensitivity analysis. We

studied the effect of varying the following parameters :

(1) the time to intervention T, (2) the hospitalization

rate of Ebola cases after intervention (t>T ), (3) the

efficacy of the isolation ward and barrier nursing

within the isolation ward (decrease of bH for t>T ),

(4) the efficacy of interventions during body burial

for t>T, (5) the mean duration between onset and

hospitalization for t >T. These parameters are called

‘ intervention parameters ’.

For the first multivariate sensitivity analysis, the

parameters (except the intervention parameters, the

size of the population and the number of index

cases) were set to the values observed or estimated

for the 1995 DRC epidemic (see Tables 4 and 5).

Table 4. Parameter estimates of the model

Parameters Estimates (95% CI)

DRC, 1995

Decrease in transmission

in the community after
interventions, 1xz (%)

12 (0–78)

Basic reproduction number, R0 2.7 (1.9–2.8)

R0I (community component) 0.5 (0.4–1.9)
bI (week

x1) 0.588 (0.420–2.191)
R0H (hospitalization component) 0.4 (0–2.2)
bH (weekx1) 0.794 (0.001–4.091)

R0F (traditional burial component) 1.8 (0–2.3)
bF (weekx1) 7.653 (0.001–9.997)

Uganda, 2000

Decrease in transmission
in the community after

interventions, 1xz (%)

88 (1–92)

Basic reproduction number, R0 2.7 (2.5–4.1)
R0I (community component) 2.6 (0.3–2.8)

bI (week
x1) 3.532 (0.403–3.774)

R0H (hospitalization component) 0.01 (0–3.5)
bH (weekx1) 0.012 (0.0–6.427)

R0F (traditional burial component) 0.1 (0–3.2)
bF (weekx1) 0.462 (0.0–21.257)

CI, Confidence interval.
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For the second multivariate sensitivity analysis, these

parameters were fixed to the values observed or esti-

mated for the 2000 Uganda epidemic (see Tables 4

and 5). For both multivariate sensitivity analyses,

epidemics were simulated in a population of 100 000

inhabitants starting with one index case (see Table 5).

For each multivariate sensitivity analysis, 500

different sets of intervention parameters were gen-

erated by LHS assuming that the five intervention

parameters were uniformly distributed [38]. The time

to intervention was distributed between 4 and 10

weeks, the hospitalization rate after interventions

varied between 0% and 100%, the mean time be-

tween onset and hospitalization varied between 1 and

5 days. The efficacy of interventions at hospital

(1xzH) varied between 50% and 100%. The efficacy

of interventions after death (1xzF) varied between

75% and 100%. These ranges are also reported in

Table 5. For each set of parameters generated with the

LHS (a scenario), we simulated 700 epidemics and

computed the mean size of these epidemics between

1 and 51 weeks after the onset of symptoms of the

index case. We computed the partial rank correlation

coefficients (PRCCs) between each varying parameter

and the mean size of the epidemic at weeks 1–51 [38].

PRCCs quantify the linear relationship between the

ranks of one input variable (each intervention par-

ameter) and the output variable (the epidemic size),

after the linear influence of the ranks of the other

variables has been eliminated.

RESULTS

Understanding the dynamics of the disease

For each epidemic, the best-fit model-based epidemic

curve is plotted with the observed data in Figure 1.

Figure 2 represents distributions of the peak of the

incidence and distributions of the final size of epi-

demics for 1000 simulated epidemics with the par-

ameters set to their best estimates. We estimated the

R0 at 2.7 (95% CI 1.9–2.8) for the 1995 DRC out-

break and 2.7 (95% CI 2.5–4.1) for the 2000 Uganda

outbreak (see Table 4). For the 1995 DRC epidemic,

the community component of R0 accounted for 0.5

(95% CI 0.4–1.9), the hospitalization component for

0.4 (95% CI 0.0–2.2) and the burial component for

1.8 (95% CI 0.0–2.3). The transmission coefficient in

Table 5. Values of parameters for the multivariate sensitivity analysis

Parameters
Values from the
1995 DRC epidemic

Values from the 2000
Uganda epidemic

Size of the population (N) 100 000 100 000

R0I (community component) 0.5 2.6
R0H (hospitalization component) 0.4 0.01
R0F (traditional burial component) 1.8 0.1

Number of index cases 1 1
Duration of the incubation
period (1/a)

7 days (mean) 12 days (mean)

From onset to hospitalization

for t<T (1/ch)
5 days (mean) 4.2 days (mean)

From onset to death (1/cd) 9.6 days (mean) 8 days (mean)
From onset to end of infectiousness

for survivors (1/ci)
10 days (mean) 10 days (mean)

Duration of the traditional
burial (1/cf)

2 days (mean) 2 days (mean)

Hospitalization rate h for t<T (%) 80 80
Case-fatality ratio, d (%) 81 53
Decrease of b I after interventions (1 – z), (%) 12 88
Decrease of bH after interventions (1xzH), (%) 50–100 50–100

Decrease of bF after interventions (1xzF), (%) 75–100 75–100

Time to intervention (T ) in weeks 4–10 4–10

From onset to hospitalization for t>T (1/ch) in days 1–5 1–5

Hospitalization rate h for t>T (%) 0–100 0–100

Bold text corresponds to the intervention parameters studied in the multivariate sensitivity analysis.
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the community (excluding hospital and burial) was

reduced to 88% (95% CI 22–100) of its initial value

after introduction of control measures. For the

2000 Uganda epidemic, transmission in the com-

munity, hospitals and traditional burial respectively

accounted for 2.6 (95% CI 0.3–2.8), 0.01 (95% CI

0.0–3.5) and 0.1 (95% CI 0.0–3.2) in the value of R0.

The transmission coefficient in the community (ex-

cluding hospital and burial) was reduced to 12%

(95% CI 8–99) of its initial value after introduction

of control measures. After implementation of inter-

ventions, the effective reproduction number (neglect-

ing the depletion of susceptible individuals) is 0.4

(95% CI 0.3–0.6) for the DRC epidemic and 0.3

(95% CI 0.2–0.4) for the Uganda epidemic.

Simulation of scenarios of control measures

Figure 3 represents the PRCC between the mean

size of the epidemic at each week and the five par-

ameters studied: the time to interventions, the hospi-

talization rate of Ebola cases after interventions, the

efficacy of interventions at hospital, the efficacy of

interventions after death and the mean duration

between onset and hospitalization of Ebola case after

interventions.

Impact of interventions when parameters are set

to the values observed or estimated from the 1995

DRC epidemic

When the parameters of the model (except the five

intervention parameters) were set to the values relat-

ing to the 1995 DRC epidemic, for 50% (5%, 95%

respectively) of the set of parameters generated with

the LHS, the mean size of the epidemic at week 51 was

under 190 cases (35, 960 respectively). The PRCCs

show that the most important intervention parameter

for the control of the epidemic is the time to inter-

vention (0.99 at week 15, 0.93 at week 50). The mean

size of the epidemic is also linked to the efficacy of

interventions after death (x0.88 at week 51), the

hospitalization rate after interventions (x0.71 at

week 51) and the efficacy of interventions at hospital

(x0.53 at week 51). The PRCCs for the mean time

between the onset of symptoms and hospitalization

are smaller than the PRCCs for other parameters

but larger than 0.25 (0.33 at week 20 and 0.25 at

week 51).
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Fig. 2.Distribution of the peak of the weekly incidences (left panels) and the final size (right panels) of the epidemic obtained
with 1000 runs. The histograms represent the distribution of the peak and the final size of the simulated epidemics when

parameters are set to their maximum-likelihood estimates. Black crosses represent observed data.
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Impact of interventions when parameters are set

to the values observed or estimated from the 2000

Uganda epidemic

When the parameters of the model (except the five

intervention parameters) were set to the values relat-

ing to the 2000 Uganda epidemic, for 50% (5%, 95%

respectively) of the set of parameters generated with

the LHS, the mean size of the epidemic at week 51 was

under 135 cases (35, 590 respectively).

The PRCCs show that the most important inter-

vention parameter for the control of the epidemic

is the time before interventions are instituted (over

0.99 after week 10). The mean size of the epidemic is

also linked to the hospitalization rate after interven-

tions (x0.88 at week 50) and the mean time between

the onset of symptoms and hospitalization (0.41 at

week 50). The PRCCs for efficacy of interventions

at hospital are aboutx0.06 after week 17. The PRCC

for the efficacy of interventions after death is about

x0.17 at week 50.

In both scenarios, the time to intervention was

identified as a key parameter for the control of the

epidemic size. Furthermore, PRCCs for the hos-

pitalization rate were negative and larger than 0.5

in absolute values. Although less important, the

mean time between onset of symptoms and hospital-

ization has an impact on the predicted epidemic

size. For the transmission pattern identified in DRC

in 1995, the size of the epidemic is strongly related

to the efficacy of interventions at hospital and after

death. On the contrary, the efficacy of interventions

at hospital and after death was not identified as a

key parameter when transmission at hospital and
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Fig. 3. Partial rank correlation coefficients (PRCCs) between the cumulative incidences and the five studied intervention
parameters. Epidemics were simulated in a population of 100 000 inhabitants with one index case and with values of par-
ameters (except the five intervention parameters) estimated with data from (a) the 1995 DRC epidemic and (b) data from the
2000 Uganda epidemic. These figures represent the PRCC between each varying parameter and the epidemic size x weeks

after the onset of symptoms of the index case (x varying between 1 and 51).
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during traditional burial was small. Thus, when the

transmission at hospital decreases by 50% at least

after interventions, the rapid hospitalization of cases

after the onset of symptoms may reduce the size of

the epidemic.

DISCUSSION

We presented the results of a dynamic model for the

spread of EHF and fitted it to two historical epi-

demics. First, we estimated the R0 at 2.7 (95% CI

1.9–2.8) for the 1995 DRC epidemic and at 2.7 (95%

CI 2.5–4.1) for the 2000 Uganda epidemic. Our study

allowed quantifying transmission in different settings

during the two epidemics. According to our estimates,

the term of R0 concerning the transmission during

traditional burial was estimated at 1.8 (95% CI 0.0–

2.3) for the DRC epidemic and at 0.1 (95% CI

0.0–3.2) for the Uganda epidemic. For the Uganda

epidemic, transmission in the community seems to

have played an important role. Although confidence

intervals are wide, these results suggest different roles

of community, hospital and burial-related trans-

mission in the two epidemics studied here. The term of

R0 associated with traditional burial increases with

the CFR (see Appendix). This may explain a slightly

more important role of funerals in the spread of the

disease during the 1995 DRC epidemic, as the CFR

was greater in this epidemic. However, a higher re-

production rate during burial may also indicate less

precautions or increased contacts with cadavers at

this time.

After interventions, neglecting depletion of suscep-

tible individuals, we found that the effective repro-

duction number dropped to 0.4 (95% CI 0.3–0.6) for

the DRC epidemic and 0.3 (95% CI 0.2–0.4) for the

Uganda epidemic. This meant a large decrease in the

point estimate of the transmission rate in the com-

munity in Uganda, where point estimates of hospital

and burial transmission rates were small from the

beginning. For the DRC epidemic, setting the trans-

mission rate during burial to zero after interventions

allowed an important decrease of effective repro-

duction number. Why intervention in the community

appeared much more efficacious in Uganda remains

speculative.

Second, we performed a multivariate sensitivity

analysis of the model in order to identify the most

important parameters for the control of the epidemic.

It appears that for both pattern of transmission

identified (DRC, 1995 and Uganda, 2000), the time

to intervention, the hospitalization rate and the mean

time between onset and hospitalization after insti-

tutionof control interventionswere related to epidemic

size. Thus, the size of the epidemic could be reduced

further by reinforcing interventions like contact

tracing which could allow rapid hospitalization of

cases after they develop the first symptoms. These re-

sults were obtained assuming that the transmission

coefficient during hospitalization and burial would

decrease by at least 50% for hospitalization and 75%

for burial. In case of a non-identified nosocomial

source of transmission, this assumption of the efficacy

of the interventions at hospital would probably be too

optimistic. For the transmission pattern identified

with data from the 1995 DRC epidemic, the efficacy

of interventions at hospital and after death was also a

key parameter for the control of the epidemic size.

When we assumed that the transmission coefficient

during burial would decrease at least by 50% instead

of 75% the mean size of the epidemic obtained with

the uncertainty analysis could reach 40000 cases with

the transmission pattern of the 1995 DRC epidemic.

However, this does not take into account behavioural

changes in the contact process and reinforcement of

control interventions that would probably occur in

such a case.

Since we fitted the model to available data on

reported symptom onset dates (291 on 315 cases for

the DRC epidemic and 418 on 425 cases for the

Uganda epidemic) this may have led to an underesti-

mation of R0. At the beginning of the epidemic, there

may have been additional cases that went unreported.

We applied our model to the two largest epidemics

with sufficient data and did not study the previous

smaller epidemics. However, using a stochastic ver-

sion of the model, we illustrate the fact that a unique

set of parameters can lead to epidemics of various

sizes and notably small epidemics. Thus, our esti-

mates of R0 are also compatible with the occurrence

of smaller outbreaks.

We assumed that all cases were related to human-

to-human transmission except the first cases. Esti-

mations of contact rates or efficacy of interventions

in the community setting could be biased if a large

proportion of cases were the result of routes or

modes of transmission, other than the human-

to-human transmission. Moreover, we did not differ-

entiate between transmission through contact with

patients or their body fluids and inoculation by

contaminated instruments, but needle-stick contami-

nation was not documented for the two epidemics
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we studied. We assumed that after the control inter-

ventions were put in place, there was no trans-

mission at hospital or after death of patients.

During the DRC epidemic, only three health-care

workers developed EHF after barrier-nursing pro-

cedures were initiated. It is possible that two of them

became infected prior to the arrival of the inter-

vention team and the introduction of safety precau-

tions [30].

The type of model we used assumes homogeneous

mixing within the population (even during hospital-

ization at the beginning of the epidemic and for

the traditional burial), which may be too simplistic,

notably in countries, where the structure of the com-

munity favours infections in households. Considering

the effect of social networks and exploring the poten-

tial occurrence of super-spreading events could be an

interesting issue for future research. In a recent paper,

Lloyd-Smith et al. show the importance of super-

spreading events in the spread of epidemics, notably

for SARS and measles [39]. This may be an important

issue for Ebola, but lack of available data prevents

any clear conclusion.

Our estimates of R0 are within the range (1.34–3.65)

of the two other works in the field [27, 28]. In ad-

dition, two risk assessment studies have examined

the risk related to contacts with Ebola cases during

different states of illness [20, 40]. A risk factor study

on modes of transmission prior to the institution of

barrier precautions and other public health measures

during the 1995 epidemic in Kikwit, DRC showed a

pattern of increasing risk with exposures to patients in

the later phases of illness. This study also showed

significant association between contracting the dis-

ease and touching a cadaver [20]. A retrospective risk

factor assessment of cases and their contacts during

the outbreak in Uganda showed significant associ-

ation between the disease and contact with patients

during illness. On the contrary, association between

the disease and contact during body burial was not

significant and point estimates of the prevalence pro-

portion ratios were close to 1 [40]. Our estimates of

the role of the community, hospital and traditional

burial are consistent with these risk factor studies.

Traditional burial ceremonies may have played a

more important role in DRC and less so in Uganda

where community transmission may have been a more

significant source of infection. As our confidence

intervals are wide, the results presented here present

general trends in the relative components of trans-

mission.

Our results show that rapid implementation of

interventions and, when barrier nursing and isolation

wards are efficient, rapid hospitalization of cases are

key factors for the control of Ebola epidemics.

APPENDIX. Formulae for R0

The formula for R0 is the spectral radius of the next

generation matrix of the following system:

dS

dt
=x

1

N
( bISI+bHSH+bFSF),

dE

dt
=

1

N
( bISI+bHSH+bFSF)xaE,

dI

dt
=aEx(chh1+ci(1xh1)(1xd1)+cd(1xh1)d1)I,

dH

dt
=chh1Ix(cdhd2+cih(1xd2))H,

dF

dt
=cd(1xh1)d1I+cdhd2HxcfF,

dR

dt
=ci(1xh1)(1xd1)I+cih(1xd2)H+cfF:

Following the method described in van den Driessche

[37] we determined the expression for R0.

R0=
bI
D
+

chh1

cdhd2+cih(1xd2)
bH

D

+

cdhd2chh1

cdhd2+cih(1xd2)
+cd(1xh1)d1

cf
bF

D
,

=
bI
D
+

chh1

cdhd2+cih(1xd2)
bH

D

+
dbF
cf

=R0I+R0H+R0F,

where

D=chh1+cd(1xh1)d1+ci(1xh1)(1xd1):

ci
x1 is the mean duration of the infectious period for

patients who survived to their illness, cd
x1 is the mean

duration of the infectious period for patients who

died, cf
x1 is the mean duration of the infectious period

between death and burial, ch
x1 is the mean duration

between onset of symptoms and hospitalization, h1 is

computed in order that h% of infectious cases are

hospitalized (see Table 3), d1 and d2 are computed to
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obtain a case fatality ratio at d (see Table 3), N is the

size of the population, bI is the transmission rate in the

community, bH is the transmission rate after hospital-

ization, bF is the transmission rate during traditional

burial.

cih=
1

1

ci
x

1

ch

and cdh=
1

1

cd
x

1

ch

:
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