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We compare the properties of the turbulence induced by the breakdown of
Kelvin–Helmholtz instability (KHI) at high Reynolds number in two classes of stratified
shear flows where the background density profile is given by either a linear function
or a hyperbolic tangent function, at different values of the minimum initial gradient
Richardson number Ri0. Considering global and local measures of mixing defined in
terms of either the irreversible mixing rate M associated with the time evolution of the
background potential energy, or an appropriately defined density variance dissipation rate
χ , we find that the proliferation of secondary instabilities strongly affects the efficiency
of mixing early in the flow evolution, and also that these secondary instabilities are highly
sensitive to flow perturbations that are added at the point of maximal (two-dimensional)
billow amplitude. Nevertheless, mixing efficiency does not appear to depend strongly on
the far field density structure, a feature supported by the evolution of local horizontally
averaged values of the buoyancy Reynolds number Reb and gradient Richardson number
Rig. We investigate the applicability of various proposed scaling laws for flux coefficients
Γ in terms of characteristic length scales, in particular discussing the relevance of
the overturning ‘Thorpe scale’ in stratified turbulent flows. Finally, we compare a
variety of empirical model parameterizations used to compute diapycnal diffusivity in an
oceanographic context, arguing that for transient flows such as KHI-induced turbulence,
simple models that relate the ‘age’ of a turbulent event to its mixing efficiency can produce
reasonably robust mixing estimates.
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1. Introduction

Stratified turbulence facilitates the upwelling of deep, dense waters in the abyssal polar
oceans, thereby enabling the closure of the meriodional overturning circulation (Wunsch &
Ferrari 2004). It is thought that this turbulence, at least far from boundaries, predominantly
arises during discrete mixing events caused by the breaking of internal gravity waves
generated by the flow of tidal currents over rough bottom topography (MacKinnon et al.
2017). Attempts to model these wave-breaking processes frequently use the destabilisation
of a parallel shear flow as the paradigm by which turbulence is generated, a physically
plausible approach if we assume that the primary instabilities occur on a scale that is
small compared with the internal waves. Kelvin–Helmholtz instability (KHI) is perhaps
the most commonly studied shear instability, having been observed in a variety of
oceanic environments, for example, above continental shelves (Moum et al. 2003) and
in deep ocean trenches (van Haren et al. 2014). The way in which flows that exhibit KHI
become turbulent and the properties of the subsequent mixing has been the subject of
multiple recent studies that invoke high-resolution direct numerical simulations (DNS) at
increasingly large Reynolds number Re and Prandtl number Pr (e.g. Mashayek & Peltier
2012a,b; Salehipour, Peltier & Mashayek 2015).

The magnitude of the (essentially vertical) density flux across isopycnals associated
with a turbulent mixing event depends on the percentage of kinetic energy available
to turbulence which irreversibly contributes to this flux, a quantity commonly referred
to as the mixing efficiency η which will be formally defined in § 3, though as noted
by Gregg et al. (2018), great care must be taken to understand the precise definition
being used, especially when comparing the results of different studies. An appropriately
defined mixing efficiency may be used to compute a diapycnal eddy diffusivity Kρ from
measurements of dissipation ε and buoyancy frequency N in the ocean via an equation of
the form

Kρ = Γ ε/N2, (1.1)

where the flux coefficient Γ ≡ η/(1 − η) is often assumed to take the constant value
0.2 corresponding to the upper bound originally proposed by Osborn (1980), in broad
alignment with ocean measurements obtained via tracer release experiments (Gregg et al.
2018). There is, however, considerable evidence to suggest that much larger values of
Γ are accessible in some turbulent regimes, particularly in flows that exhibit significant
overturnings in the density field, as might be expected to be associated with the breakdown
of KHI.

Recent DNS studies of stratified shear turbulence have demonstrated that mixing
efficiency, and hence also Γ , appear to depend on time-evolving non-dimensional
parameters such as the buoyancy Reynolds number Reb = ε/νN2 and the gradient
Richardson number Rig = N2/S2 (e.g. Salehipour & Peltier 2015), where ν is the
kinematic viscosity and S is some appropriate measure of the vertical shear. Such
dependencies have been used to develop multi-parameter schemes for calculating mixing
efficiency in the ocean (Salehipour et al. 2016b). An alternative, though inevitably related
approach, is to assume that measures of mixing such as the flux coefficient can be
parameterized in terms of appropriate characteristic length scales in the flow (Ijichi
& Hibiya 2018; Garanaik & Venayagamoorthy 2019), typically related to underlying
properties of the turbulence. Of particular relevance is the Thorpe scale LT , a purely
geometrical construct describing the extent of overturning motions in the density field.
The ratio ROT = LO/LT of this scale to the Ozmidov scale LO = (ε/N3)1/2, which
quantifies the upper bound on turbulent vertical scales that may be assumed to be largely
unaffected by ambient stratification, is often used to diagnose mixing from oceanographic
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Turbulent shear layers in a linear background stratification

measurements in a method that relies on assuming that ROT = O(1) (see e.g. Waterhouse
et al. 2014). For flows that have significant overturnings such as turbulence produced
by KHI, it has been shown that we can have LT � LO, particularly early in the life
cycle when the turbulence is relatively ‘young’, leading to the possibility of considerably
underestimating mixing in ocean flows (Chalamalla & Sarkar 2015; Mater et al. 2015;
Scotti 2015; Mashayek, Caulfield & Peltier 2017; Mashayek, Caulfield & Alford 2021).

There has been recent interest in the applicability of scaling laws for the flux coefficient
Γ which generally take the form Γ ∼ R−r

OT , where the value of the exponent r depends on
the extent by which turbulent motions are suppressed by the stratification. Closely related
to the Thorpe scale is the Ellison scale LE, which measures the turbulent fluctuations
in the density field compared with the background stratification. Whilst observational
measurements of LE are more difficult to obtain than the Thorpe scale LT due to the
need for time-series data rather than a single vertical profile (Cimatoribus, van Haren
& Gostiaux 2014), LE is an appealing alternative because it explicitly characterises the
relationship between the turbulence and stratification in the flow (Ivey, Bluteau & Jones
2018).

As argued by Ivey et al. (2018), however, it is always important to remember that the key
quantity of practical interest is the diapycnal eddy diffusivity Kρ , and Γ is an intermediate
parameter arising from the modelling presented by Osborn (1980) defined using various
terms in the evolution equation for turbulent kinetic energy. Instead, using a method
originally proposed by Osborn & Cox (1972), it is perhaps more natural to parameterize the
eddy diffusivity in terms of an appropriate definition of the density variance destruction
rate χ via the equation

Kρ = χ/N2, (1.2)

as this directly relates mixing of density (and destruction of available potential energy) to
the eddy diffusivity, without appealing to possibly uncorrelated properties of the turbulent
kinetic energy budget (Caulfield 2021). Indeed, χ is often used as a diagnostic for local
mixing. That the two are inextricably linked becomes obvious if we note that we can
recover (1.2) from (1.1) by simply choosing to define mixing efficiency η from the outset
as η = χ/(χ + ε) in the definition of the flux coefficient Γ .

Even once a mixing parameterization has been selected, additional complications arise.
Firstly, any approach based on quantities that can be defined locally as well as globally
raises questions about the averaging involved to determine the various parameters, due
to the inherent spatio-temporal variability and anisotropy of stratified turbulent flows
(see, for example, Arthur et al. 2017). Secondly, and for KHI-induced turbulence in
particular, ‘history matters’ greatly in the sense that varying initial conditions and early
flow behaviour can leave an imprint on the subsequent mixing, not least through the lasting
influence of the primary billow overturning. Highly anisotropic secondary instabilities
that occur on that billow during its breakdown to turbulence can lead to very efficient,
indeed ‘optimal’ mixing (Mashayek & Peltier 2013; Mashayek et al. 2017, 2021), with
the development of such structures depending on the initial state of the flow (Mashayek,
Caulfield & Peltier 2013).

Whether fully formed billows that support these instabilities occur at all for more
realistic initial flow conditions is also not known. In a study with significant implications
for mixing in real-world environments, Kaminski & Smyth (2019) show that mixing
efficiency may be significantly reduced for KHI-induced breakdown in a field of
background noise designed to represent vestigial turbulence from a previous mixing event.
They demonstrate convincingly that this reduction is due to the fact that the growing
primary billow is disrupted by turbulence before it can fully develop, a feature also
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observed in a similar study by Brucker & Sarkar (2007). Even in a simple KHI set-up,
there are clearly a large number of variables and flow modifications that can affect the
dynamics and in particular the mixing, and it is natural to ask whether such a set-up is at
all useful for describing ocean processes which are in general much more complex than
their idealised model counterparts.

Motivated by this fundamental question, here we will focus on the influence of a far
field stratification on the turbulent dynamics and mixing produced by KHI in a shear
layer. In a manner similar to the recent work of VanDine, Pham & Sarkar (2021), we
aim to determine the effects of a constant linear background stratification on the turbulent
mixing produced by KHI in a shear layer by comparison with a classical two-layer set-up
that has background density and velocity profiles given by a hyperbolic tangent function,
quantifying our results both in terms of an appropriately defined mixing efficiency as well
as in terms of the eddy diffusivity. In particular, we investigate the use of the density
variance destruction rate χ as a diagnostic for local mixing, using our results to comment
on the action of secondary instabilities in producing ‘optimal’ mixing. We explore how
measures of mixing vary with local values of Reb and Rig, as well as appropriately defined
characteristic length scales in the flow, using our results to argue which aspects of mixing
by KHI can be said to be generic in the sense that they are not largely influenced by
the presence of a far field stratification. We use our comparison of mixing properties in
different background stratifications to investigate two specific important parameterization
issues. Firstly, we investigate the applicability of a number of recently proposed scaling
laws for the flux coefficient Γ in terms of characteristic length scales to turbulence
produced by KHI. In particular, we are interested in whether or not the Ellison scale
LE is a more appropriate density length scale in this context than the Thorpe scale
LT . Secondly, we investigate different parameterizations of the eddy diffusivity using
appropriate definitions of either the flux coefficient Γ or the buoyancy variance destruction
rate χ . The remainder of this paper is organised as follows. In § 2 we describe the two
different background density profiles used in our comparison and the set-up for the DNS
performed. The results of the simulations are presented in § 3, where we use a variety of
global and local quantitative measures of mixing to investigate how the evolution of KHI
depends on the background stratification, and test various proposed parameterizations.
Finally, we discuss the importance of our results for the quantification of ocean mixing
produced by KHI in § 4.

2. Simulations

2.1. Theory
A classical KHI set-up, widely studied using numerical simulations, has background
velocity and density profiles given by a hyperbolic tangent function of depth. Denoting
dimensional variables with a star, we have

u∗(z∗) = Δu∗ tanh
(

z∗

h∗

)
, ρ∗(z∗) = ρ∗

a − Δρ∗ tanh
(

z∗

h∗

)
. (2.1a,b)

Here h∗ is half of the shear layer thickness, Δu∗ and Δρ∗ are half of the velocity and
density differences across the shear layer, respectively, and ρ∗

a � Δρ∗ is a reference
density. Historically, these profiles have been widely studied in the context of shear
instability because they give rise to analytical solutions of the Taylor–Goldstein equation
for inviscid stratified shear flow (Holmboe 1962). More generally, they are similar to
those realised in laboratory experiments (see Thorpe (2005) for an overview). We will

928 A20-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.755


Turbulent shear layers in a linear background stratification

compare the evolution of the flow described above to flows with a linear background
density profile, i.e.

ū∗(z∗) = Δu∗ tanh
(

z∗

h∗

)
, ρ̄∗(z∗) = ρ∗

a − Δρ∗
(

z∗

h∗

)
. (2.2a,b)

Such conditions are known to produce a distinctive layer-interface structure via the
destruction of KHI, with the far field stratification enabling internal gravity waves to
propagate energy away from the shear layer (Fritts et al. 2003; Pham, Sarkar & Brucker
2009; Watanabe et al. 2018; VanDine et al. 2021). We class the set-ups (2.1a,b) and
(2.2a,b) as T (for ‘tanh’) and L (for ‘linear’), respectively.

Flow dynamics is governed by the Navier–Stokes equations with a Boussinesq
approximation in the form

Dui

Dt
= − ∂p

∂xi
− Ri0ρδi3 + 1

Re
∂2ui

∂x2
j

, (2.3)

∂ui

∂xi
= 0, (2.4)

Dρ

Dt
= 1

RePr
∂2ρ

∂x2
i
, (2.5)

in which repeated indices represent summation and i, j ∈ {1, 2, 3}. Non-dimensional
variables are defined by

t = t∗�u∗/h∗, xi = x∗
i /h∗, ui = u∗

i /�u∗, ρ = ρ∗/�ρ∗, p = p∗/(ρ∗
a�u∗2),

(2.6a–d)
where p∗ and ρ∗ are departures from hydrostatic balance. We assume a linear equation of
state relating density and temperature, neglecting salinity so that double-diffusive effects
do not apply.

The evolution of the flow is characterised by three dimensionless parameters, namely
the (bulk) Richardson, Reynolds and Prandtl numbers defined respectively by

Ri0 = g∗h∗Δρ∗

ρ∗
aΔu∗2 , Re = h∗Δu∗

ν∗ , Pr = ν∗

κ∗ , (2.7a–c)

where g∗ is the acceleration due to gravity, and ν∗ and κ∗ are the respective momentum and
density diffusivities. Note that the Richardson number Ri0 corresponds to the minimum
initial value of the gradient Richardson number

Rig ≡ N2

S2 = −Ri0dρ̄/dz
(dū/dz)2 , (2.8)

which occurs at the centre of the shear layer z = 0 for both T and L flows.

2.2. Simulation set-up
We use the pseudo-spectral time-stepping code DIABLO (Taylor 2008) to solve (2.3)–(2.5)
in a channel geometry which is periodic in the horizontal (x and y) directions. The
vertical extent is set to be Lz = 30 to minimise boundary effects, with the numerical
grid taken to be more finely spaced in the region −5 ≤ z ≤ 5, comfortably fitting the
extent of the growing billow and subsequent turbulent region for all simulations presented.
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Simulation Class Ri0 Lx (Nx, Ny, Nz) Nc
z t2-D

T16 T 0.16 13.87 (896, 256, 897) 640 78.2
T19 T 0.19 13.49 (896, 256, 897) 640 105.4
L10 L 0.10 11.30 (704, 256, 897) 640 61.2
L13 L 0.13 10.66 (672, 256, 897) 640 73.6

Table 1. Class, flow parameters and grid sizes for each DNS, as well as the time t2-D taken to reach maximal
billow amplitude in two-dimensional (2-D) roll-up simulations. All simulations shown have Re = 6000, Pr =
1, with Ly = 4 and Lz = 30. Here Nx, Ny and Nz are the number of grid points in the streamwise, spanwise and
vertical directions, respectively, whilst Nc

z is the number of vertical grid points in the central region −5 ≤ z ≤ 5.

Outside of this region, the cell height is gradually stretched by approximately 25 % every
10 cells. For class T simulations, we impose free-slip, no-flux boundary conditions at
the top and bottom of the domain, whilst for class L simulations, we have a thin sponge
layer in the regions −15 ≤ z ≤ −12.5 and 12.5 ≤ z ≤ 15 to absorb incoming internal
waves. A Reynolds number of Re = 6000 is expected to be sufficiently high to ensure
the emergence of the ‘zoo’ of secondary instabilities described in Mashayek & Peltier
(2012a,b), as well as suppressing the phenomenon of vortex pairing (Mashayek & Peltier
2013).

Therefore, we focus on the breakdown of a single KHI billow and take the streamwise
extent of the domain to be one wavelength of the fastest growing normal mode (FGM)
of the linear theory calculated using a matrix code by Smyth, Moum & Nash (2011).
The spanwise extent of the domain is Ly = 4 for all simulations. Based on the work
of Mashayek et al. (2013) who use a similar set of initial values of Ri0 at Re = 6000
and note that the flow dynamics is unchanged upon doubling the spanwise extent, this
is expected to be sufficiently large to accommodate the significant modes of secondary
instability emerging from the primary billow. Wider extents can accommodate a range of
spanwise interactions between adjacent KHI billows that we do not consider here (Fritts
et al. 2021). For class L simulations, we choose Ri0 with the aim of producing a mixing
layer with comparable height to each class T simulation, as we demonstrate below. We
also set the Prandtl number to a nominal value of Pr = 1. Table 1 displays the class, initial
parameter values and domain size for each simulation performed. The grid resolution
is chosen to resolve scales down to 2.5 times the Kolmogorov length scale LK defined
by LK = minz((1/Re)3/ε̄(z, t))1/4, where an overline denotes averaging over horizontal
planes.

To initialise the flow in a way that allows for a consistent comparison of the breakdown
to turbulence between simulations, particularly with regards to the emergence of secondary
instabilities, we have chosen to perturb all simulations again at the point of maximal billow
amplitude with an additional small uniform noise perturbation imposed on the density and
velocity fields. A brief investigation detailed in the Appendix reveals that the emergence of
secondary instabilities on the primary KHI billow in freely evolving simulations is highly
sensitive to the grid resolution in the streamwise and vertical directions, with some of
these instabilities being ‘unphysically’ perturbed at an early time by noise arising from
numerical truncation errors at the grid scale. Whilst this is a subtle point, in order to be
completely consistent in our comparison and to avoid results that may depend on grid
resolution, we would argue that it is most convenient to perform a two-dimensional (2-D)
simulation of the roll-up of the primary KHI billow up to the point of maximal billow
amplitude before uniformly projecting the resulting flow state onto the spanwise direction
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in three-dimensional (3-D) space and adding a further noise perturbation to initiate the
2-D and 3-D secondary instabilities in a largely unbiased manner, at the same relative time
across all simulations. The additional perturbation takes the form of uniform white noise
of amplitude 10−3 added to the velocity and density fields.

The time t2-D of maximal billow amplitude in the 2-D roll-up simulations is defined
at the maximum value of the inherently 2-D component of the kinetic energy K2-D =
(u2

2-D + v2
2-D + w2

2-D)/2, where the inherently 2-D components of the velocity field
(u2-D, v2-D, w2-D) are defined via a 3-D Reynolds decomposition of the flow as in Caulfield
& Peltier (2000). The roll-up simulations are initialised with a perturbation in the form of
the FGM from the linear theory to facilitate fast primary billow growth. Importantly, each
of these simulations is run at a resolution high enough such that secondary instabilities
are not significantly evolved at the point of maximum billow amplitude (i.e. any numerical
noise present will be small compared with the subsequent additional perturbation). We are
implicitly assuming that the growth of the primary billow is inherently 2-D, a feature that
is consistent with the recent studies of Mashayek & Peltier (2013) and Salehipour et al.
(2015). For completeness, the reference values of t2-D from the roll-up simulations are
included in table 1; these correspond to the start time t = 0 in fully 3-D simulations. Whilst
this choice of set-up is obviously highly specific, we will see that these small modifications
to the classical idealised KHI billow evolving from a background shear flow can produce
quite distinctive differences in the subsequent dynamics, highlighting the difficulties in
using any single idealized DNS model to infer general ocean mixing properties.

3. Results

3.1. Evolution of the turbulent mixing layer
For all of the simulations listed in table 1, we take non-dimensional time t = 0 to
correspond to the time of billow saturation, or maximal K2-D, as described above. To get
an overview of flow behaviour, figure 1 shows successive 2-D contour plots through y = 0
of the spanwise vorticity field ωy = ∂zu − ∂xw, demonstrating the turbulent transition
behaviour for flows L10 and T16. The presence of the ambient stratification in the L10
flow means that a considerably lower Ri0 = 0.10 produces a billow of similar height to
its T16 counterpart with Ri0 = 0.16. As is to be expected at Re = 6000 following the
investigations of Mashayek & Peltier (2012a,b), the noise perturbation at t = 0 triggers
a variety of rapidly emerging secondary instabilities that facilitate the breakdown to
turbulence, which then becomes increasingly isotropic within the mixing layer as it
evolves. Analogous behaviour is observed for the simulations L13 and T19. The main
qualitative difference between the class L and T simulations is the presence of faint internal
gravity waves in the L simulations that propagate away from the turbulent layer in class
L simulations through the turbulent/non-turbulent layer interface (TNTI), which is visible
most distinctly at the turbulent layer boundary in figure 1(d). (The dynamics of the TNTI
are discussed in detail in Watanabe et al. 2018.) We note here that the relatively weak
far field stratification in both L simulations means that the total energy propagated away
from the shear layer by gravity waves during the mixing process is small compared with
the initial kinetic energy (<1 %) and far field turbulent fluctuations are insignificant in
magnitude compared to within the turbulent region, at least whilst more intense turbulence
persists. This is the period during which the majority of irreversible mixing takes place;
hence, for the present study, we will not be largely concerned with internal wave effects
and will instead focus primarily on the dynamics within the turbulent layer. Stronger far
field stratifications may result in larger amounts of energy extraction from the turbulent
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t = 0 t = 12 t = 24 t = 50

−2

−1

0

1

2

ωy

t = 0 t = 12 t = 24 t = 50

(e)

(b)(a) (c) (d )

(g) (h)( f )

Figure 1. Spanwise slices through y = 0 for various indicated times during the turbulent transition phase of
flow showing contours of spanwise vorticity for simulations (a–d) L10 and (e–h) T16.

region. For example, Pham et al. (2009) show that when the shear layer lies above a region
of stronger stratification with N2 = −Ri0∂ρ̄/∂z ≥ 0.25, the amount of turbulent energy
transported into the far field by internal waves can be up to 15 % of the initial mean
kinetic energy inside the shear layer. Such a set-up might be more appropriate to model,
for example, a turbulent shear layer in the ocean thermocline, as opposed to more weakly
stratified abyssal waters.

To investigate further the similarities and differences between the mixing layers
produced by KHI in the L and T simulations, we examine the evolution of the horizontally
averaged turbulent dissipation ε̄′(z, t) ≡ ∂ju′

i∂ju′
i/Re, the normalized buoyancy frequency

N2(z, t)/Ri0 = −∂ρ̄/∂z and the local gradient Richardson number Rig(z, t) defined in
(2.8). The results are shown in figure 2, where we also plot the evolution of the height of the
turbulent mixing layer as measured in two different ways. Firstly, we plot the momentum
thickness

�u(t) =
∫ Lz/2

−Lz/2
(1 − ū(z, t)2) dz (3.1)

defined by Smyth & Moum (2000) as an estimate for the vertical extent of the mixing
layer for simulations that have a background shear profile given by a hyperbolic tangent
function (note their definition includes an additional factor of 4 due to differences in
the non-dimensionalization). Secondly, similar to VanDine et al. (2021), we identify a
so-called ‘transition layer’ (TL) as a region of enhanced stratification (specifically, we
demarcate the edges of these regions where |∂ρ̄/∂z| becomes larger than the far field
stratification by more than 10 % of its maximum value) immediately above and below
the mixing layer and plot the evolution of the outer boundaries of these layers for each
simulation.

Looking at the structural evolution of ε̄′, flows T16 and L10 are qualitatively very
similar in terms of the extent of the turbulent mixing layer, the patterns of more intense
turbulence within the mixing layer and the time taken for turbulence to decay. Flows T19
and L13 are likewise qualitatively similar. There are slight differences in ε̄′ between L and
T simulations during the early part of the flow, with the asymmetry of young turbulence
rotating around the distorted laminar billow core (as seen in figure 1c) causing wave-like
patterns at the edge of the mixing region in L simulations for t < 40. More obvious
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Figure 2. Time-evolving vertical profiles of (a–d) horizontally averaged turbulent dissipation ε̄′(z, t), (e–h)
normalized buoyancy frequency N2(z, t)/Ri0 and (i–l) gradient Richardson number Rig(z, t) for each simulation
as indicated in the top right-hand corner of the panels. Dashed lines are the contours z = ±�u(t)/2, whilst
dot–dashed lines are the contours marking the edges of the transition layers.
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differences between L and T simulations are visible in the evolution of the background
stratification N2/Ri0, which is much larger in the TLs for L simulations than it is for
T simulations. The importance of the TL has been investigated in detail by VanDine
et al. (2021), who argue that the dynamics within this region are important and should be
included when computing bulk flow statistics. We will explore this issue further in § 3.2.
Finally, looking at the evolution of the local gradient Richardson number Rig, we see that
the turbulent breakdown in both L and T simulations is characterised by small local values
of Rig in the centre of the mixing layer. Once the turbulence starts to decay, however, class
L flows exhibit a distinct increased frequency of relatively larger values of Rig between the
TLs, despite the fact that the dissipation decays in an apparently similar manner between
T and L simulations. We will discuss the importance of Rig for parameterizing mixing in
§ 3.4.

In general, the observed similarities between corresponding L and T simulations are
supported by the behaviour of �u(t) and the boundaries of the TLs, which are both
reasonable measures of the height of the mixing layer when turbulence is present. Based
on the qualitative similarities between these two pairs of flows that have a similar mixing
layer height, it is natural to ask whether the mixing taking place is also quantitatively
similar, and whether the behaviour is generic enough such that attempts to parameterize
its efficiency do not largely depend on the background stratification.

3.2. Local and global measures of mixing
In order to define mixing appropriately as an irreversible diffusive flux across isopycnals,
it is important to distinguish between diabatic processes (those in which the physical
properties of individual fluid parcels are modified) associated with mixing and adiabatic
processes (those which modify only the distribution of parcels) associated with stirring in
the flow. Proceeding as in Caulfield & Peltier (2000), we divide the total potential energy
P = Ri0〈ρz〉 into two parts, the background potential energy (BPE) PB defined as

PB = Ri0〈zρB(z)〉, (3.2)

and the available potential energy (APE) PA defined in the equation

P = PB + PA. (3.3)

The background density profile ρB(z) is obtained by adiabatically rearranging the density
field into a gravitationally stable monotonic configuration. An important result obtained
by Winters et al. (1995) states that, for an initially statically stable closed system, the
potential energy of this configuration (i.e. the BPE) necessarily increases monotonically
with time at a rate bounded below by the rate of diffusion of the mean laminar flow
Dp = ∫ Lz/2

−Lz/2 z(∂2ρ̄/∂z2) dz. Thus, by taking the time derivative of (3.3) we can write

dPB

dt
= M + Dp,

dPA

dt
= −B − M , (3.4a,b)

where B ≡ −Ri0〈ρw〉 is the volume integrated buoyancy flux and M is the strictly
non-negative mixing rate that occurs due to macroscopic fluid motions. Note that we have
Dp = 2Ri0/(RePrLz) for T simulations and Dp = 0 for L simulations. From this definition
of mixing, it is clear that BPE effectively increases ultimately due to conversion of energy
from the APE reservoir. We compute M by taking a numerical time derivative of PB,
which is evaluated at each time step using an approximation for ρB(z) calculated using the
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probability density function of the full 3-D density field as described in Tseng & Ferziger
(2001).

The mixing rate M is global by construction, and relies on the assumption that there is
no flux of energy into or out of the domain. Whilst appropriate for our class T simulations
in which energy is confined to the mixing layer by the lack of ambient stratification,
possible issues arise in class L simulations where internal waves generated by turbulence
cause fluctuations in the mixing rate M which become significant at later times when
the turbulence is decaying. In order to isolate the mixing due to turbulence, it is more
appropriate to invoke an alternative definition of mixing that can be applied to local
regions. We appeal to a local definition of APE originally formulated by Holliday &
Mcintyre (1981) and Andrews (1981), which has seen recent interest applied to numerical
simulations of turbulence in domains where boundary fluxes and large-scale internal waves
complicate global definitions of mixing (Howland, Taylor & Caulfield 2021). Following
Scotti & White (2014), we define local APE density EAPE as

EAPE(x, y, z, t) ≡ Ri0

∫ ρ(x,y,z,t)

ρB(z,t)
z − zB(s, t) ds, (3.5)

where zB(ρ, t) is the reference height of the background density profile ρB defined above,
such that zB(ρB(z, t), t) = z. This is equivalent to the work done in bringing a fluid
parcel from its position in the sorted density profile to its actual position in the density
field. Volume averaging the above, we recover the global definition PA = Ri0〈ρ(z − zB)〉,
which may also be obtained from (3.2) and (3.3). To make progress in defining a local
rate of mixing – that is, the rate of conversion from APE into BPE – first note that if
we decompose the density field into the background profile ρB plus a small perturbation
δρ, then to leading order we have EAPE ∼ Ri0(∂ρB/∂z)−1δρ2/2. If we assume that this
decomposition is approximately equivalent to the turbulent flow decomposition achieved
by horizontally averaging, i.e.

ρ(x, y, z, t) = ρB(z, t) + δρ(x, y, z, t) ≈ ρ̄(z, t) + ρ′(x, y, z, t), (3.6)

and make the additional strong assumption that the turbulent fluctuations are in fact
small perturbations from a uniform imposed buoyancy gradient, then integrating over the
turbulent region we obtain the following approximate expression P̃A for APE:

P̃A ≡ Ri0
2

〈ρ′2〉T

〈∂ρ̄/∂z〉T
. (3.7)

Here the angle brackets 〈·〉T denote a volume average taken over the extent of the mixing
layer. The right-hand side can be recognised as an (appropriately scaled) definition of
the variance of the density (or, equivalently, the buoyancy) relative to the horizontally
averaged density (or buoyancy) distribution.

Assuming the denominator varies slowly in time compared with the numerator, the time
evolution of (the approximation) P̃A is given by

dP̃A

dt
= Ri0〈ρ′w′〉T − χ, χ ≡ Ri0

RePr
〈∂iρ

′∂iρ
′〉T

〈∂ρ̄/∂z〉T
, (3.8a,b)

where χ is the appropriately normalised positive definite rate of density variance
dissipation, often used as an alternative definition for mixing. One advantage of (3.8a,b)
is that the numerator and denominator of χ can be defined pointwise, thus giving rise to
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a local definition of mixing. There is some degree of ambiguity as to how such pointwise
measures should be interpreted. Based on the decomposition in (3.6), we consider two
natural local interpretations of (3.8a,b), given by

χloc(x, y, z, t) ≡ Ri0
RePr

∂iρ
′∂iρ

′

〈∂ρ̄/∂z〉T
, (3.9)

χ̃loc(x, y, z, t) ≡ Ri0
RePr

∂iρ
′∂iρ

′

∂˜̄ρ/∂z
, (3.10)

where ˜̄ρ(z, t) represents the horizontally averaged density field which has been sorted to be
statically stable to avoid negative local gradients. The horizontal average χ̃loc is analogous
to the alternative definition of local mixing used by Arthur et al. (2017), who average in
the spanwise direction only in their turbulent decomposition, as opposed to both horizontal
directions. Note that the denominator in (3.10) is defined locally as a function of z and t
whereas the denominator in (3.9) is a bulk average. In what follows we will be interested
in whether the definitions (3.9)–(3.10) lead to accurate approximations of the globally
evaluated irreversible mixing rate M when averaged over the turbulent layer. We have by
definition that 〈χloc〉T = χ , where χ is defined in (3.8a,b), and we correspondingly define
the volume average

χ̃ ≡ 〈χ̃loc〉T . (3.11)

Howland et al. (2021) find that χ , as defined in (3.8a,b), is a reasonable approximation
for the mixing rate M in a variety of forced and unforced turbulent flows with an
imposed uniform stratification, though their simulations display much weaker overturning
behaviour than the KHI billows we consider here. Using simulations of breaking internal
waves on slopes, Arthur et al. (2017) show that the way in which local mixing rates are
computed (in terms of how local density gradients are inferred from the denominator in
χ ) can significantly modify values of the corresponding mixing efficiency. To compare
the mixing rates M , χ and χ̃ , we define three corresponding ‘instantaneous’ mixing
efficiencies (i.e. based on mixing rates),

ηM (t) ≡ M

M + 〈ε〉 , ηχ (t) ≡ χ

χ + 〈ε〉T
, ηχ̃ (t) ≡ χ̃

χ̃ + 〈ε〉T
, (3.12a–c)

where we note that ε(x, y, z, t) = ∂jui∂jui/Re is the total kinetic energy dissipation, which
is then volume averaged over either the entire domain or over the turbulent region as
appropriate. We also define the horizontally averaged local mixing efficiency

ηloc(z, t) ≡ χ̃loc

χ̃loc + ε̄
. (3.13)

We can investigate the evolution of ηloc by plotting a time-evolving normalised
frequency distribution or probability density function (p.d.f.), forming a 2-D histogram.
Similar analysis for the evolution of horizontally averaged parameter profiles has been
carried out by Salehipour, Peltier & Caulfield (2018) for class T background density
profiles. The time-evolving distribution of values of ηloc is shown in figure 3, with plots of
ηM , ηχ and ηχ̃ superimposed. The left- and right-hand panels of the figure demonstrate
the sensitivity of each measure of mixing to the way in which the extent of the turbulent
region is defined, that is, either within �u/2 <≤ z ≤ �u/2 or between the boundaries of
the TLs above and below the centreline z = 0. Note that the initial transient behaviour of
ηM for the T simulations occurs due to the weighting of the initial noise perturbations
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Figure 3. Time-evolving frequency p.d.f. of horizontally averaged local mixing efficiency ηloc for simulations
(a–b) T16, (c–d) L10, (e–f ) T19 and (g–h) L13. In the left-hand panels values are sampled within the region
−�u/2 ≤ z ≤ �u/2, in the right-hand panels values are sampled within the TL boundaries. Plots of ηM (t),
ηχ (t) and ηχ̃ (t) are superimposed, and are calculated by taking the vertical averages 〈·〉T over the corresponding
definitions of mixing region. Note by definition the global mixing efficiency ηM is the same in the left- and
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in the far field. All of the measures of efficiency defined above exhibit similar behaviour
for each of the simulations considered, consisting of an initial highly efficient mixing
period during which the primary KHI billow is destroyed, followed by a period of roughly
constant efficiency of around 0.2, and finally a period of decay as the flow relaminarises.
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There are noticeable oscillations in ηM for both class L simulations as predicted, caused
by the internal gravity waves that are produced by turbulent motions and propagate into
the far field. These oscillations become increasingly significant as the turbulence decays
and the wave-induced far field fluctuations become similar in magnitude to the turbulent
fluctuations in the mixing layer, as is seen particularly in simulation L13 which starts to
decay earlier than L10. As discussed above, one of the central problems in using a globally
defined mixing rate M is that it essentially assumes the dominant mixing is confined to
within the turbulent layer, with no energy flux in or out of the domain. Whilst appropriate
for T simulations in which the lack of ambient stratification prevents an outward energy
flux, and at early times in L simulations when high-energy turbulence dominates, in
general the mixing rate M calculated by global sorting of the density field should be
treated with caution.

Here ηχ and ηχ̃ are appealing alternative measures of mixing efficiency because they do
not rely on a global sorting process and, hence, may be averaged over the turbulent region
only, though as can be seen from comparing the left- and right-hand panels in figure 3,
these measures may be sensitive to the way in which the extent of the mixing region
is defined. In particular, the bulk measure ηχ is lower in L simulations when averaged
over the region that includes the TL boundaries, due to the fact that large local values of
∂ρ̄/∂z in the TL cause the denominator of χ to increase. This is the opposite result to
that reported by VanDine et al. (2021), but is entirely due to a difference in the definition
of the calculated quantities. In particular, VanDine et al. (2021) use a constant value of
〈∂ρ̄/∂z〉 = 1 defined by the initial density profile as the denominator in their equivalent
expression for χ instead of the time-evolving bulk average as here. Hence, they found that
their corresponding ηχ increases when including the TLs in vertical averages.

We also point out that, despite the large local values of ηloc that are seen to be present
within the TLs for L and T simulations, neither bulk value ηχ̃ nor ηχ appear to increase
when these regions are included in the definition of the extent of the mixing layer. Overall,
figure 3 demonstrates that ηχ is a reasonable approximation for ηM throughout (when
the use of the latter is justified as reasoned above), being most accurate to the precise
definition ηM when the mixing region is defined using �u(t) from (3.1), though the margins
of error can become as large as 0.1 at times. The use of χ̃loc at early times produces mixing
efficiencies ηχ̃ that are much higher than ηM as the denominator in (3.10) can become very
small locally due to the presence of overturnings in the flow. Once turbulence becomes
more isotropic, all three measures of mixing follow similar trajectories until the end of
the simulation, or until the behaviour of ηM becomes strongly affected by internal wave
oscillations. Despite the differences between them, the plots of ηM , ηχ and ηχ̃ all fall
within the distribution of values of ηloc throughout the flow evolution.

To summarise our comparison of the mixing rates M , χ and χ̃ , figure 3 demonstrates
that χ is a useful diagnostic for analysing mixing, in the sense that the corresponding
efficiency reasonably approximates the precise value calculated using the mixing rate
M in flows where this is appropriately defined, even when significant overturnings
are present. This is important as χ is much more straightforward to calculate than
M computationally, and additionally may also be calculated using microstructure
measurements in the ocean where there is no way to calculate the exact sorted density
profile ρB(z). Using χ̃ instead of χ produces significant overestimates of the mixing
rate when overturnings persist in the flow. However, distributions of local efficiency ηloc
obtained using vertical profiles of χ̃loc and ε̄ may provide one way of obtaining reasonable
bounds or uncertainty estimates for measures of efficiency obtained by volume averaging.
Due to the fact that the best estimates for ηM come from using ηχ obtained by averaging
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over the region −�u/2 ≤ z ≤ −�u/2, we will from henceforth use �u(t) as the definition
of the extent of the mixing layer.

More generally, figure 3 shows a strong similarity in measurements of mixing efficiency
between T and L simulations, especially between simulations T16 and L10, and T19 and
L13. Using ηχ as a reference measure for comparison based on the discussion above, all
simulations have an initial peak around 0.8 and settle at a constant efficiency of around 0.2
before decaying. This suggests that mixing is not largely affected by the presence of the
ambient stratification. As long as distinct overturnings characterised by an initial period
of highly efficient mixing exist in the flow, the subsequent period of mixing that they
produce appears to be generic, being both qualitatively and quantitatively similar. We will
investigate this observation further in § 3.4 by looking at local distributions of commonly
used mixing parameters in the flow.

3.3. Influence of secondary instabilities
Here we apply the concepts of local APE and mixing to the period of flow evolution in
which secondary instabilities proliferate on the primary billow braid and facilitate the
breakdown to turbulence. Mashayek et al. (2013) argue that these coherent secondary
structures are the primary factor contributing to increased mixing efficiency in conditions
that optimise their emergence, which they find to occur at Ri0 = 0.16 for their simulations
of class T. To investigate the influence of secondary instabilities on mixing efficiency and
further the existing discussion from the literature, we invoke a modified version of the
T16 flow that has no additional noise perturbation imposed at t = 0, referred to as UT16,
used in our investigation into the impact of resolution on the emergence of secondary
instabilities discussed above in § 2.2 and detailed in the Appendix. This flow has exactly
the same initial parameters as T16, but does not exhibit the same proliferation of secondary
instabilities due to the absence of the perturbation at t = 0, allowing us to compare the
corresponding mixing efficiencies.

The results in § 3.2 indicate that at early times when large overturnings are present in
the flow, χloc may be a more appropriate choice than χ̃loc for measuring the local mixing
rate as the former gives rise to a bulk mixing efficiency that better approximates the global
‘ground truth’ value ηM . Figure 4(a) shows the local APE field EAPE(x, y, z, t), as defined
in (3.5), with superimposed contours of χloc defined in (3.9) for simulations T16 and UT16
at an equivalent early point in time where secondary instabilities have proliferated on the
primary billow in the perturbed T16 simulation. There is a high local APE density in the
billow ‘eyelids’ above and below the central core, as well as above and below the billow
braid to the right and left of the core for both simulations, indicating these regions are
the primary sources of energy for the subsequent mixing. We are interested specifically in
where this APE is converted into BPE locally, as measured by the local mixing rate χloc.

The main result which can be deduced from the figure is that the action of the secondary
instabilities is to deform regions of high local APE density and provide an extended billow
braid surface area through which large amounts of local mixing can take place, as is
evidenced by the contours of χloc that are co-located with the edges of regions containing
large amounts of local APE. Another important feature of the secondary instabilities is
that they dissipate relatively small amounts of kinetic energy before becoming turbulent
as is highlighted in figure 4(b), and so they are locally efficient for mixing.

This increased local efficiency is reflected in the global mixing efficiency ηM shown in
figure 4(c), where it is seen that the mixing efficiency is considerably higher in the T16
flow around the time when secondary instabilities are present. At later times, however,
values of ηM from both T16 and UT16 settle onto a similar trajectory which suggests that
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Figure 4. (a,b) Spanwise slices through y = 0 at t = 12 showing the local APE field EAPE(x, y, z, t) with
contours of the dissipation of density variance χloc superimposed for simulations T16 and UT16, as labelled in
the top-right corner. (c,d) The same as in (a), instead showing contours of kinetic energy dissipation ε. (e) Time
evolution of mixing efficiency ηM . The vertical dot–dashed line t = 12 corresponds to the snapshot time from
the panels in (a–d).

the secondary instabilities do not significantly affect the (instantaneous) mixing efficiency
during this later period when they are present. A truly precise measure of local mixing
would evaluate the denominator of (3.9) as the gradient of the sorted 3-D density field ρB
at the density value corresponding to the grid point in question, i.e. ∂ρB/∂z|ρ(x,y,z,t), as
discussed in Arthur et al. (2017). Overall, however, we believe that figures 3 and 4 support
the claim that χloc, as defined in (3.9), is largely satisfactory as a diagnostic for local
mixing, even when distinct overturnings are present in the flow.

3.4. Local behaviour of mixing parameters
The behaviour of mixing efficiency discussed above supports a multi-phase description of
turbulent flow evolution for KHI, comprising a period of highly efficient but variable early
mixing as the primary billow breaks down, followed by a period of generic, approximately
constant, energetic mixing in which the turbulence becomes increasingly isotropic, and
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Figure 5. Two-dimensional histogram showing the evolution of vertical profiles of horizontally averaged
buoyancy Reynolds number Reb for simulations (a) T16, (b) L10, (c) T19 and (d) L13, where values are sampled
over the mixing layer −�u/2 ≤ z ≤ �u/2. The dashed line shows the bulk value Reb averaged over the same
interval.

finally a period of decay. We have shown that the mixing behaviour does not appear to
depend on the presence of the ambient stratification in class L simulations, but for practical
purposes, it is important to consider the properties of the flow within the turbulent layer
that might be used to calculate mixing rates from observations.

Two commonly studied parameters are the buoyancy Reynolds number Reb and the
gradient Richardson number Rig, defined locally here by horizontally averaging:

Rig(z, t) ≡ N2

S2 = Ri0
−dρ̄/dz
(dū/dz)2 , Reb(z, t) ≡ ε̄(z, t)

(1/Re)N2 . (3.14a,b)

We use the momentum thickness �u defined in (3.1) as a measure of the height of the
turbulent mixing layer and investigate the behaviour of these parameters within the region
of each simulation defined by −�u/2 ≤ z ≤ �u/2. In a similar way to the plots of ηloc in
figure 3, we plot the frequency distribution of the values of Rig(z, t) and Reb(z, t) within
the turbulent region at each time step in figures 5 and 6 , forming a 2-D histogram. We
also plot the bulk values defined by

Rib ≡ 〈N2〉T

〈(dū/dz)2〉T
, Reb ≡ 〈ε〉T

(1/Re)〈N2〉T
. (3.15a,b)

Looking first at the distribution of Reb in figure 5, we see that the evolution is really
quite similar for mixing layers of comparable heights, i.e. T16 and L10, as well as T19
and L13. During the period of most intense turbulence, there is significant variation
in the local values of Reb which can become as large as 1000. This maximum value
is broadly consistent across all of the simulations suggesting a similarity in the most
energetic turbulence produced that is not captured so explicitly in the bulk values shown
by the dashed lines, which are noticeably lower for the more strongly stratified flows.

928 A20-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.755


S.F. Lewin and C.P. Caulfield

0

2

4

6

8
L10

L13

T16

T19

p.
d.

f.

0

0

0.2

0.4

–0.2

0.6

0.8

1.0

1.2

0

0.2

0.4

–0.2

0.6

0.8

1.0

1.2

0

0.2

0.4

–0.2

0.6

0.8

1.0

1.2

0

0.2

0.4

–0.2

0.6

0.8

1.0

1.2

50 100
t

Rig

Rig

150 0 50 100
t

150

0 50 100 150 0 50 100 150

(b)(a)

(c) (d )

Figure 6. Same as in figure 5 but for the gradient Richardson number Rig, with the dashed line showing
the bulk value Rib averaged over the mixing layer. The thin solid line indicates the evolution of the value of
Rig(z = 0).

Extremal values occur where large local values of dissipation coincide with regions of
weak stratification N2, as might be inferred by looking at figures 5 and 6 together with
figure 2. There is also a strong similarity between all of the flows during the decay period.

Figure 6 shows that the distribution of values of Rig within the mixing layer differs
depending on the presence on the far field stratification. It is seen that, in general, L
simulations exhibit larger values of Rig throughout the entire flow evolution which leads
to a greater bulk average as shown, though this does not appear to have any significant
effect on the behaviour of the mixing. At early non-dimensional times both L and T
simulations exhibit an increased frequency in small values of Rig < 0.25, suggesting
values of this parameter in the regions of most intense mixing are not affected by the far
field stratification. In particular, the value of Rig on the centreline z = 0 is similar across all
of the simulations during this period. For larger t, the distributions of Rig are broader and,
in general, contain a higher concentration of larger values for L simulations, despite the
similarity in mixing efficiency between T and L simulations during this period. Note that
the behaviour of Rig observed here is very different from the apparent self-organised
criticality observed by Salehipour et al. (2018) for flows in which the density interface
is much sharper than the velocity interface at the centre of the shear layer, where the
horizontally averaged state seems to be attracted towards values of Rig ∼ 1/4.

It is commonly argued that mixing efficiency should depend on both Rig and Reb (e.g.
Mater & Venayagamoorthy 2014; Salehipour & Peltier 2015; Salehipour, Caulfield &
Peltier 2016a; Salehipour et al 2016b), which are usually obtained by averaging. Even
ignoring the possibility that these two parameters may actually be correlated during a
transient mixing event, (see Caulfield (2021) for a further discussion) figures 5 and 6
demonstrate that care should be applied when adopting such a two-parameter approach
in the case of shear layers as taking an average may obscure local behaviour that would
otherwise indicate the presence of similar mixing. Our findings support the argument that
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as long as there exists a period of intense mixing that is weakly affected by stratification
(as characterised by the presence of small local values of Rig and large values of Reb),
the subsequent more isotropic period of roughly constant mixing efficiency it produces
is generic, with little dependence on the presence of an ambient stratification that acts to
increase values of Rig. With this in mind, it is perhaps more instructive to characterise
mixing using physical length scales in the flow.

3.5. Length scale analysis
Intensive mixing regimes in the ocean are often associated with large overturnings, as
characterised by an associated time-evolving physical length scale. The Thorpe scale LT
is a measure of the mean vertical displacement of fluid parcels, calculated by sorting the
density field into a statically stable state and taking the root mean square of the difference
between the sorted and original positions of the parcels. Here, we do this by sorting
each individual vertical column in the plane y = 0, calculating the root mean square
parcel displacement in the region −�u/2 ≤ z ≤ �u/2 and then taking the median over
the resulting values, in a manner similar to that described by Smyth & Moum (2001).
We expect the resulting LT to be similar to a median taken over all vertical columns
due to the fact that the largest differences in vertical column structure occur in the
streamwise x direction. Note that an alternatively defined Thorpe scale L3-D

T calculates
the root mean square displacement of each parcel from its position in the sorted 3-D
density field ρB(z). The evolution of LT can be expected to be largely similar to that of
L3-D

T , the main difference being that the latter may be non-zero even when there are no
distinct overturnings in the flow. For our purposes, it will suffice to say that the differences
between LT and L3-D

T are not of central importance, as has more recently been discussed
in Mashayek et al. (2017). One advantage of using LT instead of L3-D

T is that the former
may readily be calculated from localised profile measurements in the ocean, whereas the
latter is only practical in the context of numerical models. In general, the Thorpe scale is a
purely geometrical construct that does not explicitly depend on the properties of the flow.

A related scale describing the magnitude of turbulent density fluctuations is the Ellison
scale, defined here by volume averaging over the turbulent layer as

LE ≡ 〈(ρ′)2〉1/2
T

〈|∂ρ̄/∂z|〉T
. (3.16)

Here LE is appealing for the inference of mixing properties because it is a direct measure of
the turbulent motions in the flow. Like L3-D

T , it may be non-zero when there are no distinct
overturnings within vertical fluid columns. In practice, estimating LE from observational
data is more challenging than LT due to the fact that suitably high frequency time-series
data are required (Cimatoribus et al. 2014). Given they both describe variations in the
density field, LT and LE can be expected to evolve in a similar manner and may be explicitly
related under some circumstances (Mater, Schaad & Venayagamoorthy 2013).

Another length scale that captures intrinsic properties of the turbulence is the Ozmidov
scale

LO ≡
(

〈ε〉T

〈N2〉3
T

)1/2

, (3.17)

characterising the largest scales at which the turbulence is not significantly affected by the
stratification. It is common to use the ratio ROT = LO/LT as a proxy for the ‘age’ of a
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Figure 7. Scatter log plots showing the relationship between Γ and (a) ROT ; (b) ROE for all of the simulations
we consider. The colour of the markers indicates the value of the turbulent Prandtl number PrT , whilst the solid
lines display the stated scaling relations. The flow of non-dimensional time t is indicated by the arrow in (a).
Note the difference in limits between the horizontal axes.

turbulent event, with larger values of ROT > 1 being associated with late-stage turbulence
that does not contain any significant overturnings (e.g. Smyth & Moum 2000).

In order to relate the above length scales to relevant mixing parameters, it is necessary
to make additional assumptions about the turbulent motions in the flow. Ijichi & Hibiya
(2018) assume that the Thorpe scale LT is a good approximation for the size of the largest
eddies responsible for most of the turbulence production, whose characteristic size L and
velocity U are assumed to follow the inertial scaling 〈ε〉T ∼ U3/L, and furthermore,
that LT and U also correspond to equivalent scales in the classical Prandtl mixing
length model for momentum with diffusivity Km so that Km ∼ ULT ∼ 〈ε〉1/3

T L4/3
T using

the inertial scaling above. Then, assuming that the density diffusivity Kρ ∼ Km, i.e. the
turbulence is only weakly affected by stratification so that the turbulent Prandtl number
PrT = Km/Kρ ∼ 1, it follows from using the Osborn relation (1.1) and eliminating 〈ε〉T in
favour of LO and 〈N2〉T that

Γ ∼ Kρ

〈ε〉T〈N2〉−1
T

∼ R−4/3
OT , (3.18)

where the flux coefficient Γ is defined here as Γ ≡ ηχ/(1 − ηχ) with ηχ defined in
(3.12a–c). Early during the evolution of KHI however, it can be argued that whilst
the mixing length may be well approximated by the overturning scale LT , most of the
turbulence production comes from smaller eddies of size LO that are not strongly affected
by the stratification, so that the relevant inertial scaling for dissipation is 〈ε〉T ∼ U3/LO

and, hence, Km ∼ 〈ε〉1/3
T LTL1/3

O . Still assuming that Km ∼ Kρ , Mashayek et al. (2021)
derive the alternative scaling

Γ ∼ R−1
OT . (3.19)

We investigate the applicability of (3.18) and (3.19) in figure 7 by comparing plots of
Γ against ROT and ROE = LO/LE, also looking at how the relationship depends on the
turbulent Prandtl number PrT ≡ 〈Rig〉T/ηχ (note that this definition has been shown by
Salehipour & Peltier (2015) to be equivalent to Km/Kρ when we understand mixing as
being associated with the evolution of the sorted background density profile ρB).

We see that the behaviour of ROT and ROE is similar as expected, with both ratios in
general increasing as the large overturnings associated with the initial billow are destroyed
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by turbulence and the flow relaminarises. The initial transient growth in Γ occurs whilst
the flow is still mostly pre-turbulent and, hence, is not of interest for examining the above
scalings. From figure 7(a) we see that the scaling (3.18) is observed to fit the data from
all of the simulations remarkably well, even when the assumption that PrT ∼ 1 fails to be
appropriate at later non-dimensional times.

This is perhaps fortuitous; if we use LE instead of LO and look at ROE as shown in
figure 7(b), we observe more nuanced behaviour which is highlighted by plotting both
(3.18) and (3.19) on the same figure. At early non-dimensional times, there is an indication
that ROE increases more quickly with decreasing Γ so that the scaling (3.19) is perhaps
a more appropriate fit, in line with the physical reasoning above. We include the relevant
slope for reference, although there is a lot of scatter, and additional data would be required
to draw any firm conclusions about this early regime. As the turbulence develops and ROE
increases, the gradient steepens and the scaling (3.18) becomes more apparent.

In addition to the shallower Γ -ROE slope that exists early on, late time behaviour
in figure 7(b) reasonably fits a Γ ∼ R−2

OE scaling which has recently been derived by
Howland, Taylor & Caulfield (2020) for flows in a moderately stratified regime. Their
argument, though we do not repeat it here, is based on the hypothesis that both
the dominant buoyancy and turbulent time scales may affect the flow in this regime,
corresponding to times in our simulations when turbulence persists but is decaying and
values of the local stratification characterised by Rig start to increase within the mixing
layer. It is worth noting that Garanaik & Venayagamoorthy (2019) predict the alternative
scaling Γ ∼ R−1

OE in the same regime. The difference in these results may be due to the
overlapping of flow regimes, where dynamics are affected by a combination of scales
that depend on whether the buoyancy or turbulence dominates (indeed, data from the
forced simulations of Shih et al. (2005) displayed in Garanaik & Venayagamoorthy (2019)
appear to fit a Γ ∼ R−2

OE scaling better in the moderately stratified regime, in contrast to
the other DNS considered in the same study). It is also clear from the early time behaviour
in figure 7(b) that the transition from one regime to another is gradual, with no distinct
separation between the scalings. Understanding the behaviour of different flows in such
overlapping or transitional intermediate regimes is an important motivation for future
studies.

We propose that the main reason Γ ∼ R−4/3
OE is more sensitive to the value of PrT is that

the Ellison scale directly captures the effect of the stratification in the flow, a feature that
the Thorpe scale cannot replicate due to its inherently geometrical construction. We have
already seen that, at least for the simulations we consider here, there is weak dependence
of the later, generic mixing on the stratification as characterised by Rig which may explain
why Γ ∼ R−4/3

OT holds reasonably well even after PrT grows larger than unity. However,
once the turbulence starts to decay, and larger local values of Rig become more frequent
within the mixing layer, it is highly plausible that the relevant physical scales will become
influenced by buoyancy as captured by the denominator in the Ellison scale. At least from
a fluid dynamics perspective, figure 7 suggests caution when using LT as the only length
scale to describe overturning motions in a turbulent flow because it fails to capture properly
the underlying physics, in particular the effect of the stratification. Further investigation is
needed to assess the scalings discussed above in flows where the mixing efficiency is more
heavily influenced by the stratification.
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Simulation χc εc ηc χ3-D
c ε3-D

c η3-D
c

T16 0.0872 0.1313 0.40 0.0328 0.0994 0.25
T19 0.0602 0.1022 0.37 0.0268 0.0797 0.25
L10 0.0739 0.1264 0.37 0.0319 0.0991 0.24
L13 0.0617 0.1076 0.36 0.0277 0.0826 0.25

Table 2. Cumulative values χc, εc and the resulting mixing efficiency ηc = χc/(χc + εc) calculated by
integrating χ and ε in time over the entire mixing event, or from the start of the fully developed 3-D turbulence
(indicated by a superscript) defined as the point where ε first reaches a local maximum. Vertical integration is
performed over the region −�u/2 ≤ z ≤ �u/2.

4. Discussion

We have analysed the data from four simulations of turbulence produced by KHI in a
stratified shear layer, two with a hyperbolic tangent background density profile and two
with a linear profile, classed as T and L, respectively. Adjusting the minimum initial
gradient Richardson number Ri0, we generated two sets of mixing layers of similar
depth, finding that the turbulence within was qualitatively similar and decayed at a rate
independent of the presence of the far field stratification. All simulations exhibited similar
values of the mixing efficiency ηχ throughout, calculated using an appropriately defined
mixing rate χ . This is perhaps surprising given the differences in the local and bulk
behaviour of the buoyancy Reynolds number Reb and gradient Richardson number Rig,
though we argue that as long as specific important features in local distributions are present
(that is, large values of Reb coinciding with small local values of Rig), the mixing produced
by KHI is not largely influenced by the presence of the far field stratification.

For comparison with previous studies, table 2 shows the cumulative bulk values χc and
εc of χ and ε calculated by integrating in time, either over the entire mixing period or
over the period of fully developed turbulence defined from when ε first reaches a local
maximum (indicated by a ‘3-D’ superscript). Values of ηc are similar to those found in
the class T simulations of Mashayek et al. (2013), who show that an optimal proliferation
of secondary instabilities lead to mixing efficiency being largest for Ri0 = 0.16 in the
range 0.12 ≤ Ri0 ≤ 0.20. We find a relatively small difference between Ri0 = 0.16 and
Ri0 = 0.19 for our class T simulations, possibly less than might be expected due to the
manner in which our simulations are perturbed from the point of maximal billow amplitude
causing a more coherent pattern of secondary instabilities at higher Ri0 than was found
in Mashayek et al. (2013). This manner of perturbation and subsequent emergence of
secondary instabilities is also likely the reason why our values of ηc for L simulations are
larger than those reported in VanDine et al. (2021). Values of η3-D

c are in general similar to
those reported by Mashayek et al. (2013), Salehipour & Peltier (2015) and VanDine et al.
(2021), though it is important to note that reasonable differences may arise due to the
precise definition being used as discussed in § 3.2. These comparisons raise an important
point: the uncertainties in values of mixing efficiency resulting from minor differences
in simulation set-up, as well as the choice of how mixing efficiency is defined, may be
as large as reported differences that arise from modifying specific flow parameters such
as Re and Ri0. This highlights some of the problems with using any one set of idealised
numerical simulations in attempting to model complex geophysical environments.

By considering a locally defined APE, two possible local measures of mixing χloc and
χ̃loc were defined that differ only in their interpretation of the background stratification.
The quantity χ = 〈χloc〉 is often used as an alternative definition for mixing, dating
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back to the work of Osborn & Cox (1972) who show that a corresponding diapycnal
diffusivity Kρ may be calculated as Kρ = χ/N2. Here χ̃ = 〈χ̃loc〉 is analagous to a
measure of mixing proposed by Arthur et al. (2017) that attempts to estimate local values
of the background density profile ρB by sorting individual vertical columns. For the KHI
mechanism considered here, where overturnings caused by the roll-up of the billow lead
to small and often negative local density gradients, we found that using χloc calculated
by computing the background density gradient as a constant bulk value averaged over the
shear layer generally leads to a better approximation of the precise mixing efficiency than
χ̃loc which depends on local density gradients, particularly whilst distinct overturnings
persist in the flow. As discussed in Arthur et al. (2017), the way in which N2 is computed
can impact subsequent measures of mixing; with this in mind we have demonstrated that
using the distribution of local efficiencies calculated using χ̃loc may provide reasonable
bounds on values of the bulk mixing efficiency. Moreover, our analysis of the period in
which secondary instabilities proliferate demonstrates that χloc has physical significance
as a local mixing diagnostic, with large values generally bordering regions of dense APE
as might be expected from the theory.

From an oceanographic point of view, the primary quantity of interest is the diapycnal
diffusivity Kρ which may be calculated in a variety of ways. As originally noted by Winters
& D’Asoro (1996), the ‘true’ diapycnal diffusivity depends on the sorted background
density profile, which is in practice impossible to calculate precisely from observational
data. Indeed, such a quantity is really a local measure of the flux through a given
isopycnal surface in the fluid, and subsequently defined bulk measures inevitably depend
on the precise averaging process used in a similar manner to the discussion surrounding
definitions of local mixing in § 3.2.

Salehipour & Peltier (2015) and Howland et al. (2021) demonstrate that the Osborn–Cox
method provides a reasonable approximation for the ‘true’ diffusivity, a conclusion that is
supported in our data through the agreement of the closely related mixing efficiencies ηχ

and ηM . However, it is important to note that even their definitions of a ‘true’ diffusivity
differ in terms of the averaging process used, in the sense that

KSalehipour
ρ ∼ 〈local flux〉

〈local gradient〉 , KHowland
ρ ∼

〈
local flux

local gradient

〉
. (4.1a,b)

The comparison of mixing efficiencies in § 3.2 demonstrates that such averaging
distinctions can result in appreciable differences when local gradients are highly variable,
a similar conclusion to the results of Arthur et al. (2017). Future work should address this
issue in the context of calculated diffusivities further.

We have chosen to adopt a more practical approach and compare a variety of proposed
models for diapycnal diffusivity for each of the simulations considered here. We normalise
each diffusivity by a time integrated reference value

KT
ρ =

∫ tf
0 −Ri0〈ρ′w〉T dt∫ tf

0 〈N2〉T dt
, (4.2)

in a manner similar to Taylor et al. (2019), though we note that due to the transient
nature of our simulations we expect to see significantly more variation in time-evolving
measures of Kρ . Here tf is the time at which the bulk dissipation 〈ε〉T first becomes smaller
than 10 % of its maximum value (i.e. when the turbulence has decayed significantly from
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Figure 8. Variation of various models for the parameterization of diapycnal diffusivity Kρ defined in (4.3a–d)
with the ratio of Ozmidov to Thorpe scales ROT for simulations (a) T16, (b) L10, (c) T19 and (d) L13. Each
diffusivity is normalised by a time integrated reference value KT

ρ defined in (4.2). The horizontal dashed line
indicates a reference ratio of unity, whilst the vertical dashed line corresponds to the frequently used value
ROT = 0.8 proposed by Dillon (1982).

its peak). Figure 8 shows the variation of four models with ROT ,

Kχ
ρ = χ

〈N2〉T
; KO

ρ = γ 〈ε〉T

〈N2〉T
; KD

ρ = γα2L2
T〈N2〉1/2

T , KI
ρ = CR−4/3

OT 〈ε〉T

〈N2〉T
.

(4.3a–d)

These models have been respectively proposed by Osborn & Cox (1972), Osborn (1980),
Dillon (1982) and Ijichi & Hibiya (2018), where γ = 0.2, α = 0.8 and the constant of
proportionality C = 0.22 corresponds to the blue line in figure 7(a).

It is interesting to see that all of the diffusivities roughly converge to a value that is
close to the time integrated reference value KT

ρ as ROT approaches a value of O(1) which
is similar to the observational value of Dillon (1982). There are more significant deviations
between models during the ‘young’ phase of turbulence when ROT is small, and the
decaying phase as ROT grows much larger than unity. Interestingly, ROT = 1 corresponds
to a value of Γ = 0.22 in the Ijichi & Hibiya (2018) parameterisation Γ = CR−4/3

OT , very
similar to the commonly used reference value of Γ = 0.2 and the original upper bound
of Osborn (1980). However, as is clear from the evolution of KO

ρ , assuming a constant
value of Γ = γ = 0.2 results in values of diapycnal diffusivity that are significantly lower
than estimates depending on a time-evolving mixing efficiency whilst large overturnings
persist. This is in agreement with the findings of Salehipour & Peltier (2015) for similar
KHI simulations.

The Ijichi & Hibiya (2018) model KI
ρ attempts to resolve this difficulty and is seen

to provide values of diffusivity that are similar to the more accurate estimate Kχ
ρ for

928 A20-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.755


Turbulent shear layers in a linear background stratification

small values of ROT , though as might be expected from figure 7(a), there are non-trivial
differences between these two diffusivities at later times when the turbulence is decaying
and ROT becomes large. At this point, based on the discussion in § 3.5 we believe that
parameterizations of Γ based on the Ellison scale LE rather than the Thorpe scale may be
necessary to resolve these differences. From an oceanographic perspective, however, the
errors from using LT instead of LE are not likely to be of leading order importance as the
mixing is far weaker by this stage.

An additional notable feature of figure 8 is that the Dillon (1982) model KD
ρ actually

provides very similar values of diffusivity to Kχ
ρ , despite using a constant value of

Γ = γ = 0.2. This is because the error during the ‘young’ phase of turbulence is
compensated for by the fact that the corresponding estimate of ROT = α = 0.8 is an
overestimate for the true value at this stage. Whilst this is perhaps fortunate here, it
demonstrates that even overly simplistic mixing models (at least from a fluid dynamics
point of view) may provide reasonable estimates for diffusivity provided they contain
some information about the ‘age’ of the turbulent event in question. However, there are
clearly more dependencies affecting the behaviour of Kρ than a simple relationship with
ROT , with non-monotonic behaviour of Kχ

ρ particularly observable in figure 8(b) that is
not captured by the more simplistic models of KD

ρ and KI
ρ . Overall, in agreement with

previous studies of KHI turbulence, our study suggests that, without additional knowledge
of the length scales of turbulent motions in the flow or, linked to this, the mechanisms
producing the turbulence, caution should be applied when using a universal constant value
of Γ = 0.2. There is growing evidence that somewhat larger values of Γ ∼ 0.3 appear
to be typical of shear-driven mixing events for ROT ∼ 1, as can be seen from the dense
clusters of points around these values in figure 7 and as discussed by Mashayek et al.
(2021), suggesting that classical parameterizations may be biased towards underestimation
of diffusivity due to transient turbulent overturnings caused by shear instability. As figure 8
shows, these underestimates may be improved by incorporating a simple dependence on
turbulent length scales into parameterizations. We also point out that, whilst there are
fewer data points for small values of ROT considerably less than 1 in our simulations,
a significant amount of mixing takes place during this period and therefore neglecting
the transient early stage mixing behaviour may result in further underestimates of
diapycnal diffusivity over the entire mixing event. Suitably high frequency spatio-temporal
observations of ocean mixing events, whilst difficult to obtain, may shed additional light
on the existence and relevance of such spatio-temporally varying turbulent behaviour in
real-world environments.

Data from our simulations show that, at least for the initial parameter values we consider
here, the turbulence produced by KHI billows is largely generic with the influence of a far
field stratification having little impact on the global mixing efficiency or the local energy
dissipation. This is consistent with a picture of ocean mixing being largely dependent on
the ‘history’ of the turbulence, which is strongly influenced by the specific mechanisms
leading to turbulent breakdown. Howland et al. (2020) found that mixing in a variety of
forced stratified flows depends heavily on the large-scale forcing implemented in their
simulations, with convective mixing mechanisms produced by gravity wave forcing more
efficient than shear instabilities in a purely horizontal forcing. Future work should further
explore the links between turbulence-producing mechanisms and the resulting mixing
regimes that ensue, which are likely to depend on a number of physical scales and flow
parameters. In order to identify these mechanisms appropriately in larger-scale flows
requires knowledge of the spatial variability of the turbulence. Statistical methods such
as those used in Portwood et al. (2016) may prove effective in characterising the state
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of a turbulent flow at any given time by dividing it into separate regions determined
by an appropriate turbulence intensity parameter. This is particularly useful when the
turbulence is intermittent or the flow is in a layered state, as seems to occur in many
situations of interest (Caulfield 2021). At least as far as KHI turbulence is concerned
however, the similarity in behaviour across all of the simulations we perform supports
the use of this mechanism as a means for parameterizing diapycnal diffusivities in the
ocean (e.g. Salehipour et al. 2016b), though using data from a range of DNS studies will
be important for capturing the aforementioned underlying uncertainties that may arise
due to differences in simulation set-up and the precise definitions of mixing parameters
invoked.

Whilst we have considered a variety of different initial flow conditions here and shown
mixing to be generic for these background profiles, it is important to note that the set-up
is still quite specific. Firstly, we expect that the values of Ri0 we choose here are likely to
optimise the proliferation of secondary instabilities as was seen by Mashayek et al. (2013).
This (along with the fact that the Reynolds number Re is suitably high) has the advantage
of allowing us to neglect the phenomenon of vortex pairing which may be important for
more weakly stratified flows in terms of the efficiency of the mixing produced. Secondly,
whilst the modified set-up we consider in which a saturated KHI billow is perturbed
to generate secondary instabilities is arguably necessary to perform a consistent initial
parameter comparison, it is obviously highly idealised and whether or not these efficient
mechanisms for mixing occur in the ocean is not known: even small amounts of initial
noise in the background flow can noticeably arrest the development of the primary KHI
billow (Brucker & Sarkar 2007; Kaminski & Smyth 2019) and may prevent the emergence
of coherent secondary structures altogether. The development of these instabilities is also
modified for larger values of Pr more relevant to the ocean (Salehipour et al. 2015).

It is worth saying that regardless of these caveats, we expect our analysis of the different
turbulent regimes we observe to hold as long as sufficiently large overturnings are able
to form at early times in the flow, in line with similar reasoning by Mashayek et al.
(2017). Finally, though we have argued that, at least for the simulation set-up and initial
parameter values considered here, KHI behaviour is generic in two different background
environments, both profiles are still very different to realistic ocean conditions and to what
degree the behaviour we observe here reflects that of oceanic mixing layers remains an
open question.

Declaration of interests. The authors report no conflict of interest.
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S.F. Lewin https://orcid.org/0000-0002-2602-4751;
C.P. Caulfield https://orcid.org/0000-0002-3170-9480.

Appendix. Impact of resolution on the formation of secondary instabilities

We found the resolution in the x and z directions (i.e. the plane of the primary billow) to be
of importance for the formation of secondary instabilities on a KHI billow growing from
an optimally perturbed background flow. To illustrate this, we performed three additional
class T simulations at Ri = 0.16 which are detailed in table 3, changing the resolution in
the x and z directions, and then separately in the spanwise y direction. Each simulation was
initialised from the background flow with perturbation in the form of the FGM from the
linear theory, with an additional uniform white noise perturbation of amplitude 10−3 added
to the density and velocity fields. Figures 9(a) and 9(b) show the qualitative behaviour of
the local density field at a particular time during the growth of the primary KHI billow
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Simulation Class Ri0 Lx (Nx, Ny, Nz) Nc
z

UT16-LRXZ T 0.16 13.87 (640, 256, 672) 416
UT16 T 0.16 13.87 (896, 256, 897) 640
UT16-LRY T 0.16 13.87 (896, 128, 897) 640

Table 3. Class, flow parameters and grid sizes for each additional DNS. All simulations shown have Re =
6000, Pr = 1 and Ly = 4. Here Nx, Ny and Nz are the number of grid points in the streamwise, spanwise and
vertical directions, respectively, whilst Nc

z is the number of vertical grid points in the central region −5 < z < 5.

UT16-LRXZ UT16

0 25 50 75 100 125 150 175 200
t

0

0.2

0.4

0.6

0.8

η

UT16-LRXZ
UT16-LRY
UT16

(b)(a)

(c)

Figure 9. (a) Spanwise slices through y = 0 at t = 83 showing contours of the density field for simulations
UT16-LRXZ and UT16, as labelled in the top-right corners. (c) Time evolution of the mixing efficiency ηM
for all of the simulations listed in table 3. The vertical dot–dashed line indicates t = 83 in accordance with the
snapshots from (a). Note that here t = 0 corresponds to the time at which the background flow is perturbed
with an FGM from the linear theory.

for simulations UT16 and UT16-LRXZ, where the behaviour of UT16-LRY is omitted as
it is essentially the same as UT16. The early proliferation of secondary instabilities on the
primary billow in UT16-LRXZ are associated with large differences in the corresponding
mixing efficiency ηM as shown in figure 9(c). This is an apparently 2-D phenomenon:
changing the resolution in the spanwise direction in UT16-LRY does not affect the
behaviour of these secondary instabilities and the mixing efficiency during the breakdown
to turbulence is similar to UT16, though at later times there are small differences in the
efficiency that arise due to numerical errors in capturing the smallest scales of motion.
Further investigation using purely 2-D simulations showed that increasing the resolution
in the x and z directions essentially delayed the onset of the purely 2-D secondary shear
instabilities that can be seen in figure 9, whose existence can substantially modify the
breakdown to turbulence in three dimensions as has been discussed in detail by Mashayek

928 A20-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

75
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.755


S.F. Lewin and C.P. Caulfield

& Peltier (2012a,b). We propose that these secondary instabilities may be ‘unphysically’
perturbed before the billow reaches its saturation point by numerical truncation errors at
the grid scale.

Based on the above, we argue that to perform a more consistent comparison of KHI
turbulence – that is, without the time of secondary instability onset being modified by
grid resolution – in conditions that facilitate the inherently 2-D secondary instabilities we
observe to be important for mixing here, it is necessary to proceed as we do in the main text
and start simulations by providing an additional perturbation to the primary KHI billow
from a comparable reference point, which we take to be the time of billow saturation where
K2-D is a maximum. Although the spanwise resolution is seen to be less important for the
grid spacings we investigate here, we are cautious and perform the simulation of primary
billow roll-up in two dimensions before adding a 3-D perturbation component at the point
of billow saturation. This is reasonable as, in 3-D simulations, spanwise perturbations do
not grow substantially until after the billow has saturated.

As an additional note of caution, we point out that the precise realisation of the
secondary instabilities may be modified by purely computational features including the
grid resolution and the perturbation field, even when forcefully perturbed in the manner
described above. Whilst we do not expect this to affect the general results presented
in this work, we have observed it can reasonably influence the precise behaviour and
evolution of flow properties such as mixing rates and dissipation, introducing uncertainty
in the computed values of mixing and mixing efficiency. However, as long as coherent
secondary instabilities are able to proliferate on the primary billow during the breakdown
to turbulence, we expect the values computed here to be broadly representative of the
general case. Future work should address this issue in more detail, and at higher values of
Re.
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