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The entrainment of ambient fluid into a variable-density jet is typically quantified using
an entrainment coefficient α. Here, we investigate the dependence of α on the ratio of the
jet’s density ρm and that of the ambient fluid ρ0. Current parametrisations of α rely on a
scaling inferred from early laboratory experiments (Ricou & Spalding, J. Fluid Mech.,
vol. 11, 1961, pp. 21–32). We demonstrate analytically that the experiments preclude
definitive conclusions regarding the dependence of α on ρm/ρ0 and that the underlying
physical processes therefore warrant closer attention. To investigate the physics behind
the dependence of entrainment on the density ratio we use a Favre-averaged entrainment
decomposition. The decomposition is applied to data from large-eddy simulations of jets
characterised by density ratios ρm/ρ0 spanning over two orders of magnitude that have
been verified against experimental data. Changes in the shape of the velocity profile are a
significant contributor to entrainment in the near field due to the breakdown of the potential
core, and persist over larger streamwise distances in heavy releases than in light releases.
Therefore, to focus exclusively on the effects of density ratio, we study the region where
the shape changes have become small but the density ratio is still significant. We show
that the dimensionless turbulent kinetic energy production and mean kinetic energy flux
depend strongly on the density ratio, both for our large-eddy simulation data and for recent
experiments. Despite this, the entrainment coefficient is practically constant in this region
and has value α ≈ 0.07 for all simulations.
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1. Introduction

A variable-density jet is a flow induced by the continuous release of a fluid of density
ρs from a circular source, of radius rs, at a steady uniform velocity ws within a still
environment of density ρ0. For sufficiently high Reynolds number Res = wsrs/νs (νs is
the kinematic viscosity of the fluid discharged) the flow is fully turbulent, and the growth
of inertial instabilities gives rise to complex and multiscale dynamics (see figure 1).
The process leads to the entrainment of ambient fluid within the jet that ultimately
results in the mixing and dilution of the discharged fluid. These releases are referred
to as jets (instead of plumes or fountains) because their dynamics is dominated by
momentum (rather than buoyancy), which implies that their Richardson number at the
source Ris = grs(ρs − ρ0)/ρ0/w2

s → 0. We can therefore assume that gravitational effects
are negligible in the flow dynamics.

Examples of variable-density turbulent jets (and plumes) can be found in several areas
of engineering and the physical sciences, e.g. ocean outfalls, exhausts of engines, volcanic
eruptions, releases of chemicals from pipes and reservoirs. A robust approach in the
modelling of these flows is provided by the plume equations (see e.g. Priestley & Ball
1955; Morton, Taylor & Turner 1956), which provide an integral description of the flow, in
which spatially averaged variables depend only on the distance from the source z (figure 1).
In this framework, the integration of the equation of conservation of (time-averaged) mass
over the radial coordinate r (see figure 1) leads to

dG
dz

= 2ρ0αwmrm, (1.1)

where G ≡ 2
∫ ∞

0 ρwr dr is the time-averaged mass flux (w is the jet velocity along the
streamwise direction z, ρ is the jet density and overbar denotes Reynolds averages), α is
the entrainment coefficient and rm and wm are characteristic scales of the jet width and
velocity, respectively (their definition is given in § 2).

Our focus is the parameter α, controlling the dilution of the jet with the ambient fluid.
A reference study providing experimental measurements of the entrainment process within
variable-density releases is that of Ricou & Spalding (1961), hereafter referred to as R&S.
Their results suggest a dependence of α on a local jet density scale ρm(z) (also defined in
§ 2), and a scaling of the form

α = α0

(
ρm

ρ0

)β

, (1.2)

with β = 1/2 and α0 the entrainment coefficient for a pure (iso-density) jet, which they set
equal to 0.08, which is slightly larger than that estimated in other studies (Papanicolaou &
List 1988; Wang & Law 2002; Ezzamel, Salizzoni & Hunt 2015; van Reeuwijk et al. 2016).
According to (1.2), the rate of dilution of the jet is therefore increased for an increasing
density ratio ρm/ρ0. This result was subsequently interpreted physically by Morton (1965)
in terms of the influence of the Reynolds stress (i.e. of the turbulent kinetic energy (TKE)
production) on the entrainment process. Almost forty years after the seminal work by R&S,
Rooney & Linden (1996) and Woods (1997) adopted an entrainment parametrisation on
the basis of (1.2) with β = 1/2, showing that the dynamics of a so-called non-Boussinesq
plume (i.e. characterised by large density variations between plume and ambient fluid)
could be ultimately modelled in analogy with the classical plume theory. This led to
the adoption of self-similar solutions for non-Boussinesq plumes (van den Bremer &
Hunt 2010), that could be subsequently applied to releases in unconfined and confined
environments (Vauquelin 2015; Jiang et al. 2019; Mehaddi et al. 2021).
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Figure 1. Instantaneous density ratio ρ/ρ0 of a turbulent jet with ρs/ρ0 = 0.2 (large-eddy simulation): white
corresponds to ρ/ρ0 = 1 while black to ρ/ρ0 = 0.2. Superimposed are the averaged value of the streamwise
velocity (in red), the top-hat velocity wm and the radius rm at varying axial distance z from the source.

R&S’s variable-density jets have been studied using experiments (e.g. Panchapakesan &
Lumley 1993; Gharbi, Amielh & Anselmet 1995; Amielh et al. 1996; Djeridane et al. 1996;
Pietri, Amielh & Anselmet 2000; O’Hern et al. 2005; Ai, Law & Yu 2006; Gerashchenko
& Prestridge 2015; Charonko & Prestridge 2017; Viggiano et al. 2018) and numerical
simulations (e.g. Gharbi et al. 1996; García-Villalba, Fröhlich & Rodi 2006; Wang et al.
2008). However, the determination of the dependence of the entrainment coefficient on
the density ratio was beyond the scope of those studies. None, therefore, could confirm (or
invalidate) the scaling provided by (1.2).

The issue was tackled recently by Salizzoni et al. (2023), who estimated velocity and
density statistics within a low-density jet (ρm/ρ0 = 0.4) and an iso-density jet by means
of laboratory experiments and large-eddy simulations. Their results highlight the role of
a reduced density in the jet dynamics, notably by enhancing the TKE production and
modifying the shape of the mean streamwise velocity. Despite this, their results clearly
indicate that a reduced density has no major effect in modifying the entrainment coefficient
α, whose evolution for increasing distance from the source does not differ significantly
from that observed in an iso-density jet (therefore contradicting the R&S scaling). The
aim of this study is to build upon the recent results by Salizzoni et al. (2023) and
extend their analysis to a broader set of source density conditions (ρs), carrying out an
exhaustive investigation into the dependence of flow dynamics and the entrainment process
in variable-density jets.

We begin by revisiting the scaling (1.2) proposed by R&S, showing analytically that
their experimental results are not conclusive in determining the value of the exponent
β. We then present the details of the large-eddy simulations (§ 4) of jets with varying
density ratios (spanning over two orders of magnitude) and the entrainment decomposition
(§ 3), which we subsequently use to interpret the numerical results. Next, we analyse
the evolution of integral quantities characterising the entrainment dynamics, integrating
in our discussion the evidence provided by recent experimental data on light (Salizzoni
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Figure 2. Results of analytical solutions for z/rs ≤ 30 (a,b) and for z/rs ≤ 900 (c,d). Dotted lines: R&S model,
β = 1/2, (2.4) for ρs/ρ0 = 0.069 (in red) and for ρs/ρ0 = 1.5 (in black). Solid green line: (2.4) with ρs = ρ0.
Dashed lines: solution of the differential equation (2.3) with α = α0 = 0.08, the value originally used by R&S
(see text), and β = 0. Experimental results of Ricou & Spalding (1961) are also shown in (c,d) (symbols).

et al. 2023) and heavy (Charonko & Prestridge 2017) jets, and ultimately investigate the
dependence of α on the density ratio (§ 5).

2. Revisiting the experimental results of R&S

By employing a meticulous experimental approach, R&S successfully estimated the
entrained ambient air flux within a variable-density jet. This estimation was achieved using
a porous screen positioned at the jet border, therefore avoiding challenging (especially
at that time) measurements of local fluid velocities and densities within the jet. Their
conclusion was that the mass fluxes G of the different releases, normalised by their source
value Gs, collapsed when plotted against vertical coordinate rescaled on (ρs/ρ0)

−1/2 (see
figure 2c,d). Coupled with the assumption of a constant momentum flux, corresponding
to negligible gravitational effects on the flow dynamics, their results led to the conclusion
that β = 1/2 in (1.2).

In this section we demonstrate that the experiments of R&S do not provide sufficient
information to determine the exponent β in (1.2) because, to leading order, the value of β

does not affect the scaling of G in the far field.
To show this, we solve (1.1) analytically, assuming that α scales as (1.2) without

specifying β. We then compare solutions for two values of β in the near field (z/rs ≤ 30;
figure 2a,b), where variable-density effects are large, and in the far field (z/rs up to

995 A11-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.704


Entrainment in variable-density jets

900). The latter range was investigated by R&S (figure 2c,d), which allows for a direct
comparison between the analytical solution and their data.

In what follows, the characteristic velocity, radius and density of the jet are defined
as wm = M/G, rm = (QG/M)1/2 and ρm = G/Q, respectively, as a function of the
mass G, volume Q and momentum M fluxes (Salizzoni et al. 2023). Adopting Favre
averages (denoted by a tilde and defined as χ̃ = χρ/ρ̄) the fluxes are expressed
as G = 2

∫ ∞
0 ρ̄w̃r dr = ρmwmr2

m, Q = 2
∫ ∞

0 w̃r dr = wmr2
m and M = 2

∫ ∞
0 ρ̄w̃2r dr =

ρm(wmrm)2.

2.1. Analytical solutions for the mass flux G
Since we are assuming negligible buoyancy effects, which means that the momentum
flux is conserved, i.e. M ≡ ρmw2

mr2
m = ρsw2

s r2
s (with rs = rm(z = 0), ws = wm(z = 0) and

ρs = ρm(z = 0)), the mass balance equation (1.1) can be rewritten as

d(G/Gs)

d(z/rs)
= 2α

(
ρm

ρ0

)−1/2 (
ρs

ρ0

)−1/2

. (2.1)

By further assuming a low-Mach-number flow at high Reynolds number (i.e. negligible
viscous effects) it can be shown (Rooney & Linden 1996) that the flow has a
divergence-free velocity field, which, in turn, implies that the density deficit flux is
conserved, such that (ρ0 − ρm)wmr2

m = (ρ0 − ρs)wsr2
s , or, expressed in terms of G,

ρ0

ρm
= 1 + Δs

Gs

G
, (2.2)

where Δs = (ρ0 − ρs)/ρs and Gs = ρswsr2
s . Combining (2.1) and (2.2), and assuming that

α exhibits a power-law dependence of the form (1.2), leads to

d(G/Gs)

d(z/rs)
= 2α0

(
ρs

ρ0

)−1/2 [
1 + Δs

Gs

G

]1/2−β

. (2.3)

For β = 1/2, integrating (2.3) gives

G
Gs

= 1 + 2α0

(
ρs

ρ0

)−1/2 z
rs

, for β = 1/2, (2.4)

which is the reference relation used by R&S to rescale their experimental results and
demonstrate collapse onto a single non-dimensional curve. Indeed, (2.4) exhibits a
dependence on the source conditions (rs and ρs) only, and not on the local jet radius rm,
density ρm or velocity wm, which R&S were not able to measure using their experimental
apparatus.

When considering the general case of β /= 1/2, G/Gs is not linear in z/rs and therefore
does not scale with (ρs/ρ0)

−1/2. However, we show hereafter that, irrespective of the β

value, G/Gs behaves as (ρs/ρ0)
−1/2z/rs at large distances from the source, i.e. z � rs,

corresponding to the limit Gs/G → 0. By defining ε = Gs/G, the differential equation for
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ε is
dε

d(z/rs)
+ 2α0

(
ρs

ρ0

)−1/2

ε2 [1 + Δsε]−γ = 0, (2.5)

with γ = β − 1/2. Separating ε and z/rs and integrating leads to∫ 1

ε

[1 + Δsx]γ
dx
x2 = 2α0

(
ρs

ρ0

)−1/2 z
rs

. (2.6)

Formally, the integrand of the left-hand side of (2.6) can be expanded as a power series
which can be integrated term by term:∫ 1

ε

[1 + Δsx]γ
dx
x2 =

∫ 1

ε

[
1 +

∞∑
n=1

(
γ

n

)
(Δsx)n

]
dx
x2 (2.7)

= 1
ε

− 1 − γΔs ln ε +
∞∑

n=2

(
γ

n

)
(Δs)

n

n − 1

(
1 − εn−1

)
. (2.8)

At large distances from the source, ε = Gs/G → 0 the leading-order contribution from
(2.8) is 1/ε = G/Gs which from (2.6) implies that

G
Gs

∼ 2α0

(
ρs

ρ0

)−1/2 z
rs

, for any β with Gs/G → 0. (2.9)

This limit can be easily confounded with the exact solution for β = 1/2 (equation (2.4)).
In other words, when performing measurements in the far field where G/Gs � 1, we
expect G/Gs to scale with (ρs/ρ0)

−1/2 regardless of the value of the exponent β.

2.2. Near- and far-field behaviour and comparison with R&S data
In order to analyse the dependence of the mass flux G on the exponent β, we focus on
the near-field region, i.e. z/rs ≤ 30 (for which R&S did not obtain data), and compare the
R&S model (β = 1/2, (2.4)) and solution of the differential equation (2.3) with β = 0.
The results are plotted in figure 2(a) for the three density ratios investigated by R&S:
ρs/ρ0 = 1.5 (carbon dioxide in air), ρs/ρ0 = 1 (air in air) and ρs/ρ0 = 0.069 (hydrogen
in air).

The results, plotted in figure 2(a), show that, for density ratios slightly different from
unity (i.e. carbon dioxide release), the value of β has very little effect on the mass flux
G(z)/Gs. Significant differences can instead be seen for the case of hydrogen, for which
the two solutions (β = 0 and β = 1/2) lead to differences of almost 50 % after a few
source radii from the source. Consequently, the different solutions do not collapse on a
single curve, when re-scaling the data as in R&S (figure 2b).

Turning to the far field, and including R&S data in our analysis, we obtain a different
picture (see figure 2c,d). As previously pointed out, the solutions obtained for the two
different β are almost indistinguishable when plotted over large distances from the
source, i.e. up to z/rs = 900. Therefore, very good agreement is observed between the
experimental data and both analytical solutions, one obtained using the R&S model
(β = 1/2, dotted lines) and the other using an entrainment coefficient that is independent
of the density ratio (β = 0, dashed lines). Both solutions collapse, as a first approximation,
on a single curve. Indeed, the discrepancies between the two solutions in figure 2(d) are
lower than the uncertainties observed in the experimental data.
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We conclude that the solution of the differential equation (2.3) is sensitive to the value
of β in the near field but not in the far field. Therefore, the collapse of the experimental
data on a single curve in the far field according to (2.9), as observed by R&S, does not
imply that the entrainment coefficient scales as (1.2), with β = 1/2.

3. The entrainment relation

Based on early work of Priestley & Ball (1955), recent studies (Kaminski, Tait & Carazzo
2005; Ezzamel et al. 2015; van Reeuwijk & Craske 2015; Craske, Salizzoni & van
Reeuwijk 2017) on iso-density jets and Boussinesq plumes have shown that, by combining
the mass, momentum and mean kinetic energy balance equations, a relation for the
entrainment coefficient, expressed as a function of local flow statistics, can be obtained.
As discussed by Salizzoni et al. (2023), this framework can be conveniently extended to
the more general case of large density difference between an ambient fluid and the release,
by using Favre averages.

To leading order, the entrainment relation for a momentum-dominated release (in which
the role of gravity is negligible) can be written as (Salizzoni et al. 2023)

αE = −ρm

ρ0

δm

2γm︸ ︷︷ ︸
αprod

+ ρm

ρ0
rm

d
dz

(
ln γ 1/2

m

)
︸ ︷︷ ︸

αshape

, (3.1)

where

γm = 2
ρmw3

mr2
m

∫ ∞

0
ρ̄w̃3r dr, δm = 4

ρmw3
mrm

∫ ∞

0
ρ̄˜w′′u′′ ∂w̄

∂r
r dr, (3.2a,b)

and double primes denote fluctuations from the Favre averages. The parameters γm and δm
correspond to the dimensionless mean flux and production of kinetic energy, respectively,
and are referred to as ‘profile coefficients’ because their value depends on the radial
dependence of the primitive flow variables.

As evidenced by (3.1), the entrainment coefficient is determined by two contributions
(both weighted by the ratio between the top-hat jet density ρm, varying with the streamwise
coordinate, and the ambient density ρ0): (i) αprod, directly linked to the ratio of production
of TKE to the mean kinetic energy flux, and (ii) αshape, which depends on the change of
the form of the radial profiles of mean streamwise velocity. A priori, there is no reason not
to assume a possible dependence of αprod and αshape on ρm/ρ0, which is effectively taken
as unity in the far field and therefore typically ignored.

Note that the estimate of the entrainment coefficient as given by (3.1) is independent of
that provided by (1.2), denoted here as α, and linked to the rate of change of the mass flux
G(z) for increasing distance from the source. However, to fulfil basic mass, momentum
and kinetic energy balances, the coefficients α and αE have to coincide at any distance
from the source.

As also revealed by (3.1), the evolution of the entrainment coefficient can be captured by
analysing three main variables of the flow: the mean streamwise velocity w̃, the Reynolds
stress ˜w′′u′′ and the density ρ̄. The determination of these flow statistics by means
of laboratory experiments faces practical and metrological difficulties (as discussed in
Salizzoni et al. (2023)), which can be conveniently circumvented by performing numerical
simulations.
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4. Numerical simulations

Numerical simulations of variable-density jets in a quiescent environment were performed
using the numerical computational code CALIF3S (developed at the Institut de
Radioprotection et de Sûreté Nucléaire-IRSN), dedicated to three-dimensional simulations
of turbulent and slightly compressible flows (low-Mach-number approach).

The code uses large-eddy simulation to solve the Favre-filtered Navier–Stokes
equations (mass and momentum balance), along with species transport equations, in
Cartesian coordinates. The subgrid-scale Reynolds stresses are modelled by the Vreman
subgrid-scale model (Vreman 2004), and a gradient diffusion hypothesis (SGDH) is used
to close the problem with a turbulent Schmidt number Sct set to 0.7. As molecular viscosity
is disregarded in this formalism, the Reynolds number is undefined. The code has been
previously used to study flows characterised by large density differences such as light jets
(Salizzoni et al. 2023) and heavy and light fountains (Vaux et al. 2019).

The domain is a cube of size 40rs, with rs the jet radius at the source. In the central
part of the domain (a rectangular cuboid with square section of side length 10rs centred on
the origin) a refined grid size of rs/14 is used. The grid is then progressively stretched for
increasing distance from the jet axis, as in Salizzoni et al. (2023). In the vertical direction
the grid size is equal to rs/8. For the time discretisation, a Courant–Friedrichs–Lewy
(CFL) number close to unity has been imposed for each calculation even though time
step sizes for which CFL numbers greater than one are allowed with the use of implicit
schemes. Each simulation lasted 1000T where T = rs/ws. Results for the first 400T were
discarded and flow statistics were computed over an interval of 600T . At the source, the
inlet flow was perturbed with the method presented by Jarrin et al. (2006) in order to
trigger the transition to turbulence. All numerical simulations have been performed with
the same computational settings (grid and duration), spatially uniform source conditions
and inlet perturbation, except for the density ratio ρs/ρ0.

The source is set flush with the bottom solid boundary of the computational domain
from which the jet emerges at the centre with a top-hat inlet mean velocity profile. Since
we consider jets in an infinite (open) environment, the computational domain must be
bounded by artificial boundary conditions which perturb as little as possible the flow in
the interior of the domain. The boundary conditions used in our simulations are based
on the control of kinetic energy, allowing one to distinguish between the flow that leaves
the domain and the flow that enters it (Bruneau & Fabrie 1994, 1996; Bruneau 2000).
We have performed eight numerical simulations of turbulent jets (three light releases, four
heavy releases and an iso-density jet) with a density ratio ρs/ρ0 spanning over almost
two orders of magnitude, i.e. 0.2 ≤ ρs/ρ0 ≤ 10. Our experience is that spatially uniform
source conditions naturally promote the decay of the potential core, although the difference
we observed in supplementary simulations of light jets using spatially non-uniform source
conditions did not significantly affect the results.

In order to avoid any effects of variable density associated with the gravitational field
(i.e. buoyancy effects), we considered a situation without gravity, by imposing a null
gravitational acceleration in the momentum budget. Despite this, we will still refer to
as ‘heavy’ the high-density releases (ρs > ρ0) and the low-density releases (ρs < ρ0) as
‘light’.

A detailed verification of the reliability of the code in reproducing the first- and
second-order flow statistics was performed in Salizzoni et al. (2023), who compared the
large-eddy simulation with experimental results for an air–helium jet with initial density
ratio ρs/ρ0 = 0.4 and for an iso-density jet. Their study included an analysis of the
effect on the flow statistics of slightly different boundary conditions as well as different
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Figure 3. Density ratio (a), jet width (b), jet velocity (c), volume (d) and mass (e) fluxes as a function of the
streamwise z coordinate. Eight jets have been simulated, from the lightest to the heaviest: ρs/ρ0 = 0.2 (

�
), 0.4

(∗), 0.66 (×), 1 (◦), 1.5 (�), 2.5 (�), 5 (�), 10 (�).

subgrid models. It was shown that the results were not sensitive to the subgrid model and
that boundary conditions could impact local flow statistics near the source, but do not
significantly affect the integral flow statistics.

5. Results

5.1. Local and integral flow statistics
An overview of the results of the eight simulations is provided in figure 3. Here we show
the vertical evolution of integral flow variables as a function of the distance from the
source. Figure 3(a) presents the variation of the density ratio ρm/ρ0 due to the progressive
dilution with the ambient fluid: its decay for heavy releases and its increase for the
light ones. This dilution process is accompanied by an enhancement of the jet radius rm
(figure 3b), a decay of the jet velocity wm (figure 3c) and an increase of the volume Q and
mass G fluxes (figure 3d,e).

Figure 3(e) demonstrates that the heavier the release, the lower the growth rate of the
non-dimensional mass flux G/Gs. Conversely, the non-dimensional volume flux Q/Qs is
higher for heavier releases (figure 3d). Indeed, if the entrained fluid has a density which is
much smaller than the jet density, it contributes little to the enhancement of the mass flux
G. These heavy releases dilute more slowly than their lighter counterparts, as is evidenced
by a reduced growth rate for the jet radius rm and a reduced decay of the jet velocity wm.
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Figure 4. Radial profiles of mean vertical velocity w̃ (a–c) and Reynolds stress ˜u′′w′′ (d–f ) for a light jet with
(ρs/ρ0 = 0.2), an iso-density jet and a heavy jet (ρs/ρ0 = 5). Symbols as in figure 3. From left to right: z = 5rs,
15rs and 30rs.

As discussed in § 3, besides the evolution of the jet density ρm and the mass flux G,
the key elements underlying the turbulent entrainment process (3.1) are the evolutions
of the radial profiles of the mean vertical velocity w̃(r, z) and of the Reynolds stress
˜w′′u′′(r, z). We therefore focus on these two flow variables, whose radial profiles are
presented in figure 4, for three of the simulated jets: a light jet (ρs/ρ0 = 0.2), an iso-density
jet (ρs/ρ0 = 1) and a heavy jet (ρs/ρ0 = 5). The light jet clearly exhibits a more rapid
modification of the radial profiles of both w̃ and ˜w′′u′′, compared with the other two
(figure4a,d). The uniform conditions imposed at the source are almost immediately lost,
even in the core of the jet, for z/rs > 5. Therefore, the extent of the potential core tends to
be smaller as the density ratio is reduced. Analysing the case of the heavy jet, we can
observe a flat velocity profile in the core of the jet that persists up to z/rs = 15 (see
figure 4a–c). Corresponding profiles of the Reynolds stress (see figure 4d–f ) exhibit zero
value in the core of the jet that persists much longer within heavy releases, and one peak
that increases in magnitude for the light release.

As a consequence of the behaviour shown in figure 4, the profile coefficients γm and
δm exhibit significant variation (see figure 5). It is worth noting that, since the simulations
are characterised by the same boundary conditions at the source, all variations observed
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Figure 5. Vertical evolution of the (a) γm and (b) δm profile coefficients. Symbols as in figure 3.

in the profile coefficients γm and δm are solely due to the varying density ratios. In the
case of light releases, the dimensionless mean kinetic energy flux γm increases sharply in
the near field, exceeding the asymptotic value γm = 4/3, which corresponds to a Gaussian
radial velocity profile. Its peak is just below z/rs = 10, after which it reduces in value.
The maximum value reached by γm depends on the density ratio at the source: the smaller
the density ratio, the higher the value of the peak. Conversely, for heavy jets, moving
away from the source, the value of γm increases smoothly and tends progressively to the
asymptotic value for an iso-density jet, which is far from being attained at the top of our
computational domains for most of the cases analysed. The larger the density ratio at the
source, the smoother the increase of γm with distance from the source.

The behaviour of the non-dimensional TKE production term −δm is qualitatively similar
to that of the dimensionless mean kinetic energy flux term γm. For light releases, we
observe a rapid increase up to a peak and a subsequent decrease. Heavy releases exhibit
instead a progressive enhancement towards the asymptotic value. Physically this means
that light jets are characterised by a larger TKE production in the near field, when
compared with iso-density jets, and that in heavy jets the TKE production is instead
inhibited.

5.2. Entrainment
According to (3.1), the variations of γm and δm, observed for the jets with varying
density ratios at the source, are expected to have a direct impact on the entrainment
rate. Depending on the initial source conditions, these affect the entrainment coefficient
αE in different ways by inducing variations on both the production and the shape terms
(αE = αprod + αshape). Figure 6 shows the evolution with distance from the source of the
entrainment coefficients α, as defined by (1.1), and αE, αprod and αshape, as defined by (3.1)
for six (light and heavy) releases.

For all cases the values of the two coefficients α and αE (represented by solid black
lines and filled symbols, respectively, in figure 6a–d), which provide independent means
of evaluating entrainment, are in good agreement. This means that, as previously observed
for Boussinesq plumes (van Reeuwijk et al. 2016), neglecting higher-order terms is a
reasonable approximation for the estimate of αE (see Salizzoni et al. (2023) for further
details). The only differences between the two can be observed very close to the source
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Figure 6. Vertical evolution of the entrainment coefficients α (solid black lines), αE (filled symbols), αprod
(open symbols) and αshape (dashed lines), for light jets (a,b), iso-density jet (c) and three heavy jets (d–f ). Also
shown: experimental data of Salizzoni et al. (2023) represented by black diamonds in (b,c) and Charonko &
Prestridge (2017) (black pentagrams) in (c,e).

for the two heaviest releases (ρs/ρ0 = 5; 10). Figure 6(b,c) shows good agreement with
the experimental estimate of α by Salizzoni et al. (2023), for the case ρs/ρ0 = 0.4 and
for the iso-density jet. Further insight on the numerical estimates of the αprod and αshape
coefficients (which are not plotted here to limit the number of symbols on the graph) and
the reliability of large-eddy simulation data in reproducing the flow statistics are provided
in Salizzoni et al. (2023).

In the case of light releases (ρs/ρ0 = 0.2; 0.4) most of the variations of both coefficients
γm and δm occur within 10 source radii (see figure 5), attaining peak values that exceed
significantly those for an iso-density jet. Their influence on the production and shape terms
of αE is, however, weighted by the local value of the density ratio ρm/ρ0 (see (3.1)). This
implies that, even if γm and −δm increase with z more rapidly for a light jet than for an
iso-density jet (see figure 5a–c), the evolution of αprod is very similar. At the same time,
αshape varies very little and is close to 0 for the light jet further than 10rs, indicating no
changes to the shape of the profiles. As a result, and as already evidenced by Salizzoni
et al. (2023), the evolution of the entrainment coefficient αE = αprod + αshape for the
light jet is not markedly different from that of an iso-density jet. In both cases of a light
and iso-density jet, αprod rapidly becomes the most significant contribution to the global
entrainment.

The heavy jet cases, i.e. ρs/ρ0 = 1.5; 5; 10, behave differently (see figure 6d–f ). The
contribution of the shape term αshape decreases much more slowly and is not negligible
within almost the whole computational domain. In the very near field (z ≤ 5rs), due to the
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Figure 7. Log–log plot of the profile coefficients γm (a) and −δm (b) as a function of the density ratio. Symbols
as in figure 3. Black pentagrams: Charonko & Prestridge (2017). Black diamonds: Salizzoni et al. (2023).
Dashed lines represent power-law behaviours with slopes −0.17 for γm (a) and −1.4 for δm (b).

high value of αshape, the entrainment coefficient is clearly enhanced compared with that
of an iso-density jet. When z ≥ 5rs, α and αE follow the same trend as αshape, i.e. a slight
decrease, then they reach a value close to α0 ≈ 0.07, which is in close agreement with the
estimate provided by direct numerical simulations of iso-density jets (van Reeuwijk et al.
2016). The production term for heavy jets is instead reduced in the very near field (z ≤ 4rs)
due to the reduced TKE production.

It is clear from the analysis above that the evolution of the profile coefficients and
entrainment contributions depend strongly on the density ratio and its distance to the
source. In order to obtain a clearer picture of the effect of the density ratio, we remove the
near-source region z/rs < 15 from the analysis, as this region (for the case of the heavy
releases) is strongly affected by the breakdown of the potential core, which implies strong
contributions to αshape. As can be seen in figure 6, this discards contributions of αshape
in all except the heaviest cases. Even with the removal of data for z/rs < 10, the range of
density ratios remains considerable and spans 0.5 < ρm/ρ0 < 4.

When plotting γm and −δm as a function of the density ratio ρm/ρ0, all simulations draw
clear one-to-one dependencies of the two coefficients on the density ratio (figure 7a,b),
which are well fitted by a power law with exponents −0.17 and −1.4 for γm and δm,
respectively. Also plotted in figure 7 are the experimental results by Salizzoni et al.
(2023) for a light jet (ρs/ρ0 = 0.4) and an iso-density jet, and estimates inferred from
the experiments by Charonko & Prestridge (2017) for a heavy jet. Even though distributed
over a narrower range of values of ρm/ρ0, the experimental results correspond closely
to the numerical data, confirming that the descending trends of γm and −δm with ρm/ρ0
observed here are a robust feature of these flows.

Finally, we show in figure 8 the dependence of α on ρm/ρ0 for all simulations (over
the range 10 < z/rs < 30) and including the experimental estimates by Salizzoni et al.
(2023) and Charonko & Prestridge (2017). The black dashed line shows the prediction
of α ≈ αprod based on the power-law scaling observed in figure 7(a,b), indicating a
decreasing trend with a much smaller exponent than those for γm and δm. Indeed,
αprod = (ρm/ρ0)δm/(2γm), and δm/γm ∼ (ρm/ρ0)

−1.23 (see figure 7), implying that
αprod ∼ (ρm/ρ0)

−0.23, i.e. only very weakly dependent on ρm/ρ0. This slight decreasing
trend is lost when taking into account the contribution of αshape. Although the data range
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Figure 8. Entrainment coefficient as a function of the density ratio. Symbols as in figures 3 and 7. Shown
as black diamonds are the experimental data of Salizzoni et al. (2023) and as black stars the experimental
data of Charonko & Prestridge (2017). The black dotted line shows α = 0.07, the dashed black line represents
the power-law behaviour of αprod , while the solid red line represents the R&S scaling for α (i.e. (1.2), with
α0 = 0.068).

is too limited to make definite statements, no clear dependence of α on the density ratio is
discernible.

Figure 8 also shows (red solid line) the relation provided by the R&S scaling (1.2), which
is evidently not in accordance with the numerical and experimental data. To get insight
on the mismatch between the data and the R&S scaling, we can investigate the latter’s
validity by manipulating the entrainment relation (3.1). According to (3.1), a sufficient
condition for the R&S result β = 1/2 to hold is for the TKE production to scale as αprod ∼
(ρm/ρ0)

1/2 and the contribution of the shape term αshape to be negligible.
Although the shape term αshape vanishes for the light jets, this is not the case for the

heavy jets, which are instead characterised by a persistent potential core, whose extent
increases for increasing density ratios. In the case of heavy releases, it is therefore evident
that density differences affect the flow in several distinct respects that are likely to be
difficult/impossible to decouple in the near field.

If self-similarity had to be recovered, therefore, this would be only for low-density
releases, given their tendency to squeeze the potential core in few source radii. Similarity
solutions should, however, be consistent with the evolution of αprod, whose scaling,
determined here based on empirical evidence, goes as (ρm/ρ0)

−0.23, i.e. different from
that initially suggested by R&S. Strictly speaking, this power-law behaviour of αprod with
density ratio may not be valid outside the range of density ratios studied.

6. Conclusions

We studied the effect of a variable density ρm on the turbulent entrainment of ambient
fluid, of density ρ0, within axisymmetric jets, focusing on the evolution of the entrainment
coefficient α and its dependence on the density ratio ρm/ρ0.

Early laboratory experiments conducted by R&S quantified entrainment in the far field
of variable-density jets and suggested a scaling described by α ∝ (ρm/ρ0)

1/2. However,
recent experimental and numerical analyses that focused on jets’ near field (Salizzoni et al.
2023) have challenged this scaling. In order to address this apparent contradiction, we
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revisited the original experimental data by R&S in § 2. We demonstrated that, since the
R&S experiments focused on the far-field behaviour of the jet, their data do not provide
sufficient evidence for a definitive conclusion about the dependence of α on ρm/ρ0.

To investigate the scaling of α on ρm/ρ0, we performed large-eddy simulations, verified
against experimental data for two reference cases (Salizzoni et al. 2023), of jets having
a density at the source varying over two orders of magnitude. Following Salizzoni et al.
(2023), the interpretation of the results relies on the entrainment decomposition by van
Reeuwijk & Craske (2015), whose formulation was conveniently extended to deal with
large-density releases. This framework allows the entrainment coefficient to be expressed
as a function of two integral quantities, γm and δm expressing the effect of a varying
shape of the mean radial velocity profiles and that of the TKE production, respectively.
Numerical results show that an increasing density ratio (ρm/ρ0) has a major effect in
reducing both γm and δm. This tendency is in very good agreement with that depicted by
recent experimental data, obtained over a narrower rage of ρm/ρ0. These modifications
reflect the tendency of heavier releases to delay, compared with lighter ones, the TKE
production and therefore the modification of the radial profiles of the mean velocity.
Despite this, their combined effect in the overall entrainment process tends to cancel, so
that the entrainment coefficient turns out to be relatively insensitive to variations of the
density ratio (ρm/ρ0).

Our observations are, therefore, not consistent with the scaling α ∼ (ρm/ρ0)
1/2

originally proposed by R&S. This has significant implications for the mathematical
modelling of variable-density jets, since the R&S entrainment relation is indeed the only
one consistent with full self-similarity of the flow (for similarity solutions, see e.g. van
den Bremer & Hunt (2010)). Therefore, our findings suggest that variable-density jets are
not expected to be self-similar in those (typically near-field) parts of the flow where the
effects of large density differences are significant.

However, the simulations also clearly show that variable-density effects on entrainment
are compounded by entrance effects, particularly the existence of a potential core. We
showed that the length of the potential core has a strong dependence on the density
ratio, which, in turn, has a direct effect on the profile coefficient γm which affects α.
Entrance effects cannot be expected to have any universality since they are intimately
related to the manner in which the fluid is injected into the domain and will therefore be
configuration-specific. For this reason, it will be challenging to make further progress
regarding the scaling of α without resorting to idealised simulations. One way to
circumvent the potential-core issue is to perform variable-density simulations of a planar
temporal jet (e.g. Cimarelli et al. 2021). For this flow, the jet evolves in time rather than in
space, and it will be possible to study the dependence of α on the density ratio once the
initial transients have passed.

In a more general way, there is a clear need for further experimental and numerical
work on variable-density releases covering a large range of source conditions. This is
required to widen our knowledge of the dynamics of these flows, in the case of both
momentum-dominated releases (variable-density jets) and buoyancy-dominated releases,
usually referred to in the literature as non-Boussinesq plumes (Rooney & Linden 1996;
Woods 1997; Lanzini et al. 2024).
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