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Many stellarator coil design problems are plagued by multiple minima, where the locally
optimal coil sets can sometimes vary substantially in performance. As a result, solving
a coil design problem a single time with a local optimization algorithm is usually
insufficient and better optima likely do exist. To address this problem, we propose a global
optimization algorithm for the design of stellarator coils and outline how to apply box
constraints to the physical positions of the coils. The algorithm has a global exploration
phase that searches for interesting regions of design space and is followed by three
local optimization algorithms that search in these interesting regions (a ‘global-to-local’
approach). The first local algorithm (phase I), following the globalization phase, is based
on near-axis expansions and finds stellarator coils that optimize for quasisymmetry in
the neighbourhood of a magnetic axis. The second local algorithm (phase II) takes these
coil sets and optimizes them for nested flux surfaces and quasisymmetry on a toroidal
volume. The final local algorithm (phase III) polishes these configurations for an accurate
approximation of quasisymmetry. Using our global algorithm, we study the trade-off
between coil length, aspect ratio, rotational transform and quality of quasi-axisymmetry.
The database of stellarators, which comprises approximately 200 000 coil sets, is available
online and is called QUASR, for ‘quasi-symmetric stellarator repository’.
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1. Introduction

Stellarator coil design is typically framed as an optimization problem, where the
objective function targets charged particle confinement, other physics properties and
engineering requirements on the electromagnetic coils. Coil design problems can admit
multiple local minima (Miner et al. 2001; Zhu et al. 2017) with large variability in
performance of the discovered designs (Wechsung et al. 2022). One remedy of this
problem is to use stochastic optimization (Glas et al. 2022; Wechsung et al. 2022), which
appears to reduce the variability of the discovered minima. Stochastic optimization of
coils has also been explored in Lobsien, Drevlak & Pedersen (2018); Lobsien et al. (2020).
Another approach is to use global optimization algorithms that attempt to fully explore the
range of allowable stellarator coil designs. Glas et al. (2022) combine both remedies by
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2 A. Giuliani

FIGURE 1. Current workflow wraps phase I (the near-axis expansion algorithm, Giuliani et al.
2022a) in globalization subroutines (Eriksson et al. 2019) to generate interesting initial guesses
for the subsequent volume QA optimizations in phase II (Giuliani et al. 2022b) and III (Giuliani
et al. 2023).

searching for the global optimum of a stochastic objective function. Genetic algorithms
have also been explored in Miner et al. (2001).

In this work, we propose a novel technique for applying global optimization algorithms
to deterministic coil design problems plagued by many local minima. Our coil design
workflow is decomposed into three phases, wrapped in a globalization procedure (figure 1)
to automatically design a large database of vacuum field stellarators for various design
targets. During phase I, the first algorithm finds initial coil sets with nested magnetic
surfaces in the neighbourhood of a magnetic axis by using the near-axis expansion
formalism (Giuliani et al. 2022a). During phase II, the second algorithm takes these
coil sets and expands the region of nested flux surfaces with a good approximation
of quasi-axisymmetry (QA) (Giuliani et al. 2023). Finally, during phase III, the third
algorithm polishes these coil sets for precise QA (Giuliani et al. 2022b).

We compare two approaches to globalization. The first, somewhat naive approach
attempts to find a global minimum of the objective by perturbing initial guesses provided
to a local optimization algorithm. The disadvantage is that, if the perturbation is too large,
then the optimizer might be sent to an uninteresting region of parameter space. Conversely,
if the perturbation is too small, the optimizer might not sufficiently explore the design
space. Despite this downside, it can yield good results with some tuning (Wechsung
et al. 2022). A second, much less ad hoc approach, relies on the global optimization
algorithm called trust region Bayesian optimization (TuRBO) (Eriksson et al. 2019). For
this algorithm, the user must provide lower and upper bounds on the design variables,
known as box constraints. This algorithm has been used before in coil design problems
(Glas et al. 2022), but our approach is notably different as we reformulate our optimization
problem to accept constraints on the geometry of the coils in physical, rather than Fourier
space.

Since we are generating a large data set of stellarators, we also study the trade-offs
between multiple competing design targets, which is the aim of multi-objective
optimization. Recently, multi-objective optimization was applied to stellarator coil design
(Bindel, Landreman & Padidar 2023), where a first-order continuation algorithm to
construct a local Pareto front was developed. The algorithm was based on a Taylor
expansion of the optimality condition that points on the Pareto front satisfy. In this work,
we do not use this continuation approach but nevertheless study the trade-offs in stellarator
coil design using our database.

To summarize our contributions, we propose a simple way to incorporate box constraints
on the physical positions of stellarator coils so that global optimization algorithms can
be applied to the first phase of the coil design procedure. Following this first phase are
two volume QA algorithms which target nested flux surfaces and precise QA. Scanning
over various physics design targets, we have compiled a comprehensive database of
approximately 200 000 stellarator devices, and examined the trade-off between competing
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Direct stellarator coil design with global optimization 3

design objectives (quality of quasisymmetry, total coil length, rotational transform and
device aspect ratio). A subset of the devices have comparable quasisymmetry to the highly
optimized configurations in Giuliani et al. (2023).

We would also like to point out some limitations of this work. First, the globalization
is only applied to the near-axis coil design algorithm, and not to the volume QA phases
of coil design. Because of this, we may miss out on performant stellarators should precise
first-order near-axis QA in phase I not correlate with precise volume QA in phases II
and III. Second, this database only contains curl-free stellarators with optimized QA,
although our algorithms are generic and apply to other flavours of quasisymmetry. These
vacuum-field devices are can also useful as they can be used as initial guesses during an
optimization as plasma pressure is progressively increased (Boozer 2019). Third, there
may be duplicate devices in the database and possible mechanisms for this are outlined in
§ 5. Finally, there are specialized algorithms for visualizing the Pareto front, which we do
not use here.

2. Phase I: stellarators optimized for quasisymmetry on the magnetic axis

The goal of the first optimization problem in phase I is to find an initial set of coils
that has nested flux surfaces and produces a good approximation of quasisymmetry, at
least locally to the magnetic axis. To this end, we recall here the optimization problem in
Giuliani et al. (2022a) that computes coils based on near-axis expansions

min
c,I,a,σ ,ιa,η̄

f̂axis(c, I, a, σ , η̄, ιa), (2.1a)

subject to g(a, σ , η̄, ιa) = 0 on axis, (2.1b)

ιa = ιtarget, (2.1c)

Li = Ltarget, (2.1d)

κi ≤ κmax, i = 1, . . . , Nc, (2.1e)

1
Li

∫
Γ (i)

κ2
i dl ≤ κmsc, i = 1, . . . , Nc, (2.1f )

‖Γ (i) − Γ (axis)‖ ≥ dmin, (2.1g)

‖Γ (i) − Γ ( j)‖ ≥ dmin, for i �= j, (2.1h)

‖Γ ′(i)‖ − Li = 0, for i = 1, . . . , Nc, (2.1i)

where

f̂axis(c, I, a, η̄, σ , ιa) =
∫

axis
(‖B(c, I, a)‖ − BQS(a))2 dl

+
∫

axis
‖∇B(c, I, a) − ∇BQS(a, η̄, σ , ιa)‖2 dl, (2.2)

and B,∇B are the magnetic field and its gradient generated by the coils, BQS,∇BQS are
the magnetic field and its gradient, which is quasisymmetric to first order for the given
magnetic axis shape; Γ (axis),Γ (i) ∈ R

3 are respectively the vector of the magnetic axis and
ith coil’s Cartesian coordinates. The vector of coil degrees of freedom are stored in c ∈
R

3Nc(2Nf ,c+1). The x, y, z positions of the Nc base modular coils are each represented using
a Fourier series with Nf ,c modes (Zhu et al. 2017). The electromagnetic coils also have
an associated current stored in the vector I ∈ R

Nc . The full device is obtained by applying
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discrete rotational symmetry with nfp field periods and stellarator symmetry to Nc base
modular coils. The length of the ith coil is Li = ∫ 1

0 ‖Γ ′(i)(θ)‖ dθ . The stellarator symmetric
magnetic axis is represented using a Fourier series of the R and Z positions of the magnetic
axis, represented in cylindrical coordinates. In total, this results in 2Nf ,a + 1 degrees of
freedom associated with magnetic axis, stored in a ∈ R

2Nf ,a , where the dimensionality is
one less than the number of Fourier coefficients of the axis since we require that the mean
radius of the magnetic axis be 1 m. Finally, ιa ∈ R is the on-axis rotational transform,
and η̄ ∈ R\{0} is a scalar that describes how much that magnetic field strength varies
on surfaces in the neighbourhood of the axis. Given a and η̄, the vector σ ∈ R

2Nf ,a and
on-axis rotational transform ιa are fully determined via the constraint g in (2.1b), which is
the periodic Ricatti equation

dσ

dϕ
+ ι

[
η̄

κ4
+ 1 + σ 2

]
+ 2τ

G0

B0

η2

κ2
= 0, (2.3)

discretized using a Fourier collocation method (Giuliani et al. 2022a), where κ, τ are
respectively the curvature and torsion on the magnetic axis and B0 is the field strength
on axis. Other variables in (2.3) such as ϕ, σ, G0 are defined in Landreman & Sengupta
(2018). The data ιa, η̄, σ fully define the gradient of the target quasi-symmetric magnetic
field on axis. After solving (2.3), then we can evaluate the near-axis gradient ∇BQS.

Using the implicit function theorem, we minimize the reduced objective

faxis(c, I, a, η̄) = f̂axis(c, I, a, η̄, σ (a, η̄), ιa(a, η̄)), (2.4)

by eliminating σ , ιa via the constraint (2.1b). Thus, this constraint is satisfied exactly. The
constraint in (2.1c) ensures that a stellarator is found with the target on-axis rotational
transform ιtarget. The constraint in (2.1d) ensures that each electromagnetic coil has the
same length Ltarget. The constraints in (2.1e) and (2.1f ) ensure that the maximum curvature
and mean squared curvature do not exceed κmax and κmsc, respectively. The constraints
in (2.1g), (2.1h) prevent the inter-coil and coil-to-axis distances from decreasing below
dmin. Finally, the constraint in (2.1i) ensures that the coil incremental arclength stays
uniform. Constraints (2.1c)–(2.1i) are enforced using a penalty method, and are satisfied
to 0.1 % precision. For each of these constraints, a quadratic penalty term appears in
the objective function. For example, the quadratic penalty associated with the equality
constraint (2.1c) is 1

2(ιa − ιtarget)
2. To ensure that the constraints are satisfied accurately

enough, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is run multiple times
with a fixed computational budget. At the end of each BFGS run, the weight in front of
the quadratic penalty was increased by a factor of 10 if the constraint is violated by more
than 0.1 %.

A local minimum of (2.1) is a set of electromagnetic coils that produce a magnetic field
that is close to the quasisymmetric magnetic field on a magnetic axis. This optimization
problem was solved using local quasi-Newton optimization methods in Giuliani et al.
(2022a) and Wechsung et al. (2022), where the analytical gradient of the reduced objective
faxis was obtained using both forward sensitivities and adjoint approaches. We always use
the BFGS quasi-Newton method in phase I of the workflow.

In the next two sections, we both illustrate the need for globalization when solving (2.1)
and outline two different techniques to accomplish this.

2.1. Naive globalization of phase I
A first naive approach to globalization is to perturb the geometry and currents of flat
electromagnetic coils, as well as the parameters of the magnetic axis to generate a set
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(a)
(b)

FIGURE 2. (a) We plot the on-axis quasisymmetry error with respect to the total coil length
used, where we observe that there are multiple minima. (b) We plot four distinct local minima
when the total coil length is 49.81 m, where the colours of the coils correspond to those of the
squares on the left. The coil sets’ associated magnetic axes are not plotted to avoid clutter in the
image.

of initial starting points. These starting points are used to initialize phase I, where the
local gradient-based optimization algorithm BFGS is used to find a local minimum
of the objective in the neighbourhood of the perturbed initial guess. The physics and
engineering quantities that we target are ιtarget = 0.9 using nfp, ncoils per hp = 2, dmin = 0.1 m,
κmax = 5 m−1 κmsc = 5 m−2, the target coil length Ltarget is varied between 40 and 80 m.
For each value of coil length, we solve (2.1) with distinct initial guesses 16 times.
The initial guesses are obtained by perturbing the Fourier coefficients of initially flat
coils with normally distributed noise with zero mean and standard deviation ε. One
has substantial freedom to decide many Fourier coefficients to perturb, as well as the
standard deviation of the perturbation and how it decays. If ε is too large then the
local optimizer might be sent into an uninteresting region of coil parameter space. If
ε is too small, and it might not fully explore the set of feasible coil designs. For the
experiment here, we perturb the currents, η̄, and only the first two Fourier harmonics
of the coils, and magnetic axis. Extensive (but tedious and computationally intensive)
tuning revealed that the standard deviation of the noise that discovered devices with lowest
quasi-symmetry error was ε = 0.01 m. We find that the quality of the minima found
depends strongly on the choice of ε, the number of Fourier modes that are perturbed,
and that there is no way to know a priori that this value works well for other stellarator
designs.

In figure 2, we plot the trade-off between the on-axis quasisymmetry error and total coil
length. We find, as expected, that lower quasisymmetry errors are attainable with longer
coils. It is clear that making no attempt at globalization to solve this optimization problem
might result in a sub-optimal coil set. The problem of multiple minima becomes more
pronounced for devices with longer coil lengths because there are more, intricate ways for
the coils to arrange themselves. Finally, at around 50 m, there is a device that appears as
an outlier with remarkably low near-axis quasisymmetry error. This hints that the naive
approach is missing interesting solution branches.
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2.2. The TuRBO globalization of phase I
An alternative to the naive approach is to use a global optimization algorithm. The coil set
it finds is then given as the starting point in phase I to a local gradient-based optimization
algorithm BFGS. This global-to-local approach was explored in Glas et al. (2022), where
stochastic global optimization of coil geometries was done using the DTuRBO algorithm
(Padidar et al. 2021), an extension of the gradient-free global optimization algorithm
TuRBO (Eriksson et al. 2019) that takes into account gradients. The TuRBO algorithm
solves the minimization problem

min
x∈RN

f (x)


i ≤ xi ≤ ui, for i = 1 . . . N,

}
(2.5)

where N is the dimension of the optimization problem, 
i, ui are respectively lower
and upper bounds on the components of the control variables. That is, the algorithm
attempts to find the global minimum f (x) on an N-dimensional hyper-rectangle.
The TuRBO algorithm completes a preliminary exploration phase by quasi-uniformly
sampling the hyper-rectangle to find interesting areas of parameter space. Then,
it uses trust-region-based Bayesian optimization algorithms to further refine the
solution.

It is difficult to define sensible lower and upper bounds in (2.5) on the unknowns
when they are the Fourier coefficients of the coils. There should be some decay in the
size of the boxes with increasing mode number, but it unclear how this decay should be
chosen. In Glas et al. (2022), manufacturing errors were projected onto a Fourier basis,
from which reasonable bounds on the Fourier coefficients were inferred. In this work, we
propose a different way of determining the box constraints for deterministic coil design
problems, however, our technique is generic enough to be used in the stochastic context
as well.

2.2.1. Bounding boxes
It is straightforward to constrain the coil currents to −1 ≤ μ0Ii ≤ 1, where μ0 = 4π ×

10−7 is the magnetic constant. The parameter η can also be constrained by 0 ≤ η̄ ≤ 2.
We still use a Fourier series to represent the coils and axis, but change the

degrees of freedom from Fourier coefficients to spatial coordinates, linked to each
other by the discrete Fourier transform. In this way, physically meaningful box
constraints can be provided to TuRBO. These positions, or anchor points, in cylindrical
coordinates, (ri, θi, zi), are constrained to the box [0, 1 + Rminor] × [θi − �θ/2, θi +
�θ/2] × [−Rminor, Rminor], where Rminor = Ltarget/2π, and �θ = ρ(2π/2nfpncoils per hp), θi =
(2π/2nfpncoils per hp)(i + 1/2), Rminor is the radius of the perfectly circular coil with length
Ltarget, �θ defines a cylindrical sector that the coil can occupy and the ρ multiplier
ensures that the coil bounding boxes overlap somewhat. Randomly sampling 2Nf ,c + 1
points on the box will frequently generate coils with complex geometries (figure 3a).
These geometries are not particularly useful and we would like TuRBO to avoid
wasting time in these uninteresting areas of parameter space. These configurations
can be avoided, while still using the same anchor points, by re-indexing them so
that the points are ordered counterclockwise about their barycentre in the RZ plane
(figure 3b). This unravels the coils. Finally, these coil coordinates are converted to
Cartesian coordinates, projected onto a Fourier basis, then used to evaluate the near-axis
objective (2.4).
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(a) (b) (c)

FIGURE 3. The randomly generated coil in cylindrical coordinates in (a) is too complex. By
Re-indexing the nodes by ordering them about their barycentre in the RZ plane, the coil untangles
in (b). (c) A set of coils, the magnetic axis and their associated bounded boxes in physical space
are illustrated. The full stellarator is not shown, but can be obtained by applying symmetries.

We also generate (Ri, φi, Zi) positions, or anchor points, for the magnetic axis, where
(Ri, Zi) are constrained to the box [1 − 1/(1 + n2

fp), 1 + 1/(1 + n2
fp)] × [−0.2, 0.2], and

φi is a uniformly spaced cylindrical angle in 2π/nfp. The bounding boxes for Ri and Zi are
informed by the fact that quasi-axisymmetric magnetic axes have zero helicity. Helicity
is an integer associated with the axis geometry that measures how many poloidal transits
the axis normal vector makes as the axis traces one toroidal revolution. It was shown in
Rodriguez, Sengupta & Bhattacharjee (2022) that magnetic axes of the form

R(φ) = 1 + a cos(nfpφ), (2.6)

Z(φ) = b sin(nfpφ), (2.7)

have zero helicity when a < 1/(1 + n2
fp). The situation is more delicate if additional

Fourier harmonics are used to represent the axis (as we do here), but in the case
of a single dominant harmonic, this bound on a is a well-informed estimate. The
box associated with Zi was chosen to prevent large excursions from the Z = 0 plane,
although the size of this box was somewhat arbitrary and other values might have been
used.

There is one final detail that ensures that the resulting axis curve is stellarator
symmetric. After sampling Nf ,a + 1 points from the bounding box associated with the
radial coordinates Ri, they are arranged in an 2Nf ,a + 1-sized array as follows:

[R0 − s, R1 − s, . . . , RNf ,a − s, RNf ,a − s, . . . , R1 − s], (2.8)

where s is a shift to ensure the array has mean 1. After the shift, the radial positions of
the magnetic axis may lie slightly outside the original bounding box. Similarly, we sample
Nf ,a points from the bounding box associated with the vertical coordinates Zi, and arrange
them in a 2Nf ,a + 1-sized array as follows:

[0, Z1, . . . , ZNf ,a,−ZNf ,a, . . . ,−Z1]. (2.9)

The stellarator symmetric R and Z harmonics of the magnetic axis are obtained by discrete
Fourier transform of these arrays and provided to the near-axis objective (2.4).

The bounding boxes of different coils can overlap each other and all the bounding boxes
of the coils necessarily overlap the one of the magnetic axis, since we do not search
for windowpane coils. Thus, it is possible for the generated coils to be linked, or for

https://doi.org/10.1017/S0022377824000412 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000412


8 A. Giuliani

the coils to not be linked with the magnetic axis. In addition, it is still possible that
the magnetic axis sampled from the bounding boxes to have non-zero helicity. It is for
this reason that we add penalty terms to the objective faxis that avoid these undesirable
configurations

f (c, I, a, η̄) = faxis(c, I, a, η̄) + w

[∑
i

∑
j>i

li,j(c) +
∑

i

|li,axis(c, a) − 1| + h(a)

]
,

(2.10)

where we abuse notation here and use c, a to represent the vector of anchor points on the
coils and axis, respectively. These positions can be converted to the Fourier coefficients
by using a discrete Fourier transform. The value li,j is the absolute value of the linking
number between coils i and j, and li,axis is the absolute value of the linking number
between coil i and the magnetic axis. For the linking number calculation, we use the
implementation in Bertolazzi, Ghiloni & Specogna (2019) since it returns a linking number
with certified accuracy by tracking rounding errors in the calculation. Finally, h(a) is
the absolute value of the axis helicity. The weight w = 107 is chosen to make the terms
that it multiplies greater than faxis. The penalty terms multiplied by w are zero when the
design variables describe a stellarator with unlinked coils that each wrap once poloidally
around a magnetic axis with zero helicity. Since the objective is no longer differentiable
due to the linking number and helicity calculation, we use TuRBO rather than
DTuRBO.

We also designed stellarators using an axis bounding box independent of nfp,
(Ri, Zi) ∈ [0.85, 1.15] × [−0.15, 0.15], and neglecting to include the helicity penalty. In a
postprocessing step, devices that had an axis with non-zero helicity were discarded. This
approach risks discarding devices and wasting computational resources but it is capable
of producing comparable results.

2.3. Illustration of TuRBO globalization followed by phase I
To illustrate the global-to-local procedure, we examine the TuRBO globalization procedure
followed by the phase I optimization for a single stellarator. We use a batch size of 100 and
restrict TuRBO to a budget of 15 000 function evaluations, of which 1000 are used in
the initial exploration phase; TuRBO’s internal Gaussian process model is only trained
using the most recent 1000 function evaluations for speed. Finally, the underlying Fourier
discretization uses Nf ,c = Nf ,a = 2 for the coils and axis during this global exploration
phase. The coil set and magnetic axis from the global search are used as the initial
guess to the BFGS algorithm to polish the solution. During this phase, the number of
Fourier modes used is increased to Nf ,c = Nf ,a = 6. Before BFGS obtains a good enough
approximation to the inverse Hessian, especially during the first few iterations, the line
search might accept a large enough step such that the coils become interlocked or unlinked
with the magnetic axis. To avoid this, we use a linking number calculation to trigger the
line search.

In figure 4 we provide the objective function evaluations over the course the TuRBO
globalization then phase I of figure 1. The TuRBO phase of the run has large variations
in the objective function, varying over several orders of magnitude. When the objective is
larger than 107, this likely corresponds to a device that has an axis with non-zero helicity,
linked coils or coils unlinked with the axis; TuRBO quickly finds an interesting region of
parameter space and it could have used a smaller budget. The notable jump in the objective
function value around 11 000 function evaluations occurs when TuRBO no longer can
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(b)(a)

FIGURE 4. The value of the objective function when applying TuRBO then BFGS. For
the TuRBO phase, the objective values are evaluations of (2.10), which includes the
non-differentiable penalties and the ‘iteration #’ is actually number of function evaluations. For
the BFGS phase, the objective values are evaluations of (2.2), and ‘iteration #’ refers to the
objective function values after an accepted line search. The red line is the best function evaluation
so far. (b) We plot the best stellarator found by TuRBO, given by Design 4.A, provided as the
initial guess to BFGS in phase I. Then, the stellarator found by BFGS after increasing the number
Fourier modes is given by Design 4.B.

make progress in the trust region, so it is discarded and another one is initialized. The best
configuration found by TuRBO is provided and labelled Design 4.A. The coil set at the end
of phase I (Design 4.B) has changed substantially from those obtained after the TuRBO
phase.

2.4. Comparison of devices from TuRBO and naive globalization after phase I
In this section, we compare the performance of TuRBO with the more naive approach by
solving (2.1) for many target coil length values when ι = 0.9, nfp, ncoils per hp = 2. To this
end, we execute the TuRBO globalization followed by phase I, as illustrated in § 2.3 and
figure 4. In both naive and TuRBO approaches, the workflow is executed 16 times per
target coil length. The quasisymmetry error of the resulting configurations are provided in
figure 5. TuRBO finds devices that outperform those found by the naive approach, and we
plot two devices from each algorithm, called Designs 5.A and 5.B. We find that Design 5.B
is from a genuinely different solution branch. To drive this home, we use it as an initial
guess, we solve (2.1) for multiple different target coil lengths. This solution branch persists
on both sides, and was evidently even missed by TuRBO. This highlights the difficulty of
finding global minima.

With very modest input from the practitioner, TuRBO does a good job of localizing
performant minima. We find that the choice of the overlap factor ρ only modestly affected
the quality of the minimizers found. In contrast, one has to decide on how many Fourier
modes to perturb and the size of each perturbation to use with the naive approach. This
can have a large effect on the quality of the minimizers found.
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(b)(a)

FIGURE 5. (a) We provide the trade-off between axis quasisymmetry error and total coil
length used for local minima found using the naive approach and TuRBO with ι = 0.9, and
nfp, ncoils per hp = 2. (b) We have plotted two coil sets, called Designs 5.A and 5.B, corresponding
respectively to the red, and green square markers. Using Design 5.B as an initial guess, we solve
(2.1) for different target coil lengths, resulting in the devices corresponding to the blue crosses.
The axis QA error refers to the terms in (2.2).

3. The near-axis coil sets obtained after phase I

We solve (2.1) multiple times with combinations of the following design targets:

ιtarget = 0.1, 0.2, 0.3, . . . , 0.9,

Ltarget = 4.5, 4.75, 5, . . . , 8.5, 8.75, 9,

ncoils per hp = 1, 2, 3, 4, . . . , 13,

nfp = 1, 2, 3, 4, 5,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.1)

using both the naive and TuRBO globalization approaches, then combining the data sets
obtained. To avoid unrealistic configurations, we only use combinations of the above
design targets such that the total coil length used 2nfpncoils per hpLtarget ≤ 120 m. For all
devices and physics targets, we use dmin = 0.1 m, κmax = 5 m−1 κmsc = 5 m−2. In figure 6,
we provide the on-axis quasi-symmetry error for a subset of the stellarators, where we
observe the expected trade-off between axis quasisymmetry and total coil length: as
the total coil length gets longer, the minimum attainable quasisymmetry error decreases
and levels off. If one fixes the total coil length used, but increases the number of coils
per half-period, this can drastically improve the on-axis quasisymmetry error. This is
illustrated in Designs A and B plotted on the bottom row of figure 6. Both stellarators
use the same length of coil (54 m), but have 1 and 2 coils per half-period, respectively,
where shorter, more numerous coils are preferred. The coils in Design B also interleave
with one another, in a similar fashion to the coils in figure 5. It appears that we can find
configurations with a good approximation of on-axis quasi-symmetry for all values of
nfp. Moreover, for a fixed coil length, increasing the number of field periods seems to
improve the on-axis quasisymmetry error, although the coil-to-axis distance decreases. As
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(a)

(b)

FIGURE 6. The near-axis QA error with respect to total coil length used when ι = 0.5, each
point on the scatter plot corresponds to a different device and each panel corresponds to a
different number of field periods, and the colour refers to the number of coils per half-period
used. Below, we plot two configurations (Designs 6.A and 6.B) that use the same total coil
length but different numbers of coils, 1 and 2 coils per half-period, respectively. The axis QA
error refers to the terms in (2.2).

we will observe in the next section, this observation does not bear out when optimizing
for quasisymmetry on a volume.

The generated coil sets can produce nested flux surfaces, but sometimes only over a
small volume in the neighbourhood of the magnetic axis, making it a good set of initial
conditions for the next phase of coil optimization.

4. Phases II and III: stellarators optimized for quasisymmetry on a volume

Taking coil sets optimized for near-axis quasisymmetry obtained during phase I, we now
optimize for quasisymmetry on a volume with varying aspect ratios during phases II and
III. The objective that we minimize is the sum of the average (normalized) QA error and
the Boozer residuals on Ns surfaces parametrized in Boozer coordinates ϕ, θ

f̂surface(c, I, s1, ι1, G1, . . . , sNs, ιNs, GNs)

:= 1
Ns

Ns∑
k=1

{∫ 1
0

∫ 1/nfp

0 Bnon-QA(c, I, sk, ϕ, θ)2‖n(sk, ϕ, θ)‖ dϕ dθ∫ 1
0

∫ 1/nfp

0 BQA(c, I, sk, θ)2‖n(sk, ϕ, θ)‖ dϕ dθ

+ 1
2

wr

∫ 1

0

∫ 1/nfp

0
‖r(sk, ιk, Gk, c, I, ϕ, θ)‖2 dϕ dθ

}
, (4.1)

where Cartesian coordinates of points on the kth surface Σ(sk, ϕ, θ) ∈ R
3 are expressed

using the Fourier representation in Giuliani et al. (2022b). A surface has ns degrees of
freedom associated with it, stored in sk ∈ R

ns . In the objective function above, the surface
normal is

n(sk, ϕ, θ) = ∂Σ

∂ϕ
(sk, ϕ, θ) × ∂Σ

∂θ
(sk, ϕ, θ), (4.2)
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and wr > 0 is a weighting parameter in front of a partial differential equation (PDE)
residual, described below. The electromagnetic coils also have an associated current stored
in the vector I ∈ R

Nc−1, where the dimensionality is one less than the number of coils
because the first coil’s current is fixed, preventing the currents from approaching zero.
Analogously to the previous phase, the vector of coil degrees of freedom are stored in
c ∈ R

3Nc(2Nf ,a+1). The x, y, z positions of the Nc base modular coils are each represented
using a Fourier series with Nf ,c modes. The Boozer residual r, and scalars Gk and ιk are
described in more detail below.

The terms in the QA error ratio of (4.1), introduced in Giuliani et al. (2022b), are given
by

BQA(c, I, sk, θ) =
∫ 1/nfp

0 B(Σ(sk, ϕ, θ), c, I) ‖n(sk, ϕ, θ)‖ dϕ∫ 1/nfp

0 ‖n(sk, ϕ, θ)‖ dϕ
, (4.3)

with

Bnon-QA(c, I, sk, ϕ, θ) = BQA(c, I, sk, θ) − B(c, I, sk, ϕ, θ), (4.4)

where B(Σ(sk, ϕ, θ), c, I) is the field strength evaluated on the kth magnetic surface.
The goal is to design a set of coils that solves the following optimization problem:

min
c,I,s1,ι1,G1,...,sNs ,ιNs ,GNs

f̂surface(c, I, s1, ι1, G1, . . . , sNs, ιNs, GNs) (4.5a)

subject to gk(sk, ιk, Gk, c, I) = 0, for k = 1, . . . , Ns, (4.5b)

ιtarget − 1
Ns

Ns∑
k=1

ιk = 0, (4.5c)

Rmajor(sNs) = 1, (4.5d)
Nc∑

i=1

Li ≤ Lmax, (4.5e)

κi ≤ κmax, i = 1, . . . , Nc, (4.5f )

1

L(i)
c

∫
Γ (i)

κ2
i dl ≤ κmsc, i = 1, . . . , Nc, (4.5g)

‖Γ (i) − Γ ( j)‖ ≥ dmin, for i �= j, (4.5h)

‖Γ ′(i)‖ − L(i) = 0, for i = 1, . . . , Nc. (4.5i)

The constraint gk is a system of equations that relates the coil and surface degrees of
freedom. This constraint is a spatial discretization that approximates solutions to the
system of partial differential equations

r(sk, Gk, ιk, c, I, ϕ, θ) = 0,

V(sk) − Vtarget,k = 0,

}
(4.6)
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where the residual r(sk, Gk, ιk, c, I, ϕ, θ) ∈ R
3 is

r(sk, Gk, ιk, c, I, ϕ, θ) := Gk
B(Σ(sk, ϕ, θ), c, I)

‖B(Σ(sk, ϕ, θ), c, I)‖

−‖B(Σ(sk, ϕ, θ), c, I)‖
(

∂Σ(sk, ϕ, θ)

∂ϕ
+ ιk

∂Σ(sk, ϕ, θ)

∂θ

)
, (4.7)

and V(sk) is the volume enclosed by the surface Σ(sk, ϕ, θ) and Vtarget,k is the user-specified
target volume of the surface. The inputs to the PDE are the surface label, Vtarget,k, and
the electromagnetic coils c, I . The outputs are the surface degrees of freedom sk, Gk and
rotational transform ιk. Note that, for a given surface solve, the geometry of the coils c and
their currents I are fixed.

We have devised two approaches to solve (4.6) using a collocation method. In both
approaches, constraint (4.5b) allows us to compute the surface degrees of freedom
sk, ιk, Gk in terms of the electromagnetic coils c, I .

The approach used during phase II, called BoozerLS surfaces, is useful for regimes
where nested flux surfaces do not exist, and solutions to (4.6) do not exist. In this case, we
search for solutions that satisfy the PDE in a least squares sense. This results in a bilevel
optimization problem, comprising an outer optimization problem over the coil geometries
and currents to optimize the device for quasisymmetry. The inner optimization problem is
over the surface degrees of freedom for fixed coil geometry c and currents I , and computes
surfaces that solve (4.6) in a least squares sense

sk(c, I), Gk(c, I), ιk(c, I) = argmin
s̃k,G̃k,ι̃k

∫ 1

0

∫ 1/nfp

0
‖r(s̃k, G̃k, ι̃k, ϕ, θ, c, I)‖2 dϕ dθ

+ 1
2

wv,k(V(s̃k) − Vtarget,k)
2, (4.8)

where the first term in the objective above measures how accurately the PDE is solved
and the second term premultiplied by the weight wv,k ensures that we solve for a magnetic
surface with target volume Vtarget,k. In this case, (4.5b) is the optimality condition of the
inner least squares optimization problem (4.8) solved by BFGS. The approach makes
the surface solve more robust because we do not require the residual be zero at a set of
collocation points and we can use robust line search based algorithms to minimize the PDE
residual. That being said, solving this inner optimization problem to sufficient accuracy
can be expensive, which is the price paid for robustness.

The approach used during phase III, called BoozerExact surfaces, is useful for regimes
when nested flux surfaces do exist and we would like to polish the quality of QA. In
this case, (4.5b) is the vector of residual (4.7) evaluations on a tensor product grid of
collocation points in (ϕ, θ), which we require to be zero. This is a stronger requirement,
and makes the numerical method more brittle: when nested magnetic surfaces do not exist,
Newton’s method may fail. At the expense of robustness, solving the constraint here is
much less computationally expensive.

Using the implicit function theorem, we minimize the reduced objective

fsurface(c, I) = f̂surface(c, I, s1(c, I), ι1(c, I), G1(c, I), . . . , sNs(c, I), ιNs(c, I), GNs(c, I))
(4.9)

by eliminating sk, ιk, Gk via the constraint (4.5b). Constraint (4.5c) ensures that the mean
rotational transform on the volume is the target value ιtarget. Constraint (4.5d) ensures that
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the sum of coil lengths per half-period is less than Lmax = ncoils per hpLtarget, where Ltarget is
the coil length used in the near-axis optimization problem (2.1). This is notably different
to previously, where each coil was constrained to have the same length Ltarget. Constraint
(4.5e) ensures that the major radius of the outermost surface is 1. Constraints (4.5f )
and (4.5g) ensure that the maximum coil curvature and mean squared curvature do not
respectively exceed κmax and κmsc. Constraint (4.5g) ensures that the minimum intercoil
distance does not decrease below dmin. Finally, constraint (4.5i) ensures that the coils
have uniform incremental arclength. Constraints (4.5c)–(4.5i) are enforced using a penalty
method, and are satisfied to 0.1 % precision. We always use the BFGS quasi-Newton
method in phases II and III of the workflow.

Before we can begin solving these optimization problems, we require Ns magnetic
surfaces in the volume of the device parametrized in Boozer angles. The initial surfaces
are obtained by starting with the optimized magnetic axis obtained during phase I. Then,
a first-order near-axis expansion is used to find the surface geometry in the neighbourhood
of the axis with minor radius r = 0.05 m. That is, the surface degrees of freedom s1 are
found such that we have

Σ1(s1, ϕ, θ) = Γ axis(ϕ) + rX1(ϕ, θ)n(ϕ) + rY1(ϕ, θ)b(ϕ), (4.10)

where n, b are the normal and binormal vectors associated with the Frenet frame of the
magnetic axis, X1, Y1 are defined in Landreman, Sengupta & Plunk (2019) and Landreman
(2023) and r is a radial distance from the axis. The remaining Ns − 1 surfaces with lower
aspect ratio are computed using a continuation procedure in the surface label, e.g. volume
enclosed by the surface. During phase III, we already have BoozerLS surfaces available
from phase II and those are used as initial guesses for the BoozerExact surfaces. The
BoozerLS surfaces are typically very good initial guesses for the BoozerExact solve.

4.1. Illustration of phases II and III
In this section, we give more details on the final two phases of the coil design algorithm
to illustrate how it works. The configurations obtained from the near-axis formulation
(phase I) only attempt to find coils that target quasisymmetry on the magnetic axis. The
formulation does not control anything about the magnetic field away from the axis and, as a
result, magnetic surfaces may not exist on a large volume (Lee et al. 2022). The BoozerLS
surfaces (phase II) are robust and capable of healing generalized chaos (Giuliani et al.
2023), although it can be computationally expensive. Finally, the BoozerExact (phase III)
surfaces polish the coil set for precise QA and are computationally much cheaper.

The algorithm for phase II is given in Algorithm 1. The first step of the algorithm is to
use the magnetic axis obtained from phase I to compute an approximate magnetic surface
from (4.10). Then, the optimization problem (4.5) is solved, but we do not attempt to fully
converge the coil sets and only complete a total of 300 iterations of BFGS. Each time
BFGS is restarted, an attempt is made to increase the number of Fourier modes used to
represent the surface. Starting from mpol, ntor = 2, we try to compute a BoozerLS surface.
If the solve succeeds, we use the surface as an initial guess and increase mpol, ntor by 1.
If the surface solve fails after increasing the surface degree, then the degree is reverted
to the previous one. If the solve succeeds, the continuation in degree continues until
mpol, ntor = 4. Progressively increasing the number of Fourier modes makes the procedure
more robust, as we find self-intersecting surfaces are less likely to occur.

The weight wr is chosen such that the Boozer residual term is an order of magnitude
larger than the non-quasisymmetry penalty. This term favours nested flux surfaces and
improves the robustness of the optimization algorithm. However, it also competes with
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(b)(a) (c)

FIGURE 7. Poincaré plots at φ = 0 after phases I and II for aspect ratios AR = 20, 10. The
point where the magnetic axis intersects the φ = 0 plane corresponds to the red dot in (a).
Cross-sections of the surfaces on which QA is optimized are red in (b,c).

the QA error and so the quality of quasisymmetry obtained at this stage can be limited.
Since the stellarators obtained here are not fully converged and strongly depend on the
value of w, we do not analyse the physics properties of the stellarators here yet. In figure 7,
we provide Poincaré plots of a device just after the near-axis optimization, and then as
BoozerLS surfaces are added to optimize for nested flux surfaces. The first panel shows
that the near-axis optimization algorithm does not guarantee nested surfaces far away from
the magnetic axis. The final two panels illustrate that as the surfaces are added, the volume
with nested flux surfaces increases.

Algorithm 1 Phase II: BoozerLS

compute an initial BoozerLS surface with aspect ratio 20 from near-axis formula (4.10).
for aspect ratio (AR) in {20, 10, 6.66, 5, 4, 3.33, 2.85} do

for i in 1, 2, 3 do
attempt to increase the degree of the BoozerLS surfaces up to mpol, ntor ≤ 4
solve (4.5) on surfaces with a fixed budget of iterations. � Island and chaos

healing
end for
add another BoozerLS surface with the next smallest AR.

end for

Algorithm 2 Phase III: BoozerExact

for i in 1, 2, 3, 4 do
keep rational surfaces as BoozerLS, otherwise convert to BoozerExact.
attempt to increase the degree of the BoozerLS surfaces up to mpol, ntor ≤ 4
attempt to increase the degree of the BoozerExact surfaces up to mpol, ntor ≤ 10
solve (4.5) on surfaces with a fixed budget of iterations. � Polish

end for
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After phase II terminates, we proceed to phase III, where we optimize for precise
quasisymmetry. It can be shown that the island width scales like

√|Bn,m|/mι′ (Hudson,
Monticello & Reiman 2001), where ι′ is the magnetic shear. Thus, for large enough m,
the island width should be small. Informed by this estimate, we retain the BoozerLS
formulation when the rotational transform on the surface is within 1 % of a rotational
transform of the form ι = nfp/m, 2nfp/m for m = 1, . . . , 15. During this final phase, the
weight w is set to zero on BoozerExact surfaces, but it maintained for BoozerLS surfaces
in the neighbourhood of low-order rationals. At the start of every BFGS run, we attempt
to increase the degree of the surface representation as we did during phase II, up to
mpol, ntor = 10 for BoozerExact surfaces, and 4 for the remaining BoozerLS surfaces.
When all surfaces are of type BoozerExact, we cap the total number of BFGS iterations
to 20 000. When there is a surface of type BoozerLS, we cap the total number of BFGS
iterations 4000. The algorithm for phase III is given in Algorithm 2.

During these last two phases of coil optimization, we also increase the number of Fourier
harmonics in the coils to Nf ,c = 16, because using too few Fourier modes in the coils can
limit the attainable quality of quasisymmetry.

4.2. Comparison of devices from TuRBO and naive globalization after phase III
After the full workflow is completed (globalization, then phases I, II, then III), we
compare the devices found depending on whether the TuRBO or naive globalization
approach was applied just before phase I. In figure 8, we plot volume quasisymmetry
error for configurations found for both globalization techniques. It appears that the highly
favourable devices discovered by TuRBO do not necessarily translate to devices that
have comparatively favourable volume quasisymmetry. We also find the TuRBO devices
resulted in many more configurations for shorter coils than the ones found by the naive
approach, although there is a larger spread of device performance. The Design 5.B does
not persist upon optimizing for volume quasisymmetry, which we suspect is because the
coils are too close to the magnetic axis (16.5 cm). As a result, when the surface generated
by the near-axis formula (4.10) is used at the start of phase II, the BoozerLS surface solve in
(4.5b) does not converge and the optimization cannot proceed. The devices discovered by
TuRBO also do not appear to outperform those found by the naive approach. Nevertheless,
we emphasize that this may only be because the globalization is performed on the near-axis
problem just before phase I and not directly to the volume QA optimization, just before
phase II. If globalization is applied directly to the BoozerLS phase of the workflow, it is
possible that new and interesting devices could still be discovered. Finally, the magnitude
and form of the perturbation ε used in the naive approach was determined after somewhat
lengthy tuning (§ 2.2). There are much fewer ad hoc choices in the bounding box approach
used by TuRBO.

4.3. Computational details
The run time of each phase can vary depending on the design targets, as the difficulty of
the optimization problems strongly depends on the total coil length used by the device.
In previous work, we used various levels of parallelism simultaneously such as MPI,
OpenMP and SIMD. In this work, we take the approach of only allocating one core
per stellarator and only use SIMD parallelism locally to a core when possible. The
full workflow for a single device takes of the order of a day or two on a single core.
However, this duration can vary substantially depending on how accurately each individual
optimization problem is solved or if more cores are used per problem.
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FIGURE 8. Taking the stellarators from figure 5, and using them as initial guesses for the volume
QA optimization phase (§ 4), we obtain the stellarators plotted above. So that the data sets can
be more easily distinguished, we use smaller marker sizes for devices corresponding to the naive
algorithm.

5. Quasi-symmetric stellarator repository (QUASR)

The algorithms presented in the previous sections have culminated in the comprehensive
database that we detail in this section. Before discussing the stellarators in the database,
we would like to repeat some of the database’s limitations:

(i) The database only contains curl-free, stellarator symmetric magnetic fields with
optimized QA. Note that our algorithms are generic, however, and may also be
applied to other flavours of quasisymmetry as well.

(ii) Our goal was both to produce a large data set of stellarators and to visualize
the trade-off of target physics characteristics. Given that this approach might find
stellarators that do not lie on the Pareto front, it may not be the most computationally
efficient. Approaches based on continuation might reduce this computational cost
(Bindel et al. 2023), at the expense of some parallelism.

(iii) The algorithm might have discovered the same device multiple times. Three possible
ways that this can occur are as follows. Given a local minimum of (2.1) or (4.5),
a visually distinct local minimum can be found by reflecting the device about the
XY plane, i.e. applying the transformation −Z → Z. Another visually distinct local
minimum can also be found by rotating the device by a half-period. We have also
noticed that local minima can lie in tricky valleys of the objective. In particular,
initially the gradient-based optimizer makes a lot of progress, and does so quickly.
But after a few thousand iterations, progress slows, especially for devices that use
longer coil lengths. Therefore, it might also be that visually distinct local minima
will merge with one another after more iterations, but with only marginal reduction
of the objective. This is the price paid for an extensive scan.

Due to the computational expense of generating these devices, we also include in the
database the ones discovered after executing previous versions of the workflow described
above. In the following sections, we compare devices in the database with ones discussed
previously in the literature, highlight a device with rotational transform profiles that pass
through low-order rationals and perform a couple of trade-off analyses of the devices.
We look at how accurately quasisymmetry can be attained when the total coil length,
number of coils per half-period, number of field periods, device aspect ratio and target
mean rotational transform are varied. In addition, we examine the relationship between
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FIGURE 9. Comparison of devices from QUASR with aspect ratio 6.66 and 5, target mean
rotational transform ι = 0.4 and the precise QA coil sets of Giuliani et al. (2022b) with aspect
ratio 6 and mean rotational transform 0.42. All devices have nfp = 2 and ncoils per hp = 4 here.
The grey region corresponds to the Earth’s background magnetic field of 50 μT, and volume QA
error refers to the mean non-QA ratio in (4.1).

elongation and quality of quasisymmetry. Due to the multiple possible analyses that might
be performed, we only scratch the surface here.

5.1. Comparison with previous devices
As a first examination, we select the devices in our database that have the closest design
targets to previous configurations computed in Giuliani et al. (2022b), where devices
have aspect ratio 6, ι = 0.42, ncoils per hp = 4, total coil length 72 m, 80 m, 88 m, 96 m and
nfp = 2. The devices in QUASR that are closest to these devices have the same number
of coils, aspect ratio 6.66 or 5 and target mean rotational transform 0.4. In figure 9, these
devices are compared, where we observe that the QUASR devices perform comparably,
although notably the precise QA device with length 96 m is better. This might be because
we only allow a total of 20 000 iterations of BFGS during phase III, while in generating
the precise QA coil sets, more than double the number of iterations were allowed.

5.2. A stellarator with a rotational transform profile passing through a low-order
rational

Consider a device with two field periods, ncoils per hp = 3, ιtarget = 0.5 and aspect ratio 4.
Since the target mean rotational transform is a low-order rational, we would expect there
to be a strong likelihood of an island chain somewhere in the toroidal volume. However,
the island chains are small, as shown in figure 10.

5.3. Impact of design targets on attainable quasisymmetry
In figure 11, we plot the volume QA error with respect to coil length for various values
of nfp = 2, 3, 4, when optimizing for QA on a single surface of aspect ratio 20. Since
this is such a high aspect ratio surface, this set-up is a close approximation to the
near-axis problem in § 2, although the objective is asking for more out of the magnetic
field. A notable difference with the near-axis results is that increasing the number of
field periods does not appear to improve the attainable on-axis quasisymmetry, as is
observed in figure 6. One possible reason for this is that the near-axis design problem (2.1)
only optimizes for quasisymmetry to first order and introducing second-order near-axis
penalties might explain this discrepancy. There do appear to be some highly performant
devices that are outliers, so it might also be that our algorithm is just not discovering those
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(b)(a) (c)

FIGURE 10. Poincaré plots and rotational transform profiles of a device with aspect ratio
4, mean rotational transform 0.5 and nfp = 2. We visually could not identify trajectories
associated with islands. The horizontal blue lines on the rotational transform profiles indicate
the low-order rational ι = 1/2. The vertical red lines on the rotational transform profiles indicate
the normalized toroidal flux label on which quasisymmetry was optimized.

FIGURE 11. Devices on which quasisymmetry is optimized on a surface of aspect ratio 20, with
a target rotational transform ι = 0.5. The grey region corresponds to the Earth’s background
magnetic field of 50 μT, and volume QA error refers to the mean non-QA ratio in (4.1).

solution branches. There is also a clear preference for nfp = 2 stellarators as the algorithm
has difficulty finding devices with precise quasisymmetry for nfp = 3, 4. Devices with
nfp = 1, 5 are not shown in the figure, but in both cases, the algorithm had varying
difficulty finding devices with precise QA.

We also examine the trade-off between the quality of quasisymmetry, total coil length
and device aspect ratio in figure 12. Increasing the target mean rotational transform does
not appear to greatly affect the quality of attainable quasisymmetry, while as expected
decreasing the device aspect ratio appears to have a much larger negative impact.

5.4. Maximum elongation
Finally, we study the values of elongation appearing in the database when ιtarget = 0.6 and
an aspect ratio of 10. High elongation increases the ratio of surface area to volume of
the magnetic surfaces, moreover, it can increase bunching of the flux surfaces and this
can have negative implications for stability (Goodman et al. 2023). For each stellarator
in our database, we compute the maximum elongation in the device by computing a
surface with aspect ratio 80 in the neighbourhood of the magnetic axis. Then, we compute
N = 10 cross-sections of that surface at cylindrical angles φ = π(i + 1/2)/nfp/N for i =
0, . . . , N − 1. For each cross-section, we fit an ellipse in a least squares sense (Halır
& Flusser 1998) and compute the ratio of the ellipse’s major to minor axes. The value
reported here is the maximum ratio observed at these cross-sections.
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(b)

(a)

(c)

FIGURE 12. Trade-off between quality of quasisymmetry and total coil length for various device
aspect ratios, and target mean rotational transform when nfp = 2. The grey region corresponds
to the Earth’s background magnetic field of 50 μT, and volume QA error refers to the mean
non-QA ratio in (4.1).

We did not target any particular value of elongation but nevertheless there do
appear to be favoured values (figure 13). For nfp = 1 and 2, the lowest values of
quasisymmetry error occur for an elongation around 7, while for nfp = 3 an elongation
of 4 is favoured. It is unclear whether this picture would change if a stage one
optimization for QA were done instead, without coils. In Goodman et al. (2023), various
QI stellarator designs were proposed, where a maximum elongation below approximately
6 was targeted. The stellarators in QUASR here illustrate that a good approximation
of QA can also be found when requiring a maximum elongation below 6 too. We
also observe that as expected, the lower quasisymmetry errors occur for longer coil
lengths.
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FIGURE 13. The volume quasisymmetry error with respect to the maximum elongation on a
very high aspect ratio surface in the neighbourhood of the magnetic axis, for various values of
nfp. For all configurations plotted, ιtarget = 0.6, where the aspect ratio of the outermost surface is
10. The grey region corresponds to the Earth’s background magnetic field of 50 μT, and volume
QA error refers to the mean non-QA ratio in (4.1).

6. Conclusions

We have proposed a direct stellarator coil design algorithm that is globalized using
the TuRBO optimization algorithm, where box constraints on anchor points of the coils
are applied. The algorithm combines three direct coil optimization algorithms, and has
allowed the construction of a large database of approximately 200 000 vacuum-field
stellarators for various design targets, e.g. aspect ratio, nfp, ncoils per hp, rotational transform
and total coil length. Using the database, we have examined the trade-off between accuracy
of QA, total coil length, rotational transform and aspect ratio of the device.

Since the techniques in this work are quite general, there are many other directions
that we would like to explore. Applying all of these approaches to other flavours
of quasisymmetry, such as quasi-helical symmetry, is the next logical step. Adding
windowpane coils and other coil geometries, e.g. helical coils, to the database would
enrich the database. There is still room to improve the globalization algorithms and one
possibility is to directly globalize the BoozerLS phase of the optimization.

Finally, we have only scratched the surface of possible physics analyses of the data set.
Since it is publicly available, we hope that the stellarator community might explore it
further.
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