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1. Introduction and main results

This paper deals with the semi-stability of nonconstant radial solutions of

Sk(D2u) = w(|x|)g(u), (1.1)

posed in R
n, where n � 1, k ∈ {1, . . . , n}, the function g ∈ C1(R) is nonnegative

and nonincreasing, and w is a nonnegative radial function that satisfies some suit-
able conditions. The operator Sk(D2u) is the k-Hessian of u, which is defined by
the sum of all k-th principal minors of the Hessian matrix. Alternatively, Sk(D2u)
is the k-th elementary symmetric polynomial of the eigenvalues of the Hessian
matrix D2u. According to [1], to ensure ellipticity of equation (1.1), we consider
k-admissible or k-convex solutions, i.e., functions that belong to

Φk :=
{
u ∈ C2(Rn) : Sl(D2u) � 0, l = 1, 2, . . . , k

}
.

We point out that there are no previous works concerning semi-stable solutions to
the k-Hessian operator in the whole space R

n for general nonlinearities and k �= 1.
In fact, to the best of our knowledge, the only results devoted to stable solutions
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1752 M. A. Navarro and J. Sánchez

to (1.1) are contained in the work [10] and they concern only the particular cases
w(r) ≡ 1 and g(u) a power nonlinearity. More precisely, in [10], the authors gave
a definition of stable radial solutions of the k-Hessian equation Fk(D2V ) = (−V )p

in R
n, where Fk(D2V ) = Sk(D2 V ). They stablished connections between stability

and certain critical exponents of Joseph–Lundgren type available for k-Hessian
operators. Their tools also include Wolff potentials.

For existence and non-existence results for equations of the form (1.1) we refer
to [3], where a special emphasis was put in the model equation

(−1)kHku = a(|x|) |u|q−1
u,

being

Hk =
k(

n−1
k−1

)Tk, for 1 � k � n (integer) and Tk = Sk(∇2).

Some existence and non-existence results for radial solutions are given in terms of an
integral condition involving the function a. In [6], among other results, the author
constructs explicit negative solutions of the equation Fk(D2V ) = R(x)(−V )q

in R
n, where Fk(D2V ) = Sk(D2 V ) and R(x) is a radial function that satisfies

C−1 � R(x) � C for some constant C > 1. See [6, theorem 4.2].
Throughout this work, we identify a radial solution u by their one variable repre-

sentant, that is, u(x) = u(r), |x| = r. At the point x = (r, 0, . . . , 0), the eigenvalues
of D2u are λ1 = u′′, which is simple, and λ2 = u′

r , which has multiplicity n − 1,
where by abuse of notation, we write u′ or ∂ru as the radial derivative of a radial
function u. Thus the k-Hessian operator acting on radially symmetric C2 functions
can be written as

Sk(D2u) = cn,kλk−1
2 (nλ2 + k (λ1 − λ2)) = cn,kr1−n∂r

(
rnλk

2

)
, r > 0, (1.2)

where cn,k is defined by cn,k =
(
n
k

)
/n.

Remark 1.1. Note that, if u is a radial solution of (1.1) then, in particu-
lar, S1(D2u) = r1−n(rn−1u′)′ � 0. Thus G(r) = rn−1u′ is nondecreasing, since
G(0) = 0, we deduce that G � 0 and hence u is nondecreasing. As a consequence,
λ2 � 0.

Definition 1.2. We say that a radial solution u ∈ Φk of (1.1) is semi-stable if

Qu(ξ) :=
∫

Rn

kcn,k |x|1−k |∇u|k−1 |∇ξ|2 + w(|x|)g′(u)ξ2 � 0, (1.3)

for every radially symmetric function ξ ∈ C1
c (Rn).

In this paper, we establish pointwise estimates and necessary conditions for the
existence of semi-stable solutions (not necessarily bounded) of (1.1). For bounded
solutions we estimate their asymptotic behaviour at infinity. All the estimates are
given in terms of the spatial dimension n, the values of k and the behaviour at
infinity of the growth rate function of w, that is, the function W (r) := rw′(r)

w(r) .
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We now establish our precise assumptions on the weight w(r) that we will assume
throughout the paper:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

The functions w and W belong to C1 (Rn\{0}) and W (r) is
nonincreasing on (0,∞). Further, lim

r→+∞ rW ′(r) = 0.

Set Γ = lim
r→0

W (r), γ = lim
r→+∞W (r), and assume that Γ and

γ are finite with 2k + γ > 0.

(1.4)

In order to state our main results, we need the following notation:
Let

α(r) =

∫ r

1

{
v(s) +

√
v(s)2 + n

k v(s) + n
k − 1 − sv′(s)

s

}
ds

log r
, (1.5)

δ(r) =
−n + 2α(r) + 2k + 2

k + 1
, ∀r � 1 and δ∞(γ) = lim

r→+∞ δ(r), (1.6)

where

v(s) =
k − 1 + W (s)

k + 1
, ∀s � 0. (1.7)

Note that when k = 1 and w ≡ 1, δ(r) takes the constant value −n
2 +

√
n − 1 + 2,

which plays a crucial role in pointwise estimates. We refer to [9] by Villegas for
details. A great difference here is that δ(r) is a variable exponent, this produces
additional technical difficulties.

Our main results are

Proposition 1.3. Let n > k(k + 1)/(2k + γ) and u be a semi-stable nonconstant
radial solution of (1.1). Then |∇u(x)| > 0 for all |x| > 0.

We have the following pointwise estimate for not necessarily bounded solutions
of (1.1).

Theorem 1.4. Let w ∈ C1(Rn\{0}) be a radial function that satisfies (1.4), n >
k(k + 1)/(2k + γ) and u be a semi-stable nonconstant radial solution of (1.1) (not
necessarily bounded). Then, there exist M > 0 and r0 � 1 depending on u and w
such that for all r � r0,

|u(r)| � M

{
rδ(r) if n �= 2

(
k + 2γ

k + 4
)
,

log r if n = 2
(
k + 2γ

k + 4
)
.

(1.8)

Remark 1.5. This theorem is sharp for some β ∈ R, μ = σ
k + 2 and

uβ(r) :=

⎧⎨
⎩sgn (β) (1 + rμ)

β
μ if β �= 0,∀r � 0,(

1
μ

)
log (1 + rμ) if β = 0,∀r � 0,

where σ > −k and w(r) = rσ, as shown in the appendix.
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Theorem 1.6. Let w ∈ C1(Rn\{0}) be a radial function that satisfies (1.4), n � 2
and u be a semi-stable nonconstant bounded radial solution of (1.1). Then,

(i) n > 2(k + 2γ
k + 4).

(ii) There exists u∞ = lim
r→+∞u(r) ∈ R and M > 0 depending on u and w such

that for all r � 1,

|u(r) − u∞| � Mrδ(r). (1.9)

Remark 1.7. Theorem 1.6 is sharp (see example A.1 in the appendix).

Remark 1.8. See [9] to compare our results with the semilinear case (k = 1) and
for related equations involving the p-Laplacian operator, see [2, 5, 8].

This paper is organized as follows. In § 2 we prove our main results, proposition
1.3, theorem 1.4 and theorem 1.6. We conclude the paper by presenting in the
appendix some examples of functions w and g for which our theorems are sharp.

2. Proof of the main results

We claim that if u is a C2 radial solution, then u′ ∈ C0,1
loc (Rn). To prove our claim,

we first observe that u′ ∈ C0(Rn) ∩ C1(Rn\{0}) with u′(0) = 0 and |u′(x)| � CR |x|
in any open ball BR of radius R > 0. Now from (1.1) and (1.2) we obtain, for r > 0,

kcn,k

(
u′

r

)k−1((
n − k

k

)(
u′

r

)
+ u′′

)
= wg(u),

from which we deduce that

u′′ =
(

wg(u)
kcn,k

)(
u′

r

)1−k

−
(

n − k

k

)(
u′

r

)
, r > 0.

Thus, for any R > 0, the function u′′ is bounded on BR\{0}. Also for any x, y ∈
R

n such that R > |y| > |x| > 0, we have

|u′(|y|) − u′(|x|)| �
∫ |y|

|x|
|u′′(t)| dt

� sup
ξ∈[|x|,|y|]

|u′′(ξ)| (|y| − |x|)

� sup
z∈BR\{0}

|u′′(|z|)| |y − x| .

We conclude that u′ ∈ C0,1
loc (Rn). This will be used in the proof of lemma 2.1

below.
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Lemma 2.1. Let n � 2 and u be any radial solution of (1.1). Then

Qu(u′η) = kcn,k

∫
Rn

λk+1
2

{∣∣∣∣|x|∇η + v
xη

|x|
∣∣∣∣
2

−
(
v2 +

n

k
v +

n

k
− 1 − (x,∇v)

)
η2

}
,

(2.1)
for every radially symmetric function η ∈ (H1

c ∩ L∞
loc)(R

n), where v is defined as in
(1.7). Here (·, ·) denotes the standard scalar product in R

n.

Proof. Let η ∈ H1
c (Rn) ∩ L∞

loc(R
n) and ζ ∈ C0,1

loc (Rn) be radial functions. Then, by
a standard density argument, we can take ξ = ζη ∈ H1

c (Rn) ∩ L∞
loc(R

n) in (1.3) to
obtain

Qu(ζη) =
∫

Rn

kcn,k

∣∣∣∣ u′

|x|
∣∣∣∣
k−1

|∇(ζη)|2 + w(|x|)g′(u)(ζη)2. (2.2)

Thus, as u and ζ are radial functions, we get

∣∣∣∣ u′

|x|
∣∣∣∣
k−1

|∇(ζη)|2 = λk−1
2

(
ζ2 |∇η|2 +

(
2ζη(∇ζ,∇η) + η2 |∇ζ|2

))
, (2.3)

where λ2 = u′/|x|.
From (1.2) and differentiating (1.1) with respect to r, we obtain

c−1
n,kwg′(u)u′ = −c−1

n,kw′g(u) − n − 1
r2

(
u′k

rk−1

)
+ Δ

(
u′k

rk−1

)

= −c−1
n,kwg(u)

W

r
− (n − 1)λk

2

r
+ Δ

(
λk−1

2 u′) , r > 0.

Then, multiplying the latter equation by u′η2 = rλ2η
2, we have

1
cn,k

∫
Rn

wg′(u) (u′η)2 = − 1
cn,k

∫
Rn

wg(u)
(
λ2Wη2

)− (n − 1)
∫

Rn

λk+1
2 η2

+
∫

Rn

(|x|λ2η
2
)
Δ
(|x|λk

2

)
.

(2.4)

Thus, integrating by parts, and taking into account that λ2 ∈ L∞
loc(R

n), we obtain

1
cn,k

∫
Rn

wg(u)
(
λ2Wη2

)
=
∫

Rn

(
x,∇ (|x|n λk

2

)) (|x|−n
λ2Wη2

)

= −
∫

Rn

(|x|n λk
2

) (
x,∇

(
|x|−n

λ2Wη2
))

=
k

k + 1

∫
Rn

λk+1
2

(n

k
Wη2 − (x,∇ (Wη2

)))
(2.5)
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and ∫
Rn

(|x|λ2η
2
)
Δ
(|x|λk

2

)
= −

∫
Rn

(∇ (|x|λ2η
2
)
,∇ (|x|λk

2

))
=

k(k − 1)
k + 1

∫
Rn

λk+1
2

(
η2 +

(
x,∇η2

))

− k

∫
Rn

λk−1
2

(∇ (|x|λ2)
2
,∇η2)

2

− k

∫
Rn

λk−1
2 |∇ (|x|λ2)|2 η2.

(2.6)

Next, using ζ = u′ in (2.2), (2.3), we have∫
Rn

λk−1
2 |∇(u′η)|2 =

∫
Rn

λk−1
2

(
u′2 |∇η|2 + 2u′η(∇u′,∇η) + |∇u′|2 η2

)

=
∫

Rn

{
|x|2 λk+1

2 |∇η|2 + λk−1
2

(∇ (|x|λ2)
2
,∇η2)

2

}

+
∫

Rn

λk−1
2 |∇ (|x|λ2)|2 η2

=
∫

Rn

|x|2 λk+1
2 |∇η|2

+
(k − 1)
k + 1

∫
Rn

λk+1
2

(
η2 +

(
x,∇η2

))
− 1

k

∫
Rn

(|x|λ2η
2
)
Δ
(|x|λk

2

)
.

(2.7)

Then, from (2.2), (2.4), (2.5), (2.6) and (2.7), we obtain

Qu(u′η) =
∫

Rn

λk−1
2 |∇ (u′η)|2 +

1
kcn,k

∫
Rn

wg′(u)(u′η)2

= − 1
k + 1

∫
Rn

λk+1
2

(n

k
Wη2 − (x,∇ (Wη2

)))

− (n − 1)
k

∫
Rn

λk+1
2 η2 +

∫
Rn

|x|2 λk+1
2 |∇η|2

+
(k − 1)
k + 1

∫
Rn

λk+1
2

(
η2 +

(
x,∇η2

))
.

Since

|x|2 |∇η|2 + v
(
x,∇η2

)
=
∣∣∣∣|x|∇η + v

xη

|x|
∣∣∣∣
2

− v2η2,

from (1.7), we have

W = (k + 1)v + 1 − k and (x,∇W ) = (k + 1) (x,∇v) .
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Hence

Qu(u′η) =
∫

Rn

λk+1
2

{∣∣∣∣|x|∇η + v
xη

|x|
∣∣∣∣
2

−
(
v2 +

n

k
v +

n

k
− 1 − (x,∇v)

)}
η2,

which concludes the proof. �

Multiplying the equation (1.2) by rn+ n
k −1λ2, we obtain

((
r

n
k λ2

)k+1
)′

= (k + 1)(kcn,k)−1wg(u)rn+ n
k −1λ2.

Since rλ2 = u′, the above equation is equivalent to

((
r

n
k −1u′)k+1

)′
= (k + 1)(kcn,k)−1rn−1wg(u)r

n
k −1u′. (2.8)

On the other hand, from (1.4) and (1.7), we have

v(r) � v∞ := lim
r→+∞ v(r) =

k − 1 + γ

k + 1
, ∀r � 0. (2.9)

Thus, if n > k(k + 1)/(2k + γ), it follows that

n

k
v(r) +

n

k
− 1 � n

k
(v∞ + 1) − 1 =

n(2k + γ)
k(k + 1)

− 1 > 0, ∀r � 0. (2.10)

Proof of proposition 1.3. We follow an argument similar to that of proposition 1
in [4]. Let n > k(k + 1)/(2k + γ) and let u be a semi-stable nonconstant radial
solution of (1.1). Arguing by contradiction, assume that u′(r0) = 0 for some r0 > 0.
Now let χBr0

be the indicator function of the open ball of radius r0 centred at the
origin, so χBr0

∈ H1
c (Rn) ∩ L∞

loc(R
n). From (2.1), we obtain

Qu

(
u′χBr0

)
= kcn,k

(∫
Br0

+
∫

Rn\Br0

)
{

λk+1
2

(∣∣∣∣|x|∇χBr0
+ v

xχBr0

|x|
∣∣∣∣
2

−
(
v2 +

n

k
v+

n

k
− 1−(x,∇v)

)
χ2

Br0

)}

= −kcn,k

∫
Br0

λk+1
2

{n

k
v +

n

k
− 1 − (x,∇v)

}
+ 0 � 0,

where we have used the fact that λ2 � 0, (2.10) and the monotonicity of v to get
the above inequality. Thus, the semi-stability of u implies that u(r) = u0 for all
r ∈ [0, r0].
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Let v(r) = (r
n
k −1u′)k+1. From (2.8), we have the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′ = r
1−

n

k v

1
k + 1 r > r0 > 0,

v′ = (k + 1)(kcn,k)−1rn−1wg(u)v

1
k + 1 r > r0 > 0,

u(r0) = u0,

v(r0) = 0.

Finally, by Cauchy’s theorem, we get that u = u0 for any r > 0, a
contradiction. �

We adapt some estimates given by Villegas in [9] for the nonweighted semilinear
equation. Here is one of our main integral estimates.

Lemma 2.2. Let w ∈ C1(Rn\{0}) be a radial function that satisfies (1.4),
n > k(k + 1)/(2k + γ) and u be a semi-stable nonconstant radial solution of (1.1).
Then, there exists K > 0 depending on u and w and such that

∫ R

r

ds

sn−k(u′(s))k+1
� Kr−2α(r) ∀R > r � 1. (2.11)

Proof. From proposition 1.3, we have that u′(r) �= 0 for all r > 0. Furthermore,
u′ > 0 on (0, ∞) (see remark 1.1).

Next we show that α(r) defined in (1.5) is strictly positive for all r � 1. For this,
let κ � 0 and define the function

Ψ(r, κ) := v(r) +
√

v(r)2 +
n

k
v(r) +

n

k
− 1 + κ.

From (2.10), we have

v(r) +
n

2k
>

k

n

(
1 − n

k

)
+

n

2k
=

k2 + (n − k)2

2kn
> 0. (2.12)

Then

∂Ψ
∂r

(r, κ) =

(
1 +

v(r) + n
2k√

v(r)2 + n
k v(r) + n

k − 1 + κ

)
v′(r) � 0 for r > 0. (2.13)

Thus, from (1.4), (2.10), (2.12) and (2.13), we obtain

Ψ(r,−rv′(r)) > v(r) + |v(r)| � 0, ∀r � 0,
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and

Ψ(r,−rv′(r)) � Ψ(r, 0) = v(r) +

√(
v(r) + 1

k

)
(k (v(r) − 1) + n)

� lim
r→+∞Ψ(r, 0) = v∞ +

√
n

k
(v∞ + 1) + (v∞ + 1)(v∞ − 1)

>
k − 1 + γ

k + 1
+

√
1 +

(2k + γ)(γ − 2)
(k + 1)2

=
k − 1 + γ + |k − 1 + γ|

k + 1
� 0.

Therefore by the previous inequalities, we get

α(r) =

∫ r

1

{
v(s) +

√
v(s)2 + n

k v(s) + n
k − 1 − sv′(s)

s

}
ds

log r

� v∞ +
√

n

k
(v∞ + 1) + (v∞ + 1)(v∞ − 1) > 0 for r � 1.

(2.14)

We now fix R > r � 1 and consider the function

η(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 � t � 1,

t−α(t) if 1 < t � r,

r−α(r)

∫ R

t

ds

sn−k(u′(s))k+1∫ R

r

ds

sn−k(u′(s))k+1

if r < t � R,

0 if R < t < ∞.

Since, u is a semi-stable solution, from (2.1), we have

0 � (ωnkcn,k)−1Qu(u′η) = I1 + I2 + I3

=

(∫ 1

0

+
∫ r

1

+
∫ R

r

){
tn−1λk+1

2

(
(tη′)2 + 2v(t) (tηη′)

−
(n

k
v(t) +

n

k
− 1 − tv′(t)

)
η2
)

dt
}
,

(2.15)

where ωn is the measure area of the n − 1 dimensional unit sphere Sn−1.
Then by (2.10), we have

I1 = −
∫ 1

0

tn−1λk+1
2

((n

k
v(t) +

n

k
− 1 − tv′(t)

))
dt

� −
(n

k
(v∞ + 1) − 1

)∫ 1

0

tn−1λk+1
2 dt,

(2.16)
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and by (1.5), we obtain

I2 =
∫ r

1

tn−2α(t)−1λk+1
2

((
t (α(t) log t)′ − v(t)

)2
−
(
v(t)2 +

n

k
v(t) +

n

k
− 1 − tv′(t)

))
dt

= 0.

(2.17)

Now to estimate I3, we need to consider two cases according to the sign of v in
the interval [r, R]. For this, we rewrite I3 as

I3 = I+
3 +I−3 =

∫
{t∈[r,R]:v(t)�0}

+
∫
{t∈[r,R]:v(t)<0}

, (2.18)

and we define ΦR : [r, R] → R as

ΦR(t) =
∫ R

t

s−(n+1)λ
−(k+1)
2 ds,

and recall that λ2 = u′(s)/s for s > 0.
Thus for t ∈ [r, R]:

• If v(t) � 0, then by (2.10), it follows that

I+
3 =

∫ R

r

tn−1λk+1
2

(
(tη′)2 + 2v(t)(tηη′)

)
dt

−
∫ R

r

tn−1λk+1
2

((n

k
v(t) +

n

k
− 1 − tv′(t)

)
η2
)

dt

�
∫ R

r

tn−1λk+1
2

r−2α(r)

Φ2
R(r)

t−2nλ
−2(k+1)
2 dt

=
r−2α(r)

Φ2
R(r)

∫ R

r

t−(n+1)λ
−(k+1)
2 dt =

r−2α(r)

ΦR(r)
.

(2.19)

• If v(t) < 0, then for all ε > 0

−2v(t)ΦR(t)t−nλ
−(k+1)
2 � ε2v(t)2ΦR(t)2 +

t−2nλ
−2(k+1)
2

ε2
,

and

I−3 �
(

1 +
1
ε2

)
r−2α(r)

ΦR(r)
− r−2α(r)

ΦR(r)2

×
∫
{t∈[r,R]:v(t)<0}

tn−1λk+1
2

(
−ε2v(t)2+

n

k
v(t)+

n

k
− 1−tv′(t)

)
ΦR(t)2 dt.

Moreover, by (1.4) and (1.7), we have that

|v∞| > |v(t)| > 0 for any t ∈ {t ∈ [r,R] : v(t) < 0}.
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By (2.10) we can pick ε ∈ (0,
√

n
k v∞ + n

k − 1/ |v∞|). Then applying the

Young’s inequality with ε to −v(t)ΦR(t)t−nλ
−(k+1)
2 with exponents 2 and 2,

and using again (2.10), we have

−ε2v(t)2 +
n

k
v(t) +

n

k
− 1 − tv′(t) � −ε2v2

∞ +
n

k
v∞ +

n

k
− 1 > 0,

and therefore

I−3 �
(

1 +
1
ε2

)
r−2α(r)

ΦR(r)
. (2.20)

Finally, from (2.15)–(2.17), (2.19) and (2.20), the lemma follows. �

Applying lemma 2.2 enables us to prove the following pointwise estimate.

Proposition 2.3. Let w ∈ C1(Rn\{0}) be a radial function that satisfies (1.4),
n > k(k + 1)/(2k + γ) and u be a semi-stable nonconstant radial solution of (1.1).
Then, there exists K ′ > 0 depending on u and w and such that

|u(2r) − u(r)| � K ′rδ(r), ∀r � 1. (2.21)

Proof. Fix r � 1. Applying Hölder’s inequality, lemma 2.2 with R = 2r and recalling
that u′ does not vanish in (0, ∞), we deduce

(∫ 2

1

t−
n−k
k+2 dt

)
r−

n−2k−2
k+2 =

∫ 2r

r

t−
n−k
k+2 dt

�
(∫ 2r

r

dt

tn−k(u′(t))k+1

) 1
k+2
(∫ 2r

r

u′(t) dt

) k+1
k+2

�
(
Kr−2α(r) |u(2r) − u(r)|k+1

) 1
k+2

,

which gives (2.21). �

Proof of theorem 1.4. Let δ(r) and δ∞(γ) as in (1.6). By (2.9) and (2.10), we obtain

v∞ + 1 =
2k + γ

k + 1
> 0 and k(v∞ − 1) + n >

(n − k)2

n
� 0.
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Thus, from (1.4), (1.5), (1.7), the L’Höspital rule and the elementary equality
2
√

ab = a + b − (
√

a −√
b)2 for a, b � 0, we have

δ∞(γ) =
−n + 2 lim

r→+∞α(r) + 2k + 2

k + 1

=
−n + 2

(
v∞ +

√(
v∞+1

k

)
(k(v∞ − 1) + n)

)
+ 2(k + 1)

k + 1

=
(k + 1)2

(
v∞+1

k

)− (√k(v∞ − 1) + n −
√

v∞+1
k

)2

k + 1

=

(
2
(
k + 2(k+1)(v∞+1)

k

)
− n
)(

k
√

v∞+1
k +

√
k(v∞ − 1) + n

)
(k + 1)

(
(k + 2)

√
v∞+1

k +
√

k(v∞ − 1) + n
)

= C

(
2
(

k +
2γ

k
+ 4
)
− n

)
,

(2.22)

where C is a positive constant depending on n, k and γ.
Additionally, from (2.14) and (1.6), we obtain

δ(r) � δ∞(γ), ∀r � 1. (2.23)

Now, according to the dimension n, we consider three cases:

• Case n > 2(k + 2γ
k + 4). By (2.22), δ∞(γ) < 0, and by continuity there exists

r0 > 1 such that δ(r) < 0 for any r � r0. At this point, we have two subcases:
• lim

r→+∞ |u(r)| ∈ (0, ∞]. From (2.23), we have 0 > δ(r) � δ∞(γ) for any r � r0.

Then, 1 > rδ(r) � rδ∞(γ), ∀r � r0 and it follows that

lim
r→+∞ rδ(r) ∈ [0, 1].

If lim
r→+∞ rδ(r) ∈ (0, 1], we have a contradiction. Hence, lim

r→+∞ rδ(r) = 0 and

(1.8) follows immediately.

• lim
r→+∞ |u(r)| = 0. Let R � 2r and r � 1. Thus, by the monotony of u and

proposition 2.3 there exists K ′ > 0 such that:

|u(R) − u(r)| = |u(R) − u(2r)| + |u(2r) − u(r)|
� |u(2r) − u(r)| � K ′rδ(r).

(2.24)

Letting R → +∞, (1.8) is proved for r0 = 1.

• Case n < 2(k + 2γ
k + 4). We have three subcases:

• lim
r→+∞ |u(r)| r−δ(r) = 0. From (2.21), we have that K ′ = 0, a contradiction.
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• lim
r→+∞ |u(r)| r−δ(r) = L ∈ (0, +∞). Then, ∀ε > 0 there exists r0 � 1 such that∣∣|u(r)| r−δ(r) − L

∣∣ < ε for any r � r0 and (1.8) is proved for r0.

• lim
r→+∞ |u(r)| r−δ(r) = +∞. Then there exists r0 � 1 and K > 0 such that

|u(r)| r−δ(r) � K for any r � r0 and (1.8) is proved for r0.

• Case n = 2(k + 2γ
k + 4). Let r � 1. Then there exists m ∈ N and 1 � r1 < 2

such that r = 2m−1r1. Thus, by the monotony of u and proposition 2.3, it
follows that

|u(r)| � |u(r) − u(r1)| − |u(r1)|

=
m−1∑
j=1

∣∣u(2jr1) − u(2j−1r1)
∣∣− |u(r1)|

�
m−1∑
j=1

K ′(2j−1r1)δ(2j−1r1) − |u(r1)| .

(2.25)

By (2.23), we have

(
2j−1r1

)δ(2j−1r1) �
(
2j−1r1

)δ∞(γ)
= 1,

for any j ∈ {1, . . . , m − 1} and together with (2.25), we get

|u(r)| � K ′(m − 1) − |u(r1)| =
(

K ′

log 2

)
(log r − log r1) − |u(r1)| , (2.26)

and (1.8) follows easily.

�

Proof of theorem 1.6. From (1.8) of theorem 1.4, it follows that n �= 2(k + 2γ
k + 4).

Recall that

δ(r) =
−n + 2α(r) + 2k + 2

k + 1
.

Let R � 2r and r � 1. From (2.23) and (2.24), we have

|u(R) − u(r)| � K ′rδ(r) � K ′rδ∞(γ).

Thus, letting r → +∞, we conclude that δ∞(γ) must be negative, which is
equivalent to n > 2(k + 2γ

k + 4). This prove i).
Finally, letting R → +∞, we have

|u(r) − u∞| � K ′rδ(r), ∀r � 1,

which is ii) with M = K ′. The proof is complete. �
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Appendix A. Proofs of remarks 1.5 and 1.7

We will see that the results obtained in the previous section are optimal.

Example A.1. Let σ1, σ2, τ, μ ∈ R, (n � 2) ∈ N and k ∈ {1, 2, . . . , n}. Define the
function

w(r) = rσ1 (1 + rσ2)−
τ

σ2 , (A.1)

and

μ =
σ1

k
+ 2. (A.2)

We assume that σ1, σ2, τ and n satisfy the following conditions:

• If τ = 0, then

σ1 > −k and n >
k(k + 1)
2k + σ1

. (A.3)

• If τ > 0, then

k(σ2 − 2) � σ1 > −k, 2k + σ1 > τ and

n > max
{√

τσ2

k + 1
+

2k − (k − 1)σ1

k
,

k(k + 1)
2k + σ1 − τ

}
.

(A.4)

Now, let uβ be a radial function defined by

uβ(r) :=

⎧⎨
⎩sgn (β) (1 + rμ)

β
μ if β �= 0,∀r � 0,(

1
μ

)
log (1 + rμ) if β = 0,∀r � 0.

On the other hand, let β ∈ R such that

β � Q(r) :=
−n + 2ν + 2k + 2

k + 1

+
2

k + 1

⎧⎪⎨
⎪⎩
∫ r

1

v(s)
s

ds

log r if r � 1,

v(r) if r ∈ [0, 1),

(A.5)

where ν :=
√

v(0)2 + n
k v(0) + n

k − 1 − v′(1) and v is defined by (1.7).
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Then uβ is a semi-stable nonconstant radial solution of (1.1) with g = gβ defined
by

• If β �= 0,

gβ(s) := cn,k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|β|k

((
|s|μ

β − 1
)σ2

μ

+ 1
) τ

σ2 × if s ∈ Iβ �=0,

×
(
n + k(β − 2) + k (μ − β) |s|−μ

β

)
|s|k− kμ

β

C1 − extension if s �∈ Iβ �=0,

• If β = 0,

g0(s) := cn,k

⎧⎨
⎩
(
(eμs − 1)

σ2
μ + 1

) τ
σ2 (n + k(β − 2) + kμe−μs) e−kμs if s ∈ I0,

C1 − extension if s �∈ I0,

where

Iβ :=

⎧⎪⎨
⎪⎩

[1,+∞) if β > 0,

0,+∞) if β = 0,

[−1, 0) if β < 0.

(A.6)

To establish the above result we need the following auxiliary lemmata.

Lemma A.2. Let θ ∈ R and ρ ∈ C(Rn), 0 � V ∈ C1(Rn\{0}) be radial functions
such that

θ (rV ′ + (n − 2ρ − 2)V − θV ) � 0, ∀r > 0, (A.7)

and

lim
r→0

rn−2V = 0. (A.8)

Then ∫ ∞

0

rn−3V

(
(rη′ + ρη)2 − θ2η2

4

)
dr � 0, (A.9)

for every radially symmetric function η ∈ C1
c (Rn).

Proof. Let η ∈ C1
c (Rn) be a radial function, then∫ ∞

0

rn−3V (θη − t (rη′ + ρη))2 dr � 0,

for all t ∈ R. Extending the above expression, we get the following quadratic
inequality for t:

θ2

∫ ∞

0

rn−3V η2 dr − tθ

∫ ∞

0

rn−3V
(
r(η2)′ + 2ρη2

)
dr

+ t2
∫ ∞

0

rn−3V (rη′ + ρη)2 dr � 0.
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Integrating by parts and using (A.8), we obtain

θ2

∫ ∞

0

rn−3V η2 dr + tθ

∫ ∞

0

rn−3η2 (rV ′ + (n − 2ρ − 2)V ) dr

+ t2
∫ ∞

0

rn−3V (rη′ + ρη)2 dr � 0.

Therefore, the above quadratic inequality is equivalent to

4
(

θ2

∫ ∞

0

rn−3V η2 dr

)(∫ ∞

0

rn−3V (rη′ + ρη)2 dr

)

�
(

θ

∫ ∞

0

rn−3η2 (rV ′ + (n − 2ρ − 2)V ) dr

)2

,

from (A.7), it follows (A.9). �

We are now ready to establish example A.1.

Proof of example A.1. We claim that 2k + γ > 0, where γ is given in (1.4). To this
end, let w(r) as in (A.1). Then, differentiating log w(r) = σ1 log r − τ

σ2
log(1 + rσ2)

with respect to r, we obtain

rw′(r)
w(r)

= σ1 − τhσ2(r),

where

hλ(r) =
rλ

1 + rλ
∈ [0, 1), ∀λ > 0 and r � 0. (A.10)

It follows that

rh′
λ(r)
λ

= (1 − hλ(r)) hλ(r) ∈
[
0,

1
4

]
, ∀λ > 0 and r � 0. (A.11)

From (1.7), we have

v(r) =
k − 1 + σ1 − τhσ2(r)

k + 1
= v(0) − τ

k + 1
hσ2(r), (A.12)

with

v(0) =
k − 1 + σ1

k + 1
.

Moreover, we also obtain that

rv′(r) = − τσ2

k + 1
(1 − hσ2(r)) hσ2(r). (A.13)

On the other hand, by (A.12) we get

γ = lim
r→+∞

rw′(r)
w(r)

= lim
r→+∞ {σ1 − τhσ2(r)} = σ1 − τ, (A.14)
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which, by (A.3) and (A.4), implies that

2k + γ = 2k + σ1 − τ > 0, (A.15)

and the claim follows.
Next, we divide the proof into two steps.

Step 1. For any β ∈ R, uβ is a k-convex solution of (1.1) with g = gβ and w defined
by (A.1).

A direct calculation gives that

u′
β =

{
|β| rμ−1 (1 + rμ)

β
μ−1 if β �= 0,

rμ−1 (1 + rμ)−1 if β = 0.

By (A.2)–(A.4), it follows that

μ − 1 =
σ1

k
+ 1 > 0 ⇒ u′

β(0) = 0,

also

λ2,β :=
u′

β

r
=

{
|β| rμ−2 (1 + rμ)

β
μ−1 if β �= 0,

rμ−2 (1 + rμ)−1 if β = 0.
(A.16)

Consequently, differentiating log λ2,β with respect to r and using (A.10), we
obtain

rλ′
2,β

λ2,β
= μ − 2 + (β − μ) hμ(r). (A.17)

Fix any j ∈ {1, 2, . . . , k}. By (1.2), we have

Sj(D2uβ) = cn,jλ
j−1
2,β

(
nλ2,β + jrλ′

2,β

)
= cn,jλ

j
2,β (n + j ((μ − 2) + (β − μ) hμ(r)))

= cn,jλ
j
2,β((n + j(μ − 2))(1 − hμ(r)) + (n + j(β − 2))hμ(r)).

(A.18)

Combining (2.12), (A.3), (A.4) and (A.12), we have

(
v(0) +

n

2k

)2

−
(
v(r) +

n

2k

)2

= (v(0) − v(r))
(
v(r) + v(0) +

n

k

)

�
(

2τ

k + 1

)
hσ2(r)

(
v(r) +

n

2k

)
� 0, ∀r � 0.

By (A.10) and setting λ = σ2 in (A.11) together with (A.13), we get

rv′(r) − v′(1) =
τσ2

k + 1

(
1
4
− (1 − hσ2(r)) hσ2(r)

)
� 0, ∀r � 0.
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From the last two inequalities and (2.10), (A.3), (A.4), and the fact that
−rv′(r) � 0 for any r � 0, a straightforward calculation gives

ν =
√

v(0)2 +
n

k
v(0) +

n

k
− 1 − v′(1)

=

√(
v(0) +

n

2k

)2

− v′(1) −
( n

2k
− 1
)2

�
√

v(r)2 +
n

k
v(r) +

n

k
− 1 − rv′(r) � |v(r)| , ∀r � 0.

(A.19)

From the previous inequality, (A.2) and (A.5), we deduce that

n + j(μ − 2) = n +
jσ1

k
> n − j � 0,

n + j(β − 2) �
(

1 − j

k + 1

)
n +

2 (v(r) + |v(r)|)
k + 1

> 0.

Therefore, from (A.18), Sj(D2uβ) � 0 for any j ∈ {1, 2, . . . , k}. This shows that
the functions uβ are k-convex.

From (A.16) and (A.18), we have

Sk(D2uβ) = cn,kλk
2,β

(
n + k(μ − 2) + k (β − μ)

(
rμ

1 + rμ

))

= cn,k

({
|β|k if β �= 0,

1 if β = 0.

)
rk(μ−2) (1 + rμ)

kβ
μ −k

×
(
n + k(μ − 2) + k (β − μ)

(
1 − (1 + rμ)−1

))

= cn,k

({
|β|k if β �= 0,

1 if β = 0.

)
rk(μ−2) (1 + rσ2)

−τ
σ2

× (1 + rσ2)
τ

σ2

(
(n + k(β − 2)) (1 + rμ)

kβ
μ −k

− k (β − μ) (1 + rμ)
kβ
μ −(k+1)

)
.

On the other hand, it is easy to see that

1 + rμ =

{
|uβ(r)|μ

β if β �= 0,∀r � 0,

eμu0(r) if β = 0,∀r � 0,
and

rσ2 =

⎧⎪⎨
⎪⎩
(
|uβ(r)|μ

β − 1
)σ2

μ

if β �= 0,∀r � 0,(
eμu0(r) − 1

)σ2
μ if β = 0,∀r � 0.
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From this, (A.1) and (A.2), we have

Sk(D2uβ)=w(r)cn,k

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|β|k
((

|uβ |
μ
β − 1

)σ2
μ

+ 1
) τ

σ2 × if β �= 0,

×
(
n + k(β − 2) + k (μ − β) |uβ |−

μ
β

)
|uβ |k(

β−μ
β )(

(eμu0 − 1)
σ2
μ + 1

) τ
σ2 (n − 2k + kμe−μu0) e−kμu0 if β = 0.

Now for every s � 0, let us define the function

fβ(s) := (qβ(s))
τ

σ2

{
|β|k

(
n + k(β − 2) + k (μ − β) s−

μ
β

)
sk( β−μ

β ) if β �= 0,

(n − 2k + kμe−μs) e−kμs if β = 0,

(A.20)
with

qβ(s) :=

⎧⎨
⎩
(
s

μ
β − 1

)σ2
μ

+ 1 if β �= 0,

(eμs − 1)
σ2
μ + 1 if β = 0,

(A.21)

which lead us to

Sk(D2uβ) = w(r)cn,k

{
fβ(|uβ |) if β �= 0,

f0(u0) if β = 0.

Let y ∈ Iβ and s = |y|. Using (A.6), we see that:

• If β > 0, then s � 1.

• If β = 0, then s � 0.

• If β < 0, then s ∈ (0, 1].

Therefore, to study the differentiability of fβ , we must consider the points s = 0
for β � 0 and s = 1 for β �= 0.

Since qβ �=0(1) = q0(0) = 1, from (A.20) and (A.21), we have

lim
s→1

fβ(s)

|β|k
∣∣∣∣∣
β �=0

= lim
s→0

f0(s) = n + k(μ − 2), ∀τ � 0. (A.22)

Now, differentiating log fβ(s) with respect to s and using (A.20), we obtain

f ′
β(s)

fβ(s)
=

{
0 if τ = 0,
τ
σ2

q′
β(s)

qβ(s) if τ > 0.
+

⎧⎪⎨
⎪⎩

k(β−μ)s−1

β

(
1 + μs

− μ
β

n+k(β−2)+k(μ−β)s
− μ

β

)
if β �= 0,

−kμ
(
1 + μe−μs

n−2k+kμe−μs

)
if β = 0.

(A.23)
If τ = 0, then from (A.22) and (A.23), we get

lim
s→1

f ′
β(s)

|β|k
∣∣∣∣∣
β �=0

=
k(β − μ)((k + 1)μ + n − 2k)

β
, lim

s→0
f ′
0(s)

= −kμ((k + 1)μ + n − 2k), (A.24)
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and if τ > 0, from (A.21), we have

q′β(s) = σ2

⎧⎨
⎩β−1

(
s

μ
β − 1

)σ2
μ −1

s
μ
β −1 if β �= 0,

(eμs − 1)
σ2
μ eμs if β = 0.

(A.25)

From (A.2) and (A.4), it follows that μ � σ2 and then

lim
s→1

q′β �=0(s) =

{
σ2
β if μ = σ2,

0 if μ < σ2.
, lim

s→0
q′0(s) =

{
σ2 if μ = σ2,

0 if μ < σ2.
(A.26)

Therefore, concerning the cases s = 0 for β = 0 and s = 1 for β �= 0, we have

lim
s→1

f ′
β(s)

|β|k
∣∣∣∣∣
β �=0

=
(

τ

σ2
lim
s→1

q′β �=0(s)
)

(n + k(μ − 2)) +
k(β − μ)((k + 1)μ + n − 2k)

β
,

lim
s→0

f ′
0(s) =

(
τ

σ2
lim
s→0

q′0(s)
)

(n + k(μ − 2)) − kμ((k + 1)μ + n − 2k).

(A.27)
For the case when β < 0 and τ � 0, we rewrite qβ(s) to get

qβ(s) =
((

1−s
−μ
β

)σ2
μ

+ s
−σ2

β

)
s

σ2
β and

q′β(s)
qβ(s)

=
σ2

β

⎛
⎜⎝

(
1 − s

−μ
β

)σ2
μ −1

(
1−s

−μ
β

)σ2
μ

+ s
−σ2

β

⎞
⎟⎠ s−1.

(A.28)
From (A.2) and (A.15), it follows that kμ − τ = 2k + σ1 − τ > 0. Then

τ − kμ

β
= −kμ − τ

β
> 0. (A.29)

Thus, from (A.20), (A.23) and (A.28), for β �= 0, we get

fβ(s)

|β|k
= (n + k(β − 2) + o(1)) sk+ τ−kμ

β ,
f ′

β(s)
fβ(s)

=
(

τ + k(β − μ)
β

+ o(1)
)

s−1,

as s → 0.
Therefore, from (A.29), we obtain

lim
s→0

fβ(s)

|β|k
∣∣∣∣∣
β<0

= (n + k(β − 2)) lim
s→0

sk+ τ−kμ
β = 0, (A.30)

and

lim
s→0

f ′
β(s)

|β|k
∣∣∣∣∣
β<0

=
(n + k(β − 2)) (τ + k(β − μ))

β
lim
s→0

sk−1+ τ−kμ
β = 0. (A.31)

Collecting (A.22), (A.24), (A.27), (A.30) and (A.31), there exists a C1-extension
for fβ(s) when s �∈ Iβ , and we have that uβ is a radial solution of (1.1) with g = gβ ,
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where

gβ(s) = cn,k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
fβ(|s|) if s ∈ Iβ �=0,

C1-extension if s �∈ Iβ �=0,{
f0(s) if s ∈ I0,

C1-extension if s �∈ I0.

(A.32)

Step 2. For β satisfying the inequality (A.5), uβ is a semistable solution of (1.1).
Next, for suitable ρ, θ and V we verify the hypotheses of lemma A.2. To this

end, let V = r2λk+1
2,β . Differentiating log V with respect to r, from (A.10), (A.16)

and (A.17), we have

rV ′

V
= 2 + (k + 1) (μ − 2 + (β − μ) hμ(r)) . (A.33)

Note that in both cases τ = 0 or τ > 0, we have that n > k(k + 1)/(2k + σ1) and
k + σ1 > 0 by (A.3) and (A.4). Now, since

k(k + 1)
2k + σ1

+
(k + 1)σ1

k
=

(k + 1) (k + σ1)
2

k(2k + σ1)
> 0,

it follows that n > −(k + 1)(σ1/k). Combining this with (A.2) and (A.16), we have

lim
r→0

rn−2V = Cβ lim
r→0

rn+
(k+1)σ1

k (1 + rμ)
(k+1)(β−μ)

μ = 0, (A.34)

with Cβ = |β|k+1 for β �= 0 and Cβ = 1 for β = 0.
Now, consider ρ = v and θ = 2ν. From (A.33), we have

n − 2ρ − θ − 2 +
rV ′

V
= n − 2 (v + ν) + (k + 1) (μ − 2 + (β − μ) hμ(r)) .

We have from (A.5) that

n = (k + 1)(2 − Q(r)) + 2ν + 2

⎧⎪⎨
⎪⎩
∫ r

1

v(s)ds

s
log r if r � 1,

v(r) if r ∈ [0, 1).

From this we obtain

n − 2ρ − θ − 2 +
rV ′

V
= (k + 1) (μ − Q(r) + (β − μ) hμ(r))

+ 2

⎧⎪⎨
⎪⎩
∫ r

1

v(s)ds

s
log r

− v(r) if r � 1,

0 if r ∈ [0, 1)

= (k + 1) (μ − Q(r)) (1 − hμ(r))

+ (k + 1) (β − Q(r)) hμ(r) + 2

⎧⎪⎨
⎪⎩
∫ r

1

v(s)ds

s
log r

− v(r) if r � 1,

0 if r ∈ [0, 1).
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Consider the function

A(r) = 2

{∫ r
1

v(s)ds
s

log r − v(r) if r � 1,

0 if r ∈ [0, 1).

Note that ∂r(
∫ r

1
v(s)ds

s − v(r) log r) = −v′(r) log r � 0 for any r � 1 by (A.13).
Then

∫ r

1
v(s)ds

s − v(r) log r � 0 for every r � 1. Therefore A(r) � 0 for every r � 0.
Now since, β � Q(r) and hμ(r) ∈ [0, 1), it follows that

n − 2ρ − θ − 2 +
rV ′

V
� 0 if (k + 1) (μ − Q(r)) (1 − hμ(r)) + A(r) � 0. (A.35)

We claim that

(k + 1) (μ − Q(r)) (1 − hμ(r)) + A(r) � 0. (A.36)

Using (A.2), (A.12) and (A.13), we can easily see that

μ =
(k + 1)(v(0) + 1)

k
, v(0) − v(r) =

τ

k + 1
hσ2(r) and v′(1) = − τσ2

4(k + 1)
. (A.37)

Let us now consider the functions:

I± := I±(r) =
(k2 + 1)(v(0) + 1)

k
+ n − 2k +

2τ

k + 1
hσ2(r) ± 2ν. (A.38)

Since n > k/(v(0) + 1) by (2.10), we have

(k2 + 1)(v(0) + 1)
k

+ n − 2k >

(
k

v(0) + 1

)(
(k2 + 1)(v(0) + 1)2

k2
− 2v(0) − 1

)

=
kv(0)2

v(0) + 1
+

v(0) + 1
k

> 0.
(A.39)

From this and the fact that ν � 0 by (A.19), it follows that I+ > 0.
On the other hand, from (A.5), (A.37) and (A.38), we have

(k + 1)(μ − Q(r)) =
(k + 1)2(v(0) + 1)

k
+ n − 2ν − 2k − 2

+ 2

⎧⎪⎨
⎪⎩−

∫ r

1

v(s)ds

s
log r if r � 1,

−v(r) if r ∈ [0, 1)

=
(k2 + 1)(v(0) + 1)

k
+ n − 2k + 2(v(0) + 1) − 2(v(r) + 1)

− 2ν − A(r) = I− − A(r).
(A.40)
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It follows that

(k + 1) (μ − Q(r)) (1 − hμ(r)) + A(r) = (I− − A(r)) (1 − hμ(r)) + A(r)

= (1 − hμ(r)) I− + A(r)hμ(r)

� (1 − hμ(r)) I−.

In the following, we will prove that I−I+ � 0, which implies that I− � 0 since
I+ > 0. To do that, we begin by noting that

ν2 = v(0)2 +
n

k
v(0) +

n

k
− 1 − v′(1) = (v(0) + 1)

(
v(0) +

n

k
− 1
)

+
τσ2

4(k + 1)
,

and

I−I+=B(r)2 − 4ν2, (A.41)

where B(r) := (k2+1)(v(0)+1)
k + n − 2k + 2τ

k+1hσ2(r). Using that

(
(k2 − 1)(v(0) + 1)

k
+ n − 2k

)2

=
(

B(r) − 2τ

k + 1
hσ2(r)

)2

− 4
(

ν2 − τσ2

4(k + 1)

)
,

together with (A.39) and (A.41) we then have

I−I+−
(

(k2 − 1)(v(0) + 1)

k
+ n − 2k

)2

=
4τ

k + 1
hσ2 (r)

(
(k2 + 1)(v(0) + 1)

k
+ n − 2k

)

+
4τ2

(k + 1)2
h2

σ2
(r) − τσ2

k + 1

� − τσ2

k + 1
.

(A.42)

If τ = 0, we are done. So assume that τ > 0, then

(
(k2 − 1)(v(0) + 1)

k
+ n − 2k

)2

− τσ2

k + 1
=

(
(k2 − 1)(2k + σ1)

k(k + 1)
+ n − 2k −

√
τσ2

k + 1

)

×
(

(k2 − 1)(2k + σ1)

k(k + 1)
+ n − 2k +

√
τσ2

k + 1

)

� 0,

by (A.4). From this and (A.42), I−I+ � 0, which proves the claim (A.36).
Thus, according to (A.35) and (A.36), we have

θ (rV ′ + (n − 2ρ − 2)V − θV ) = θV

(
n − 2ρ − θ − 2 +

rV ′

V

)
� 0.

Hence, from the previous inequality and from (A.34), we conclude that the con-
ditions (A.7) and (A.8) of lemma A.2 are satisfied. Recall that V = r2λk+1

2,β , ρ = v
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and θ = 2ν, then one can see from (A.9) and (A.19) that

∫ ∞

0

rn−1λk+1
2,β (rη′ + vη)2 dr �

∫ ∞

0

rn−1λk+1
2,β

(
θ2η2

4

)
dr

�
∫ ∞

0

rn−1λk+1
2,β

(
v2 +

n

k
v +

n

k
− 1 − rv′

)
η2 dr,

for every radially symmetric function η ∈ C1
c (Rn).

Therefore, from lemma 2.1 and corollary 1.8 of [7], we have that uβ is a semi-
stable solution of (1.1). Although only the case of a ball appears in corollary 1.8,
one can see that the proof of this lemma can be adapted without difficulties to the
R

n space. �

Proof of remark 1.5. Let uβ as in remark 1.5 a semi-stable solution of (1.1). From
theorem 1.4, there exist M > 0 and r0 � 1, such that for any r � r0, we have

• If n �= 2(k + 2σ1
k + 4),

• If β �= 0, then

Cβrβ−δ(r) � |uβ(r)|
rδ(r)

� M, (A.43)

where Cβ = 2β/μ if β > 0 and Cβ = 1 if β < 0,

• If β = 0, then (
log 2

μ
+ log r

)
r−δ(r) � |u0(r)|

rδ(r)
� M, (A.44)

• If n = 2(k + 2σ1
k + 4) and β �= 0, then

Cβ
rβ

log r
� |uβ(r)|

log r
� M, (A.45)

where Cβ is as in (A.43).

Now, let τ = 0 in (A.1), then w(r) = rσ1 . Thus from (1.6) and (A.5) we get

Q(r) = δ(r) = δ∞(σ1), ∀r � 1.

So, if δ∞(σ1) > β, we have

• If n �= 2(k + 2σ1
k + 4), from (A.43) and (A.44), letting r → +∞, we obtain a

contradiction.

• If n = 2(k + 2σ1
k + 4), from (2.22), we have that δ∞(σ1) = 0 and from (A.45),

letting r → +∞, we obtain a contradiction.

Hence, β � δ∞(σ1) = δ(r) = Q(r), ∀r � 1.
In addition, it is easy to check that for any r � 1, we have that
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• If n �= 2(k + 2σ1
k + 4),

|uβ(r)|
rδ∞(σ1)

�

⎧⎪⎨
⎪⎩

2
β
μ if β < 0,

1
μ log 2 if β = 0,

1 if β > 0.

• If n = 2(k + 2σ1
k + 4),

|uβ(r)|
log r

�
{

βe if β > 0,

1 if β = 0.

Therefore, we conclude that theorem 1.4 is sharp for γ = σ1 > −k and w(r) = rσ1

where

M =

⎧⎪⎨
⎪⎩

2
β
μ if β < 0,

log 2
μ if β = 0,

min{βe, 1} if β > 0,

and r0 = 1. �

Proof of remark 1.7. Let β < 0 such that (A.5) holds. From example A.1 uβ(r) =
−(1 + rμ)

β
μ is a semi-stable bounded solution of (1.1). Now note that from (2.12),

(A.12), (A.13) and the fact that, for r � 1, hσ2(r) ∈ [1/2, 1), h′
σ2

(r) > 0, we have

∂r

(√
v(r)2 +

n

k
v(r) +

n

k
− 1 − rv′(r)

)
=
( −τ

k + 1

)
h′

σ2
(r)×

×
(

v(r) + n
2k + σ2 (2hσ2(r) − 1)√

v(r)2 + n
k v(r) + n

k − 1 − rv′(r)

)

< 0.

From this and (A.19), we obtain

ν =
√

v(0)2 +
n

k
v(0) +

n

k
− 1 − v′(1) >

√
v(1)2 +

n

k
v(1) +

n

k
− 1 − v′(1)

�
∫ r

1

√
v(s)2+ n

k v(s)+ n
k −1−sv′(s)

s ds

log r
, ∀r � 1.

Hence, from (2.23), (A.5) and (A.14), we have

Q(r) =
−n + 2ν + 2k + 2

k + 1
+
(

2
k + 1

) ∫ r

1
v(s)ds

s

log r

� −n + 2α(r) + 2k + 2
k + 1

= δ(r), ∀r � 1.

(A.46)

From this, we have that 0 > β � δ(r), ∀r � 1 and item i) follows from (2.22).
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Since β − δ(r) � 0 for any r � 1, uβ,∞ = limr→+∞ uβ(r) = 0 and (1 + r−μ)
β
μ �

2
β
μ , from (A.46), we finally obtain

|uβ(r) − uβ,∞|
rδ(r)

� |uβ(r)| − |uβ,∞|
rδ(r)

= (1 + r−μ)
β
μ rβ−δ(r) � 2

β
μ ,

and item ii) follows. �
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