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We devote this paper to study semi-stable nonconstant radial solutions of

Sk (D?u) = w(|z|)g(u) on the Euclidean space R™. We establish pointwise estimates
and necessary conditions for the existence of such solutions (not necessarily
bounded) for this equation. For bounded solutions we estimate their asymptotic
behaviour at infinity. All the estimates are given in terms of the spatial dimension n,
the values of k£ and the behaviour at infinity of the growth rate function of w.
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1. Introduction and main results
This paper deals with the semi-stability of nonconstant radial solutions of
Si(D?u) = w(|z|)g(u), (1.1)

posed in R™, where n > 1, k € {1, ..., n}, the function g € C'(R) is nonnegative
and nonincreasing, and w is a nonnegative radial function that satisfies some suit-
able conditions. The operator Si(D?u) is the k-Hessian of u, which is defined by
the sum of all k-th principal minors of the Hessian matrix. Alternatively, Si(D?u)
is the k-th elementary symmetric polynomial of the eigenvalues of the Hessian
matrix D?u. According to [1], to ensure ellipticity of equation (1.1), we consider
k-admissible or k-convex solutions, i.e., functions that belong to

% :={ue C*(R"): $;(D%u) >0, 1=1,2,....k}.

We point out that there are no previous works concerning semi-stable solutions to
the k-Hessian operator in the whole space R™ for general nonlinearities and k # 1.
In fact, to the best of our knowledge, the only results devoted to stable solutions
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1752 M. A. Navarro and J. Sdnchez

to (1.1) are contained in the work [10] and they concern only the particular cases
w(r) =1 and g(u) a power nonlinearity. More precisely, in [10], the authors gave
a definition of stable radial solutions of the k-Hessian equation Fj(D?V) = (—V)P
in R", where Fy,(D?V) = S (D?V). They stablished connections between stability
and certain critical exponents of Joseph-Lundgren type available for k-Hessian
operators. Their tools also include Wolff potentials.

For existence and non-existence results for equations of the form (1.1) we refer
to [3], where a special emphasis was put in the model equation

(—1)*Hyu = a(lz]) [ul"" u,

being

k
Hy = ——T}, for 1 <k <n (integer) and T} = Sk(VQ).

(fay
Some existence and non-existence results for radial solutions are given in terms of an
integral condition involving the function a. In [6], among other results, the author
constructs explicit negative solutions of the equation Fi(D?V) = R(z)(-V)?
in R", where Fy(D?V) = S,(D?V) and R(z) is a radial function that satisfies
C~! < R(z) < C for some constant C' > 1. See [6, theorem 4.2].

Throughout this work, we identify a radial solution u by their one variable repre-
sentant, that is, u(x) = u(r), |x| = r. At the point x = (r, 0, ..., 0), the eigenvalues
of D?u are A\; = ", which is simple, and Ay = “7/, which has multiplicity n — 1,
where by abuse of notation, we write «’ or d,u as the radial derivative of a radial
function w. Thus the k-Hessian operator acting on radially symmetric C? functions
can be written as

Sk(D*u) = cp A5  (ndo + k(M — A2)) = copr' "0, (r"A5), >0, (1.2)
where ¢, i, is defined by ¢, , = (Z) /n.

REMARK 1.1. Note that, if u is a radial solution of (1.1) then, in particu-
lar, Sy(D?u) =r1="(r""%/) > 0. Thus G(r) = r"'u’ is nondecreasing, since
G(0) =0, we deduce that G > 0 and hence u is nondecreasing. As a consequence,
A2 = 0.

DEFINITION 1.2. We say that a radial solution u € ®F of (1.1) is semi-stable if
Qu(©) = [ Kenulel [Vl IVEL 4 ulleg (€ 20, (1)
R'ﬂ

for every radially symmetric function & € CL(R™).

In this paper, we establish pointwise estimates and necessary conditions for the
existence of semi-stable solutions (not necessarily bounded) of (1.1). For bounded
solutions we estimate their asymptotic behaviour at infinity. All the estimates are
given in terms of the spatial dimension n, the values of £ and the behaviour at

rw’ (r)

infinity of the growth rate function of w, that is, the function W (r) := ETIGOR
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We now establish our precise assumptions on the weight w(r) that we will assume
throughout the paper:

The functions w and W belong to C! (R™\{0}) and W (r) is

nonincreasing on (0, o). Further, liin rW'(r)=0
T—1T00

14
Set T' = lin}J W(r), v= hI—P W (r), and assume that T" and (1.4)
~ are finite with 2k +~v > 0.
In order to state our main results, we need the following notation:
Let
)+ )+ E—1—
/ { Vo(s) 2 sv/(s) } s
1 S
= 1.
a(r) = S
— 2 2k 42
5(r)y = & f}‘;’:j T2 Vr>1and 6u(y )= lim 5, (16)
where
E—14+W(s)
=— > 0. 1.
v(s) E , Vs>=0 (1.7)

Note that when k& = 1 and w = 1, §(r) takes the constant value —% + v/n — 1 + 2,
which plays a crucial role in pointwise estimates. We refer to [9] by Villegas for
details. A great difference here is that d(r) is a variable exponent, this produces
additional technical difficulties.

Our main results are

PROPOSITION 1.3. Let n > k(k+1)/(2k + ) and u be a semi-stable nonconstant
radial solution of (1.1). Then |Vu(z)| > 0 for all |z| > 0.

We have the following pointwise estimate for not necessarily bounded solutions

of (1.1).

THEOREM 1.4. Let w € C*(R™\{0}) be a radial function that satisfies (1.4), n >
kE(k+1)/(2k 4+ ~) and u be a semi-stable nonconstant radial solution of (1.1) (not
necessarily bounded). Then, there exist M >0 and ro > 1 depending on u and w
such that for all r > rg,

lu(r)| = M {Té(r) ifn#2(k+ 5 +4),

1.8
log r zfn—2(k+2,;7+4). (18)

REMARK 1.5. This theorem is sharp for some € R, = 7 + 2 and

sgu (6) (L+ )% if B#0,Yr >0,
ug(r) = -0

%) log (1+7#) if 3=0,Vr

7

where o > —k and w(r) = r?, as shown in the appendix.
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THEOREM 1.6. Let w € CY(R™\{0}) be a radial function that satisfies (1.4), n > 2
and u be a semi-stable nonconstant bounded radial solution of (1.1). Then,

(i) n>2(k+ 2 +4).

(ii) There exists uoo = lilll u(r) € R and M > 0 depending on u and w such
that for all r > 1,

u(r) = uoo| = M. (1.9)
REMARK 1.7. Theorem 1.6 is sharp (see example A.1 in the appendix).

REMARK 1.8. See [9] to compare our results with the semilinear case (k = 1) and
for related equations involving the p-Laplacian operator, see [2, 5, 8].

This paper is organized as follows. In § 2 we prove our main results, proposition
1.3, theorem 1.4 and theorem 1.6. We conclude the paper by presenting in the
appendix some examples of functions w and g for which our theorems are sharp.

2. Proof of the main results

We claim that if v is a C? radial solution, then v’ € Cloo’cl (R™). To prove our claim,
we first observe that u’ € C°(R"™) N C*(R™\{0}) with «/(0) = 0 and |u/(z)| < Cr |z|
in any open ball Bg of radius R > 0. Now from (1.1) and (1.2) we obtain, for r > 0,

'\ 1 n—=k u
e () ((57) () +) = st
from which we deduce that
1-k
"o__ wQ(“’) ’U;/ (- k l/
u_<kcn7k><r> ( 3 E r > 0.

Thus, for any R > 0, the function «” is bounded on Bg\{0}. Also for any z, y €
R™ such that R > |y| > |x| > 0, we have

vl
Wil — (el < [ )]

||

< sup W€ (lyl = [«l)
gellal Iyl

< supu([2)] |y — =]
2€BR\{0}

We conclude that u' € Cp2'(R™). This will be used in the proof of lemma 2.1
below.
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LEMMA 2.1. Let n > 2 and u be any radial solution of (1.1). Then

2

_ <v2+%v+%—1—(x,Vv)) nZ},

1

lz| Vi + v
||

Qu(uITD = kcn,k/ )\I2€+1 {
]Rn

(2.1)
for every radially symmetric functionn € (H} N L2, )(R™), where v is defined as in

(1.7). Here (-, -) denotes the standard scalar product in R™.

Proof. Let n € HX(R™) N Ly®

loc

(R") and ¢ € C2!(R™) be radial functions. Then, by

loc

a standard density argument, we can take £ = (n € H}(R™) N L2 (R™) in (1.3) to
obtain
; 1k—1 )
Qu(en) = [ kewi |l V(P + w(lel)g () ) (2.2
Thus, as v and ( are radial functions, we get
k—1
u’ _
Bl V@l =28 (vl + (20096 V) £ 1VE)) 2

where Ay = u'/|z].
From (1.2) and differentiating (1.1) with respect to r, we obtain

k Ik
. . n—1/( 4 0
cn,kwg'(u)u/ = fcmkw’g(u) -5 <rk_1) + A <rk_1)

W (n—1)\s

= —c;jcwg(u)7 — +ANTW), >0

r
Then, multiplying the latter equation by u/n? = rAyn?, we have

1 ) 1
— [ wg'(u) (uW'n)” = ——— [ wg(u) MWn?) —(n—1) [ MT'y?
Cn’k R™ cn,k Rn R™

o [ (lalrar) & (1] ).

Thus, integrating by parts, and taking into account that Ay € LfS (R™), we obtain

L wg(u) (AWn?) = /Rn (2, V (|z[" A5)) (\:crn )\2W772)

Cn,k JRn
== [ (a3 (@9 (2w ?))(29)

k n
= Lu (W = 2.V (W)
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and

L (e & (18) = = [ (9 (1l x?) 9 (11 14)

R

k(k—1
- (k ) M (2 + (2, Vi?))
11 Jan
y (2.6)
e (V020 VR
k[ Ak
n 2
e [ TS (el
Next, using ¢ = ' in (2.2), (2.3), we have
[ = [ (w2 Vol + 2V, 9n) Vo)
R™ R™
2 2
-/ {WQ@H VS (ALY >}
R™ 2
[ Y (alra) P
" (2.7)

- / j2f? AL+ |72
(ki 1) k+1 2 2
+ ) n/\2 (77 +(:Z:,V77 ))

1
% /R (Il 22n?) A (|| A3).

Then, from (2.2), (2.4), (2.5), (2.6) and (2.7), we obtain

Quun) = [ MVl 4 [ g @
R™ Cn’k n
__L k41 (1 2 2
= 1 LA (e = 9 ()
1
_ (”k )/n A12c+1n2+/n |x|2)\§+1\V77|2
(k_l)/ k+1 2 2
SO [ 2+ V).
Since
xn 2
2 2
|z [Vnl* + v (2, Vi?) = 2l Vi + v — v,

from (1.7), we have

W=(k+1v+1l—Fkand (z,VW) = (k+1) (z,Vv).
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Hence
xn|? n n
Qu(u'n) = / )\SH |x\V17+v—77 — (1)2+—U+— —1—(z,Vv)) n?,
R |.’17| k k
which concludes the proof. O

Multiplying the equation (1.2) by r"*% ~1)\,, we obtain
((r%)\g)kﬂ)/ = (k+ 1) (kcpp)  twg(u)r"TE =y,
Since 1Ay = o/, the above equation is equivalent to
((r%_lu’)kH)/ = (k+ 1) (kcp ) " twg(u)rt ~1u/. (2.8)

On the other hand, from (1.4) and (1.7), we have

. k—1+4+~
> = = — > 0. .
(1) = Voo 7aglr_s{loov(r) P Vr >0 (2.9)
Thus, if n > k(k + 1)/(2k + ), it follows that
n n n n(2k + )
e g — =11 , > 0. 2.1
kv(r)Jrk k(vooJr ) ki 1) >0, VYr>=0 (2.10)

Proof of proposition 1.3. We follow an argument similar to that of proposition 1
in [4]. Let n > k(k+1)/(2k+ ) and let u be a semi-stable nonconstant radial
solution of (1.1). Arguing by contradiction, assume that u/(r¢) = 0 for some rq > 0.
Now let xp,, be the indicator function of the open ball of radius 7o centred at the
origin, so xp,, € H}(R") N Ly, (R™). From (2.1), we obtain

loc

Qu (u'xz,,) = ken </ +/ )
By, R™\ By,
2
TXB, non
{A’SH ( o] o | _ (1}2 + vt 1—(33,Vv)) x%ro) }

n n
:—kzcn,k/ ML Do+ 2 -1 — (2, Vo) b +0<0,
L G g - @)

2| VxB,,+ v

0

where we have used the fact that Ay > 0, (2.10) and the monotonicity of v to get
the above inequality. Thus, the semi-stability of w implies that u(r) = ug for all
re [0, ’I"()].
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Let v(r) = (r¥ ~*/)**1. From (2.8), we have the following problem

n
o =r kyk+1 r>rg >0,
1

v = (k+ 1) (kcpr) " twgu)vk +1 0 ¢ >0 >0,
u(rp) = up,
v(rg) =0

Finally, by Cauchy’s theorem, we get that w=wuy for any r >0, a
contradiction. g

We adapt some estimates given by Villegas in [9] for the nonweighted semilinear
equation. Here is one of our main integral estimates.

LEMMA 2.2, Let we CH(R™\{0}) be a radial function that satisfies (1.4),
n>k(k+1)/(2k +v) and u be a semi-stable nonconstant radial solution of (1.1).
Then, there exists K > 0 depending on u and w and such that

) ds <EKr220M YR>p>1 2.11
. ey <K st —

Proof. From proposition 1.3, we have that «/(r) # 0 for all » > 0. Furthermore,
u’ >0 on (0, 00) (see remark 1.1).

Next we show that «(r) defined in (1.5) is strictly positive for all » > 1. For this,
let k > 0 and define the function

U(r, k) :=v(r)+ \/v(r)2 + %v(r) + % -1+ k.

From (2.10), we have

n _k n n  k*+(n—k)?
B _ — =~ . 2.12
v(r) + o > ( k) o T (2.12)
Then
o o(r) + 55

E(T’ K) = (1 + NGRS TOE et m) V'(r) <0forr>0. (2.13)

Thus, from (1.4), (2.10), (2.12) and (2.13), we obtain

U(r,—rv'(r)) > v(r) + v(r)] =0, Vr>0,
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and

Wi, —r (1)) > U(r,0) = v(r) + \/(”(”k“) (k(u(r) — 1) + n)

> lim U(r,0) =vs + \/Z(Uoo +1) + (Voo + 1) (Voo — 1)

r— 00

k—1+4~ 2k +7)(y —2)
R +\/1+ CESE

_k—1+7+\k—1+7|
- k+1

Therefore by the previous inequalities, we get

/{ —|-\/v —|—k—1—sv(s)}dS
1 s

a(r) = logr

2%0-1-\/Z(Uoo+1)+(voc+1)(voo—1)>0forr>1.

/

(2.14)

We now fix R > r > 1 and consider the function
1 if 0 <
t—(®) if 1 <

o /R ds
H=<" n—Fk (o, k1
n(t) S 8" (u/(s)) ifr <t<R,
ds
| s

0
Since, u is a semi-stable solution, from (2.1), we have

if R<t<oo.

0 < (wnkepp) 'Quun) =0+ 1+ I3

</ / /) t”’l/\g“ ((tn')2+21)(t)(t77n/) (2.15)
- (0§ -1-ww) ) ar).

where w,, is the measure area of the n — 1 dimensional unit sphere S™"~1!.

Then by (2.10), we have
1
_ n—1yk+1 1 —
I = /Ot Ak ((k()+k 1 tv()))dt

1
n n—1yk+1
< (= _
< (k(voo+1) 1)/Ot Ay dt,

(2.16)
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and by (1.5), we obtain

/ m—2a(t) 1)\k+1((t(a(t)logt)/*’l)(t)f

v( )+ E —1—-tv (t))) dt (2.17)

0.

Now to estimate I3, we need to consider two cases according to the sign of v in
the interval [r, R]. For this, we rewrite I3 as

Iy =If+I; :/ +/ ; (2.18)
{te[r,R]:v(t)>0} {te[r,R]:v(t)<0}
and we define ®p : [r, R] — R as
R
Bp(t) = / g~ (D) \ (4D g
t

and recall that Ay = u/(s)/s for s > 0.
Thus for t € [r, R]:

e If v(t) > 0, then by (2.10), it follows that

R
I = / ST ()7 + 20() (b)) dt

[l (o 1= o) )

" (2.19)
R —2a(r)
</ = 1)\k+17“ g2\ T2k 4D gy
v D% (r) ?
—2a(r R —2a(r
:1"2()/ t*(”+1))\7(k+1)dtzr2()'
H(r) Jy ? Pr(r)

e If v(t) < 0, then for all € >0

t72n)\2_2(k+1)

—20()BR(H)E A, T < Ro(t)2 DR (1) + : :
€

and

1 r—2oz(r) r—2oz(r)
) @n(r)  Dg(r)?

Iy < (1
;< (1
« / I (=Bt Tu(t) + 7~ 1-1(1)) @p(t)? dt.
{t€[r,R]:v(t)<0} g "

Moreover, by (1.4) and (1.7), we have that

[veo| > |v(t)] > 0 for any ¢ € {t € [r, R] : v(t) < 0}.
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By (2.10) we can pick € € (0, \/7Voo + 7 — 1/ |vc|). Then applying the

Young’s inequality with & to —v(t)@R(t)t_")\;(kH) with exponents 2 and 2,

and using again (2.10), we have

—e2u(t)? + 2y

? (t)-i—%—l—t’l)/(t)2—62U20+E1}00+2—1>0,

k k

and therefore

e (1e L) 2.20
s (1) Sy 220
Finally, from (2.15)—(2.17), (2.19) and (2.20), the lemma follows. O

Applying lemma 2.2 enables us to prove the following pointwise estimate.

PROPOSITION 2.3. Let w € CY(R™\{0}) be a radial function that satisfies (1.4),
n > k(k+1)/(2k + ) and u be a semi-stable nonconstant radial solution of (1.1).
Then, there exists K' > 0 depending on u and w and such that

lu(2r) —u(r)| = KT, vr>1. (2.21)

Proof. Fixr > 1. Applying Holder’s inequality, lemma 2.2 with R = 2r and recalling
that «’ does not vanish in (0, o), we deduce

2
(/ s dt) S / —%5 dt
1

which gives (2.21). O
Proof of theorem 1.4. Let §(r) and do(y) as in (1.6). By (2.9) and (2.10), we obtain

2k +
k+1

(n— k)

Voo + 1= >0 and k(v — 1) +n > > 0.
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Thus, from (1.4), (1.5), (1.7), the L’Hospital rule and the elementary equality

2Vab = a+ b — (y/a — v/b)? for a, b > 0, we have
—n+2 hm a(r) + 2k +2
Jos () = k+1
—n+2<voo+\/(”w—,j1) (k(voo—l)-l-n))—I—Q(k-i-l)
k+1
2
(k+ D2 (2) - (VEm = D — /52
k+1
(2 (b + 2=t = ) ([ 4 /R — 1) T 1)

(k+1) (k+2 vastl 4 )+n)

o))

where C' is a positive constant depending on n, k and ~.
Additionally, from (2.14) and (1.6), we obtain

(2.22)

0(r) = 0oo(7y), Vr > 1. (2.23)
Now, according to the dimension n, we consider three cases:

e Case n > 2(k+ 21 +4). By (2.22), 65(7) < 0, and by continuity there exists
rg > 1 such that §(r) < 0 for any r > ro. At this point, we have two subcases:
° li141_1 lu(r)| € (0, oc]. From (2.23), we have 0 > §(r) > doo(7y) for any r = rg.

Then, 1 > ro(r) > pioo (7), Vr > rg and it follows that

lim % ¢ € [0,1].

r—-+00
If li141_1 %) € (0, 1], we have a contradiction. Hence, hI—P () =0 and
(1.8) follows immediately.
° lirf |u(r)| = 0. Let R > 2r and r > 1. Thus, by the monotony of u and
proposition 2.3 there exists K’ > 0 such that:
[u(R) = u(r)| = [u(R) — u(2r)| + [u(2r) — u(r)]

(2.24)
> |u(2r) —u(r)] = K'ro),

Letting R — 400, (1.8) is proved for rg = 1.

o Casen < 2(k+ 2% +4). We have three subcases:
o HIJP lu(r)|r=%") = 0. From (2.21), we have that K’ = 0, a contradiction.
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o lim |u(r)|r—%") = L € (0, +00). Then, Ve > 0 there exists 7o > 1 such that

r—-4

[[u(r)] p0r) — L| < e for any r > rg and (1.8) is proved for .

e lim |u(r)]r—%") = 400. Then there exists 79 > 1 and K >0 such that

r——400

lu(r)| 7=%") > K for any r > ro and (1.8) is proved for rg.

e Case n=2(k+ 2% +4). Let » > 1. Then there exists m € N and 1 <7y <2
such that r = 2™ !r;. Thus, by the monotony of u and proposition 2.3, it
follows that

u(r)] = |u(r) = w(ri)] = |u(r)|

= |w(2r1) —u(2 7 ry)| = Ju(r)]

3

(2.25)

<.
Il
a

3

2 K/(2j71,r1)5(2
1

D ().

<.
Il

By (2.23), we have

6(2‘771’)“1)

(23'717,1) > (2j717,1)5oc(7) —1,

for any j € {1, ..., m — 1} and together with (2.25), we get

!

lu(r)] = K'(m = 1) = [u(ry)| = < K > (logr —logry) — lu(ri)[,  (2.26)

log 2
and (1.8) follows easily.
(]

Proof of theorem 1.6. From (1.8) of theorem 1.4, it follows that n # 2(k + 2% +4).
Recall that

—n+2a(r) + 2k + 2
é(r) = .
") ko1
Let R > 2r and r > 1. From (2.23) and (2.24), we have

|u(R) —u(r)| = K'r®") > K'rd=(),
Thus, letting r — +o00, we conclude that d.(7y) must be negative, which is
equivalent to n > 2(k + 22 + 4). This prove 7).
Finally, letting R — +o00, we have

[u(r) — too| = K'r0M) W > 1,

which is i) with M = K’. The proof is complete. O
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Appendix A. Proofs of remarks 1.5 and 1.7

We will see that the results obtained in the previous section are optimal.

EXAMPLE A.1. Let 01, 02, 7, p € R, (n > 2) € Nand k € {1, 2, ..., n}. Define the
function
w(r) =7t (14 772) 72, (A.1)
and
p=2r+2 (A.2)
We assume that o1, o9, 7 and n satisfy the following conditions:
o If 7 =0, then
k(k+1)
—k and T A3
o1 > —k an n>2k+01 (A.3)
o If 7 > 0, then
k(oo —2) = 01 > —k, 2k 4+ 01 > 7 and
(k- A4
e d [Tz 2k 1)0—17 kk+1) | (A4)
kE+1 k 2k +o01 — T
Now, let ug be a radial function defined by
sgn (6) (1 +r“)§ it 6#0,Vr >0,
ug(r) := (1)1 .
=)log(1+r*) i f=0,Vr=0.
“w
On the other hand, let 8 € R such that
—n+2v+2k+2
= =
) / v0s) 4 (A.5)
= 1 S .
+k—|—1 B rrr— ifr>1,
v(r) if r €0,1),

where v := /v(0)? + Zv(0) + £ — 1 — /(1) and v is defined by (1.7).
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Then ug is a semi-stable nonconstant radial solution of (1.1) with g = gg defined

by
o It B 40,
18/* <(|s|fa' - 1)* + 1)”2 x if s € Ins,
90 = 0k N s (o k(8= 2) + k(- B) sl 8) s %
C! — extension if s & Ig0,
o If 3=0,

90(5) = Cni ((eﬂs _ 1)% + 1)6 (n+ k(B —2) + kue ) e—kns if g€ Io,
" | ¢ — extension if s & I,

where
[1,400) if 8> 0,
Ig:=10,400) if =0, (A.6)
[-1,0) ifg<o0.

To establish the above result we need the following auxiliary lemmata.

LEMMA A.2. Let § € R and p € C(R™), 0 <V € CYR"\{0}) be radial functions

such that

O(rV' +(n—2p—-2)V—-0V)>0, Vr>0, (A7)
and
1mym*%/=o. (A.8)
Then
e’} 9 92772
/ A e ((rn’ + pn) _ 1 ) dr >0, (A9)
0

for every radially symmetric function n € C}(R™).

Proof. Let n € C1(R") be a radial function, then

/‘TW*Vantvﬂ+pmfdr>m
0

for all ¢t € R. Extending the above expression, we get the following quadratic
inequality for ¢:

92/ 3Vt dr — t9/ 3V (r(n?) + 2om%) dr
0 0

+ t2/ 3V (e + pn)? dr > 0.
0
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Integrating by parts and using (A.8), we obtain

o) (o)
0? / "BV dr 4t / PV A+ (n=2p = 2)V) dr
0 0

+ t2/ "3V (ry + pn)2 dr > 0.
0

Therefore, the above quadratic inequality is equivalent to

4 (92/ T e dr) </ "3V (ry + ,077)2 dr>
0 0

[eS) 2
> (9/ 32 (rV! 4 (0 —2p — 2)V) dr) ,
0

from (A.7), it follows (A.9).

We are now ready to establish example A.1.

Proof of example A.1. We claim that 2k + v > 0, where + is given in (1.4). To this
end, let w(r) as in (A.1). Then, differentiating logw(r) = o1logr — -log(1 +r72)

with respect to r, we obtain

rw’(r
W) =01 — The, (1),
where
A
ha(r) = T €1[0,1), YA>O0andr>0.
It follows that
rh\(r)

Y = (1= hx(r)) ha(r) € [0, ﬂ ,VA>0and r > 0.

From (1.7), we have

k—14 01— 7hg,(r) T
k+1 -

v(r) =

with

Moreover, we also obtain that
TO?2
r'(r) = —
) k+1

On the other hand, by (A.12) we get

(1 =ty (1)) hoy (7).

rw’ (r)

= lim {01 —The(r)} =01 -7,

’}/ - r——400 w(’r‘) r——400
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which, by (A.3) and (A.4), implies that

2k+~v=2k+o01 —7 >0, (A.15)

and the claim follows.
Next, we divide the proof into two steps.

Step 1. For any § € R, ug is a k-convex solution of (1.1) with ¢ = g3 and w defined
by (A.1).
A direct calculation gives that

B _
o — ANBIP T )i p 0,
R e R if 8 = 0.

By (A.2)—(A.4), it follows that

ﬂf1:%+1>0:»u'ﬁ(0):0,

also

AQ’ﬁ =

Y _ {|ﬂ| P (L) i B £ 0, (A.16)

r P2 (1)t if 8= 0.

Consequently, differentiating log A2 3 with respect to r and using (A.10), we
obtain

)\l
2D 2 (5 ) ) (A.17)
2,8

)

Fix any j € {1, 2, ..., k}. By (1.2), we have

S;(D*ug) = cmj/\%’_ﬂl (nX2,5 —|—jr/\'2,5)
= cn M (045 (1= 2) + (B = 1) hu(r))) (A.18)
= cn A\ 5((n 43— 2))(1 = hu(r) + (n + §(B — 2))hu(r)).

Combining (2.12), (A.3), (A.4) and (A.12), we have

(v(0) + %)2 — (vt + %)2 = (0(0) = v(r)) (v(r) +v(0) + )

> (k2+71> (1) (0(r) + %)

>0,Vr>0.

By (A.10) and setting A = o2 in (A.11) together with (A.13), we get

' (r) — v'(1) = kal (1 — (1 = hoy () o,y (7")) >0, Vr>0.
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From the last two inequalities and (2.10), (A.3), (A.4), and the fact that
—rv'(r) 2 0 for any r > 0, a straightforward calculation gives

v= \/v(0)2 + —v(0) + % —1—=2'(1)
o 5 v - () o
> \/v(r)2 + %v(r) + % —1—=rv'(r) = ()], Yr=0

From the previous inequality, (A.2) and (A.5), we deduce that

ntj(u—2)=n+It>n—j>0,

n+35(8-2) > (1 - kL) n 4 220 £ 00D (v(r]zﬂv(r)n

> 0.

Therefore, from (A.18), S;(D?ug) > 0 for any j € {1, 2, ..., k}. This shows that
the functions ug are k-convex.

From (A.16) and (A.18), we have

Sk(DQU5) = ka)\g”g (’I’L +h(p—2)+k(B—p) <1 _’,:LTM>>

k.
e, 18| ?f B #0, Pk(i=2) (1 1 Tﬂ)%—k
’ 1 if 6=0.

X (n+k(u—2)+k(ﬂ—u) (1—(1—1—7’“)71))

ko
= Cnk 15 ?fﬁ;«éO, rh(r=2) (l—i—r"?)%
’ 1 if 6=0.

kB
m

x (14777 (0 + k(8- 2)) (1 + 1)

— k(B (),
On the other hand, it is easy to see that

0,
0,

>
- and
=

L — |u,3(r)\% if B#£0,Vr
eruo™if 3 =0,Vr
u o2

(|u5(r)|fu1)“ if 5 0,¥r >0,

g2

(eruo(r) — 1) if 3=20,Vr > 0.

ri? =
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From this, (A.1) and (A.2), we have
|ﬁ|’“((|uﬁ|%—1) +1> x if B0,
2 _ _u B—n
Sk(Dug) =w(r)enk § x (n +E(B=2)+k(u—0)lug| g) \umk( 5)
((e“"‘J - 1)072 + 1) g (n — 2k + kpeHuwo) e~kruoif g = (.

Now for every s > 0, let us define the function

Fos) = (as(s)) {W (n+ k(3= +k(u=p)s78) H5) it g 20,
(n — 2k + kpe=#s) ekrs if =0,
(A.20)
with
qo(s) = (5 1) " +1 it 50, (A.21)

(e" —1)% +1 ifB=0,
which lead us to

fa(lugl|) if B#0,
fo(uo) it B=0.

Let y € I3 and s = |y|. Using (A.6), we see that:

Sk(DZuﬂ) = w(r)enk {

e If 3>0, then s > 1.
o If =0, then s > 0.
e If 3 <0, then s € (0, 1].

Therefore, to study the differentiability of fz, we must consider the points s = 0

for 5 <0and s=1for g #0.
Since gg£0(1) = ¢o(0) = 1, from (A.20) and (A.21), we have

lim fﬂ(i) = lim fo(s) = n+k(u—2), Vr=0. (A.22)
s—1 |6‘ 5—0
B#0
Now, differentiating log fz(s) with respect to s and using (A.20), we obtain
/ 0 itr—o0, |HE=ms (1 + ps 5 ) if 340,
o B { r 45(s) 1 i + ’ ?+‘k(ﬁ_2)+k(”_ﬁ)s_% ’
I\ mwm M0 | ok (14 ) if = 0.
(A.23)
If 7 =0, then from (A.22) and (A.23), we get
5(s — 1 —2
B |0
= —ku((k+1)p+n—2k), (A.24)
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and if 7 > 0, from (A.21), we have

1B T L1 .
s (55 621) se HBAD, (A.25)
(el's — 1) ems if 6=0.

!

%(5) = 02

From (A.2) and (A.4), it follows that u < o2 and then

g2

. 2 if p=o0y . oy if =09
1 ! — B ! ’ 1 / = ’ A.26
51—{% q’G;ﬁO(S) {O if n < os. ’ sl—I%qO(S) 0 if w < og. ( )

Therefore, concerning the cases s = 0 for § =0 and s = 1 for § # 0, we have

-l uel - (;EL’% qéuo(s)) (n -+ k(- 2)) + O +ﬁl>u+nf2k>,
181" 1o 20 ’

09 5—0

ing £3(6) = (- 1 6505 ) 0+ 00 = 2)) — b + gt 0 28
(A.27)
For the case when § < 0 and 7 > 0, we rewrite gg(s) to get

72

72
=\ @
22 o - (s (1—5 5)
qp(s) = <<l—sﬂl> ' —|—852) s7 and %) S = s7h

qﬁ(S) 5 (1—8%) w + s*gz
(A.28)
From (A.2) and (A.15), it follows that ky — 7 =2k 4+ 01 — 7 > 0. Then
T—ku kp—T1
=— > 0. A.29
3 3 (A.29)
Thus, from (A.20), (A.23) and (A.28), for 5 # 0, we get
fa(s) gy f5(8) T+ k(6 — p) .
g =+ k(B -2)+0(1)s"F, = +o(l) ) s,
18" fa(s) 8
as s — 0.
Therefore, from (A.29), we obtain
) fﬂ(i) = (n+ k(5 2)) lim sFTTEE =0, (A.30)
0B 50 °
and
!
im fﬁ(i) = (n+ k(B —2)) (7 + k(B —p) lim s~ = 0. (A.31)
s=0 |4 5eo Jé] 5s—0

Collecting (A.22), (A.24), (A.27), (A.30) and (A.31), there exists a C''-extension
for fz(s) when s & I3, and we have that ug is a radial solution of (1.1) with g = gz,
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where

Fa(ls)) if 5 € Tsso,
C'-extension if s &€ I,
gﬁ(S) = CTL,k {fO(s) lf sE I07 (A32)

Cl-extension if s & Iy.

Step 2. For § satisfying the inequality (A.5), ug is a semistable solution of (1.1).
Next, for suitable p, 8 and V' we verify the hypotheses of lemma A.2. To this
end, let V = 1"2/\]5"%1. Differentiating log V' with respect to r, from (A.10), (A.16)
and (A.17), we have
rV’
=2 (B 1) (= 24 (6 — ) (). (A.33)
Note that in both cases 7 = 0 or 7 > 0, we have that n > k(k + 1)/(2k + 01) and
k+ o1 >0 by (A.3) and (A.4). Now, since

k(k+1)  (k+1Dor  (k+1)(k+01)?

= O
%+ o 2 Kok +o)
it follows that n > —(k + 1)(o1/k). Combining this with (A.2) and (A.16), we have
c+1)o (k+1)(8—p)
lim 7" =2V = Cp lim 7+ 5 (1) =0, (A.34)
r— r—

with Cjg = |3]**! for B # 0 and C3 =1 for 3 = 0.
Now, consider p = v and 6 = 2v. From (A.33), we have

V/
n—2p—6‘—2+rv

—n =20+ 1)+ (k1) (=24 (B— @) hur).

We have from (A.5) that

/T v(s)ds
n=(k+1)2-Qr) +2v+2{ A — ifr>1,
v(r) if r €0,1).

From this we obtain

m=2p 82 T = (k1) (u - Q)+ (8 ) hu(r)

/T v(s)ds
+20 5 y(y) ifr>1,

logr
0 if 7 €1[0,1)

=(k+1) (p—Q(r) (1 = hu(r))

/r v(s)ds
+(k+1) (ﬁ_Q(T)) hu(r)+2 % *’U(T) if r>1,
0 if r €[0,1).
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Consider the function

rrov(s)ds .
Aty =2 Bt —vle) itz 1
0 if r € [0,1).

Note that 0, (fr%ws v(r)logr) = —v'(r)logr > 0 for any r > 1 by (A.13).

Then [; v(ss Jds _ y(r)logr > 0 for every r > 1. Therefore A(r) > 0 for every r > 0.
Now since, 8 > Q(r) and h,(r) € [0, 1), it follows that

/

n=2p—0—-2+"C S04 (k+1) (1= Q) (1 — hu(r)) + A(r) > 0. (A.35)

We claim that
(k+1) (p=Q(r)) (1 = hu(r)) + A(r) = 0. (A.36)
Using (A.2), (A.12) and (A.13), we can easily see that

(k+1)(v(0)+1) T Fy TO
B ,0(0) —o(r) = mhgz(r) and v'(1) = _4(I<:+21)' (A.37)

M:

Let us now consider the functions:

Iy :=1.(r)= (k + 1)(]:(0) +1 +n—2k+ %_:11102 (r) £+ 2v. (A.38)

Since n > k/(v(0) + 1) by (2.10), we have

(k2 +1)(v(0) + 1) k (k2 +1)(v(0) +1)2
p +n—2k> v(0)+1>< 3 21)(0)1)
~ kv(0)* w(0)+1
- w(0)+1 T
> 0.

(A.39)
From this and the fact that v > 0 by (A.19), it follows that I, > 0.

On the other hand, from (A.5), (A.37) and (A.38), we have

(k+1)2(v(0) + 1)

(k+1)(p—Q(r) = +n—2w—2k—2

ar ifr>1,
—u(r) if r€10,1)
_ (k2+1)(]:(0)+1>+n_2k+2( (0)+1) —2(v(r) + 1)

(A.40)
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It follows that
(k+1)(n—Q(r) (1 =hyu(r)) + A(r) = (I- = A(r)) (1 = hu(r)) + A(r)
(1= hu(r)) 1= + A(r)h,(r)
> (1—hu(r)I-.

In the following, we will prove that I_I, > 0, which implies that I_ > 0 since
I+ > 0. To do that, we begin by noting that

2 = U(0)2 + EU(O) + i 1 ’Ul(l) = (v(0) +1) (U(O) + T 1) + 4(]{:7_51)7

and

I_1,=B(r)* - 4% (A.41)

where B(r) := w +n—2k+ ,f—jlhgz (r). Using that

(=100 M%)Z - (5)- k?jlhm)z (v - ),

together with (A.39) and (A.41) we then have

2
L"*‘(%*’“%) A h@(r)<w+n_2k>

Tkt k
472 TO2
h2 -
+(k+1)2 o (") k+1
TO2
> — .
7 k41

(A.42)

If 7 =0, we are done. So assume that 7 > 0, then

<W+n_2k>2 702 ((sz—l)(%wl)M_%_\/ﬁ)

k Tk+1 k(k+ 1) k+1
- _
X((k 1)(2k+01)+n_2k+ TO’2>
k(k+1) k+1
20)

by (A.4). From this and (A.42), I_I; > 0, which proves the claim (A.36).
Thus, according to (A.35) and (A.36), we have

/
0(7"V’—|—(n—2p—2)V—9V):0V<n—2p—9—2+r“//)20.

Hence, from the previous inequality and from (A.34), we conclude that the con-

ditions (A.7) and (A.8) of lemma A.2 are satisfied. Recall that V = 7’2)\’2“}1, p=v
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and 6 = 2v, then one can see from (A.9) and (A.19) that

> n—1yk+1 ’ 2 > n—1yk+1 ‘92772
r 53 (rg" +on)"dr > r )‘2,6 3 dr
0 0

X ikl (2, M n 2
2/0 T )\2:2 (U +EU+E_1_TU/>77 d?“,

for every radially symmetric function n € C(R™).

Therefore, from lemma 2.1 and corollary 1.8 of [7], we have that ug is a semi-
stable solution of (1.1). Although only the case of a ball appears in corollary 1.8,
one can see that the proof of this lemma can be adapted without difficulties to the
R™ space. O

Proof of remark 1.5. Let ug as in remark 1.5 a semi-stable solution of (1.1). From
theorem 1.4, there exist M > 0 and r¢ > 1, such that for any r > rg, we have

o Ifn#2(k+ 22 +4),
e If 5 #0, then

Cﬂrﬁ—é(r) > lug(r)| > M

e > M (A.43)
where C = 26/1if 3> 0 and Cg=1if g <0,
e If 3 =0, then
log 2 :
( o8 -Hogr) P00 > |u%(r)| > M, (A.44)
1% r (r)
o If n=2(k+ 22 +4) and 8 # 0, then

B

r > lug(r)| > M, (A.45)

where Cjp is as in (A.43).
Now, let 7 =0 in (A.1), then w(r) = r°*. Thus from (1.6) and (A.5) we get
Q(r) =6(r) = s (01), Vrr = 1.
So, if doo(01) > [, we have

o If n#2(k+ 22 +4), from (A.43) and (A.44), letting r — +00, we obtain a
contradiction.

o If n=2(k+ 22t +4), from (2.22), we have that do(01) = 0 and from (A.45),
letting r» — +o00, we obtain a contradiction.

Hence, § > doo(01) = (1) = Q(r), Vr > 1.
In addition, it is easy to check that for any r > 1, we have that
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o If n#2(k+ 22 +4)

2 if <0,
1G] T
yinton 2 | klos2 if =0,
1 if 5> 0.

o If n=2(k+ 22 +14),

jus(r)| _ [Be i£5>0,
logr ~ |1 ifB=0.

Therefore, we conclude that theorem 1.4 is sharp for v = o7 > —k and w(r) = r*

where
“ if B <0,
M = fs2 if =0,
min{fe, 1} if 5> 0,
and ro = 1. O

Proof of remark 1.7. Let 8 < 0 such that (A.5) holds. From example A.1 ug(r) =

—(1+ r“)% is a semi-stable bounded solution of (1.1). Now note that from (2.12),
(A.12), (A.13) and the fact that, for r > 1, hs,(r) € [1/2, 1), k[, (r) > 0, we have

0, (\/v(r)2 + %v(r) + % —1- rv’(r)) - (k_+71> b (1) x

/2(
X(U@+i+@@MN%J)>

Vor)?+ Zo(r) + F =1 —rv'(r)
0

<

From this and (A.19), we obtain

v = \/U(O)2 + %U(O) + % —1-v(1) > \/v(1)2 + %v(l) + 21w

k
fr \/U(s)2+%v(s)+%flfs'u’(s)ds
> s . Vr>1.
log r
Hence, from (2.23), (A.5) and (A.14), we have

O(r) = MW+ 22 < 2 )jf“?“

E+1 k+1 log r (A.46)
— 2 2 2
> n+2a(r) + 2k + =4(r), Vr>=1.

kE+1

From this, we have that 0 > 8 > §(r), Vr > 1 and item 4) follows from (2.22).
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Since § —d(r) = 0 for any r > 1, ug,co = lim, 4 o0 ug(r) =0 and (1 +r*“)§ >
25%, from (A.46), we finally obtain
lug(r) — up | > lug(r)| = |ug.col _ (14 r—1) 28000 5 oF
r5(T) r5(T)
and item 1) follows. O
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