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1. Introduction. In this paper the author continues the search for a suitable integral
transform that can be applied to certain boundary value problems involving the Helmholtz
equation and the condition of radiation. The transform in question must be capable of
eliminating the r-dependence appearing in the partial differential equation

r2wn + rwr + k2r2w + wH, = 0. (1)

Here k > 0, (r, i/») are polar coordinates and the coordinate r varies over some infinite
interval a^r<oo, where a > 0 . In the type of problem considered the function w is
O(r~in) as r—»°° and satisfies the radiation condition

limr1/2(vvr-ikw) = 0. (2)
r—*ao

The transform that is adapted to treat such a problem is that defined by the equation

F,(i>)= f H[l\kr)f(r)-, (3)

where the kernel is a Hankel function of the first kind. The formal inverse of (3) is an
expansion involving the eigenfunctions H^ikr) where vu v2,... are the zeros of the
function H[u(ka) regarded as a function of the order v. However these zeros are complex
and the expansion itself is sometimes convergent and sometimes divergent, a phenomenon
that has not as yet been satisfactorily explained [2, 6]. In an attempt to resolve this
problem the author [3, 4] has suggested two alternative formulas of inversion for the
transform (3), one as a series and the other as an integral. However both of these formulas
involve a summability factor of one kind or another, which renders their application
somewhat cumbersome. The author [5] has also derived a formula of inversion for the
related transform

F2(v) = f"[J1J(kr)H<1)(ka)-/t)(ka)H<1)(kr)]/(r) - .

This transform, first proposed by Chakrabarti [1], can, like (3), be applied to problems
similar to that outlined above for the function w(r, ifi) but its formula of inversion also
requires a summability factor.

With a view to avoiding the complications associated with summability factors the
author proposes an alternative transform in which the kernel involves the Neumann
function Yu(kr) rather than a Hankel function. The resulting transform, which does not
appear to have been used previously, is that defined by the equation

F(u) = J Yu(kr)f(r)j. (4)
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2 D. NAYLOR

Despite the singular non-self-adjoint nature of the underlying expansion problem, the
transform (4) does possess a formula of inversion which expresses f(r) as the sum of a
series and an integral both of which are convergent in the classical sense. The formula of
inversion in question appears as equation (5) of the theorem that follows.

THEOREM. Suppose that f(r) is twice continuously differentiate for r^a, f(r) and f'(r)
are O{r~m) as r-*°°, r-U2(rfn+fr + k2rf)eL(a,<x>) and r1/2(/r-ik/)-»0 as r^«>, where k is
real and positive. Let F(u) be defined by the equation (4); then if r>a,

[Jis(kr)Yis(ka)-Jis(ka)Yis(kr)]F(is)sds y uJu(ka)Yu(kr)F(u)
Y^ka) v

u t . (dldu)Yu(ka) ' * '

where the summation includes all the real negative zeros i^ of the function Yu(ka) regarded
as a function of the order u.

It should be noticed that the underlying expansion problem is not self-adjoint so that
the formula of inversion cannot be constructed by following a procedure such as that
described in Titchmarsh's treatise [7] on this subject. Instead the method developed by
the author to invert the transform (3) has been applied. This method is described in [4].

Before proceeding to the proof of the above theorem it is necessary to investigate the
distribution of the zeros of the function Yu(x) regarded as a function of the order u, when
the argument x is supposed to be prescribed and positive. This is carried out in the next
section of this paper where it is proved that the function Yu{x) possesses three infinite sets
of zeros as follows:

(i) an infinite set of real zeros ^ where un+1<un<.. .<Ux such that i^—»-°° as
n—>«; for n large the zero u,, is given by the asymptotic formula

un = -(n +3)+-—(ex/2n + l)2"+1: (6)

(ii) an infinite set of complex zeros u'n located in the first quadrant of the complex
u-plane together with the corresponding set of conjugate complex zeros u'n in the fourth
quadrant, the zeros u'n = Rne

ie- are such that Re(u^) and |Im(O| tend to +°° as n^>°° and
for large n are given by the asymptotic equations

) = (n-k)ir. (8)

2. The distribution of the eigenvalues. The following arguments can be used to
investigate the properties of the zeros of the function Yu(x). We write y = Yu(kr) so that

r2yn + ryr + (k2r2-U
2)y = 0. (9)

This equation is multiplied by r~ly, where y denotes the complex conjugate of y. The
resulting equation is subtracted from its conjugate and integrated for a=£r<°o. Upon
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ON AN INTEGRAL TRANSFORM 3

setting x = ka, we obtain the equation

(M
2-i<2)J |y | 2 y = lim/-(yyr-yyr) + 7rx Im Yu(x)Y'a(x)

The value of the limit appearing in the above equation can be obtained after substituting
the Hankel asymptotic formulas for the Bessel functions of large argument. Upon setting
u = t + is we obtain the equation

J" O O 1

|y|2 — = sinh(s7T)+7rx Im Yu(x)Y£(x), (10)
where x = ka. It follows immediately from this equation that complex zeros of Yu(x) must
be positioned in the half plane R e ( u ) > 0 , since l > 0 whenever s?^O. In particular there are
no purely imaginary zeros. In addition since the complex conjugate of Yu(x) is YQ(x) it
also follows that complex zeros occur at pairs of conjugate points (u'n, u'n). Further
information on the distribution of the zeros can be obtained from the equation [8, p . 178]

f f°°
T T Y U ( X ) = sin(x sin 0 - ud) dd - e x p ( u 0 - x sinh 0) dd

Jo Jo
-cos Mir exp(-u0-xsinh0)d0. (11)

It can be shown from this equation that for given positive x the function Yu(x) cannot
vanish as Re(u)-»+°° if Im(u) remains bounded. For upon expanding the trigonometric
function and integrating by parts it is seen that the first integral on the right hand side of
(11) is O(M~X) as u-»°° with Im(u) bounded. The third integral in (11) is also Oiu'1),
since its modulus cannot exceed

Jo
exp(-(0)<J0 = i

Jo

It follows that

fu(x) = O(u~1)- I exp(u0-xsinh0)d0 (12)

as Re(u)-»+°° with Im(w) bounded. Since in these conditions the integral surviving in (12)
tends to infinity it follows that Yu(x) cannot vanish as Re(u)—>+°° in any strip in which
Im(u) is bounded. In particular Yu(x) does not vanish whenever u is sufficiently large and
positive.

A formula to determine the large complex zeros can be obtained by using the formula

^ ^ )]. (13)

This formula holds for fixed x and u large enough and bounded away from the negative
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4 D. NAYLOR

integers. If (13) is substituted in the equation defining the function Yu(x), that is

Yu(x) = J " ( x ) C ° S U 7 r " J - ( x ) , (14)
sin un

then, after using the identity F(u)r(l-u)sin MTT = ir, it is found that

for large M bounded away from the integers. The T-functions appearing in the preceding
formula may be estimated with the aid of Stirling's formula

T(u) = (2TT/M)1/2 exp(w log u - u)[l + Obi'1)], (16)

which holds for u-»°° in |arg U | « T T - 8 . Substitution of (16) into (15) leads to the equation

Yu(x) = 2(™)-1/2[cot UTT exp{-u log(2u/ex)}-2 exp{u log(2u/ex)}][l + o ( - ) l . (17)

To determine the complex zeros situated in the first quadrant we may suppose, as proved
above, that Im(u)-»+<» as u-»<» so that cot W7r-»-i. On simplifying equation (17) by
means of this result we find, after slight rearrangement, that

Vu(x) = -(2mi)-me-M4 sinh[u log(2u/ex)+log V2+^TT][1 + Ofa"1)] (18)

as u—»°° in S^arg u*£ir-8. The corresponding formula valid as u-><» in the region
-(•7r-8)s=arg «=e-S can be obtained from (17) by noting that now cot UTT-*+i giving
the formula

Yu(x) = -2(iru)-1/2e-"/4 sinh[w log(2u/ex) + logyf2-\iir][\ + OdT1)]. (19)

Complex zeros occur only in the half plane Re(u)>0 and so by (18) those located in
the first quadrant are given by the equation

(n-J)Mr, (20)

where n is a large positive integer. Upon setting u=Reie in (20) and equating real and
imaginary parts, we find the equations

R cos 6 \og(2R/ex) - R6 sin 6 = -log 2, (21)

R sin e \og(2R/ex) + R6 cos 6 = (n -\)TT. (22)

It follows from equation (21) after division by the factor R log(2R/ex) that cos 0-»O
and therefore 8—*TT/2 as R-*<*>. We therefore set 0 = ir/2 —e, where e is small, and
determine e. This leads, after slight calculation, to the formulas (7), (8) already stated.

It remains to discuss the large negative zeros of Yu(x). The existence of such zeros is
well known; here we wish only to obtain the formula (6). If u—»—°° it is now the third
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ON AN INTEGRAL TRANSFORM 5

integral in (11) that is the dominant one, the remaining integrals being each O(u~l) so
that

ITYU(X) = Oiu'1)-cos UTT \ exp(-ufl-x sinh 0) dd

as u—»-oo. As u—» — oo the function Yu(x) alternates in sign since the integral in the
preceding equation increases without bound. It is evident that the large negative zeros of
Yu(x) must be such that cos UTT—>0 SO that [*„ must tend to half an odd negative integer.
To construct the formula (6) the equation (15) must be rewritten in terms of F-functions
of positive argument to permit the use of Stirling's formula. This can be carried out with
the aid of the identity r(u)F(l - u)sin UTT — ir which enables (15) to be written in the form

yu(x) = [—(x/2)T(-u)cos Mir+- (x/2)-T(-u)cosec wn\\l + o(-\\. (23)

Since u is now large and negative we may write, by (13),

T(-M) = M u l ) 1 ' 2 exp[|u| log \u\ - |u|][l + O(u~1)]

as u—»-oo. After inserting this formula into the right hand side of (23) we find that the
large real zeros of Yu(x) satisfy the equation

sin 2UTT = -exp[-2|u| log |2u/ex|][l + O(ir ')] .

Since un—>-(n+^) an approximate solution of this equation can be obtained by setting
un = - (n+j) + £ and solving for e. This procedure leads after some calculation to the
formula (6).

3. The Green's function. To construct the expansion formula (5) let /(r), the
function to be expanded, satisfy the conditions of the theorem and let g(r) be defined by
the equation

r2frr + rfr + (k2r2-v2)f=g(r), (24)

where r^a and v is some negative number which is not a zero of Yu(ka). The equation
(24) is now inverted in terms of a suitable Green's function. The Green's function that
generates the expansion in question is defined by the equations

G( )=U[Jv(kr)Yv(ka)-Jv(ka)Yv(kr)]Yv(kp)l2Yv(ka) (a^r^p),
K'P' \Tr[Jo(kp)Yv(ka)-Jv(ka)Yv(kp)]Yv(kr)l2Yv(ka) (a^p^r).\Tr[Jo(kp)Yv(ka)-Jv(ka)Yv(kp)]Yv(kr)l2Yv(ka)

Upon inverting the equation (24) in terms of the above Green's function it is found
that

= f(a)Yv(kr)/Yv(ka)+ lim [p/(p)Gp(r, p)-pf(p)G(r, p)]
p -

(26)
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6 D. NAYLOR

The limit appearing in (26) can be evaluated with the aid of the asymptotic formula

Yv (kp) = (2/ufcp)1'2 sin[fcp - (t»+D ^][1 + Oip-1)]-

This applies as p—»°° when v is fixed. It follows from this result together with the fact that
the function f(p) satisfies the radiation condition that

lim [kpf(p) Y'v(kp) - pf'(p) Yv(kp)] = c exp(.W2), (27)
p—*oo

where

c = (2k/ir)1/2 exp(i7r/4) lim [p1/2/(p)e~lkp].
p—<»

The limit in (26) can now be determined with the aid of (27) on using the first of the
expressions given in equation (25) for G{r, p). This leads to the formula

—• (28)

The Green's function defined by the composite formula (25) is now represented by
means of the following single expression, which will be inserted into (28),

r , > I f [Ju(kr)Yu(ka)-Ju(ka)Yu(kr)]Yu(kp)udu
Gir'P) = Ti\L (u2-v2)Yu(ka)

y uJu(ka)Yu(kr)Yu(kp)

In this formula, which holds for all r,p^a, the path L denotes the imaginary axis of the
complex u -plane and the summation extends over all the real negative zeros of the
function Yu(ku). To establish the formula (29) we consider first the case a^r^p. The
integral appearing in (29) may then be evaluated by closing the contour on the left by
means of a sequence of large semicircles which avoid the poles and which recede to
infinity. In the half plane Re(M)=sO the integrand is singular at the point u = v and at the
negative zeros u,, of Yu(ka). Upon calculating the residues at these points it is seen that
the series in (29) cancels with the series of corresponding residues whilst the residue at the
point v reproduces the first of the expressions appearing in equation (25).

To justify this procedure it is necessary to prove that the integral over the semicircle
tends to zero as the radius tends to infinity and that the L-integral itself is convergent.
With this in view we first determine the asymptotic behaviour of the cross product of
Bessel functions occurring in (29). By means of the definition (14) we may write, as u-»°°,

( k r ) ] (30)
sin WIT

= — [(r/a)" -(a/r)" ][1 + OdT1)] (31)
UTT
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ON AN INTEGRAL TRANSFORM 7

after estimating the Bessel functions by means of equation (13) and using the identity
F(l + u)F(l - u) sin UTT = UTT. The behaviour of the quotient of Y-type functions appearing
in the integral in (29) can be deduced from the formula (18) if it is noted that

Re[u log(2ulex) + log y/l+im] = R cos 0 \og(2R/ex) - R6 sin 0 + log -Jl, (32)

where u =Reie. The expression on the right hand side of (32) tends to -°° as R = |H|-»°°
in the left hand half plane Re(u)=sO since cos 0 ^ 0 there. Therefore

|sinh[u log(2u/ex) + log V2+|iV||~2~3'2exp[Rd sin 0-R cos 0 log(2i?/ex)].

It follows from (18), (19) that

Yu(kp)

Yu(ka)
= exp[R cos 6 log(p/a)][l + Oiu'1)] . (33)

as M->°o in the sectors •7r/2«|0|^Tr-8. On combining (31) and (33) it follows that the
integrand occurring in (29) is

O{R~2 exp[-|R cos 0| log(p/r)]} (34)

as u-»<» in the sectors ir/2=£|0|s£7r-8. This bound reduces when 0 = ±ir/2 to O(R~2) so
that the integral in (29) is convergent. The bound (33) does not apply in the sector
|TT±0|S£8 containing the negative real axis since (18), (19) cease to hold there. The
function Yu(ka) vanishes at the points i^ in this region and it is required to close the
contour by means of a path C avoiding these points. A suitable path can be made up of
the two circular arcs u = Reie, 77/2=£|0|=£T7-8, connected by the part of the straight line
u = -(n+;j) + is located in the wedge v — 8 =£\0\ =£TT. The radius R of the arcs is chosen so
that R cos 8 = n +5 to ensure that a continuous curve is formed. It is evident from formula
(6) which gives the positions of the large real zeros that the curve C constructed in this
way will avoid the zeros when n is large enough. In the vicinity of the negative real axis
the asymptotic behaviour of the Y-type Bessel functions can be obtained from formula
(23) in which the function F(-u) is estimated by means of Stirling's formula (16). In order
to apply (16) in the wedge |ir±0|=£S we ensure that |arg(—u)|«ir-8 therein by writing
u=Reie and -u=Rei*, where ijj = d-ir for 7r-8=£0=£7r and t/r = 0 + 7r for —
-(IT-8). With this choice arg(-u) = t|/ and | ^ | ^ 8 , and (16) gives the formula

|r(—M)| = (2TT/R)1/2 exp[i? cos i(i \og(R/e) - Rip sin <M[1 + O(R"1)]. (35)

On the line u = -(n+z) + is, |sin U7r| = |cos uir| = (3cosh2sir)1/2 so that on taking the
modulus of (23) and using (35) we find that

| Yu(x)\ = [-^- cosh(27rfl sin i/r)l'" exp[K cos <£ log(2R/ex) - Rip sin

(36)

as «—»°° on the sequence of segments Re(u) = -(n+5) inside the wedge Tr-8^|arg u|=£
IT.
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8 D. NAYLOR

Since cos ijt = -cos 6 it follows on applying (36) to estimate the Bessel functions that
the formula (33) and hence the bound (34) apply on the stated line segments as well as on
the circular arcs.

If p5»r the expression (34) tends to zero sufficiently rapidly as J?-»°° to ensure that
the integral over the curve C vanishes in the limit so that the expression for the Green's
function is established for such values of r, p.

If p<r the integral appearing in (29) cannot be evaluated by closing the contour
since the integrand no longer tends to zero as u—»°° except on L itself. In this case
however a direct evaluation of the integral can be avoided by the following method which
in effect establishes the symmetry of the expression (29) claimed to represent the Green's
function. Upon interchanging the variables r and p in the proposed expression (29) it
follows that

[Ju(kr)Yu(kP)-Ju(kp)Yu(kr)]udu
-5—5 .

By (30) the integrand appearing in the preceding equation is an odd function of u so that
the integral taken along the entire imaginary axis is zero. Hence G(r, p) = G(p, r) for all
values of r, p so that when p < r the value of the integral appearing in (29) can be obtained
by interchanging r and p and evaluating the integral as before by taking the residues at
the poles. This procedure evidently leads to the second expression given on the right hand
side of equation (25).

4. The expansion theorem. The expression (29) for the Green's function is now
inserted into the formula (28) for f(r). If the order of integration in the resulting repeated
integral be changed and the order of integration and summation in the series be changed
we find the formula

Y(kr) I

"2iJL

Yu(ka) 2Yu(ka)
[Ju(kr)Yu(ka)-Ju(ka)Yu{.kr)]G(u)udu

(u2-v2)Yu(ka)

y uJu(ka)Yu(kr)G(u)
nuk,(u2-v2)(dldu)Yu(kay { '

where

-• (38)

To justify the above procedure it is sufficient to verify that the integral and the series
appearing in (37) are absolutely convergent.

To establish the absolute convergence of the integral in (37) it is necessary to obtain a
suitable bound on the values of the function G(u) on the imaginary axis and in view of
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(38) this requires a bound on the function Yu(kp) valid on L uniformly for all p^a. Such
a bound is obtained in the appendix to this paper where it is proved that

(39)

for $ real. On inserting this bound into the equation (38) defining G(u) it follows that

|G(is)|«(2/7Wc)1/2cosh(§S1r)j p-3/2|g(p)| dp. (40)

Since p~3/2g(p)eL(a,<») by hypothesis it follows that |G(is)|s£Ccosh(£sir), where C is a
constant. The asymptotic behaviour of the function Y^ka) can be obtained from the
equation (15) if it is noted that |F(is)| = [TT/(S sinh sir)]1'2, which tends to zero as s—»°°.
The dominant term in (15) is then the first so that

. . cothsTr
\Yis(ka)\ =

coshsTr [ 1 + Q ( s - 1 ) ] ( 4 1 )

(sir sinh SIT)

Finally it follows from (31) that the cross product of Bessel functions appearing in the
integral in (37) is O(s~*) and so on using this result together with (40) and (41) it is seen
that the integrand in (37) is O(s~3/2) as s-»<» and this is absolutely convergent.

To discuss the convergence of the series appearing in (37) a suitable bound must be
found on the values of the function G(u) at the negative zeros of Yu(ka). A bound will
first be obtained on the corresponding values of the function F(u) and it will be shown
that Fi^^Oiu'1'2) as n—>°°. The required bound on the function G(u) can then be
deduced from the equation

G{u) = (u2-v2)F(u) + kaf(a)Y'u(ka)-af'(a)Yu(ka)-ceW2)iU7r. (42)

This equation follows on multiplying the equation (24) by r~1Yu(kr), integrating twice by
parts and applying the result (27). The stated bound on F(u) can be found on applying the
Schwarz inequality to the definition (4), which leads to the inequality

° dr f " dr\m

\Yu(kr)\2-\ \f(r)\2-\ . (43)

The value of the Bessel function integral occurring here can be obtained from Watson [8,
p. 135, equation (14)]. The formula given there reduces, when u is a zero of Yu(ka), to
the equation

r ^ *»™ (44)
r 7rJu(fca)

The preceding equation is now transformed with the aid of the following formulae,
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10 D. NAYLOR

also given by Watson [8, p. 444]:

Ju(x)2+Yu(x)2 = \ f Ko(2xsinh0)cosh2u0d0,
77 Jo

J»(x)T" Yu(^)~ Y»WT~ Juto = — f *o(2x sinh e)e~2u(> dO. (45)
du du IT Jo

If Yu(ka) = 0 it follows from these formulae that

TrJu(ka) [ K0(2fca sinh 0)<T2"e d0
f ± , (46)

2 Ko(2fcasinh0)cosh2u0d0

so that (44) can be rewritten as the equation

K0(2ka sinh 0)sinh 2uB d&
s / l ._\2"r_ J02M 1 U \ 1 V I / |»0O

K0(2fca sinh 0)cosh 2u0 d0
Jo

Since |sinh2u0|<cosh2u0 if u is real it follows that

whenever w is a real zero of Yu(ka). It is then seen from (43) and (47) that F(u) =
O(u~in) for such values of u.

Finally we note that at a zero of Yu(ka) the Wronskian identity

Ju(ka)Y'u(ka)-Yu(ka)J'u(ka) = 2/(irfca) (48)

reduces to Ju(ka)Y'u(ka) = 2l(Trka). If we now let u-»-<» through the sequence u,, of
negative zeros of Yu(ka), then (45) shows that Ju(ka)->*x> and the Wronskian condition
then reveals that Y'u(fca)-»0. The relation (42) then shows that 0(1^) = O(uln) as n-»°°.

To obtain suitable bounds on the Bessel functions appearing in the series (37) we first
note that cosh 2u0s= e2|u|e so that (46) implies, if u is a negative zero of Yu(ka), that

^ | J u (M>2- 3 / 2 (2 /ka) M r( |u | ) , (49)

the final inequality following from the bound (59) derived in the appendix.
An estimate of the function Yu(kr) appearing in the series in (37) can be deduced

from (31) which reduces when u is a large negative zero of Yu(ka) to the equation

[1 + O(u~1)]. (50)
\iru\
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Upon combining the bounds (49), (50) and using the fact that G(uJ = O(uln), it follows
that the typical term in the series (37) is

(fcr/2)1"-1 ]
J

Since k | ~ n + | a s n - H K » i t follows that the series in question is absolutely convergent.
The final step necessary to construct the formula (5) consists of substituting the

expression (42) for G(u) into the formula (37), which leads to the equation

J_ f
2iiL

[Ju(kr)Yu(ka)-Ju(ka)Yu(kr)]F(u)udu y uJu(ka)Yu(kr)F(u)
Yu(ka) \ t . (dldu)Yu(ka)

f( . J_ f [Ju(kr)Yu(ka)-Ju(ka)Yu(kr)]F(u)udu
2ii Y(ka) \

(51)

The definitions of the quantities Au A2, A3 appear below as equations (52)-(54) and it
will be proved that A, = A2 = A3 = 0 so that the formula (51) reduces to the formula (5) of
the theorem.

The quantity A2 is defined by the equation

[Ju(kr)Yu(ka)-Ju(ka)Yu(kr)]udu_ 1 f

~ T i l
( }

By (30) the integrand here is an odd function of « and the integral itself is convergent, by
(31), so that its value taken along the entire imaginary axis is zero.

We consider now the quantity A3 which is defined by the equation

A ir[Jv(kr)Yv(ka)-Jo(ka)Yv(kr)

2Yv(ka)

v uJu(ka)Yu(kr)eiimb"
— 7T /^ z ~

[Ju{kr)Yu{ka)-Ju(ka)Yu(kr)ymy^udu
(u2-v2)Yu(ka)

If the integral appearing in the preceding expression is evaluated by closing the contour
on the left and taking the residues at the poles it is seen that A3 = 0, as required. This
procedure can be justified by following the method adopted in §3 to close the contour and
using the formulas (18), (31), (36) to show that on C the integrand is

o[(2R/fcer)-|Rcose| exp{-( |+ O\R sin fill.

This bound tends to zero fast enough to ensure that the contribution from the integral
around the curve C vanishes as R—>«>.
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The quantity Al is defined by the equation

Yv(kr) + ka f [Ju(kr)Yu(ka) - Ju(ka)Yu(kr)]Y'u(ka)u du
(u2-v2)Yu(ka)

+ 2 Y uYu(kr)
t(u2-v2)(dldu)Y(kaY ( '

To show that A, = 0 the integral appearing in (54) is first decomposed into two parts by
means of the following identity:

[Ju(kr)Yu(ka)-Ju(ka)Yu(kr)]Y'u(ka) = -(2lirka)Yu(kr)

+ [JMY'u(ka)-Yu(kr)J'u(ka)]Yu(ka).

This result is seen on simplification to reduce to the Wronskian identity (48). The integral
term in (54) can now be expressed as the difference of two integrals, as given by the
following equation

ka f [Ju(kr)Y'u(ka)-J'u(ka)Yu(kr)-}udu 1 f Yu(kr)udu
2iJL u2-v2 m}L(u2-v2)Yu(kaY ( '

The value of the first integral appearing in the preceding expression is zero since, by
analogy with (30) and (31), the integrand is an odd function of u and behaves when u = is
is large like s"1 sin[s log(r/a)], which is integrable. The integrand appearing in the second
integral in (55) has similar asymptotic behaviour since when u = is is large it can be shown
from (18) that

yM exp[-is log(2s/ex
(ZTTS)

as s-»+t». The second integral in (55) is therefore also convergent and may be evaluated
by closing the contour on the left by means of the sequence of paths defined in §3, and
taking the residues at the poles. As noted in §3 the estimate (33) applies on the sequence
of chosen paths so that the procedure is permissible. On evaluating the residues at the
poles situated in the half plane Re(«)<0 it is seen that the first and last terms in (54)
cancel so that A1 = 0, as required.

Appendix. It remains to derive the bounds (39) and (49) used in the paper. Both of
these bounds can be obtained from the formula (45), which is first transformed into one
involving only Yu and Y_u by means of the formula

Ju(x) = - Yu(x)cot UTT+ Y_u(x)cosec wn.

This result is a consequence of the definition (14) of the function Yu(x). Upon substituting
the preceding expression into (45) it is found that

8 f°°
Yu(x)2+ Y_u(x)2-2YH(x)Y_u(x)cos MTT = —sin2

 UTT\ K0(2X sinh 0)cosh 2u6d6.
TT Jo
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When u = is is purely imaginary the preceding equation shows that

| Yjs(x)|2 cosh(Mr) = Re[ Yis(x)2]+-^ sinh2 sir f K0(2x sinh 0)cos 2s0 dO.
IT Jo

Since RetY^x^lYJx)! 2 , it follows that

4 f"
| Yfc (x)|2(cosh sir -1)*£ —: sinh2

 STT K 0 ( 2 X sinh 0)cos 2s8 dd
•n JQ

= (irx)"1 sinh2 sir,

by Watson [8, p. 388]. It is seen that the bound (39) follows from the preceding result,
after slight reduction, on replacing x by kp.

The bound (49) applies whenever u is a real zero of Yu(ka) such that \u\ >\. For such
values of u the identity (45) reduces to the equation

Ju(ka)2 = - ^ f K0(2ka sinh 0)cosh 2u6dB. (57)
T ^

Now if 6 is positive ce ^cosh d and e" 3=2 sinh 0 so that

2 cosh 2u0 > e|2u|e ^ (2 sinh 0) | 2 u h l cosh 0.

The integral (57) is not less than the expression

1 f°°K0(2ka sinh 0)(2 sinh 0)12"1"1 cosh 0dd = - ^ (2/fca)2 |u |(r(|u|))2 (58)
2 Jo 16

by Watson [8, p . 388]. On combining (57), (58) it follows that

^ ( | u | ) . (59)
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