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Abstract

A. Mclntosh and A. Pryde introduced and gave some applications of a notion of “spectral set”,
7(T), associated with each finite, commuting family of continuous linear operators T in a Banach
space. Unlike most concepts of joint spectrum, the set y(T) is part of real Euclidean space. It is
shown that y(T) is always non-empty whenver there are at least two operators in T.
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Let X be a complex Banach space and T = (7},...,T,) be a commuting n-
tuple of continuous linear operators in X; the space of all such operators in
X is denoted by L(X). A joint spectral set y(T) C R” is defined by

n
(1) »(T) =< (ug,...,uy) € R”:Z(Tj — ujI)2 is not invertible in L(X) ; ,
j=1

where I is the identity operator in X and R denotes the real numbers [1]. This
notion has proved to be useful in determining functional calculi for certain
n-tuples T with applications to finding estimates for the solution of linear
systems of operator equations [1, 2, 3]. For applications to other notions of
joint spectra we refer to [4].

It is known that y(T) is always a compact subset of R" [3, Theorem 4.1].
The question arises of whether or not y(T) is empty? If n = 1, then it is easy
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to check that y(T) = ¢(T) NR and so y(T) may be empty in this case. For
n 2 2, it is known that y(T) # @ if each operator T;, 1 < j < n, has real
spectrum. Indeed, in this case y(T) coincides with the joint Taylor spectrum
of T [4, Theorem 1] and so is certainly non-empty. By a judicious use of
Clifford analysis and monogenic functions, McIntosh and Pryde have shown
that y(T) # & for arbitrary commuting n-tuples T whenever »n is an even
integer [3, Section 3]. If the underlying Banach space X is finite dimensional,
then it is shown in [5] that y(T) # @ for arbitrary commuting n-tuples T such
that n > 2. In this note we show that y(T) is always non-empty whenever
n > 2; there are no restrictions on T or on the Banach space X. Let us record
this statement formally.

THEOREM 1. Let X be a Banach space, n > 2 be an integer and T =
(Th,...,T,) be a commuting n-tuple of elements from L(X). Then y(T) is
non-empty.

The proof is based on some elementary Banach algebra theory combined
with an analogue of the computation given in the proof of [5, Theorem 1].

Let A(T) = {T}*° denote the bicommutant of {T;:1 < j < n} in L(X).
Then A(T) is a closed, abelian Banach subalgebra of L(X) containing the
identity operator I. In addition, %(T) is inverse closed in L(X). That is, if
S € A(T) is invertible in L(X), then S~! € %(T). This is a consequence of
the identity 2A(T)¢ = %(T) and the fact that S~! € {S}*° whenever S € L(X)
is invertible. Of course, if S € A(T), then {S}° C A(T). It follows that

(2) aa)(S) = orx)(S), S € A(T),

where oy1) and g7 (x) denote the spectrum relative to the Banach algebra
A(T) and L(X), respectively. It is clear from (2) and the definition of y(T)

that
(T) = {(u,,...,u,,) eR":0¢€ o(T) (Z(TJ - ujI)Z) } .

j=1
Furthermore, since E;=1(Tj — u;I)? actually belongs to 2(T), for every u =
(#y,-...,u,) in R, it suffices to show that

n
(3) y(b) = {ueR”;Oeags (Z(bj—uje)z)}
i=l
is non-empty, whenever B is a commutative Banach algebra (with unit ¢),
n > 2 is an integer and b = (b,,..., b,) € B".
To establish this we proceed as follows. Let 9% be the maximal ideal
space of 8. It follows from standard Banach algebra theory that B can be
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identified with a subalgebra B of the space C(9) of continuous functions on
oM. The Gelfand transform ° : %8 — B is a homomorphism such that é = 1
(the constant function 1 on 91) and

(4) on(b) = b(OM) = {b(m);meMm}, beB.
The homomorphism property of the Gelfand transform implies that

n - n
Z(bj —uje)’| = Z(i’j —u;1)?, ue R,
Jj=1 Jj=1
for every b € 8", This identity, together with (4), implies that

Ocon (Z(bj - u,-e)z) if and only if Z(l;j(m) - uj)? =0,

=1 j=1
for some m € M. It follows immediately from (3) that

(5) y) = U {ueR”:Z(Bj<m>—uj)2=0}.
i=1

meMn

So, to show y(b) is non-empty it suffices to show that there exists m € M
for which the set

(6) Z(b,m) = {ueR":i(Bj(m)—uj)z =0}

j=1
is non-empty. Actually, we will show that Z (b, m) # @ for every m € M. So,
fix m € M. Write bj(m) = a;(m) + ic;(m), 1 < J < n, with a;(m) and c;(m)
being real numbers. Then u € R” satisfies E b i(m) — u;)? = 0 if and only

if

(7.1) D (- aj(m): =3 c;(m)?
j=1 j=1

and simultaneously

(7.2) Z m))c;(m) =

Considering u € R" as a variable, (7.1) is the equation of a sphere in R”
centred at a(m) = (a,(m),...,a,(m)) and with radius

. 1/2
lle(m)]]2 = (Z Cj(m)z)
j=1
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and (7.2) is a hyperplane in R" with normal ¢(m) and passing through a(m).
So, if n > 2, then there certainly are simultaneous solutions of (7.1) and (7.2)
and hence, Z(b, m) # @ (for every m € 9). These calculations should be
compared with those in [5, page 246]. This completes the proof of Theorem 1.

It is worth pointing out that the formula (5) can also be used to show that
y(b) is a compact subset of R”. Indeed, to see that y(b) is bounded, fix an
element m € M. Then Bj(m) € ox(b;) and so IB,-(m)l <rbj), 1< j<n,
where

r(b) = sup{|A|:1 € a(b)} < ||5]|

denotes the spectral radius of any b € 8. Accordingly, if u is an element of
Z (b, m) (see (6)), then in the notation of (7.1) and (7.2) we have

. 1/2 . 1/2
[lull2 < lia(m)li2 + lle(m)|l2 < (22 léj(m)l") < (2 Zr(bj)z) .
=1 j=1

It follows that Z (b, m) is contained in the ball in R” centred at zero with
radius

. 1/2
r(b) = (22 r(b,-)z) .
j=1
Since this is valid for every m € 9, the set y(b) is also contained in this ball;
see (5). This should be compared with [3, Theorem 4.1(b)] where it is shown
that y(T) is contained in a ball centred at zero with radius n!/2||T||. Here
[IT|| is a norm satisfying [3, page 423]

n
max{(|Tj]: 1 < j < n} <|IT| < DTG
j=1
which can be associated with T by identifying T with the operator T =
E}; | T;e;j acting in the Banach module X, defined over the (real) Clifford
algebra R, as in [3, Section 3]. In general, ||T|| is difficult to compute and
so in practice the most useful statement would be that (T) is contained in
the ball centred at zero with radius n'/23°7_, ||T;|. Noting that

n 1/2 n 1/2 n
r(T) = (ZZr(Tj)z) < (ZZ“TJHZ)) <2123l
j=1 Jj=1 J=1

we can improve this statement; it suffices to use a ball of radius r(T). To see
that y(b) is a closed set, let {u*)} C y(b) be a sequence which is convergent
to u € R". By (5) there exist elements m; € 91 such that

(8) i(i)j(mk) - =0, k=12,...

J=1
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The compactness of M guarantees the existence of a point m € 9M and a
subnet {m,} of {m;} such that m, — m in M. This induces a subnet {u(*}
of {u®} and hence, u(® — u in R”, In particular, for each j = 1,...,n, we
have lim, uS-") = u; and, by continuity of Bj, also lim, B,-(ma) = Bj(m). It

follows from (8) that
n n
j=1 P

and hence u € y(b).

It is worth summarizing and specializing our Banach algebra results to the
original setting of operators on a Banach space. Recall that {T}“¢ denotes the
bicommutant of {T;:1 < j < n}. Let M(T) denote the maximal ideal space
of {T}e.

THEOREM 2. Let X be a Banach space, n > 2 be an integer and T =
(Th,...,Ty) be a commuting n-tuple of elements from L(X). Then

(T) = {u € R":0 < o) (i(ﬂ — ujI)Z) }

j=1

is a non-empty, compact subset of R" which is contained in the ball centred at
zero with radius r(T) = (2 37, r(T;)*)'/%. Furthermore,

o m= Y feewSinm-ur -ol.

mem(T) j=1

We conclude with some remarks about the cardinality of y(T).
(I) If o(T;) C R, for every j = 1,2,...,n, then we have, in the notation of
Theorem 2 (see (2) and (4) with B = {T}*), that

Ti(m) € o(qy(T)) = oy x)(T)) SR,  1<j<n,

for every m € 9M(T). Accordingly, the only solution in R" of the equation
Y i i(Tj(m) — uj)? = 0 is u = T(m). It follows from (9) that

(1) = {(Ti(m), ..., Ta(m)); m € M(T)}

whenever all operators T, 1 < j < n, have real spectrum; see also [4, Theo-
rem 1(iii)]. Since y(S) = a(S)NR, for every S € L(X), we have, in particular,
that

(10) P(T) € y(Th) x -+ x P(Th);
see also [3, Corollary 7.4].
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(I1) If n > 3 and, for some jp € {1,...,n} the set o(T},) contains a point
from C\R, then »(T) is an uncountable set. Indeed, in this case there exists
mg € M(T) such that Tj,(mo) € C\R and hence, if we determine the set

n

Z(T,mp) = {“ eR™Y (Ti(mo) - uj)* = 0}

j=l1
by solving the corresponding equations (7.1) and (7.2), then it is clear that the
sphere and the hyperplane in R” so specified are not degenerate (that is, they
are (n — 1)-dimensional). It is then clear from (9) that y(T) is uncountably
infinite. Surprisingly, perhaps, even if X is a finite dimensional space, the
set »(T) is “very large” as soon as at least one of the operators {T;} does not
have real spectrum (n > 3).

(III) The situation with two commuting operators is quite different. First
we note that, unlike for n > 3, it can happen that y(T) is finite even if at least
one of the operators T} or T3, has complex points in its spectrum. Indeed,
for each m € M(T), it is clear that

{ue R (Ty(m) — u,)> + (T2(m) - u2)* = 0}

consists of at most 2 elements. Accordingly, if (7}) is a finite set, with k;
elements, say, then it follows from (9) and the fact that T;(m) € a(T;), for
every m € M(T), that y(T) is also a finite set with at most 2K1%2 elements.
We note that with 7} = T, = I the number of elements in y(7T) = {(1,1)}
is less than the maximum number possible, namely 2 (k; = k; = 1). If we
take 7} = I and T, = il, then y(T) has 2 elements and the maximum is
obtained. So, in finite dimensional spaces it is the case that y(T) is always a
finite set (when n = 2). For infinite dimensional spaces this need not be so.
For example, if X = [2, T; = I and T is the operator with diagonal matrix
{i/n:n=1,2,...}, then y(T) equals

{(L,0yu{(1xn10:n=12,...}.

Accordingly, y(T) is infinite and countable. It can also happen that y(T) is
infinite and uncountable. Just take X = /2, T} = I and T; the operator with
diagonal matrix {ir,;n = 1,2,...} where {r,} is dense in [0, 1], say.

(IV) The inclusion (10} is not valid for operators {T;} without real spectra.
Indeed, take 73 = 7; = I and let 75 be any operator such that o(73) N R is
finite and ¢(73) N (C\R) is non-empty. Then »(T) is infinite by Remark (II),
but

Y(T1) % 7(T3) % 7(T3) = {1} x {1} x (6(T3) NR)

is a finite set.
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