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ABSTRACT

In Industrial Fire insurance an aggregate limit for the amount retained by the
policyholder under a deductible policy has been agreed upon more frequently
in recent times. This agreement is equivalent to a stop-loss cover on the retained
loss amount. For the Poisson-lognormal model the corresponding stop-loss net
premium is calculated using various methods (normal power, translated gamma,
various discretisations) and the methods are compared. Finally, the influence of
the model parameters is examined and it is demonstrated how a variety of
parameter value combinations can be reduced to only a few rating curves.
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1. INTRODUCTION

On a number of markets the practice of adding an aggregate limit to an Industrial
Fire insurance policy with a deductible has increased in recent times. An aggregate
limit means that the maximum accumulated amount of losses to be retained by
the policyholder is limited for each year; the insurer then takes over payment
should this maximum be exceeded. The advantage for the policyholder is quite
obvious: the risk retained under the deductible is limited, not only in terms of
each loss event but also on an annual basis. A policy with a deductible but no
aggregate limit, however, may lead to an unexpectedly high retained aggregate
loss amount if the policyholder is confronted with an accumulation of loss events.
For the insurer, the calculation of deductible rebates, difficult enough as it is,
becomes even more complicated. With the aggregate limit, the policyholder is
granted in addition a stop-loss cover on his retained losses, which leads to a
reduction in the normal deductible rebate. If the size of a loss is independent of
the number of losses, the normal deductible rebate depends solely on the distribu-
tion of the loss amounts, whereas when an aggregate limit is established, the
distribution of the annual number of losses has to be considered too. Moreover,
the risk of fluctuation, which in connection with deductibles works against the
insurer anyway (cf. STERK (1979), MACK (1980, 1983)), is increased even further
by an aggregate limit.

* The author would like to thank Dieter Arndt for carrying out the considerable work of pro-
gramming.
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In theory, there is no problem involved in developing a formula for the reduction
in the deductible rebate resulting from the aggregate limit: the formula for the
stop-loss net premium (i.e., the loss expectancy of the stop-loss cover) may be
applied without further ado to the distribution of the aggregate retained losses.
But the computation itself is a problem, as it is a well-known fact that only in
rare cases a closed analytical expression can be given for the distribution of
aggregate losses. In Industrial Fire insurance there is the additional problem that
the distributions of loss frequency and loss amounts are not known precisely
enough (at least for the individual risk to be rated), and rough estimates for some
parameters of these distributions are the best we have. It is therefore necessary
to use model assumptions that are flexible and cover a broad spectrum of realistic
possibilities.

This paper follows the assumption that the distribution of the annual number
of losses is Poisson and that the distribution of the loss amounts is lognormal.

It is widely accepted that the Poisson distribution is realistic for the number
of losses in Industrial Fire portfolios. Also the validity of the lognormal model
for the loss amounts has been demonstrated on several occasions in the past
(e.g., BENCKERT (1962), FERRARA (1971), STRAUSS (1975)), and in the field of
Industrial Fire in particular.

Generally these distributions cannot immediately be transferred to single risks
due to the influence of a big fire on the loss distributions. But a policy for which
an aggregate limit is agreed is usually so large that it can be considered as a
small portfolio. Therefore the application of the Poisson-lognormal model seems
to be an acceptable approximation.

The information available in insurance practice on the loss distribution of the
risk to be rated consists for the most part of only the net premium and no more.
Therefore in order to estimate the two parameters of the lognormal distribution,
additional information is necessary. In this paper it is assumed that the normal
deductible rebate is also known, i.e., the reduction in the loss expectancy due to
the deductible without the aggregate limit being taken into account. But the
calculation of deductible rebates will not be discussed in any further detail as
this is dealt with excellently in STERK (1979, p. 1803). Should the normal deduct-
ible rebate not be known, then use can be made of the results of BENCKERT
(1962), FERRARA (1971) and STRAUSS (1975), where for one of the two parameters
a relatively small range of values was established that is independent of the
monetary unit and thus of currency, inflation, etc.

If the mean loss amount, the net premium for full insurance cover, the deduct-
ible amount and the corresponding deductible rebate are known, the parameters
of the Poisson-lognormal model are determined in full (mean number of
losses = net premium/mean loss amount). And in practice these figures are on
hand as a rule or they can at least be estimated with a sufficient degree of accuracy
by the underwriter. With these figures, the distribution of aggregate losses is
determined for the policyholder's retained amount under the deductible before
accounting for the aggregate limit. Then for the calculation of the stop-loss net
premium, defined by the aggregate limit on this aggregate retained loss, three
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different ways of approximating the stop-loss net premium are used:
• The "normal power" and "translated gamma" methods based on an analytical

approximation of the distribution of aggregate losses. These procedures are
extremely simple to handle and require no programming. Up to now, however,
little is known of the quality of the results in such cases as the one here with
a rather low mean number of losses.

• The method of approximating the loss amount distribution by means of very
simple discrete distributions (one, two and three point distributions) for which
the stop-loss net premium can be calculated explicitly and simply. Due to the
limitation of the amount of each loss by the deductible these methods turn out
to give excellent results.

• The recursive procedure for arithmetic distributions, first described by PANJER

(1980); the required discretisation follows the "matching moments" method
developed by GERBER (1982). This procedure produces results that may be as
exact as required depending on the degree of discretisation.

The aim of these comparative calculations is not only to check the quality of
these procedures, but first and foremost to find a procedure which is as simple
as possible and which at the same time produces acceptable exactness. In addition,
the final section investigates the influence of each of the model parameters and
suggests a procedure for reducing the large number of possible combinations to
a few special cases in order to derive simple rating rules for underwriters.

2. PROBLEM AND NOTATIONS

Let the following data be known for a given risk:

b = net premium (expected value of the aggregate losses) for full insurance
cover

c = mean loss amount per loss event

a = deductible amount

r(a) = (net) deductible rebate = reduction in the net premium resulting from
the deductible, 0=£ r(a)=£ 1

z = annual aggregate limit for the accumulated retained losses under the
deductible; z is often expressed as a multiple z = ka of the deductible
amount, e.g., k = 3.

The expected value of the aggregate retained losses under the deductible before
accounting for the aggregate limit is then given by r(a)b. The problem is to find
the expected value r(a, z)b of the aggregate retained losses considering the
aggregate limit z. With 1 ~[r{a, z)/r(a)] we thus obtain the proportion by which
the deductible rebate r(a) is to be reduced as a result of the additional aggregate
limit.

The following random variables are considered:

X = loss amount per loss event
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N = number of losses per year (assumed to be independent of X)

Xa = retained loss amount (per loss event) under deductible a

\X if X=sa
~\a if X> a

Sa = aggregate retained losses (per year) under deductible a

(0 ifJV = O

| I (*«)» ifiV>0
u=i

where (Xa), denotes the retained amount of the ith loss

$a,z = aggregate retained losses (per year) under deductible a and aggregate
limit z

Sa if Sa^z
z if Sa > z.

With the given data, the following relationships exist

b = E{N)E{X)

c = E(X)

r{a)b = E(Sa) = E(N)E(Xa)

E(Sa) E(Xa)
r(a)= b E(X)

Then J5(Saz) = r(a, z)b is to be calculated under the assumption that N is subject
to a Poisson distribution and X to a lognormal distribution, i.e., (with 4> denoting
the standard normal distribution function)

forO<x<co,

IITTOX

-e~K for i = 0 , 1,2

The parameter A is given by
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and the parameters /J. and cr can be deduced from the values for a, r(a) and c
with the aid of the formulae

(cf. STERK 1979, p. 234). For this purpose it is convenient to introduce

a
t=-.

c

Then the equation for r(a) can be rewritten as

This equation has a unique solution cr (given t and r(a)) because the right-hand
side is a strictly increasing function of a. Parameter /J, is thus replaced with t.
Besides z we now have to work with the three model parameters t, a- and A.

Should it happen that the deductible rebate r(a) is not known, it may be
possible to choose the parameter value of cr from the interval [2,2.5] in accordance
with the results of BENCKERT (1962), FERRARA (1971) and STRAUSS (1975).

If E(Sa - z)+ denotes the stop-loss net premium with priority (stop-loss attach-
ment point) z on the aggregate retained losses Sa, i.e.,

Sa-z)+ = E(Sa)-E(Sa,z),

the required reduction in the deductible rebate comes to

r{a,z) E{Sa-z) +

1 —
r(a) E(Sa)

This expression, i.e., the stop-loss net premium measured as a fraction of the
mean aggregate retained losses without an aggregate limit, will be called "relative
stop-loss net premium" in the following discussion. Similarly, the value

i.e., the priority expressed as a multiple of the deductible amount, is referred to
as "relative priority".

The curve of values of the relative stop-loss net premium as a function of the
relative priority is called "stop-loss curve"; it begins at point (0; 1), is degressively
and strictly decreasing (convex) and runs to point (oo; 0). The "relevant area" is
that part of the curve in which the relative stop-loss net premium amounts to
between 50% and 5% as in practice the majority of cases occur in this range.
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3. CALCULATION METHODS

As the distribution of the aggregate retained losses Sa, which is required for an
exact calculation of the stop-loss net premium, cannot be given in closed form,
various approximation methods have been developed in actuarial literature.
Several of these methods have been applied in the problem here. As most of
these methods are well-known, no further details are given. This applies to the
following methods:

1. Normal power method, see BEARD, PENTIKAINEN and PESONEN
(1968/1977, p.43ff); BERGER (1972); KAUPPI and OJANTAKANEN (1969);
PESONEN (1969). More precisely, the NP2 method was used here, i.e., the changed
variable was calculated from a quadratic equation.

2. Translated gamma method, see BOHMAN and ESSCHER (1963/1964); SEAL
(1977); BOWERS, GERBER, HICKMAN, JONES and NESBITT (1982). In the
expression for the stop-loss net premium (cf. SEAL 1977, p. 215) the incomplete
gamma function occurs.

3. Recursive calculation of the stop-loss net premium by means of an arithmetic
discretisation of the loss amount distribution, see GERBER (1982) who uses the
recursive procedure of PANJER (1980). In the problem here the discretisation
method called "matching moments" was used where the probability weights for
the discretised variable are calculated in such a way that within adjacent pairs
of intervals the first two moments for the discretised loss amount are equal to
those of Xa according to the lognormal distribution. As an obvious extension of
the recursion formula stated by PANJER and GERBER, the occurrence of losses
of amount 0 for the discretised distribution was explicitly admitted as this proved
to be suitable due to the skewness of the distribution of Xa in order to avoid
negative probabilities.

With the normal power and the translated gamma method an estimation of
the approximation error is not possible. But for the method with a discretisation
of the loss amount distribution an upper bound for the approximation error can
be developed using a metric introduced by GERBER (1980) (Chapter 7.3):

max|£(Sa-z) + -E(Sa-z)+|=sA max \E(Xa-x) + -E(Xa-x)+\

= A max (F(y)-F(y))dy
0 « i « o I J x

where the symbol refers to the discrete approximating distribution.
If the discretised loss amount distribution only has one or two atoms, the

distribution of the aggregate losses and thus the stop-loss net premium can
generally be calculated very easily without recursion formula. On account of the
finite range (0, a] of the retained loss amount Xa it does not seem unreasonable
to approximate the distribution of Xa by such a one-point or two-point distribu-
tion. Indeed it will be shown that this method in the problem here leads to
astoundingly good results. For this method too, the above formula for the error
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bound holds true. For the choice of the atoms of the approximating loss amount
distribution there are several possibilities (one-point: lower bound, upper bound,
third approach; two-point: 1st, 2nd, 3rd possibility), details of which are given
in the appendix.

4. COMPARISON OF CALCULATION METHODS

In principle, the matching moments discretisation is the most accurate method
of calculating as the accuracy can theoretically be improved as far as desired by
raising the number n +1 of discretisation points. It is possible that numerical
problems will arise when the value of n reaches a certain size, but here it was
not necessary to go so far as a better approximation was already arrived at for
a relatively small n than with the other methods. Table 1 shows a typical example.

TABLE 1

RELATIVE STOP-LOSS N E T P R E M I U M (%) U S I N G VARIOUS M E T H O D S

(PARAMETERS <T = 2, t = 1, A = 3)

Method k=l.O fc = 1.5 fc = 2.0 fc = 2.5

Matching moments, n = 100
n = 30
n = 10

Normal power

Translated gamma

Two-point, 1st possibility
2nd possibility
3rd possibility

One-point, lower bound
upper bound
third approach

With the matching moments method for n = 100 the maximum error amounts
to less than ±0.05% according to the inequality in Section 3, i.e., the exact value
e.g. for Ac = 1.0 is between 32.523% and 32.623%. The normal power method
generally overestimated the stop-loss net premium; in all the parameter combina-
tions examined (o- = 2, t = 0.1, 0.3, 1.0, 3.0, 10.0, A = 1, 3, 10, 30), only for A = 1
and t =£ 1 was there a small area where this was not the case. Where the aggregate
loss distribution was very skewed (f = 10, A = l) the normal power method
overestimated the stop-loss net premium in the relevant area by more than one
half of the true value in some cases. If the aggregate loss distribution is practically
a normal distribution (A = 30, t =s 3; here the skewness is <0.5) the normal power
method, like the translated gamma and the two-point too, produces a very good
approximation to 3 decimal places. The relative error however increases with
higher priorities (i.e., with a lower stop-loss net premium).

32.573
32.571
32.552

33.4

32.1

33.4
32.0
32.52

21
35
33.5

16.375
16.373
16.350

16.9

15.9

16.1
16.9
16.37

6
23
14.8

7.4675
7.4663
7.4558

7.97

7.44

8.03
7.05
7.452

1.4
9.6
7.30

3.2266
3.2259
3.2187

3.56

3.33

3.218
3.41
3.244

0.2
5.8
2.97
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The values produced by the translated gamma method were above and below
the exact values in all of the parameter combinations examined, i.e., the translated
gamma stop-loss curve intersects the exact stop-loss curve, and in the cases
examined more than once. A very good approximation is produced of course
near to the intersections. But the accuracy of the translated gamma method is
not at every point better than that of the normal power method.

The stop-loss curves of each of the two-point methods also meet the exact
curve usually more than once. As shown in Table 2, the third two-point method
seems to provide the best approximation apart from the matching moments
method. Sometimes, however, this method can produce a small range of values,
where the deviation is greater than in the normal power method.

Of the three one-point methods only the third approach produces acceptable
results especially if the skewness of the aggregate loss distribution is small (e.g.,
<0.5). This method may underestimate the true result. The other two methods
should be considered as being the simplest way of providing lower and upper
bounds rather than being approximations.

Table 2 is an attempt to compare the accuracy of the various methods. For
this the values of the methods per priority were put in order of accuracy; the
method with the value nearest to the matching moments value was given the
order number 1, going down to order number 8 for the method with the value
which was furthest removed. Then for each method the mean order number was
calculated for a larger number of priorities, which were chosen equidistant in
the relevant area.

TABLE 2

MEAN ORDER NUMBER OF THE VARIOUS METHODS IN TERMS OF ACCURACY

Parameters
(o- = 2 throughout)

f = 0.1, A=3
A = 10

(= 1.0, A =3
A = 10

(=10, A =3
A = 10

N.P.

4.1
5.1
4.2
5.0
3.7
3.9

T.G.

3.9
4.2
3.0
3.6
2.5
2.5

Method (see
TP1

3.1
2.5
3.9
3.3
4.2
4.5

TP2

2.9
2.5
3.5
2.5
3.6
3.9

key below)
TP3

1.8
.6
.6
.5
.8
.7

OPL

8.0
8.0
8.0
8.0
7.0
7.5

OPU

7.0
7.0
7.0
7.0
8.0
7.5

OP3

5.2
5.2
4.8
5.0
5.2
4.6

Key: N.P. = normal power; T.G. = translated gamma; TPi = two-point ith possibility; OPL =
one-point, lower bound; OPU = one-point, upper bound; OP3 = one-point, third approach.

The results in this table cannot however be simply transferred to other parameter
combinations. For t = 1 and A = 30, for example, procedure TP2 has a lower
mean order number than TP3; here however, all the methods are exact to three
decimal places. For A = 1 the value according to normal power in the relevant
area is sometimes higher than the upper bound given by OPU.

Finally in this connection certain computing problems must be mentioned too.
The possible occurrence of negative probabilities in the matching moments
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method has already been pointed out by GERBER (1982). But these negative
probabilities do not seem to have any distorting influence on the stop-loss net
premiums calculated with them. With the two-point methods it is possible that
when the Poisson probabilities for high priorities are calculated, an underflow
will occur, meaning that values are produced that are too small to be expressed
in the computer. As these are summands and not very many either, they can be
given a value of zero without having any noticeable effect on the accuracy but
in general an appropriate instruction should be included in the computer program
to avoid an abnormal program termination. An overflow in the translated gamma
method occurred for A = 30 and t = 0.1 or 0.3 in the calculation of the incomplete
gamma function, i.e., values were produced which were so large they could not
be expressed in the computer. This error can only be avoided by means of applying
special techniques in calculating the incomplete gamma function ratio (see
KHAMIS and RUDERT 1965). Difficulties in calculating were encountered in all
the methods apart from the normal power method—and, of course, the one-point
methods. As the normal power method produces results that are nearly always
on the safe side and as the safety loading increases relative to the decrease in
the stop-loss net premium as it should, this method can be generally recommen-
ded, especially if the results have to be produced quickly and without any
programming.

5. DEPENDENCY OF THE RESULTS ON THE PARAMETERS

In practice it is recommended that underwriters are given simple rating tables or
curves so that they do not have to consult the actuarial department each time a
policy with an aggregate limit comes up. In view of the dependency of the
stop-loss net premium on three parameters (cr, A, t) it does not seem possible to
provide a calculation model of the kind mentioned. Surprisingly enough however,
it is possible to eliminate all three parameters to a large extent if a slight reduction
in accuracy is acceptable. In view of the uncertainty of the parameter values
pertaining to any one risk, this loss in accuracy can be ignored.

At first it is not automatically clear what influence the variation of one single
parameter will have on the relative stop-loss net premium where the other
parameters and the relative priority remain constant, as the incorporation of
relative values may produce different results to those produced by absolute values.
In the case where parameter A increases, the mean number of losses increases
too while the priority (both relative and absolute) remains unchanged. It is
therefore obvious that the stop-loss net premium increases overproportionally
and leads to an increase in the relative stop-loss net premium. In case of variation
of the parameter cr or t it is best to observe the shape of the density function of
the amount of retained loss Xa. As t increases, the proportion E{Xa)/ a decreases
too, meaning that the distribution of Xa is skewed more and more to the right.
If a, A and k are constant, therefore, the absolute priority ka will increase in
relation to the mean aggregate retained losses E(Sa) = \E(Xa) so that the relative
stop-loss net premium decreases. The same applies when parameter a is raised:
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a higher cr means a more skewed lognormal distribution with a higher expected
value E(X). If t is constant, the deductible a = tE(X) increases too as that the
distribution of Xa becomes more skewed. If A is constant, the absolute priority
therefore becomes greater in relation to E(Sa) so that the relative stop-loss net
premium decreases.

On account of this, with a constant A for two pairs of parameters (cr, t), {cr, t),
a similar stop-loss net premium is to be expected if the same proportion
E(Xa)/a = r(a)/1 is produced in both cases, i.e., if

t \ a 2/ \ cr 2/ t \ a 2/ \ & 2/

Table 3 shows that this is in fact the case. Here the value of t for the various
values of a is selected in such a way that the equation above holds with a = 2
and t = \.

TABLE 3

COMPENSATING A VARIATION O F t WITH A VARIATION O F A

Parameter Values Relative Stop-Loss Net Premium (%) for A = 3
o- t fc=l fc = 1.5 k = 2 k = 2.5

1.6
1.8
2.0
2.2
2.4

1.70
1.33
1.00
0.72
0.50

31.4
32.0
32.6
33.0
33.3

15.2
15.8
16.4
16.8
17.2

6.75
7.14
7.47
7.72
7.94

2.79
3.02
3.23
3.39
3.55

This being so, it is possible to transpose parameter values cr ̂  2 to the case
cr = 2 by an appropriate alteration of the parameter / without any essential change
in the stop-loss curve. In this way parameter cr is practically eliminated.

If cr is constant a similar situation arises for the influence of variations of the
parameters / and A. Table 4 shows that an increase of ( can be compensated by
an appropriate increase of A so that the stop-loss curve remains almost unchanged.

Therefore, parameter t can be eliminated by an appropriate correction of the
value of A. Finally, with cr and / constant and a given value for the relative

TABLE 4

COMPENSATING A VARIATION OF cr WITH A VARIATION OF t

Parameter Values Relative Stop-Loss Net Premium (%) for a = 2
t A k=\ fc=1.5 fc = 2 k = 2.5 k = 3

0.1
0.3
1.0
3.0

10.0

2.4
3.4
6

12
31

52.0
52.6
53.4
54.2
56.0

35.4
35.4
35.7
36.1
37.5

21.9
22.3
22.6
22.6
23.1

13.6
13.5
13.4
13.2
13.2

8.03
7.68
7.59
7.32
7.01
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stop-loss net premium, there is an almost linear connection between A and that
value of relative priority which leads to the given stop-loss net premium for this
A:

Example for <r = 2, t — 1:

Parameter Value of A 10 30

Relative priority k corresponding to 10% stop-loss net
premium

Straight line 0.31 A +0.81

1.09

1.12

0.69

0.67

1.83

1.74

1.06

1.09

3.96

3.91

2.54

2.56

9.74

10.11

6.83

6.76

Relative priority k corresponding to 30% stop-loss net
premium

Straight line 0.21 A+0.46

This makes it possible to derive from the stop-loss curves for 2 values of the
parameter A the curves for the other values of A approximately by means of
interpolation or extrapolation.

To sum up then, we may say: the stop-loss curves resulting from the lognormal
distribution by a deductible with an aggregate limit have very similar shapes for
the relevant parameter values of a, t and A, and with the aid of appropriate
parameter transformations they can be approximately interchanged. It is therefore
possible to represent the effect of an aggregate limit on the expected losses in
such a way that it can be determined using only a few curves or tables without
any great reduction in accuracy.

APPENDIX

Calculation of the Stop-Loss Net Premium by Simple Discrete Approximations of
the Distribution of Loss Amounts with One-Point or Two-Point Distributions

This appendix will deal with one-point and two-point distributions as well as a
special three-point distribution for the loss amounts, i.e., distributions that allow
for only one, two or three different loss amounts. For such distributions, the
distribution of the aggregate losses and thus the stop-loss net premium can be
calculated exactly without great difficulty. On account of the finite range (0, a]
of the loss amount Xa it does not seem unreasonable to approximate the distribu-
tion of Xa by such a distribution.

In the following, we shall frequently be needing the first three moments about
zero of the retained loss Xa; for i = 1, 2, 3 . . . we have:

E(Xa)'= + ai(\~F(a))

i •> 7, ̂ /ln a-u-ia2\ ./ ,/\na-a\\
4i a )$ ~ +a [-®\ •

\ o- I \ \ a 11
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Here again it is convenient to replace parameter fi with t by writing

a = tc= tE(X) = t exp (/x +W)

for the mean loss amount. This results in

The values

now only depend on t — a/c and a. Note that h{ = r(a) applies. In the following
discussion it will always be assumed that the values t, a and A are known and
therefore hu h2, h3 too.

Al. Approximation by Means of One-Point Distributions

The most simple way of approximating is to work only with a constant loss
amount 8 = E(Xa), i.e. to approximate the aggregate retained losses Sa by means
of 6N. According to a theorem of BUHLMANN, GAGLIARDI, GERBER and STRAUB
(1977), this results in a lower bound for the stop-loss net premium for each
priority z, i.e.,

Another approximation stemming from BENKTANDER only uses losses of the
(maximum) amount a. So that the expected value of the aggregate losses remains
unchanged, the mean number of losses must be reduced mechanically to

If TV* denotes the Poisson variable belonging to A* then Sa will be approximated
by aTV* and we have

i.e., an upper bound for the stop-loss net premium is obtained. This also results
from the theorem of BUHLMANN, GAGLIARDI, GERBER and STRAUB (1977). Here
the fact is employed that the distribution of aggregate losses based on the number
of losses TV* and the constant loss amount a is identical with the distribution of
aggregate losses which results from the number of losses TV and the loss amount
"a with probability 0/a or 0 with probability 1 — 6/a". This is a special feature
of the Poisson distribution.
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In these cases, the explicit calculation of the stop-loss net premium is quite
simple:

E(N-u)+= I (i-u)p(N=i)

= I i—e~x-up(N>u)

. „ A'"1 _>
e *-

= Xp(N = [«]) +(A -u)p(N> u),
[u] denoting the integer part of w.

In the special problem here, with a priority of z = ktc, this produces for the
stop-loss net premium E(Sa — z) +

• a lower bound

with v = kt/hl

• and an upper bound

with v = kt/hu N* being Poisson distributed with parameter (hjt)\.
In a third approach, due to BENKTANDER (1974), the distribution of the

aggregate losses Sa is directly approximated by the distribution of £/V where JV
is Poisson distributed with parameter E(N) = k and the values of £, X are
determined by the equations

This yields

c=
Var(SJ E(Xa)

2

E(Sa) E(Xa)

(E(Sa))
2 JE(Xa))

2

Var(SJ £ (XJ 2 "

For the stop-loss net premium with priority z we then get the approximation

In the problem to be solved here this leads to (with priority z = ktc)

with v = kt/hu v = kthjh2 and N being Poisson distributed with parameter
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It is easy to see that generally A «s A and # =£ £ sg a holds and using again the
theorem of BUHLMANN, GAGLIARDI, GERBERand STRAUB (1977) it can be shown
that the stop-loss net premium according to this third approach is between the
bounds defined above, i.e.,

E(0N- z) + =S E(£N-z) + =£ E(aN* - z)+.

A2. Approximation by Means of Two-Point Distributions

Calculating the stop-loss net premium with priority z is still a quite simple matter
for a distribution of loss amounts that only provides for two different loss amounts
x < y with probability p for x and q=\-p for y: if Wxy denotes the corresponding
variable of aggregate losses with A-Poisson distributed number of losses N, then
the aggregate losses, in the case of exactly N=j losses, i of which have an
amount y, come to

Wxy = iy +{j - i)x = i(y - x) +jx, i = 0 ,

with probability

The constraint Wxy^z is equivalent to i^(z-jx)/(y-x). As [z/x] losses may
occur for Wxv =£ z at the most, this leads to

E(Z-wxyr= i ^ e ~ \ j

with w = min(j,(z-jx)/(y-x)).
This can be worked out on a programmable pocket calculator with 10 memory

registers; the size of the factorials does not constitute a problem either as long
as the corresponding summands are calculated recursively. Finally the stop-loss
net premium is given by

There are several ways of approximating the retained loss amount Xa by means
of a two-point distribution:

1st possibility:
The distribution of Xa is produced by truncating the distribution of X at the
point a, i.e., the distribution of Xa always has a point mass amounting to 1 — F(a)
at point a. Particularly where low deductibles are concerned, the obvious way is
therefore to choose the two-point distribution in such a way that y = a. Then the
other point x and its point mass p are selected so that the first two moments are
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equal to those of Xa, i.e.:

This leads to

119

px+(l-p)a =

Px2+(\-p)a2=E(Xa)
2.

P =t2-2thl+h2

x = -(ht-qt)
P

y = tc.

2nd possibility:
If a value for y other than a is admitted, the two-point distribution can be selected
in such a way that the first three moments are equal to those of Xa, that is

px+{l-p)y =

x2 + (\-p)y2=E(Xa)
2

If f denotes the skewness of Xa, i.e.,

then we get

1
/> = - +

For the corresponding aggregate losses Wxy, the first three moments are equal to
those of the aggregate retained losses Sa, as is the case too with the normal power
and translated gamma methods.

3rd possibility (special three-point distribution):
If a procedure is desired whereby a point mass of y = a is retained as in the first
possibility and at the same time the first three moments of Xa are considered as
in the second possibility, then this is feasible, similiarly as in the upper bound
one-point distribution, if a point mass at loss amount 0 is added and the Poisson
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parameter is adjusted accordingly. More precisely a three-point distribution is
adjusted with points 0, x, a and point masses u, v, w so that

u+v+w=1

vx + wa = E(Xa)

vx2 + wa2=E(Xa)
2

vx3 + wa3 = E(Xa)
3.

This yields

w ={h\t2-2h2t+h3)t

h2 - wt2

u=l—v—w

c
x = -(hi-wt).

v

In the case of a A-Poisson distributed number of losses, the corresponding
aggregate loss distribution does not change if the loss amount 0 and its point
mass u are omitted and the other point masses v and w are raised accordingly
and the parameter A reduced, i.e.,

_ v

q=

v + w
w

v + w

The corresponding stop-loss net premium can therefore be calculated using the
two-point distribution given by p, q, x and y = a = tc; in this case the reduced
mean number of losses A* is to be used instead of A.

Further possibilities:
If a value for y is admitted in the 3rd possibility other than y = a, it is possible
to have the same first four moments of the special three point distribution as
those of Xa. Another possibility is to break the interval [0, a] into two intervals
and to apply each of the first two one-point methods to each of these intervals.
In this way, two-point distributions are produced which give improved upper
and lower bounds for the stop-loss net premium.
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