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The coupled effects of thermodynamic and hydrodynamic instabilities are studied during
viscous fingering (VF). We introduced a modified Cahn–Hilliard phase-field model in
conjunction with the Korteweg force in the classical VF model and derived consistent
governing equations. The free energy of the partially miscible system is described
using a modified Flory–Huggins model, which allows us to investigate the temporal
evolution of spatial inhomogeneities. The mass flux in the Cahn–Hilliard equations is
modified according to modern diffusion theory. The governing equations have been solved
through an in-house model implementation using the COMSOL multiphysics software.
We successfully demonstrated the transition from the finger-like structures to the droplet
formation during spinodal decomposition as demonstrated experimentally in the literature.
Our results are also in agreement with earlier numerical results obtained using a classical
Landau type mixing energy. We further systematically studied the effects of the Margules
parameter (interaction parameter) and the gradient parameter, which is associated to the
thermodynamic length scale and capillary number on the VF. Aysmmetric features of
the binary mixture are also investigated showing a stronger thermodynamic effect on the
system with increasing phase separation and, hence, droplet formation.

Key words: fingering instability, Hele-Shaw flows, multiphase flow

1. Introduction

The phenomenon of viscous fingering (VF), in which finger-like patterns form when
a less viscous fluid displaces another miscible and more viscous fluid is quite well
known (Tan & Homsy 1986; Homsy 1987). However, the effect of partial miscibility
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on the VF phenomena is yet to be fully investigated. Partial miscibility introduces
the possibility of phase separation and spinodal decomposition and brings to bear
thermodynamic forces in addition to the hydrodynamic factors at play. Recently, it has
been claimed that the anomalous VF dynamics, where finger formation transforms into
the generation of spontaneously moving multiple droplets in partially miscible systems
is due to thermodynamic instability Suzuki et al. (2020a). An understanding of the
thermodynamics may allow us unique insights in understanding the pattern formation
and control over patterning. This becomes particularly important given that VF finds
application in a broad range of industrial challenges such as enhanced oil recovery,
pollution spreading in soils, chromatographic column design and so on (Homsy 1987, and
references therein). Recently, the effects of phase separation on hydrodynamic instability
patterns have been studied (Chao et al. 2018; Suzuki et al. 2019), in the context of
optimizing the pore structure in a polymer membrane.

The VF mechanism depends on whether the fluid is miscible or immiscible. This
translates into specific spatial and morphological characteristics of the VF phenomena.
For instance, due to the higher interfacial tension in case of immiscible fluids, the fingers
tend to be wider. A number of researchers have extensively studied the VF phenomena
corresponding to chemical reactions, phase change and double-diffusive systems. Viscous
fingering instabilities have also been observed in hydrodynamically stable systems where
the displaced fluid has a lower viscosity. For instance, Bihi et al. (2016) captured the
displacement of air by water in a Hele-Shaw cell with partially wettable hydrophilic
particles due to the presence of a capillary force induced by pre-existing particles. In fully
miscible system, experimental and numerical investigations have shown the generation
of fingering due to a local viscosity gradient by double diffusitivity (Mishra, De Wit
& Sahu 2012) either due to a chemical reaction (Podgorski et al. 2007; Gérard & De
Wit 2009; Riolfo et al. 2012) or precipitation reaction (Nagatsu et al. 2014). Thermal
transport in flow of a non-Newtonian fluid in porous media is also highly important.
The viscosity of a non-Newtonian fluid is a function of the shear rate and is usually
sensitive to temperature variations. Hence, miscible thermo-VF (Norouzi et al. 2019;
Austin-Adigio & Gates 2020) is also creating some interest in the research community
nowadays due to their applications in enhanced oil recovery via wells using hot water
flooding and steam flooding. It has been shown that flow becomes stable with increased
viscous dissipation due to the increasing temperature and viscosity drop (Norouzi et al.
2019). In contrast to miscible and immiscible fluids, researchers have also focused on
fingering instability in partially miscible systems with the interface having finite solubility.
Several numerical simulation investigations have been made to explore partially miscible
systems in a hydrodynamically unstable displacement (Fu, Cueto-Felgueroso & Juanes
2016, 2017).

A hydrodynamically stable partial miscible system has also been explored recently.
Suzuki et al. (2019, 2020a,b) conducted systematic experiments to analyse the effect
of phase separation on the VF by employing polyethylene glycol-salt (Na2SO4)-water
ternary system. They experimentally showed that fingering patterns are possible even
for hydrodynamically stable systems for the partially miscible fluids mixture. This
would imply that a thermodynamic Korteweg force can induce fingering motion without
hydrodynamic instabilities. Thermodynamic effects of phase separation, where the fingers
split into droplets, have been verified theoretically by calculating the second derivative
of the free energy of mixing and other experimental analyses (Molin & Mauri 2007).
Later, Suzuki et al. (2020a) showed that for some partially miscible systems, some
islands of the displacing phase can exist in a continuous phase. They explained the
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complex pattern in the partially miscible system by the self-propulsion of a small droplet.
They simulated the self-propulsive motion by introducing a Korteweg force combined
with Flory–Huggins mixing energy (Flory 1942; Huggins 1942), which can easily explain
thermodynamics of a multicomponent mixture. Korteweg force is developed due to
the chemical potential gradient during spinodal decomposition and is defined as the
functional derivative of the free energy (Molin & Mauri 2007). Korteweg force tends
to minimize the free energy stored at the interface and induce spontaneous convection.
Recently, Suzuki et al. (2020a,b) experimentally showed that the flow patterns found
in a thermodynamically unstable region are strongly dependent on the hydrodynamic
and thermodynamic parameters such as viscosity mismatch, flow rate and interfacial
tension. Very recently, Seya et al. (2022) found the mechanism of the formation of an
island structure and topological changes during phase separation through the numerical
simulations considering the Korteweg force. It should be noted that previously several
numerical studies have discussed the importance of understanding the VF dynamics
in partially miscible systems (Amooie, Soltanian & Moortgat 2017; Fu et al. 2017)
mainly based on geological applications; however, these studies have not incorporated
the Korteweg force for the thermodynamic investigations. Seya et al. (2022) on the other
hand, conducted their simulations associating the Korteweg force that is fundamental in
absorbing the thermodynamic effects during phase separation. Numerical work by Seya
et al. (2022) was preliminary and limited to simulate experimental work with binary
mixtures only. To further understand phenomena of diverse mixtures, implementation
of a numerical simulation platform based on appropriate mathematical modelling and
physical and phenomenological understanding is significant. Development of a numerical
simulation scheme will overcome the complexity and physical limits of the experimental
study.

Despite the recent advances, understanding of the coupling of thermodynamics and
hydrodynamics is still lacking – specifically, the extent to which thermodynamic effects
can supplant the hydrodynamic factors (if at all) is not yet well understood. Developing
such an understanding would require us to develop a framework where the thermodynamic
parameters would, in part, affect the dynamical features of the fluids. In this context, we
focus on first investigating the purely thermodynamic effects, followed by an investigation
of dynamical characteristics of the fluids as well as interfacial terms that define the
interfacial interactions between the two fluids. We model the intermolecular interactions
using the Margules parameter. This parameter largely models the enthalpy of interactions.
In addition to the Margules interactions, the Gibbs free energy expression also includes
the entropic effects (arising from concentration fluctuations) and interfacial energy. The
capillary number affects the flow behaviour of the system and provides us with an
insight on the dynamics of the fluids. Having addressed the effect of thermodynamic
interactions and flow characteristics of the system, we focus on the interfacial region,
where the effect of the gradient energy parameter (that affects the interfacial dimensions,
morphology and energy) is studied. The binary mixture here is modelled not only with
thermodynamic miscibility (Margules parameter Ψ ) as a function of composition but also
expandable for asymmetric mixtures. Such an asymmetric Flory–Huggins equation can be
easily extended to diverse mixtures of ternary, quaternary, etc. (Suzuki et al. 2020a) and,
hence, unphysical situations are innately eliminated in the present model. In addition, flow
geometry with inlet and outlet flow boundary is employed to simulate experimental works
more practically. Finally, using the numerical framework developed, we demonstrate that
our model is able to replicate the formation of Liesegang rings that are characterized by
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y

Figure 1. Schematic diagram of the system considered where a less viscous fluid with viscosity ηA is
displacing a more viscous fluid with viscosity ηB.

a rhythmic concentration pattern during the diffusive process, which has already been
reported experimentally (Rácz 1999).

We have organized the paper as follows. In § 2 we construct a modified
Hele-Shaw–Cahn-Hilliard (HSCH) model coupling the effects of hydrodynamic and
thermodynamic formulations and the numerical model is introduced. In § 3 we show and
discuss the effects of the Margules parameter, gradient parameter and the capillary number
on the morphology and flow characteristics of the system. We then illustrate how the
droplet formation is affected when the free energy of the binary mixture is asymmetric
in nature. We also demonstrate the formation of Liesegang rings. Finally, we conclude
highlighting our results in § 4.

2. Modified HSCH model

A schematic of a rectangular Hele-Shaw cell is shown in figure 1. A Newtonian
incompressible fluid of species A with viscosity ηA displaces another fluid of species
B with a uniform velocity U0 along the x direction. We consider that the composition
of the system is uniquely determined through the molar fraction φ of species A. Since
we are considering a binary mixture, we thus assume the molar fraction of species B to
be 1 − φ. The governing equations consist of continuity, momentum and mass transport
equations in a reference frame moving with the injection velocity U0 and can be expressed
as (Vladimirova, Malagoli & Mauri 1999a,b; Hopp-Hirschler, Shadloo & Nieken 2019)

∇ · U = 0, (2.1)
η

K (U + iU0) = −∇P + F , (2.2)

∂φ

∂t
+ U · ∇φ = − 1

ρ
∇ · JA, (2.3)

where η, K and JA are the viscosity of the fluid mixture, the permeability of the
Hele-Shaw cell and the diffusion flux of species A, respectively. We have used the
concentration-dependent viscosity model,

η = η0 exp(−Rφ), (2.4)

where R is the log viscosity parameter and η0 is the solute free viscosity. By assuming
the molecular weight of species A and B to be the same, i.e. Mw,A = Mw,B = Mw, the
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Korteweg force has been expressed as (Vladimirova et al. 1999a,b)

F =
(
ρRT
Mw

)
μ̄∇φ, (2.5)

where, μ̄ = μ̄A − μ̄B is the dimensionless chemical potential of the binary mixture and
has been constructed as (Cahn & Hilliard 1958; Vladimirova et al. 1999a,b)

μ̄ = μ

RT
= μA − μB

RT
= μ̄A − μ̄B = μ̄Th + μ̄NL, (2.6a)

μ̄Th

(
= ∂ ḡTh

∂φ

)
= ln

(
φ

1 − φ

)
+ Ψ (1 − 2φ) and μ̄NL

(
= ∂ ḡNL

∂φ

)
= −κ∇2φ,

(2.6b)

ḡTh

(
= gTh

RT

)
= {φ lnφ + (1 − φ) ln(1 − φ)} + Ψφ(1 − φ), (2.6c)

ḡNL

(
= gNL

RT

)
= −1

2
κ2(∇φA)(∇φB), (2.6d)

where, μ̄Th and ḡTh are the dimensionless chemical potential and thermodynamic free
energy for the equilibrium state, respectively. Here μ̄NL and ḡNL are added to take into
account the effects of spatial inhomogeneities. For a binary mixture, we define φA = φ

and φB = (1 − φ) as the molar fraction of species A and B, respectively. The Margules
parameter is Ψ , which describes the repulsive interaction between unlike molecules versus
that between like molecules, and κ is the gradient parameter that is proportional to the
effective interfacial tension (Cahn & Hilliard 1958). Here, κ has the meaning of the square
of the thermodynamic length scale (Cahn & Hilliard 1958; Vladimirova et al. 1999a,b).
For various systems, many systematic studies (Ariyapadi & Nauman 1990; Nauman & He
1994; Zhou & Powell 2006; Morita 2013) have been conducted to determine the Margules
parameter, Ψ , and the gradient energy parameter, κ .

In the regular solution theory, the first term of ḡTh, i.e. {φ lnφ + (1 − φ) ln(1 − φ)},
expresses the entropy of mixing, and the second term, Ψφ(1 − φ), explains the enthalpy
of mixing. This expression is of the same form as the Flory–Huggins equation of state
that is commonly used for polymer mixtures (Flory 1942; Huggins 1942). If Ψ > 2, there
exists a thermodynamically unstable partially miscible region (called the spinodal region)
where

∂μ̄Th

∂φ

(
= ∂2ḡTh

∂φ2

)
< 0 (2.7)

(Lee, Lowengrub & Goodman 2002; Lamorgese & Mauri 2006; Suzuki et al. 2021).
Margules parameters have been shown to be dependent on temperature and, hence, the
miscibility can be controlled by changing temperature (Vorobev, Prokopev & Lyubimova
2021). In this work, however, we have not studied the temperature effects on the VF. To
represent the stable and unstable mixture, Hopp-Hirschler et al. (2019) adopted Ψ = 1 and
Ψ = 3, respectively.

Originally, Cahn & Hilliard (1958) expressed the mass flux as

JA = −ρM∇μ̄A, (2.8)

where M corresponds to the mobility coefficient that corresponds to the diffusion
coefficient (Jasnow & Vinals 1996). However, as discussed by Nauman & Balsara (1989),
the above expression is inconsistent with the modern diffusion theory (Bird, Stewart &
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Lightfoot 2002; Cussler 2009). The mass flux for each component of species (i = A or B)
in the system is expressed by using the gradient of chemical potential as

J i = −ρφi(U i − U), (2.9a)

U i = −M∇μ̄i, (2.9b)

and the mass average velocity U is expressed as

U =
∑

i

φiU i. (2.10)

By combining (2.9) and (2.10), the mass flux of species A can be reduced to

JA = −ρφ(1 − φ)M∇μ̄. (2.11)

Substituting the expressions for mass flux (2.11) and force (2.5), we arrive at our modified
HSCH model. The governing equations are non-dimensionalized using

η̄ = η

η0
, u = U

U0
, x̄ = x

M/U0
τ = t

M/U2
0
, p = P

(η0M)/K . (2.12a–e)

The governing equations thus reduce to

∇ · u = 0, (2.13)

η̄(u + i) = −∇p + 1
Ca
μ̄∇φ, (2.14)

∂φ

∂τ
+ u · ∇φ = ∇ · {φ(1 − φ)∇μ̄}, (2.15)

where, capillary number (Ca) is defined as

Ca = Mwη0M
ρRTK (2.16)

and κ̄ = κ/K. Using the expression of μ̄ from (2.6b), the Korteweg force (2.5) can be
rewritten as the sum of the gradient of the scalar and the divergence of the tensor, i.e.

F = ρRT
Mw

∇
{

ln
φ

1 − φ
+ Ψ (1 − 2φ)+ 2κ(∇φ · ∇φ)

}
− 2κ

ρRT
Mw

∇ · (∇φ∇φ).
(2.17)

Therefore, (2.14) can be rewritten as

η̄(u + i) = −∇π + δ∇ · (∇φ∇φ), (2.18)

where

π = p − 1
Ca

{φ lnφ + (1 − φ) ln(1 − φ)+ Ψ (φ − φ2)} − δ

2
(∇φ · ∇φ). (2.19)

Here, δ = κ̄/Ca = ρRTκ/(MwηBM) has been known as the dimensionless Korteweg
stress constant (Pramanik & Mishra 2013, 2015).
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Under the assumption of 0 < ψ < 1, i.e. without the consideration of a partially
miscible effect, Pramanik & Mishra (2013, 2015) degenerated the above equations (2.15)
and (2.18) as

η̄(u + i) = −∇{p + Q(φ)} + δ∇ · (∇φ∇φ), (2.20)

∂φ

∂τ
+ u · ∇φ = ∇ · (∇φ), (2.21)

where Q(φ) = δ/3(∇φ · ∇φ)+ 2
3γ∇2φ. For the limiting case of δ → 0, the above

equations can be written as

η̄(u + i) = −∇π, (2.22)

∂φ

∂τ
+ u · ∇φ = ∇ · {D̄(φ)∇φ}, (2.23)

where D̄(φ) = 1 − 2Ψφ(1 − φ) is the concentration-dependent dimensionless diffusivity
(Lamorgese & Mauri 2006). Furthermore, in the dilute solution limit, i.e. 0 < φ < 1,
and/or for the regular solution, 0 < Ψ < 1, we can reconstruct the VF model similar to
Tan & Homsy (1986).

2.1. Streamfunction-vorticity formulation and numerical solution method
In the present study we choose the interface at x = 0, where the length and the width
of the domain are Lx = [−1000, 1000] and Ly = [−250, 250], respectively. For the
two-dimensional (x,y) domain, we introduce the streamfunction ψ , such that u = ∂ψ/∂y
and v = −∂ψ/∂x. Then, following the procedure suggested by Tan & Homsy (1986), we
get the following streamfunction (ψ)- vorticity (ωz) formulation:

∇2ψ = −ωz, (2.24)

ωz = −R
{
∂ψ

∂x
∂φ

∂x
+ ∂ψ

∂y
∂φ

∂y
+ ∂φ

∂y

}
+ 1
ηCa

{
∂μ̄

∂x
∂φ

∂y
− ∂μ̄

∂y
∂φ

∂x

}
, (2.25)

∂φ

∂τ
+ ∂ψ

∂y
∂φ

∂x
− ∂ψ

∂x
∂φ

∂y
= ∇ · {φ(1 − φ)∇μ̄}. (2.26)

As shown in the above equations, the present system is governed by R, Ca, Ψ and κ̄ . In this
work, however, we will be focusing on the effect of the later three on the phase separation
and, hence, on the VF.

We consider the following initial and boundary conditions:

ψ = 0 and φ(τ = 0) =
{
φ+, x > 0,
φ−, x < 0,

(2.27a)

∂ψ

∂x
= ∂φ

∂x
= 0 at x = ± lx

2
, (2.27b)

∂ψ

∂y
= ∂φ

∂y
= 0 at y = ± ly

2
. (2.27c)

To perturb the concentration field, initially we added random disturbance with the
magnitude of 10−3 at x = 0.
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2.2. Modelling in COMSOL multiphysics software
To realize the thermodynamic approaches on a numerical solution, we implemented
an in-house numerical simulation platform using a finite element method (FEM)
solver (COMSOL software) (COMSOL 2019). The COMSOL software was adjusted
to incorporate a thermodynamic approach and boundary conditions, interface, etc.
The commercial package, COMSOL multiphysics has many built-in modules for the
well-known types of governing equations with boundary conditions, and specific
application fields. However, the present governing equations (2.24)–(2.26) are quite
different from the typical physics model because hydrodynamics is tangled with
thermodynamics. Due to the hydrodynamic-thermodynamic complexity, the present
problem cannot be solved by the COMSOL built-in modules such as Darcy’s law flow
(dl) and the transport of dilute species (tds) modules. Instead, we implemented an
in-house numerical simulation platform using a COMSOL FEM server incorporated with
thermodynamic analysis, material function and boundary conditions.

There are several equations that are included in the built-in mathematics interfaces of
the COMSOL multiphysics software, for example, wave form partial differential equation
(PDE), coefficient form PDE, general form PDE, etc. Each of these equations are specified
with corresponding abbreviated forms in the mathematics interface. Poisson’s equation
(abbreviated as ‘poeq’ in the mathematics interface of COMSOL software) is used to
solve (2.24) and (2.25). The equation solved by the Poisson equation in COMSOL is

∇ · (−c∇ψ) = f , (2.28)
where, ∇ = [∂/∂x, ∂/∂y]. Comparing with our model equation, (2.24), c is substituted as
−1 and the source term f is represented as −ωz as given in (2.25). Equations (2.6b) and
(2.26) on the other hand are solved by a general form PDE equation (abbreviated as ‘g’ in
the mathematics interface of COMSOL software), which is expressed as

ea
∂2u
∂t2

+ da
∂u
∂t

+ ∇ · Γ = f , (2.29)

where u = [φ, μ̄]T and ∇ = [∂/∂x, ∂/∂y], Γ is the conservative flux and f is the source
term. Therefore, the general form PDE is used to solve both for φ and μ̄. The equivalence
of (2.29) and (2.26) can be understood as follows. Using the continuity equation, (2.26)
can be reduced to

∂φ

∂τ
+ ∇ · [(φ2 − φ)∇μ̄+ φu] = 0. (2.30)

The above equation is comparable to (2.29), when we substitute the mass coefficient, ea =
0, damping coefficient, da = 1, and source term, f = 0, so that the flux will be

Γx = (φ2 − φ)
∂μ̄

∂x
+ φ

∂ψ

∂y
, (2.31a)

Γy = (φ2 − φ)
∂μ̄

∂y
− φ

∂ψ

∂x
. (2.31b)

By rearranging, (2.6b) can be expressed as
∇ · (−κ∇φ) = μ̄− lnφ + ln(1 − φ)− Ψ (1 − 2φ) (2.32)

and, hence, will be comparable to (2.29), when we consider ea = 0, da = 0, f = μ̄−
ln(φ)+ ln(1 − φ)− Ψ (1 − 2φ) and the flux as Γx = −κ(∂φ/∂x), Γy = −κ(∂φ/∂y). We
use initial boundary conditions, μ̄ = 0 and ∂φ/∂t = 0, and ∂μ̄/∂t = 0.
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For the numerical simulation, we consider a user-controlled quadrilateral mesh where
the maximum element size used is dx = 2 and the minimum element size is fixed as 0.01.
For the time integration, we used the second-order backward difference formula (BDF)
with a relative tolerance of 10−4. We have used an adaptive time stepping. A detailed
description of the simulation parameters particularly chosen based on the intensive mesh
convergence test is discussed in Appendix A.

3. Results and discussion

In the present work we have demonstrated the role of thermodynamic instabilities in
phase separation of two partially miscible fluids. Unlike the work of Seya et al. (2022),
in our effort to model a continuum case in this paper, we approach the problem from a
solution thermodynamics perspective, within the framework of a regular solution model.
Hence, we construct the Gibbs free energy such that it comprises of an entropy term
and an enthalpy term as shown in the expression of ḡ = g/RT in (2.6c). The entropy
term considered in this work is purely configurational in nature and emanates out of
standard statistical thermodynamics. Using Stirling’s approximation, this is evaluated
as s̄ = s/RT = φ lnφ + (1 − φ) ln(1 − φ) and provides us with a measure of disorder
in the system. When considered together with the approach of Cahn and Hilliard, the
concentration, φ, is in fact the order parameter. In this work the enthalpy effects, resulting
from intermolecular interactions, are captured using Margules parameter. The Margules
parameter captures the net intermolecular interactions (i.e. a combination of attractive
and repulsive) in the fluid system. A negative value of the Margules parameter results
in attractive interactions whereas a positive value of the Margules parameter denotes a
repulsive interaction. Thus, the key philosophical difference of this work with Seya et al.
(2022) is that (i) we incorporate the role of disorder induced by mixing of two partially
miscible fluids, and (ii) we capture the net effect of repulsion and attraction using a single
term captured by the Margules parameter. Essentially, the difference between the two
approaches is one that exists between a classical Landau model and a regular solution
model. A consequence of this is that the double well structure of Gibbs free energy
arises as a play-off between enthalpy and entropy as opposed to attractive and repulsive
interactions. It is in this backdrop that we discuss our results in the following sections of
this paper.

3.1. Effect of Margules parameter, Ψ , and the role of the Korteweg force
For the case of R = 1, κ = 1, Ca = 1, Ψ = 2.2, φA = 0.8 and φB = 0.2, the temporal
evolution of the concentration field is summarized in figure 2. This figure clearly shows the
formation of the island structure in the concentration field, which cannot be expected in the
conventional fully miscible and immiscible VF problem. We can observe the formation of
droplets at τ = 1000 and, as time progresses, the size of the droplets increase and become
prominent.

The spatio-temporal evolution of the system for different values of Ψ is shown in
figure 3. At lower values of Ψ , a thermodynamic instability leading to phase separation
is not observed (Ψ = 1.5, 1.9). In the absence of the instability, viscous fingers develop
and grow into the two fluids, but further phase separation at the fingertips is not observed.
The Margules parameter of Ψ = 2.0 denotes a critical point where the tip of the fingers
growing into one fluid gets enriched in concentration similar to the second fluid. Once this
enrichment becomes stable, this region will not remain in equilibrium with a continuously
varying lower concentration and will want to phase separate. As Ψ is increased to 2.1
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τ = 4000

τ = 3000

τ = 2000

τ = 1000

τ = 500

(a)

(b)

(c)

(e)

(d )

Figure 2. Temporal evolution of the concentration field is shown at dimensionless time for the case of R = 1,
κ = 1, Ca = 1, Ψ = 2.2, φA = 0.8 and φB = 0.2.

though, we move beyond the critical point and the first droplet is observed. With a further
increase in the value of Ψ , the thermodynamic potentials simply drive the instabilities
more strongly resulting in a more pronounced effect of phase separation and a large
number of droplets form. The effect of Ψ on the thermodynamic instability can be
understood from (2.6c) detailing the variation of the Gibbs free energy with Ψ and is
shown in figure 4. Effectively, from the expression it can be seen that the contribution
due to Ψ is equivalent to the contribution due to enthalpy, while the logarithmic terms
denote the entropic contributions. Furthermore, (2.6c) assumes a regular solution model
– hence, the variation of free energy is symmetric. With the value of φ varying between
0 and 1, the entropic contribution remains fixed for a given value of φ and assumes a
minimum value (s̄ = s/RT = φ lnφ + (1 − φ) ln(1 − φ)) of −0.693 at the equimolar
concentration. In other words, the entropy of the systems serves to lower the free energy
of a system containing a mixture of two fluids and, hence, stabilizes it. Negative values
of Ψ will also play a similar role corresponding to negative formation enthalpies that
also stabilize the system. Physically, a highly negative value of ḡ = g/RT indicates
that the two-fluid system, when mixed together, is stable; in other words, it would
indicate that the two fluids would not tend to phase separate. On the other hand, should
the enthalpy bring about a positive contribution, which can occur for positive values
of Ψ , the system can have a maxima, as shown in figure 4. Additionally, due to the
symmetric variation of enthalpy with concentration, the maxima would also occur at the
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Ψ = 2.2

Ψ = 2.1

Ψ = 2.0

Ψ = 1.9

Ψ = 1.5

(a)

(b)

(c)

(d )

(e)

Figure 3. The density field of concentration at dimensionless time τ = 4000 for the case of
R = 1, κ = 1,Ca = 1, φA = 0.8 and φB = 0.2.

equimolar concentration. Therefore, the value of the Margules parameter determines the
possibility of thermodynamic instabilities within the system, with strongly positive values
favouring thermodynamic instabilities that lead to spinodal decomposition. The regions of
thermodynamic stability, instability and metastability can be understood by considering
the variation of (∂ ḡ/∂φ) and these points have also been indicated in the figure for the
case of Ψ = 2.2. The mixture of composition in the range of 0.3679 < φ < 0.6321 is
thermodynamically unstable, which is the spinodal region, the regions 0.2485 < φ <

0.3679 and 0.6321 < φ < 0.7515 are the metastable states. Here the spinodal points are
obtained by solving ∂2ḡTh/∂φ

2 = 0 and the binodal points are obtained for ∂ ḡTh/∂φ = 0.
In the metastable region the system is stable unless there is large fluctuations. In addition
to the bulk thermodynamics terms (i.e. the entropic contributions, s̄ = s/RT = φ lnφ +
(1 − φ) ln(1 − φ) and the enthalpy contributions arising due to the Margules parameter,
h̄ = h/RT = Ψφ(1 − φ)), whenever two fluids mix partially, an interface will form. The
interfacial region is a region where the molecular configurations change leading to local
disruptions in bonding, and this is the origin of the interfacial energy that also serves
to destabilize the system by contribution to μ̄, as seen in (2.6b). We have included the
role of the interface through the incorporation of a gradient energy parameter, κ̄ . The
gradient energy parameter, as noted earlier, represents a thermodynamic length scale (

√
κ)

and influences the interfacial thickness and concentration gradients as a function of the
distance from the interface. In this section we choose to study the role of the Margules
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Figure 4. Effect of Ψ on the free energy. Thermodynamic free energy, for the case of Ψ = 2.2, the mixture of
composition 0.3679 < φ < 0.6321 is thermodynamically unstable, both 0.2485(= φ(A,eq)) < φ < 0.3679 and
0.6131 < φ < 0.7515(= φ(B,eq)) are metastable. Within these metastable regimes, the system is stable with
respect to small fluctuations but unstable with respect to large fluctuations.

parameter, Ψ , keeping the values of other parameters constant (i.e. we assume R = 1,
κ = 1, Ca = 1). The bulk concentrations of the two fluids will then be determined by
figure 4 and will correspond to the two local free energy minima. The concentration across
the interface however will be given by φA = 0.8 and φB = 0.2.

The Korteweg force is thermodynamic in nature and is dependent on the free energy
variations in the system, as shown in (2.5), (2.6b) and (2.6c). The Korteweg force is
therefore expressed in terms of the chemical potential and is actually a function of both φ
and Ψ . The value of φ at thermodynamic equilibrium is obtained from the Gibbs tangent
drawn between the two ‘wells’ in the free energy curve (i.e. near the two local minima).
The shape of the free energy curve (and, hence, the values of φ) is dictated by the strength
of the intermolecular interaction, i.e. the Margules parameter Ψ . Therefore, the value of
the Korteweg force at which the droplets form is directly related to the critical value of the
Margules parameter, Ψ , for a given value of the log viscosity parameter.

Physically, the greater the concentration fluctuations (i.e. when the concentration
fluctuations are stabilized and, hence, grow), the longer the interfacial length is. Therefore,
physically, as the droplets form, within the given volume of the simulation cell, the
interface separating the two fluids increases. Since the formation of droplets is favoured
by a larger value of the Margules parameter, this is directly reflected in the calculation
of the interfacial length as shown in figure 5. Specifically, the larger values of the
Margules parameter that favour the phase separation and droplet formation also result
in the concentration fluctuations becoming stable and growing with time (in other words,
the phase separation only increases with time). This is reflected in the slope of the curves
showing the variation of the interfacial length with time in the figure. At values of Ψ ≤ 2,
the slope is rather low indicating that relatively less interfaces form as a function of time.
At these values of the Margules parameter, the increase in interfacial length is driven by
‘stretching’ of the existing interfaces, i.e. due to a gradual increase in the extent of fingering
in either fluid. A significant increase in slope is observed once we go beyond the critical

972 A23-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

64
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.642


Thermodynamic effect on viscous fingering of binary mixtures

12 000

10 000

8000

6000

4000

2000

0 500 1000 1500 2000 2500 3000 3500 4000

Dimensionless time, τ

In
te

rf
ac

ia
l 

le
n
g
th

, 
I Ψ = 2.2

Ψ = 2.1
Ψ = 2.0
Ψ = 1.9

R = 1, κ = 1 and Ca = 1

Figure 5. Effect of Margules parameter (Ψ ) on the time evolution of the interfacial length for the case of
R = 1, κ = 1, Ca = 1, φA = 0.8 and φB = 0.2.

value of the Margules parameter, where not only does fingering occur, but phase separation
occurs concurrently resulting in splitting of the fingertips leading to droplet formation.
As this process occurs and the droplets form, the interfaces (and, hence, interfacial length)
increase sharply which is clearly reflected in the figure.

3.2. Effect of the capillary number, Ca
The thermodynamic factors primarily affect the feasibility of fingering and droplet
formation. It does not, however, explicitly determine the rate. For instance, in figure 5
the variation of interfacial length with time was estimated as a function of the Margules
parameter for certain values of dynamical terms such as Ca and R (Ca was assumed to
be 1, while R was assumed to be 1). The capillary number and the log viscosity affect
the transport properties of the fluid, i.e. the rate at which molecular transport occurs as
the system tries to evolve towards the thermodynamic equilibrium state starting from an
initial non-equilibrium state. The effect of the log viscosity parameter is rather complex
and will affect the viscous forces. The effect of the log viscosity parameter will be treated
separately in a different paper in the future. Here, we focus on understanding the dynamics
of the two-fluid systems by investigating the effect of the capillary number. The capillary
number is defined in terms of the mobility parameter, which in turn affects the diffusivity.
The phase separation process actually requires spatiotemporal atomic/molecular transport.
Hence, the value of Ca can be expected to influence how rapidly phase separation occurs,
i.e. one can expect it to affect the temporal evolution of the interface and droplet formation.

Hopp-Hirschler et al. (2019) demonstrated that the mobility parameter plays a role
in the VF process. The role of Ca has also been studied by Seya et al. (2022), where
they used a dimensionless term δ−1 that is physically equivalent to the Ca. However,
despite these efforts, the role of Ca has not been studied in isolation (i.e. independent
of the intermolecular interactions). In order to do this, we have chosen a relatively large
value of the Margules parameter (Ψ = 2.2), where we know that phase separation is
thermodynamically favoured. For this fixed value of Margules parameter, we now vary
the capillary number over orders of magnitude and observe the interfacial region of the
two-fluid system at a given time (τ = 4000). The changes in interface morphology as
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Figure 6. (a) The density field of concentration at τ = 4000 to show the effect of capillary number when
R = 1, κ = 1, Ψ = 2.2, φA = 0.8 and φB = 0.2. (b) Temporal evolution of the interfacial length.

a function of Ca are shown in figure 6. The most dramatic changes occur as we move
from Ca = 0.01 to Ca = 0.1. At the lowest value of Ca studied, we observe that the
concentration fluctuations have started developing at the tips of the fingers indicating
an impending formation of droplets (however, at this stage, the droplets are yet to form
although one can still observe the fine splitting of the fingertips that are a precursor to the
droplet formation). At such low values of Ca, the mobility (and, hence, the diffusivity)
of the molecular species making up the two fluids are too less for the critical amount
of mass transport to have occurred in this time frame to result in phase separation.
The morphological changes are somewhat quantified by calculation of the interfacial
length, as discussed above. Figure 6(b) shows the evolution of the interfacial length.
Beyond a certain mass transport rate (i.e. corresponding to a critical value of Ca), the
changes in interfacial length are rather negligible. However, in the initial stages (low
values of τ ), the interfacial length develops in a similar manner for Ca = 1, 10 and
100, while the interfacial length is lower for Ca = 0.1 and 0.01. With time, however,
the interfacial length for Ca = 0.1 becomes similar to that for Ca = 1, 10 and 100. This
suggests that a certain amount of mass transport needs to occur before the concentration
fluctuations stabilize forming a spinodal. Spinodal decomposition is said to occur when
a single phase decomposes into two similar but separate phases. This is observed in
partially miscible liquids when the liquid concentrations are such that they lie beyond the
miscibility limit in the immiscible region. A liquid with concentration outside the miscible
range is inherently unstable thermodynamically. Statistical concentration fluctuations
occur in liquid. As these fluctuations increase, the local concentration changes. Spinodal
decomposition requires such fluctuations to grow since these fluctuations ensure that
the local concentrations bifurcate to yield two separate concentrations that are at the
boundary of the miscible range. Thus, if the concentration fluctuations are stabilized
(i.e. the partitioning of the fluid phase occurs separating into two different concentration
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Figure 7. Role of gradient parameter, κ , on the species concentration for the case of R = 1, Ca = 1, φA = 0.8,
φB = 0.2. Results are shown for (a) Ψ = 0 at τ = 105, (b) Ψ = 1.5 at τ = 4000 and (c) = Ψ = 2.2 at τ =
4000.

regimes), spinodal decomposition occurs. Of course, demixing does occur at the binodal
point. However, for a fluid of intermediate concentration between the binodal points, to
reach the binodal points, one needs to initiate the concentration changes. This occurs when
the local concentration fluctuations are stable and grow sufficiently such that the single
metastable fluid with a concentration between the binodal points phase separate into two
fluids with concentrations that rapidly approach the binodal concentrations. The process
does have a slight stochastic aspect due to the use of a random seed for introducing initial
perturbations at the interface. Therefore, the number/size of droplets can be somewhat
different resulting in minor differences in the interfacial length.

3.3. Effect of the gradient parameter, κ̄
The gradient parameter κ̄ is defined as κ̄ = κ/K, i.e. the gradient energy parameter
is scaled by permeability in order to obtain a dimensionless number. Thus, physically,
varying the value of κ̄ implies a change in either κ or K or both. Fundamentally, κ
appears in Cahn–Hilliard equations as a coefficient of the concentration gradient and
is related to the effective interfacial tension. In a sense, one can think of κ , multiplied
with the concentration gradient as a measure of the energy penalty required to create an
interface. Therefore, large values of κ result in wider interfaces (i.e. large values of κ
imply a larger penalty for steeper concentration gradients – hence, wider interfaces with
shallow gradients occur for large values of κ). Since we define κ̄ = κ/K, large values of κ̄
originates from large values of κ , for a given permeability, K.

The effect of varying κ̄ can be seen in figure 7. With a progressive increase in κ̄ ,
the interfacial width also increases. The key question that needs to be answered though
is whether κ̄ has any significant effect on spinodal decomposition. In order to address
this question, one must look jointly into the role of κ̄ in conjunction with the Margules
parameter, Ψ . We have shown earlier that the spinodal occurs only beyond a certain
critical value of Ψ . Clearly from figure 7(a) (Ψ = 0) and figure 7(b) (Ψ = 1.5), one
can see that droplet formation is suppressed, irrespective of the value of κ̄ . However,
the interfacial width and tortuosity does change as a function of κ̄ . This is especially
prominent in figure 7(a) (Ψ = 0). As the value of κ̄ increases, the interfacial width
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increases and the tortuosity of the interface reduces and we eventually approach a flat
interface (figure 7(a), κ̄ = 105). This effect is also seen on the changes in interfacial
length (not shown in the figure). As the interface tortuosity decreases, the interfacial length
also decreases. Physically, as the two fluids are allowed to mix, we observe a three-way
thermodynamic tussle. The key factors contributing to the thermodynamic stability of such
a system are (1) enthalpy – based on the intermolecular interactions, (2) entropy – based
on the disorder introduced by mixing and (3) interfacial energy due to the formation of
interfaces. In non-interacting systems, i.e. where Ψ = 0, the enthalpy contributions are
negligible. A cursory look at the standard Gibbs free energy expression (G = H − TS,
where G is the Gibbs free energy, H is the enthalpy, T is the temperature and S is the
entropy) indicates that maximizing entropy by increasing disorder due to mixing will
further stabilize the system by lowering the free energy. Interfaces, on the other hand, tend
to increase the free energy of the system, with κ̄ , in conjunction with the concentration
gradient (κ̄∇φ) contributing to the interfacial energy, i.e. the energy penalty associated
with forming the interface. Initially, a sharp interface exists between the two fluids. As
mixing of the two fluids occur, the disorder due to mixing increases. The spatial extent of
the interface (i.e. the region over which the mixing occurs) is determined by a balance of
entropic stabilization and the energy penalty associated with the evolution of the interface.
For large values of κ̄ , a shallow concentration gradient (or low spatial concentration
fluctuation) lowers the interface energy. However, a low spatial concentration fluctuation
also reduces the entropy with the composition changing along a well-ordered gradient.
The net result is a balancing act between the entropic stabilization (increased randomness
through increased concentration fluctuation) and the energy penalty associated with the
interface (lower energy associated with a shallow gradient of concentration). As the value
of κ̄ is lowered, this balance shifts towards steeper concentration gradients and higher
interfacial tortuosity, which in turn results in sharper and less well-defined concentration
fluctuations resulting in increased disorder and entropic contributions. All of this can be
seen by observing the changes in interfacial width and tortuosity with increasing κ̄ in
figure 7(a). As the value of the Margules parameter increases (e.g. figure 7(b), where
Ψ = 1.5), we observe enthalpy playing a role. Finite intermolecular interactions (though
not sufficient to drive the spinodal decomposition process) contribute to stabilization of
the two separate fluids. As the volume of the two fluids increase vis-à-vis volume of the
interface, one observes steeper concentration gradients and a narrower interface. One can
think of this as enthalpy and entropy working in tandem to stabilize the system while
the interfacial energy tends to destabilize this. The addition of the enthalpy component
to free energy (due to a positive Margules parameter) allows for a greater interfacial
energy penalty (i.e. steeper concentration gradient, smaller interfacial width and enhanced
tortuosity of the interface). All of this is reflected in figure 7(b), when compared with
figure 7(a), for identical values of κ̄ .

As the Margules parameter is further increased to Ψ = 2.2 (figure 7c), one can
observe that the general trend in variation of interfacial width, thickness and tortuosity
remains the same; however, with the Margules parameter exceeding the critical value,
spinodal decomposition resulting in the formation of droplets occur. In general, an
increased value of the Margules parameter (increasing contributions of enthalpy) results
in thinner, tortuous and longer interfacial lengths with steeper concentration gradients,
while increasing values of κ̄ , result in shallower concentration gradients, i.e. thicker, less
tortuous interfaces and smaller interfacial lengths. However, since κ̄ and Ψ tend to act in
opposite directions with respect to the interfacial dimensions and morphology (and, hence,
droplet formation), it becomes pertinent to ask whether droplet formation can actually
be suppressed by large κ̄ , even when Ψ is above the critical value. It turns out that this
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is indeed the case, as evidenced from figure 7(c), where the number of droplets reduce
steadily as we increase the value of κ̄ from 0.25 to 100.

3.4. Effect of asymmetricity in free energy of a binary mixture
The free energy considered in our previous subsections correspond to a symmetric binary
mixture of interacting species of the same class. However, the interaction of these binary
mixtures could be asymmetric as well, when the interacting particles are of a different
class. Here, in this subsection we look into the effect on the free energy and concentration
field when the asymmetric features of the binary system due to asymmetric inlet and outlet
conditions and different sizes of solute and solvent are taken into account. Such binary
mixtures are modelled by coupling the thermodynamic miscibility (Margules parameter
Ψ ) as a function of composition, modified Flory–Huggins equation for chemical potential
(3.1) and hydrodynamic flow (capillary number Ca) (see (2.14)),

μ̄AB

(
= μA − μB

RT

)
= δḠ
δφ

= ln (φ)− 1
rB

ln (1 − φ)+ 1 − 1
rB

+ Ψ (1 − 2φ)+ κ∇2φ.

(3.1)

Here, rB is the relative size of molecule B with respect to molecule A. The Flory–Huggins
equation (3.1) can be easily extended to diverse mixtures of ternary, quaternary, etc.
(Suzuki et al. 2020a), and hence, unphysical situations are innately eliminated in the
present model. Figures 8 and 9 are added to display the asymmetric effect.

Figure 8(a) shows the free energy versus φ for rB = 1 (i.e. the ratio of energy barriers
on the A rich and B rich sides are identical). The curve shown is symmetric. Here, we
consider three different cases, namely: case I, (φA = 0.7, φB = 0.1); case II, (φA = 0.8,
φB = 0.2); case III, (φA = 0.9, φB = 0.3). It becomes immediately apparent that case I
and case III are actually quite similar, with one of the fluids having a value of φ that lies
outside the spinodal and binodal curves completely, while the other fluid has a φ outside
the spinodal, but inside the binodal.

For case I (left frame of figure 8b), at τ = 1000, we see three distinct concentration
fields. On the right-hand side, we see a region where φ = 0.1, with the interfacial region
shifting towards higher values of φ, as evidenced in the immediate vicinity of the fingers
that form. The tips of the fully developed fingers (i.e. the fingers where we have incipient
droplet formation, as marked in the inset), the concentration shifts to φ = 0.75, which is in
equilibrium with φ = 0.25, which explains the concentration shift within the field where
φ is largely 0.1 to a value of 0.25. However, the decomposition of φ = 0.7 to φ = 0.75
and 0.25, respectively, is not an easy process, with uphill diffusion needed to overcome
the energy barrier. Consequently, one observes regions where the concentration is close to
the peak of the energy barrier, i.e. at φ = 0.5. As time increases, the concentration within
the binodal, i.e. φ = 0.7, starts separating more and more into two values corresponding
to φ = 0.75 and φ = 0.25. More and more of the fluid has already crossed the energy
barrier whose peak occurs at the centre (i.e. φ = 0.5). Therefore, concentration fields
corresponding to φ = 0.5 start dwindling progressively with increasing time and are
virtually absent once we get to τ = 4000. Essentially, the decomposition pathways involve
the two-phase fluid decomposing to four distinct fields – a major field with φ = 0.1, a
thin film around fingers with φ = 0.25, the decomposing fluid fingers with φ = 0.5 (as
the fluid tries to go past the energy barrier) and the second major concentration field
of φ = 0.7. As the φ = 0.7 field decomposes, a part of it approaches φ = 0.5 and then
beyond, while the other part approaches φ = 0.75 that is barely discernible from φ = 0.7,
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Figure 8. (a) Thermodynamic free energy versus concentration for ψ = 2.2 and rB = 1, (b) dimensionless
concentration fields for the case of R = 1, κ = 1 and Ca = 1 are shown at successive dimensionless times
τ = 1000, 2000, 3000, 4000 from top to bottom. The numbers in the brackets are [φA, φB].

given the contrast. With time, the decomposing fluid overcomes the energy barrier and
we end up with three discernible regions of φ = 0.1 (right far field), φ = 0.25 (around
the fingers at the interface) and φ = 0.75 (the concentration of the fingers themselves).
It is important to note that the operative word here is discernible. It is postulated that
the left far field is actually φ = 0.7, which is virtually indiscernible from the finger
concentration of φ = 0.75. Additionally, one also observes the growth of the fingers with
time as we approach thermodynamic equilibrium. These observations also hold for case
III (right frame of figure 8b), where φA and φB are 0.9 and 0.3, respectively. In case II
(middle frame of figure 8b), where both points lie just outside the binodal region, the
thermodynamic driving force for phase separation is not quite as high, with the gradient
of free energy being quite shallow. This is quite clearly seen in the figure when compared
with case I and case III. Case II does exhibit significant fingering, but very few of the
fingertips reach a situation requiring complete separation or droplet formation. In case I
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Figure 9. (a) Gibbs free energy for various rB and ψ = 2.2, �E1 and �E2 are the energy barriers. (b) The
dimensionless concentration fields for the case of R = 1, κ = 1, Ca = 1, φA = 0.8 and φB = 0.2 are shown for
dimensionless times τ = 1000 (left frames), τ = 3000 (right frames). In the energy diagram, solid, dashed and
dotted lines represent thermodynamically stable, metastable and unstable regions, respectively).

and case III, however, droplet formation, especially at longer time intervals (τ = 4000), is
quite prominent.

In figure 9 we revisit case II with asymmetric interactions leading to an asymmetric free
energy curve where the energy barrier on one side is lower than the other. The studies are
done over a range of rB values. Two observations stand out clearly – (a) at a given time
interval, a larger fraction of the fluid shows a concentration field of approximately φ = 0.5
(or, the local maxima in the free energy curve between φ = 0.2 and 0.8); and (b) enhanced
droplet formation with increasing rB values. Taken together, this is clearly indicative that
the decomposition process becomes accelerated with increasing asymmetry where the
energy barrier on one side of the concentration profile becomes significantly smaller.
A lower activation barrier allows for easy diffusion and, hence, faster redistribution of
the concentration field – hence, a smaller fraction of the fluid needs to reside close to the
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maxima (φ = 0.54), with more and more fluid crossing over the energy barrier and moving
rapidly towards the equilibrium concentration. Increasingly copious droplet formation also
shows a higher degree of phase separation (which, for it to happen, it is essential that the
fluid crosses the energy barrier in order to reach the equilibrium concentrations).

In all of these cases (differing values of φA and φB, as well as different values of rB
for a given set of φA and φB), the viscosity contrast for a particular concentration is the
same, which indicates that the hydrodynamic contribution does not change. However,
with different sets of φA and φB, as well as different values of rB, the hydrodynamic
contribution does change the thermodynamic driving forces – which is reflected in
changing temporal signatures/kinetics of the spinodal decomposition process. This quite
clearly demonstrates the significance of thermodynamic driving forces during spinodal
decomposition occurring at the interfacial region during partial mixing of fluids, with
the effect being especially pronounced under the asymmetric interaction (Margules)
parameter, concentrations within the binodal region and concentrations with a high
∂G/∂φ.

3.5. Liesegang rings in the thermodynamically unstable system
While the parametric studies provide insights into the VF and droplet formation process,
applying this approach to explain real-life scenarios provides an excellent test of this
model. One of the areas where VF plays a role is in the formation of the Liesegang
rings and, hence, the ability to replicate the formation of Liesegang rings under suitable
conditions can be a means of validating our model. Liesegang rings or bands are
colour bands or ring-like structures and are commonly observed in chemical reaction
systems (Kai 1985). The physical mechanism of such a process is yet to be understood,
however, the prevailing theory is the post-nucleation theory and is based on the Ostwald
ripening process (Hilhorst et al. 2009), commonly found in aqueous two-phase system
solutions (Zhang et al. 2006) where advection is completely dominated by diffusion.
Numerical simulations of such models have been explored in the literature. For instance,
Hopp-Hirschler et al. (2019) conducted their numerical simulations using the viscosity
model

η = η0(1 + βφ) (3.2)

rather than the conventional viscosity model (2.4). In their simulations for the miscible
system, they employed Ψ = 3, β = 2, φA = 0.5, φB = 0.0. As discussed in figure 4, their
system is partially miscible for Ψ > Ψc(= 2), the displacing phase is thermodynamically
unstable and the displaced phase is thermodynamically stable. They explained these
rhythmic patterns as Liesegang rings that are self-generated patterns observed in a
supersaturated solution (Ostwald 1897). Later, Falkovitz & Keller (1988) analysed the
Liesegang pattern formation in a precipitation system using the Cahn–Hilliard equation.
They proposed that the negative diffusion coefficient is the key factor for the Liesegang
pattern formation. Since supersaturation and uphill diffusion are related to thermodynamic
instability, to examine the occurrence of the rhythmic patterns obtained previously
by (Hopp-Hirschler et al. 2019), we constructed a thermodynamically unstable model
system by considering Ψ = 2.2, φA = 0.9, φB = 0.5 and R = 1. For these parameters,
the temporal evolution of both the hydrodynamically and thermodynamically unstable
system is shown in figure 10 and we clearly observe the rhythmic concentration profile
patterns near the interface. Similarly, Liesegang bands with fingering motions caused by
the phase separation effects are also clearly visualized in figure 11, where the temporal
evolution of the concentration field is shown. In this case, the thermodynamically unstable
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Figure 10. Temporal evolution of the concentration field for the case of R = 1, κ = 1, Ca = 1, Ψ = 2.2, φA =
0.9 (thermodynamically stable) and φB = 0.5 (thermodynamically unstable). Upper centre parts are enlarged
in the right panels.

model is constructed by taking Ψ = 2.2, φA = 0.9, φB = 0.5, on the other hand, a
hydrodynamically unstable system is constructed by considering R = −1.

Therefore, our mathematical model could rightly replicate the interesting formation
of Liesegang bands that occur due to thermodynamic instability. However, an in-depth
analysis on the formation of rings and dynamics of such pattern formation requires a
comprehensive study.

4. Conclusions

Phase separation in a partially miscible system has been systematically analysed
numerically. Using the Hele-Shaw cell approximation and incorporating the Korteweg
force, Cahn–Hilliard phase field model and Flory–Huggins mixing energy, new governing
equations were derived to cover the thermodynamic and hydrodynamic instabilities.
The governing equations are solved through in-house model implementation using
the commercially available FEM solver COMSOL multiphysics. We have been able
to distinguish the development and dynamics of VF due to the hydrodynamic and
thermodynamic changes. The growth and shape of fingering and the formation of droplets
are shown to be affected by thermodynamic changes, for example, the Margules parameter
and gradient parameter. However, temporal evolution and dynamics at the interface are
affected by kinetics, e.g. capillary number. We show that the capillary number, gradient
parameter and the Margules parameter play an important role in the VF. The gradient
parameter, which is linked to the capillary number, has an effect in both thermodynamic
and hydrodynamic features and serves to link both these effects. The effects of these
physico-chemical parameters have been studied systematically. We have also demonstrated
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Figure 11. Temporal evolution of the concentration field for the case of R = −1, κ = 1, Ca = 1, Ψ = 2.2,
φA = 0.9 (thermodynamically stable) and φB = 0.5 (thermodynamically unstable). Upper centre parts are
enlarged in the right panels.

that thermodynamic driving forces have a stronger effect under an asymmetric interaction
parameter. The present study provides a robust physical basis to study phase changing
effects on the VF in multicomponent systems.
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Appendix A. Convergence and mesh independence study

In the in-house COMSOL model implementation the time/space/boundary conditions are
controllable. The model implementation has been validated through several simulation
cases matching with experimental works. The numerical simulation solver is also
implemented with good convergence and accuracy. For the numerical solution of the flow
geometry, in the present simulation we use spatial discretization with the FEM, where the
calculation domain is subdivided into finite elements such as rectangle (user-controlled
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dx 16 8 4 2 1.55

DOF – Quadrilateral 49 335 190 881 753 753 3 007 503 5 009 721
DOF – Triangular (Delauney) 100 779 402 705 1 615 341 6 457 563 10 797 621

Table 1. Degrees of freedom used for grid independence study.

free-quadrilateral elements). In each rectangle the physical quantity is approximated as
a combination of piecewise continuous bilinear functions. For numerical simulation,
equations are discretized according to the FEM. To benchmark our simulations and
examine the accuracy, we consider the case with Ψ = 2.2, R = 1, Ca = 1, κ = 1 and
perform several simulation sets considering different meshes. To choose the appropriate
mesh size, we perform our simulations choosing dx = dy and varying the maximum
element size dx = {16, 8, 4, 2, 1.55}, fixing the minimum element size to 0.01. The total
degrees of freedom (DOF) for each of the mesh sizes is shown in table 1. The effect
of mesh size is demonstrated via interfacial length (I) (A1), which is a measure of the
distortion of the concentration field and is given by (Chen & Meiburg 1998; Mishra et al.
2008)

I =
∫ lx/2

−lx/2

∫ ly/2

−ly/2

√(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

dy dx (A1)

and is shown in figure 12(a). It is evident that, for dx ≤ 4, the interfacial length converges
and the behaviour remains almost similar as compared with the results with a higher grid
size, i.e. dx ≥ 4. Hence, we chose dx = 2 for our investigation on the phase separation.
The order of convergence of finite elements is related to the polynomial order of the basis
functions used on each element. However, irregularity of the PDE solutions and the high
nonlinearity in the system prevents us in achieving the order of convergence (Gobbert
& Yang 2008) and, hence, is not tested. Nevertheless, to validate the results, we have
also performed the convergence test using free triangular (Delaunay) meshing with an
automatic tessellation. The advantage of Delaunay tessellation is that the triangles are
regular and are independent of the mesh. No significant changes have been observed in
the profile of the interfacial lengths in comparison to quadrilateral meshing (figure 12b).
It should be noted that due to computational constraint, simulations for dx = 2 and dx =
1.55 could not be done for triangular elements because of higher number of DOFs present
in the system (see table 1 for comparison).

For the mass continuity, because we used the streamfunction-vorticity formation, see
(2.24)–(2.26), the mass conservation law, i.e. the continuity equation, is naturally satisfied,
and solved the resulting equations by the well-known Poisson equation solver and the
general form PDE solver. For interface treatment error related to smearing, smearing
phenomena are unavoidable and natural for the present partially miscible binary system. It
should be stressed that this study did not depend on the built-in modules of the COMSOL
multiphysics, such as level set (ls) or phase field ( pf ) modules. Instead, the ‘Fourier
spectral method’ used in the work of Seya et al. (2022) was employed to describe smearing
phenomena to solve the drop formation accompanying the VF instabilities. Nevertheless,
we have also explored the mass conservation of the system for the present model. At
initial time, the concentration occupies a fixed area and, hence, in order to have mass
conservation, the area occupied by the concentration should remain the same for all time.
To do so, we can consider that the total area occupied by the concentration at initial time
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Figure 12. Interfacial length to check the convergence for the quadrilateral mesh (a) and triangular mesh
(b) for various spatial size.

dx 16 8 4 2

Quadrilateral mesh 1.0972 7.993 × 10−1 5.1515 × 10−3 6.93 × 10−4

Triangular mesh 1.0886 8.607 × 10−1 3.471 × 10−3 —

Table 2. Maximum percentage error for mass conservation using the BDF of order 2.
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Figure 13. Percentage error for spatial mesh sizes, dx.

and at time t is

aφ(t) = aφ(t = 0) = (area of domain I)φA + (area of domain II)φB, (A2)

which, for our system with Lx = 2000 and Ly = 500, is aφ ≈ 500 000. Now, the area
occupied by concentration in our numerical model can be found by computing

aφ,dx =
∫
Ω

φ dΩ (A3)
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Figure 14. (a) Temporal evolution of the interfacial length for relative tolerances (Rel. tol.) 10−3, 10−4, 10−5

for Ψ = 2.2, R = 1, Ca = 1, κ = 1. (b) Concentration field for relative tolerances 10−3, 10−4, 10−5 (columns
from left to right).

by varying spatial sizes. Hence, computing the percentage error, Edx(t) = |aφ,dx −
aφ|/aφ , we can see if mass is conserved in our system. We have presented the maximum
percentage error for dx = 2, 4, 8, 16 in the case of quadrilateral meshing and dx = 4, 8, 16
for triangular meshing in table 2 using the BDF of order 2. The maximum percentage
error for all time is shown to be of the order of 10−3, indicating conservation of mass
in the system. Figures 13(a) and 13(b) show the percentage error with time for both
quadrilateral as well as triangular meshing and mesh convergence is apparent for dx = 2
for quadrilateral meshing.

We have used an adaptive time stepping with a relative tolerance of 0.001, which
means the software automatically adjusts the time step to maintain the relative tolerance
considered. Since there is no significant changes in our system immediately after the start
time, we have introduced a default initial time step size. Here, to solve the system of
time-dependent ordinary differential equations, we used the second-order BDF that is a
family of implicit methods for the numerical integration of ordinary differential equations.
Since the BDF are linear multistep methods, the integration time step is controlled by the
relative errors. The effect of convergence criterion, i.e. relative error, on the onset and
growth of VF instabilities and the droplet formation is summarized in figure 14. As shown
in figure 14, the effect of the convergence criterion is not critical as long as the relative
tolerance is <10−3. In this numerical study the relative tolerance (=10−4) was chosen so
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Figure 15. Interfacial length with dx = 4 and increasing orders of the BDF.

BDF 2 3 4 5

Quadrilateral mesh 5.151 × 10−3 5.775 × 10−3 4.816 × 10−3 6.22 × 10−3

Triangular mesh 3.471 × 10−3 4.182 × 10−3 4.485 × 10−3 3.412 × 10−3

Table 3. Maximum percentage error for dx = dy = 4 and varying BDF orders.

that numerical solutions are obtained based on the sufficiently refined time step. We have
also examined even higher orders of the BDF and shown the system to be independent of
the order of the BDF chosen. For example, figure 15 shows the interfacial length employing
both quadrilateral and triangular meshing and it is noticeable that the profiles are similar
irrespective of the order of the BDF. The maximum percentage error is also presented in
table 3 for dx = dy = 4 for varying orders of the BDF and confirms mass conservation.

For our thermodynamic study of the partially miscible VF, we therefore used the spatial
resolution corresponding to the mesh size dx = dy = 2 and a relative tolerance of 10−4

was chosen for the present simulations.
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