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COUNTABLE LENGTH EVERYWHERE CLUB UNIFORMIZATION

WILLIAM CHAN, STEPHEN JACKSON, AND NAM TRANG

Abstract. Assume ZF + AD and all sets of reals are Suslin. Let Γ be a pointclass closed under ∧, ∨,
∀R, continuous substitution, and has the scale property. Let κ = �(Γ) be the supremum of the length of
prewellorderings on R which belong to Δ = Γ ∩ Γ̌. Let club denote the collection of club subsets of κ. Then
the countable length everywhere club uniformization holds for κ: For every relationR ⊆ <�1κ × club with
the property that for all � ∈ <�1κ and clubsC ⊆ D ⊆ κ,R(�, D) impliesR(�, C ), there is a uniformization
function Λ : dom(R) → club with the property that for all � ∈ dom(R), R(�,Λ(�)). In particular, under
these assumptions, for all n ∈ �, �1

2n+1 satisfies the countable length everywhere club uniformization.

§1. Introduction. Club uniformization is a selection principle for club subsets
of certain cardinals. These uniformization principles are useful in the study of
combinatorics of partition measures under determinacy axioms.

If X ⊆ κ and � ≤ κ, then [X ]�∗ denote the set of increasing functions f : � → X
which have the correct type (everywhere discontinuous and has uniform cofinality
�). The (correct type) partition relation κ →∗ (κ)�2 asserts that for all P : [κ]�∗ → 2,
there exists an i ∈ 2 and a club subset C ⊆ κ so that for all f ∈ [C ]�∗, P(f) = i .
(The correct type partition relation is essentially equivalent to the ordinary partition
relation.)

Martin showed under AD that the partition relation �1 →∗ (�1)�1
2 holds. This

implies that for each � ≤ �1, the filter �� defined on [�1]�∗ by X ∈ �� if and only
if there is a club C ⊆ �1 so that [C ]�∗ ⊆ X is a countably complete ultrafilter. (See
[1] for a survey of partition relations on �1.) The study of the combinatorics of
the partition measures �� frequently requires the selection of clubs that witness
��-largeness or are homogeneous for partitions.

The most challenging partition measure on �1 is the strong partition measure
��1 . There are several interesting combinatorial questions surrounding the strong
partition measure. For instance, is every function Φ : [�1]�1

∗ → �1 continuous ��1 -
almost everywhere. Another class of questions involve the stable theory of the
strong partition measure. Since for each � ≤ �1, �� is an ultrafilter, for any sentence
ϕ in the language {∈̇, Ė} (where ∈̇ is a binary relation symbol and Ė is a unary
relation symbol), either ��-almost all f satisfiesL[f] |= ϕ or ��-almost all f satisfies
L[f] |= ¬ϕ. The �-stable theory, denoted T� , is the collection of sentences ϕ so
that ��-almost all f satisfies L[f] |= ϕ. One can naturally ask whether important
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statements of set theory, such as GCH, belong to the stable theory of the strong
partition measure T�1 .

To answer these types of questions concerning the strong partition measure,
[3, Theorem 3.10] proved under AD the almost everywhere short length club
uniformization at �1: Let club denote the collection of club subsets of �1. For every
relation R ⊆ [�1]<�1∗ × club which is ⊆-downward closed in the club-coordinate
(which means for all 	 ∈ [�1]<�1

∗ and clubs D ⊆ E, R(	,E) implies R(	,D)), then
there is a club C ⊆ �1 and a function Λ : ([C ]<�1

∗ ∩ dom(R)) → club so that for all
	 ∈ [C ]<�1∗ ∩ dom(R), R(	,Λ(	)).

To illustrate a typical application, [3, Theorem 4.5] showed that under AD,
every function Φ : [�1]�1

∗ → �1 is continuous ��1 -almost everywhere, which means
there is a club C ⊆ �1 with the property that for all f ∈ [C ]�1∗ , there is an
α < �1 so that for all g ∈ [C ]�1

∗ , if f � α = g � α, then Φ(f) = Φ(g). Define a
partition P : [�1]�1

∗ → 2 by P(f) = 0 if and only if there exists an α < �1 so
that for all clubs D ⊆ �1, there exists a g ∈ [D]�1∗ with sup(f � α) < g(0) and
Φ((f � α)ˆg) < g(0). Since �1 →∗ (�1)�1

2 , there is a club C homogeneous for P.
The most important step is to show that C is homogeneous for P taking value
0. Suppose otherwise. Define a relation R ⊆ [C ]<�1∗ × club by R(	,D) if and only
if for all g ∈ [D]�1

∗ , Φ(	ˆg) ≥ g(0). C being homogeneous for P taking value 1
implies dom(R) = [C ]<�1∗ . Applying the almost everywhere club uniformization to
R, there is a clubE ⊆ C and a function Λ : [E]<�1∗ → club so that for all 	 ∈ [E]<�1∗ ,
R(	,Λ(	)). Using Λ, one can recursively construct a function h ∈ [E]�1

∗ so that for
all α < �1, R(h � α,Λ(h � α)). By definition of R, this means that for all α < �1,
Φ(h) ≥ h(α). Since h is an increasing function, this implies Φ(h) ≥ �1 which is
impossible since Φ takes values in �1. Thus C must be homogeneous for P taking
value 0 and this will eventually lead to the ��1 -almost everywhere continuity of
Φ. Following this template, in forthcoming work by the authors, it is shown that
many familiar statements of set theory like GCH belong to the stable theory T� for
all � ≤ �1. It is also shown that for ��-almost all f, there is a sequence of normal
measures �̄f with a discontinuous sequence of critical points κ̄ so that f is a generic
over L[�̄f ] for a generalized Prikry forcing P̄�̄f considered by Fuchs [4].

The argument in [3] to prove the almost everywhere short length club uniformiza-
tion at�1 (although it uses just AD) appears peculiar and inefficient in that it passes
first through an everywhere club uniformization principle whose argument requires
generic coding, category arguments, and uniformization for certain relations on
R× R. [3, Theorem 3.7] shows that if R ⊆ [�1]<�1∗ × club is a ⊆-downward closed
relation so that its coded version R̃ ⊆ R× R has a uniformization, then there is a
uniformization function Λ : dom(R) → club for R.

ADR is the determinacy of all games on R. AD 1
2R

is the determinacy of games
on R where one of the two players must always make moves from �. Kechris [6]
showed AD 1

2R
is equivalent to AD and all relations on R× R can be uniformized.

The relationship between AD 1
2R

, ADR, and all sets of reals being Suslin is open.
However, Woodin has shown that if AD and DC holds, then all three notions are
equivalent.

Thus assuming AD 1
2R

, every ⊆-downward closed relationR ⊆ [�1]<�1 × club can
be uniformized everywhere on its domain. Using the Moschovakis coding lemma,
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a Martin good coding system for �1�1, and the almost everywhere good code
uniformization [1, Theorem 3.8], it can be shown that there is a club C ⊆ �1

so that R ∩ ([C ]<�1∗ × club) has a coded version R̃ which is projective and hence
uniformizable underAD. The prior result [3, Theorem 3.7] is then used to uniformize
R ∩ ([C ]<�1

∗ × club). Moreover, everywhere short length club uniformization is not
provable under AD as it fails in L(R) by [3, Fact 3.9]. Thus the almost everywhere
version is the best possible under AD.

Naturally one would like to study these properties at strong partition cardinals
larger than�1 such as the next strong partition cardinal �1

3 (or more generally the odd
projective ordinals �1

2n+1) or the Σ1-stable ordinals �A for L(A,R) where A ⊆ R. As
in [3], one would like to first prove the everywhere short length club uniformization
at a strong partition cardinal � > �1. Numerous issues with generalization quickly
arise. First, more general generic coding functions exist for many cardinals beyond
�1; however, these require that relevant sets possess scales. The stable ordinals
�A generally are not associated with pointclasses with scales. The odd projective
ordinals, however, still have generic coding functions. These generic coding functions
are more technical than the simple generic coding function on �1, but a more
substantial issue is that the generic coding function acts on ��. Thus category and
generic coding arguments of [3] would at best give an everywhere club uniformization
for families indexed by countable sequences (which will be verified in this paper).

To obtain almost everywhere short length club uniformization at strong partition
cardinals � greater than �1 under AD (or AD + DCR), one would need to find scale-
free arguments. [2] defines a notion of a good coding family for � which augments
a good coding system for �� with a coding of the short functions on � which
interact under strict definability conditions. Moreover, this good coding family has
a continuous function which merges a code for a short function and a good code
for a full function and returns a good code so the short function overrides an initial
segment of the original full function. [2] shows that �1, (and more generally for
all n ∈ �) �1

2n+1, and the stable ordinals �A all possess very good coding families.
It is then shown that a cardinal � that possesses a very good coding family is a
strong partition cardinal which also satisfies the almost everywhere short length
club uniformization at �.

The goal of this paper is to verify under suitable conditions that the everywhere
countable length club uniformization holds at certain cardinals κ. That is, for
every relation R ⊆ <�1κ × club which is ⊆-downward closed (where club refers
to the collection of club subsets of κ), there is a uniformization function Λ :
dom(R) → club. As mentioned above, this seems to be the best everywhere club
uniformization result obtainable by the method of generic coding. In this general
setting, one will encounter ordinal games so Suslin representations will be necessary
to conclude the determinacy of such games. Moreover, one will need to find winning
strategies uniformly which will require the ideas of the third periodicity theorem of
Moschovakis. The main theorem is the following.

Theorem 3.8. AssumeZF + AD and all sets of reals are Suslin. Let Γ be a pointclass
closed under∧,∨, and ∀R with the scale property. Then the countable length everywhere
club uniformization holds for �(Γ). In particular, for all n ∈ �, the countable length
everywhere club uniformization holds for �1

2n+1.
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§2. Basics. This section will collect some standard facts concerning games, Suslin
representations, and generic codings. The reader familiar with this material can skim
this section for some definitions and notations and refer back as necessary.

Definition 2.1. Let X be a set and κ be an ordinal. κX is the set of all functions
from κ into X. <κX is the set of all functions � : � → X where � < κ. If � : � → X ,
then let |�| = � which is the length of �. If s ∈ <κX and t ∈ <κX ∪ κX , one write
s ⊆ t to indicate that t is an extension of s.

Let X be given the discrete topology and �X be given the product of the discrete
topology. If s ∈ <�X , then let NXs = {f ∈ �X : s ⊆ f}. The topology on �X is
equivalent to the topology generated by {NXs : s ∈ <�X} as a basis.

A tree on X is a set T ⊆ <�X which is closed under the substring relation ⊆. If
T is a tree, let [T ] = {f ∈ �X : (∀�n)(f � n ∈ T )}. A set A ⊆ �X is closed if and
only if there is a tree T so that A = [T ].

As common in descriptive set theory, R may be used to denote either �� or �2.

Definition 2.2. A strategy on a set X is a function � : <�X → X . The run of a
strategy �1 against a strategy �2 is denoted �1 ∗ �2 ∈ �X and it is defined recursively
as follows: Suppose �1 ∗ �2 � n has been defined, if n is even, then (�1 ∗ �2)(n) =
�1(�1 ∗ �2 � n) and if n is odd, then (�1 ∗ �2)(n) = �2(�1 ∗ �2 � n).

IfA ⊆ �X , then one says that A (or the game on X with payoff set A) is determined
if either there is a strategy �1 so that for all strategies �2, �1 ∗ �2 ∈ A or there is a
strategy �2 so that for all strategies �1, �1 ∗ �2 /∈ A. Intuitively, the gameGXA consists
of Player 1 and Player 2 taking turns playing elements of X where Player 1 wins
if and only if the joint infinite run belongs to A. Thus the determinacy of A is the
existence of a winning strategy for one of the two players in this game.

ADX is the statement that for all A ⊆ �X , A is determined (as a game on X).
The common determinacy axioms are AD� (which is denoted simply AD) and ADR.
AD 1

2R
is the determinacy of games on R where one player is required to play only

elements of �.
If x ∈ �X , let �x be the strategy such that if s ∈ <�� has length 2n or 2n + 1,

then �x(s) = x(n). That is, �x can be used as either a Player 1 or Player 2 strategy
which simply outputs the bits of x on each turn.

If x ∈ �X , let xeven, xodd ∈ �X be defined by xeven(k) = x(2k) and xodd(k) =
x(2k + 1).

Let � be a strategy. Define Σ1
�,Σ

2
� : �X → �X by Σ1

�(z) = � ∗ �z and Σ2
�(z) = �z ∗

�. Define Ξ1
� : �X → �X by Ξ1

�(z) = (Σ1
�(z))even = (� ∗ �z)even. Ξ1

� is a Lipschitz
function which simply collects the moves of � (used as a Player 1 strategy)
when played against �z . Similar, Ξ2

� : �X → �X is defined by Ξ2
�(z) = (Σ2

�(z))odd =
(�z ∗ �)odd.

Observe that if Ξ : �X → �X is a Lipschitz continuous function, then there is a
strategy � so that Ξ = Ξ2

�.

The article will work implicitly under ZF + AD and additional assumptions will
be made explicit.

Next, one will review the necessary concepts concerning prewellordering and
scales. See [7], [10, Chapters 2, 4, and 6], and [5, Section 2].
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Definition 2.3. Pointclasses are collections of subsets of j� × kR (for various
j, k ∈ �) which are closed under continuous substitution. If Γ is a pointclass, then
Γ̌ denotes the dual pointclass and Δ = Γ ∩ Γ̌.

Definition 2.4. A norm on a set A is a map φ : A→ ON. The associated
prewellordering on A is φ ⊆ A× A defined by x φ y if and only if φ(x) ≤ φ(y).
(The term norm and prewellordering will be used interchangeably.) The length of
the prewellordering φ is the ordertype of φ[A].

Now suppose X is a set. Let P ⊆ �X and φ : P → ON be a norm on P.
Define ≤∗

φ ⊆ �X × �X by f ≤∗
φ g if and only if f ∈ P ∧ (g /∈ P ∨ φ(f) ≤ φ(g))

and <∗
φ ⊆ �X × �X by f <∗

φ g if and only if f ∈ P ∧ (g /∈ P ∨ φ(f) < φ(g)).
Let Γ be a pointclass closed under ∧ and ∨. Suppose P ⊆ �� and φ : P → ON

is a prewellordering. φ is a Γ-norm if and only if P ∈ Γ and ≤∗
φ,<

∗
φ∈ Γ.

Let �(Γ) be the supremum of the length of all prewellorderings φ on �� such that
φ ∈ Δ. �(Γ) is called the prewellordering ordinal of Γ. Let Θ be the supremum of
the length of all prewellorderings on R. (Every ordinal considered in this article will
be below Θ.)

Definition 2.5. Fix a recursive bijection pair : � × � → �. Ifx ∈ �� andn ∈ �,
let x[n] ∈ �� be defined by x[n](k) = x(pair(n, k)). x[n] is the nth-section of x.

If x ∈ �2, let Rx ⊆ � × � be defined by Rx(a, b) if and only if x(pair(a, b)) = 1.
Let WO be the Π1

1-complete set of w ∈ R so that Rx is a wellordering. Let
ot : WO → �1 be the ordertype function. ot is a Π1

1-norm on WO. If w ∈ WO
and n ∈ field(Rw), then let ot(w, n) denote the ordertype of n in Rw . If w ∈ WO
and α < ot(w), then let num(w,α) be the unique element of � with ordertype α
according to Rw .

Definition 2.6. Let X be a set. A set A ⊆ �X is Suslin if and only if there is an
ordinal � and a tree T on X × � so that A = �1[[T ]], where �1 : �X × �� → �X is
the projection onto the first coordinate. T is called a Suslin representation for A. A
set A is co-Suslin if and only if �X \ A is Suslin.

Let X be a set and A ⊆ �X . A sequence of norms on A, φ̄ = 〈φn : n ∈ �〉, is a
semiscale if and only if for all f ∈ �X and sequence f̄ = 〈fn : n ∈ �〉 of elements
in A so that

(1) f = limn∈� fn (in the natural topology on �X ) and
(2) for all n ∈ �, there is a �n ∈ ON so that limi∈� φn(fi) = �n (i.e., is eventually

constant taking value �n),

one has that f ∈ A.
A semiscale φ̄ on A is good if and only if for any sequence f̄ which satisfies just

(2) above, there is an f ∈ �X so that f = limn∈� fn. A semiscale is very good if
and only if it is good and for all x, y ∈ A and n ∈ �, φn(x) ≤ φn(y) implies that for
all m ≤ n, φm(x) ≤ φm(y).

A semiscale φ̄ on A is a scale if and only if it satisfies the lower semicontinuity
property: Using the notations of (1) and (2) above, for all n ∈ �, φn(f) ≤ �n.

Every semiscale φ̄ on A yields a Suslin representation for A. Suppose a
tree T on X × � is a Suslin representation for A. If f ∈ A, then the tree Tf =
{u ∈ <�� : (f � |u|, u) ∈ T} has an infinite path so let LTf denote the leftmost
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path of Tf . The canonical semiscale for A derived from T is ϕ̄T = 〈ϕTn : n ∈ �〉
defined by ϕTn (f) = LTf (n). (See [10, Theorem 2B.1].) Also every semiscale on A
can be converted into a very good semiscale by a standard procedure (see [10,
Lemma 4E.2]).

Definition 2.7. Let R ⊆ R× R. A uniformization for R is a function Φ :
dom(R) → R so that for all x ∈ dom(R), R(x,Φ(x)). Let Uniformization be the
statement that every relation R ⊆ R× R has a uniformization.

By a game argument, AD 1
2R

implies Uniformization. Since ADR implies AD 1
2R

,
ADR also proves Uniformization. Kechris [6] showed that over AD, AD 1

2R
and

Uniformization are equivalent. IfR ⊆ R× Rhas a Suslin representation, then R has a
uniformization. Thus every set having a Suslin representation impliesUniformization.
AD alone cannot establish any of these principles since L(R) |= ¬AD 1

2R
because the

relation S(x, y) if and only if y is not ODx cannot be uniformized in L(R). It is
open whether these principles are equivalent over AD; however, Woodin has shown
they are equivalent over AD + DC.

In this article, one will be concerned about the determinacy of certain games
on ordinals. Generally, the determinacy of all games on uncountable ordinals is not
consistent. However, the following result states that games with Suslin and co-Suslin
payoff sets are determined.

Fact 2.8 [9, Theorem 2.8]. Suppose κ < Θ. Let A ⊆ �κ and suppose that A is
Suslin and co-Suslin. Then the game on κ with payoff set A is determined.

To apply Fact 2.8, one will need to show some relevant ordinal games have Suslin
and co-Suslin payoff sets. Moreover, it will be very important in certain instances
to have that the Suslin representations are obtained uniformly from certain objects.
Next, one will give some closure properties of Suslin representations with a particular
focus on uniformity.

Fact 2.9. The class of Suslin subsets of �κ contains the open and closed subsets of
�κ and is closed under countable unions, countable intersection, and projections. The
Cartesian product of two Suslin subset of �κ is a Suslin subset of �κ × �κ.

Fact 2.10. Let κ be a cardinal. Let � < �1, w ∈ WO with ot(w) = �, � < κ, and
� : � → �. Define a relationR�� ⊆ �� byR�� (g) if and only if rang(�) ⊆ rang(g). Then
R�� is Suslin and co-Suslin uniformly in �, �, and w. The term “uniformly” means there
are functions T and U so that whenever �, w, and � have the above property, T(�, w, �)
and U(�, w, �) are trees on � × κ,R�� = �1[[T(�, w, �)]], and �� \R�� = �1[[U(�, w, �)]]
where �1 : �� × �κ → �� is the projection onto the first coordinate.

Proof. Fix a bijection Υ : κ → <�κ with the property that for all s, t ∈ <�κ, if
s ⊆ t, then Υ–1(s) ≤ Υ–1(t). If s, t ∈ <��, then say that s is compatible with t if s ⊆ t
or t ⊆ s . Recall from Definition 2.5, if n ∈ field(Rw) where Rw is the wellordering
coded by w ∈ WO, then ot(w, n) is the rank of n in Rw .

Let S�� = �� \R�� . Note that S�� is a countable union of closed sets in the
topology of �� and thus has the following simple Suslin representation. Let U
be a tree on �� × � defined by (s, u) ∈ U if and only if |s | = |u| = 0 or there exists
anm ∈ field(Rw) so that u is the constant sequence taking value m and �(ot(w,m))
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/∈ rang(s). If m ∈ �, let m̄ ∈ �� be the constant infinite sequence taking value m.
Note that ifg ∈ �1[[U ]] then there exists anm ∈ � so that (g, m̄) ∈ [U ]. So for alln ∈
�, (g � n, m̄ � n) ∈ U which implies that for all n ∈ �, �(ot(w,m)) /∈ rang(g � n).
Hence �(ot(w,m)) /∈ rang(g) and ¬(rang(�) ⊆ rang(g)). Thus S�� (g). Conversely,
suppose S�� (g) which means ¬(rang(�) ⊆ rang(g)). Since ot(w) = � = |�|, there is
some m ∈ field(Rw) so that �(ot(w,m)) /∈ rang(g). Then (g, m̄) ∈ [U ] and thus
g ∈ �1[[U ]]. This shows that S�� is Suslin and therefore R�� is co-Suslin.

Define a tree T on � × κ by (s, u) ∈ T if and only if for all k < |s |, the following
holds:

• Υ(u(k)) ∈ <��.
• If k /∈ field(Rw), then Υ(u(k)) = ∅.
• If k ∈ field(Rw), then �(ot(w, k))) ∈ rang(Υ(u(k))).
• Υ(u(k)) is compatible with s.

Suppose g ∈ �1[[T ]]. Then there exists an h ∈ �κ so that (g, h) ∈ [T ]. Thus for all
k ∈ �, Υ(h(k)) ⊆ g and �(ot(w, k)) ∈ rang(Υ(h(k))). Hence rang(�) ⊆ rang(g)
which is equivalent to R�� (g). Conversely, suppose R�� (g). Then rang(�) ⊆ rang(g).
If n ∈ field(Rw), let kn be least k ∈ � with k > 0 so that g(k – 1) = �(ot(w, n)).
If n /∈ field(Rw), then let kn = 0. Let h(n) = Υ–1(g � kn). Then (g, h) ∈ [T ]. Thus
g ∈ �1[[T ]]. Observe that this explicit h is actually the leftmost branch, LTg , of T
corresponding to g. It has been shown that g ∈ �1[[T ]] if and only if R�� (g), so R��
is Suslin.

Observe that both trees U and T are produced uniformly from �, �, and w. Let
U(�, w, �) = U and T(�, w, �) = T . �

Fact 2.11. Assume the setting of Fact 2.10. Let ϕ̄�,w,� = 〈ϕ�,w,�n : n ∈ �〉 be the
canonical semiscale derived from T(�, w, �)(using the leftmost branch as in Definition
2.6) and �̄�,w,� = 〈��,w,�n : n ∈ �〉 be the canonical semiscale derived from U(�, w, �).
For all n ∈ �, the norm relations ≤∗

ϕ�,w,�n
, <∗
ϕ�,w,�n

, ≤∗
��,w,�n

, and <∗
��,w,�n

are Suslin and

co-Suslin.

Proof. The notation from the statement and proof of Fact 2.10 will be used. Note
that from the definition of U(�, w, �) from Fact 2.10, the leftmost branch LU(�,w,�)

g is
simply m̄ where m is least so that �(ot(w, n)) /∈ rang(g).

For each m ∈ field(Rw), let Em = {g ∈ �� : (∀k < m)(k ∈ field(Rw) ⇒
�(ot(w, k)) ∈ rang(g)) ∧ �(ot(w,m)) /∈ rang(g)}. If m /∈ field(Rw), then let
Em = ∅. One can check that Em is Suslin and co-Suslin using arguments similar to
Fact 2.10. Observe that for any k ∈ �

≤∗
��,w,�
k

=

⎛
⎝ ⋃
m≤n
Em × En

⎞
⎠ ∪

( ⋃
m∈�
Em ×R��

)

and

<∗
��,w,�
k

=

(⋃
m<n

Em × En

)
∪

( ⋃
m∈�
Em ×R��

)
.

These norm relations are Suslin and co-Suslin by Fact 2.9, Fact 2.10, and the earlier
observations.
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In the proof of Fact 2.10, one showed that iff ∈ �1[[T(�, w, �)]], then the leftmost
branchLT(�,w,�)

f is explicitly given by the following: For each n ∈ �, let kn be the least
k ∈ � such thatf(k – 1) = �(ot(w, n)) ifn ∈ field(Rw) andkn = 0 ifn /∈ field(Rw).
Then LT(�,w,�)

f (n) = Υ–1(f � kn).
For each n ∈ field(Rw), let An ⊆ κ be the collection of � so that |Υ(�)| > 0,

Υ(�)(|Υ(�)| – 1) = �(ot(w, n)), and for all i < |Υ(�)| – 1, Υ(�)(i) �= �(ot(w, n)).
Define a tree Kn on � × � × κ × κ by (s, t, u, v) ∈ Kn if and only if u(0) ≤ v(0),
u(0), v(0) ∈ An, Υ(u(0)) is compatible with s, and Υ(v(0)) is compatible with t.
Define a tree Jn similarly with u(0) ≤ v(0) replaced with u(0) < v(0).

Note that if f, g ∈ R�� , then ϕ�,w,�n (f) ≤ ϕ�,w,�n (g) if and only if LT(�,w,�)
f (n) ≤

LT(�,w,�)
g (n) if and only if (∃x, y)((f, g, x, y) ∈ [Kn]). Similarly, if f, g ∈ R�� ,

then ϕ�,w,�n (f) < ϕ�,w,�n (g) if and only if LT(�,w,�)
f (n) < LT(�,w,�)

g (n) if and only if
(∃x, y)((f, g, x, y) ∈ [Jn]).

Note that f ≤∗
ϕ�,w,�n

g if and only if

f ∈ R�� ∧ (g /∈ R�� ∨ (∃x, y)((f, g, x, y) ∈ [Kn])).

Also ¬(f ≤∗
ϕ�,w,�n

g) if and only if

f /∈ R�� ∨ (g ∈ R�� ∧ (∃x, y)((g, f, x, y) ∈ [Jn])).

This shows that ≤∗
ϕ�,w,�n

is Suslin and co-Suslin by Fact 2.9 and Fact 2.10. A similar

argument shows that <∗
ϕ�,w,�n

is also Suslin and co-Suslin. �

Fact 2.12. [10, 6E ]; Moschovakis Third Periodicity Theorem) AssumeAD + DCR.
Let � < Θ. Let A ⊆ �� be Suslin and ϕ̄ = 〈ϕn : n ∈ �〉 be a very good semiscale on
A. For each n ∈ �, odd m ∈ �, and s, t ∈ m�, define the game nHst on � as in the
following diagram.

nHst

s F a0 S a1 F a2 F a3 ... a

t S b0 F b1 S b2 F b3 ... b

The game has two players called the first player and second player making moves in �
as indicated in the diagram. Say that the second player wins if and only if sˆa ≤∗

ϕn tˆb.
Assume that Player 1 has a winning strategy in the game G�A on � with payoff set

A. Assume for all n ∈ �, odd m ∈ �, and s, t ∈ m�, the games nHst are determined.
Then uniformly from �, A, and the very good semiscale ϕ̄, one can obtain a strategy
	 for Player 1 in G�A. (This means there is a function Φ so that whenever �, A, and ϕ̄
have the above property, Φ(�, A, ϕ̄) is a Player 1 winning strategy for G�A.)

Proof. This result is essentially a coarse form of the Moschovakis third
periodicity theorem for ordinal value games using the idea of the “best” strategy.
(The definability estimates for the strategy will not be relevant here.) The uniformity
statement will be essential so an explicit definition of the Player 1 winning strategy
will be provided. The reader can see [10, 6D and 6E] or [5, Section 2] for the details.
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For each odd m, letWm be the set of s ∈ m� so that Player 1 can win in the game
G�A when s is an initial partial run (m being odd implies that Player 2 is the next
player to respond). Since Player 1 is assumed to have a winning strategy, for all
oddm ∈ �,Wm is nonempty. For s, t ∈Wm, define s mn t if and only if the second
player has a winning strategy in nHst . It can be shown that mn is a prewellordering
onWm.

If k ∈ � and u ∈ 2k�, then define 	(u) to be the least � < � so that uˆ� ∈W2k+1

and for all � with uˆ� ∈W2k+1, uˆ� 2k+1
k uˆ�. (If u is odd length, then let 	(u) = 0

as this case is irrelevant because 	 is intended to be used as a Player 1’s strategy.) It
can be shown that 	 is a Player 1’s winning strategy inG�A and is produced uniformly
from �, A, and ϕ̄. �

Fact 2.13. Let � < Θ. Let Ξ : �� → �� be a Lipschitz continuous function.
Suppose Γ is a pointclass and Δ = Γ ∩ Γ̌. Suppose there is a norm ϕ :W → � so
thatW ∈ Δ and the associated prewellordering ϕ on W is also in Δ. Then Ξ[��] is
∃RΔ.

Proof. First, a simple coding of <�� by reals will be developed. Let finS consist
of reals z so that (∀i < z [0](0))(z [i+1] ∈W ). Let finseq : finS → <�� by finseq(z) be a
sequence of length z [0](0) and for all i < z [0](0), finseq(z)(i) = ϕ(z [i+1]). Note that
finseq is a surjection of finS onto <��. The set finS is Δ. The expression “u ∈ finS,
i < |finseq(u)|, w ∈W , and finseq(u)(i) = ϕ(w)” is Δ as a relation in the variables
u, i, and w.

Fix a bijection Υ : � → <��. Next one will show that Υ has a coded version which
is ∃RΔ. Define Z ⊆W × finS by Z(w, u) if and only if Υ(ϕ(w)) = finseq(u). By
the Moschovakis coding lemma ([10, Section 7D] or [5, Theorem 2.12]), there is a
Z̄ ∈ ∃RΔ so that Z̄ ⊆ Z and for all α < �, Z̄ ∩ (ϕ–1[{α}] × R) �= ∅ if and only if
Z ∩ (ϕ–1[{α}] × R) �= ∅.

Since Ξ is Lipschitz, there is a function � : <�� → � so that Ξ = Ξ2
� using

the notation of Definition 2.2. Define Y ⊆W × � by Y (w, n) if and only if
�(Υ(ϕ(w))) = n. By the Moschovakis coding lemma, there is a Ȳ ∈ ∃RΔ so that Ȳ ⊆
Y and for allα < �, Ȳ ∩ (ϕ–1[{α}] × �) �= ∅ if and only ifY ∩ (ϕ–1[{α}] × �) �= ∅.

Now observe that x ∈ Ξ[��] if and only if there is an f ∈ �� so that x = Ξ2
�(f)

if and only if there is a y ∈ R coding f in the sense that each y [n] codes f(n) and
Ξ2
�(f) = x as expressed by the coding through Ȳ and Z̄. Formally, x ∈ Ξ[��] if and

only if the conjunction of the following holds.
(1) For all n ∈ �, y [n] ∈W .
(2) For all n ∈ �, there exist v,w ∈W and there exists a u ∈ finS so that ϕ(v) =
ϕ(w), |finseq(u)| = n, and for all i < |finseq(u)|, finseq(u)(i) = ϕ(y [i ]),
Z̄(v, u), and Ȳ (w, x(n)).

The above expression is ∃RΔ by using the above observations. �
Fact 2.14. (Boundedness Principle) Suppose Γ is a pointclass closed under ∀R.

SupposeW ∈ Γ is a Γ-complete set with a surjective Γ-norm ϕ :W → κ. If A ⊆W
and A ∈ Γ̌, then there is a � < κ so that ϕ[A] ⊆ �.

Fact 2.15. (Moschovakis [5, Theorem 2.6 and Lemma 2.13]) Let Γ be a pointclass
closed under ∧, ∨, and ∀R with a Γ-complete set W and a Γ-norm ϕ on W. Then the
length of ϕ is �(Γ) and �(Γ) is a regular cardinal.
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Recall that under AD, Wadge’s lemma implies that every nonselfdual pointclass
has complete sets. Solovay club coding techniques for �1 under AD can be extended
to �(Γ) when Γ is a nonselfdual pointclass closed under ∀R.

Fact 2.16. Let Γ be a nonselfdual pointclass closed under ∀R. Let κ = �(Γ). Let
W be a Γ-complete set with surjective Γ-norm ϕ :W → κ. Let clubcode ⊆ R consist
of the strategies � with the property

(∀w)(w ∈W ⇒ (Ξ2
�(w) ∈W ∧ ϕ(Ξ2

�(w)) > ϕ(w))).

If � ∈ clubcode, then let

C� = {� < κ : (∀w ∈W )(ϕ(w) < � ⇒ ϕ(Ξ2
�(w)) < �)}.

C� is a club. If C ⊆ κ is club, then there is a � ∈ clubcode so that C� ⊆ C .
If A ⊆ clubcode is Γ̌, then uniformly in A, one can produce a club C so that for

all � ∈ A, C ⊆ C� . (Uniformly here means there is a function Υ so that whenever
A ⊆ clubcode is Γ̌, Υ(A) is club with the property that for all � ∈ A, Υ(A) ⊆ C� .)

Proof. These are proved using the boundedness principle (Fact 2.14). See [1,
Fact 4.7] for a similar argument. �

Definition 2.17. Let α ∈ �1. If s ∈ <�α, let Nαs = {f ∈ �α : s ⊆ f}. The
topology on �α generated by {Nαs : s ∈ <�α} as a basis is homeomorphic to ��.
Thus the familiar category notion can be formulated for �α in this topology. Let
surjα be the collection of f ∈ �α such that f[�] = α, i.e., f is a surjection onto α.
surjα is comeager in �α.

Recall that under AD, the category ideal has full wellordered additivity. That is, if
� is an ordinal and 〈Xα : α < �〉 is a collection of meager subsets of R, then

⋃
α<� Xα

is a meager subset of R. Thus the meager ideal on �α also has the full wellordered
additivity.

The following is the simplest example of the Kechris–Woodin generic coding
function occurs at �1.

Fact 2.18. There is a function G : ��1 → WO so that for all α < �1, iff ∈ surjα ,
then ot(G(f)) = α.

Proof. Let Af = {n ∈ � : (∀m)(m < n ⇒ f(m) �= f(n))}. Define G(f) ∈ R

so that RG(f)(a, b) = 1 ⇔ a, b ∈ Af ∧ f(a) < f(b). Note that the domain of
RG(f) is Af and G(f) ∈ WO. If f ∈ surjα , then (Af,RG(f)) is order-isomorphic
to α. �

The following results are generalizations of the category boundedness arguments
found in the proof of the main theorems in [3].

Fact 2.19. Let � < �1 and κ be a cardinal with cof(κ) > �. Suppose A ⊆ �� is
comeager in �� and Φ : A→ κ. Then there is a � < κ and a comeager B ⊆ A so that
Φ[B] ⊆ �.

Proof. For eachα < κ, letAα = {f ∈ A : Φ(f) = α}. Note thatA =
⋃
α<κ Aα .

LetT = {α < κ : Aα is nonmeager}.AD implies that a wellordered union of meager
sets in �� is meager and since A is not meager, T �= ∅. Since AD implies that all sets
of reals have the Baire property and there are no uncountable sets of disjoint open
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subsets of ��, one has that T must be countable. Since cof(κ) > �, sup(T ) < κ.
Let � = sup(T ) + 1 < κ. Note that B =

⋃
α<� Aα is comeager. By definition of B,

Φ[B] ⊆ �. �
Fact 2.20. Let � < �1 and κ be cardinal with cof(κ) > �. Let club be the set of

club subsets of κ. Suppose A ⊆ �� is comeager and Φ : A→ club. Then uniformly
from Φ, there is a club C ⊆ κ and a comeager set B ⊆ A so that for all f ∈ B ,
C ⊆ Φ(f).

Proof. If X ⊆ κ and |X | = κ, then let enumX : κ → X be the increasing
enumeration of X. For α < κ, let Eα : A→ κ be defined by Eα(f) = enumΦ(f)(α).
For α < � < κ, let Y�α = {f ∈ A : Eα(f) < �}. Define K : κ → κ by letting K(α)
be the least � so that Y�α is comeager. Note that for each α < κ,K(α) is well defined
by Fact 2.19 applied to the function Eα . Since for any f ∈ A, Eα(f) ≥ α, one has
that K(α) > α. Also note that for any α0 ≤ α1 and f ∈ A, Eα0(f) ≤ Eα1(f) and
thus K(α0) ≤ K(α1).

LetC = {� < κ : (∀� < �)(K(�) < �)}. (Note that C is produced uniformly from
Φ.) First, to show C is unbounded. Let α < κ. Let α0 = α. If αn has been defined,
then let αn+1 = K(αn). By the property of K mentioned above, 〈αn : n ∈ �〉 is a
strictly increasing sequence in κ. Let � = sup{αn : n ∈ �} and note that α < � < κ
since cof(κ) > �. Let � < � be arbitrary. There is an n ∈ � so that � < αn. Since
K(�) ≤ K(αn) = αn+1 < �, one has that K(�) < �. Since � < � was arbitrary, � ∈
C . Next to show C is closed. Suppose � is a limit point of C. Let � < � be arbitrary.
Then there is an �′ ∈ C with � < �′ < �. Thus K(�) < �′ < �. Since � < � was
arbitrary, one has that � ∈ C . It has been established that C is a club subset of κ.

Fix � ∈ C . For all � < �, K(�) < � so Y�� is comeager. Let Y� =
⋂
�<� Y

�
� .

Since wellordered intersection of comeager sets are comeager under AD, Y� is
comeager. Note that for each f ∈ Y� and � < �, � ≤ E�(f) < �. Since � < � is
arbitrary, E�(f) = enumΦ(f)(�) ∈ Φ(f), and Φ(f) ⊆ κ is a club, one must have
that � ∈ Φ(f). Thus for all f ∈ Y�, � ∈ Φ(f). Now letY =

⋂
�∈C Y

�. Again since
a wellordering intersection of comeager sets is comeager under AD, Y is comeager.
Take any f ∈ Y . For any � ∈ C , f ∈ Y�. By the previous observation, � ∈ Φ(f).
Since � ∈ C was arbitrary, one has shown that C ⊆ Φ(f). �

Next, the more general notion of a reliable ordinal and its associated Kechris–
Woodin generic coding function will be defined.

Definition 2.21. [8] An ordinal � is reliable if and only if there is aW ⊆ R and
a scale ϕ̄ = 〈ϕi : i ∈ �〉 on W with the following properties.

• For all n ∈ �, ϕn :W → � and ϕ0 :W → � is surjective.
• The norm relations ≤∗

ϕ0
and <∗

ϕ0
are Suslin and co-Suslin.

(W, ϕ̄) is called the witness to the reliability of �.
For � < �, say that S ⊆ � is �-honest if and only if there is a w ∈W such that

ϕ0(w) = � and for all n ∈ �, ϕn(w) ∈ S. A set S ⊆ � is honest if and only if for all
� ∈ S, S is �-honest. (Note that the notions of honest and �-honest depend on the
witness to reliability.)

Fact 2.22. Let � be a regular reliable cardinal as witnessed by (W, ϕ̄). Then for
any α < �, there exists an α′ such that α ≤ α′ < � and α′ is honest.
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Proof. For each � < �, there is a �′ ≥ � so that �′ is �-honest. To see this, pick
any w ∈W so that ϕ0(w) = �. Let �′ = sup{ϕn(w) + 1 : n ∈ �}. �′ is �-honest.
Since cof(�) > �, �′ < �. Let Λ : �→ � be defined by: Λ(�) is the least �′ with
� ≤ �′ < � and �′ is �-honest.

Let α0 = α. If αn < � has been defined, let αn+1 = sup Λ[αn]. Note that αn+1 < �
since � is regular. Let α′ = sup{αn : n ∈ �} and note that α′ < � since � is regular.
Now suppose � < α′. There is some n ∈ � so that � < αn. Since Λ(�) ≤ αn+1, one
has that αn+1 is �-honest. Since αn+1 ⊆ α′, one has that α′ is �-honest. Since � < α′

was arbitrary, this shows that α′ is honest. �
Fact 2.23 ([8, Lemma 1.1]; Kechris–Woodin generic coding). Let � be a reliable

ordinal with witness (W, ϕ̄). Then there is a Lipschitz continuous function F : ��→ R

so that for all f ∈ ��, for all n ∈ �, F(f)[n] ∈W , and if f[�] is honest, then for all
n ∈ �, ϕ0(F(f)[n]) = f(n).

Definition 2.24. Let BS consist of the collection of z ∈ R so that z [0] ∈ WO and
for all n ∈ �, (z [1])[n] ∈ WO. If z ∈ BS, then let seq(z) ∈ <�1�1 be the sequence of
length ot(z [0]) such that for all α < ot(z [0]), seq(z)(α) = ot((z [1])[num(z[0],α)]). Note
that for all � ∈ <�1�1, there is a z ∈ BS so that seq(z) = �.

Definition 2.25. Let � be an ordinal, W ⊆ R, and ϕ :W → � be a surjective
norm. Let CS consist of those z ∈ �� so that z [0] ∈ WO and for all n ∈ �, (z [1])[n]

∈W .
For each z ∈ CS, let cseq(z) be the sequence in � of length ot(z [0]) defined by

cseq(z)(α) = ϕ((z [1])[num(z[0],α)]). Note that for all � ∈ <�1�, there is a z ∈ CS so
that cseq(z) = �.

§3. Countable Length Everywhere Club Uniformization.

Definition 3.1. If κ is a cardinal, let club denote the collection of club subsets
of κ. A relation R ⊆ <�1κ × club is ⊆-downward closed in the club-coordinate
if and only if for all � ∈ <�1κ and clubs C ⊆ D, R(�,D) implies R(�, C ). Let
dom(R) = {� ∈ <�1�1 : (∃C ∈ club)R(�, C )}. A uniformization for R is a function
Λ : dom(R) → club so that for all � ∈ dom(R), R(�,Λ(�)).

Countable length everywhere club uniformization for κ is the statement that for
every R ⊆ <�1κ × club which is ⊆-downward closed in the club-coordinate, there is
a uniformization for R.

Fact 3.2 ([3]; Countable Length Everywhere Club Uniformization for �1).
Assume ZF + AD. Let R ⊆ <�1�1 × club be ⊆-downward closed in the club-
coordinate. Let R̃ ⊆ BS× clubcode be the coded version of R defined by R̃(z, e) if and
only if R(seq(z),Ce). Assume R̃ has a uniformization (i.e., a function Φ : dom(R̃) →
R so that for all z ∈ dom(R̃), R̃(z,Φ(e))). Then R has a uniformization.

Thus, under ZF + AD 1
2R

, countable length everywhere club uniformization for �1

holds.

L(R) |= ¬AD 1
2R

. [3] gives an example to show that countable length everywhere

club uniformization for �1 cannot hold in L(R) and thus it is not provable under
AD alone.
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The main result is a generalization of the countable length everywhere club
uniformization for �1.

Theorem 3.3. Assume ZF + AD + DCR. Let Γ be a nonselfdual pointclass closed
under ∧, ∨, and ∀R. Let κ = �(Γ) and assume that κ is reliable with witness (W, ϕ̄)
such that W is Γ-complete and ϕ0 :W → κ is a surjective Γ-norm. Let CS and cseq
be the codings of <�1κ from Definition 2.25 defined relative to ϕ0. Let clubcode and
Ce(for each e ∈ clubcode) be the codings of club subsets of κ from Definition 2.16
relative to Γ and the Γ-norm ϕ0 on the Γ-complete set W.

Let R ⊆ [κ]<�1 × club be a ⊆-downward closed relation in the club-coordinate.
Let R̃ ⊆ CS× clubcode be the coded version of R defined by R̃(z, e) if and only
if R(cseq(z),Ce). Assume that R̃ is Suslin and co-Suslin meaning there are trees
T on � × � × �0 and S on � × � × �1 so that R̃ = {(z, e) : (∃f ∈ ��0)((z, e, f) ∈
[T ])} and R× R \ R̃ = {(z, e) : (∃g ∈ ��1)((z, e, f) ∈ [S])}. Let φ̄ = 〈φn : n ∈ �〉
be the canonical semiscale on R̃ derived from the Suslin representation T for R̃ as in
Definition 2.6. Assume each norm relation ≤∗

φn
is Suslin and co-Suslin. Then there is

a Λ : dom(R) → club so that for all � ∈ dom(R), R(�,Λ(�)).
Thus assuming ZF + AD and all sets of reals are Suslin, countable length everywhere

club uniformization holds for κ with the above properties.

Proof. By the hypothesis, each norm relation ≤∗
φn

for R̃ is assumed to be Suslin
and co-Suslin so there are trees P on� × � × �0 and Q on� × � × �1 with �0, �1 <
Θ which project onto ≤∗

φn
and its complement, respectively. By the Moschovakis

coding lemma and ACR

� , one may find sequences 〈Pn : n ∈ �〉 and 〈Qn : n ∈ �〉 so
that for each n ∈ �, �1[[Pn]] = ≤∗

φn
and �1[[Qn]] = R× R \ ≤∗

φn
.

Let � ∈ dom(R). Recall that by Fact 2.15, κ = �(Γ) is a regular cardinal. By Fact
2.22, let �� be the least honest ordinal greater than sup(�). Let R��� ⊆ ��� be defined
by R��� (g) if and only if rang(�) ⊆ rang(g).

Fix g ∈ ��� so that R��� (g). Fix w ∈ WO with ot(w) = |�|. Let F be the function
from Fact 2.23. Let r(�, g, w) be the unique real with the following properties.

• For all n ∈ �, if n /∈ field(Rw), then r(�, g, w)[n] = F(g)[n] .
• For n ∈ field(Rw), let ign be the least k so that g(k) = �(ot(w, n)). Then one

has r(�, g, w)[n] = F(g)[ign ].
Let extract(�, g, w) be the unique real z so that z [0] = w, z [1] = r(�, g, w), and for all
n > 1, z [n] = 0̄, the constant 0 sequence.

Lemma 3.4. Let E�,w : R��� → R be defined by E�,w(g) = extract(�, g, w). If
rang(g) is honest then cseq(extract(�, g, w)) = �.

Proof. Assume rang(�) ⊆ rang(g) and g is honest. Let α < |�| and n =
num(w,α) (where num comes from Definition 2.5). Since rang(�) ⊆ rang(g), ign is
defined with the property that g(ign ) = �(ot(w, n)) = �(ot(w, num(w,α))) = �(α).
Since g is honest, one has that for all n ∈ �, g(n) = ϕ0(F(g)[n]). This implies that
cseq(extract(�, g, w)) = �. �

Lemma 3.5. Let graph(E�,w) ⊆ R��� × R be defined as the graph of E�,w .
graph(E�,w) is Suslin and co-Suslin uniformly in � and w. Moreover, the canonical
semiscale derived from this Suslin representation as in Definition 2.6 has associated
norm relations which are Suslin and co-Suslin.
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Proof. Note that although E�,w is only defined on R��� , it is continuous on R��� .
For instance, for n ∈ field(w) and g0, g1 ∈ �κ, let ig0

n and ig1
n be the corresponding

objects for g0 and g1, respectively. If ig0
n = k and g0 � k + 1 = g1 � k + 1, then ig0

n =
i
g1
n . The continuity ofE�,w follows from this observation and the fact that the generic

coding function F is Lipschitz.
The domain of E�,w is R��� . Fact 2.10 and Fact 2.11 give an analogous result for

R
��
� . The proof of the lemma is quite similar to the arguments of these two facts.

The details are left to the reader. �

Consider the game Gw� defined as follows.

Gw�

I g(0), e(0) g(2), e(1) g(4), e(2)

II g(1) g(3) g(5)

... g

e

For all n ∈ �, g(n) ∈ �� . Player 1 plays g(2n) for all n ∈ �. Player 2 plays g(2n + 1)
for all n ∈ �. Player 1 also plays e(n) ∈ � for all n ∈ �. After an infinite run, Player
1 and Player 2 together produce g ∈ ��� and Player 1 alone produces e ∈ R. Player
1 wins Gw� if and only if Pw� (g), where Pw� (g) is defined by the conjunction of the
following.

(1) rang(�) ⊆ rang(g).
(2) extract(�, g, w) ∈ dom(R̃).
(3) R̃(extract(�, g, w), e).

Lemma 3.6. The payoff set Pw� for the game Gw� is Suslin and co-Suslin uniformly
in � and w. Moreover, the semiscale derived from this Suslin representation as in
Definition 2.6 is Suslin and co-Suslin.

Proof. (1) is Suslin and co-Suslin uniformly in � and w by Fact 2.10 (and note
that �� is defined uniformly from �). (2) is Suslin and co-Suslin uniformly from �
and w using this observation and Lemma 3.5. Similarly (3) is Suslin and co-Suslin
uniformly from � and w using the tree T and S and Lemma 3.5. This establishes
that the payoff set Pw� is Suslin and co-Suslin uniformly in � and w. Using Fact 2.11
and Lemma 3.5, one can show each norm relation of the derived semiscale is Suslin
and co-Suslin. �

The first part of Lemma 3.6 implies the ordinal game Gw� is determined by
Fact 2.8.

Lemma 3.7. Suppose � is a Player 2 strategy for Gw� and e ∈ R. Then there is an
h ∈ ��� with the following properties.

• rang(�) ⊆ rang(h).
• Let h ⊕ e ∈ ��� be defined by (h ⊕ e)(n) = 〈h(n), e(n)〉. Let (g, e) = Σ2

�(h ⊕ e).
(That is, (g, e) is the run of the game where Player 2 uses � against Player 1
using �h⊕e . See Definition 2.2 for the notations associated with strategies.) Then
rang(g) is honest.

Suppose 	 is a Player 1 strategy forGw� . Then there is an h ∈ ��� with the following
properties.
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• rang(�) ⊆ rang(h).
• Let (g, e) = Σ1

	(h). Then rang(g) is honest.

Proof. Fix a bijection B : � → |�|. Using ACR

� , find a sequence 〈xn : n ∈ �〉 in
W so that for all n ∈ �,ϕ0(xn) = �(B(n)). Let pair : �2 → � be a bijection with the
property that for all a, b, c ∈ �, if pair(a, b) = c, then a, b ≤ c and for all a, b, c ∈ �,
if b < c, then pair(a, b) < pair(a, c). Let �1 : �� → �� be such that �1(〈α, n〉) = α for
all α ∈ �� and n ∈ �. Now define a tree K on R by s ∈ K if and only if the following
holds.

(1) For all k < |s |, s(k) ∈W .
(2) Let n = |s |. Let ps : 2n → �� be defined as follows.

(a) For k < n,

ps(2k) =

{
〈ϕj(xi), e(k)〉, k = 2d ∧ d = pair(i, j),
〈ϕj(s(i)), e(k)〉, k = 2d + 1 ∧ d = pair(i, j).

(b) For k < n, ps(2k + 1) is the result of applying � to the partial run 〈ps(j) :
j < 2k + 1〉 in Gw� .

(c) For each k < n, if k is odd, then ϕ0(s(k)) = ps(k) and if k is even, then
ϕ0(s(k)) = �1(ps(k)).

Observe that ps is continuous in the sense that if s ⊆ t, then pt � 2|s | = ps . The
tree K is ordered by proper string extension�. One can check every node s of K can be
strictly extended by appending some y ∈W so that ϕ0(y) = ps(|s |) if |s | is odd and
ϕ0(y) = �1(ps(|s |)) if |s | is even. By DCR, there is an f ∈ [K ]. Let q =

⋃
n∈� pf�n.

Let h = 〈�1(q(2n)) : n ∈ �〉. Let g be such that (g, e) = Σ2
�(h ⊕ e) and observe that

rang(g) is honest. To see this, note that by (1) and (2b), for all k ∈ �, f(k) ∈W
and ϕ0(f(k)) = g(k). Then the second case of (2a) will eventually include each
ϕj(f(k)) for all j ∈ � into rang(g). Note that rang(�) ⊆ rang(h) by the first case
of (2a). Σ2

�(h ⊕ e) = (g, e) by (2b). Thus h is the desired object.
The argument for the second statement is quite similar. �
Next one seeks to show that Player 1 has the winning strategy for Gw� . Suppose

� is a Player 2 strategy. Since � ∈ dom(R), there is a club C ⊆ κ so that R(�, C ).
Pick any e so that Ce ⊆ C which is possible by Fact 2.16. Now by Lemma 3.7 pick
an h so that rang(�) ⊆ rang(h) and if (g, e) = Σ2

�(h ⊕ e) is the run according to �
where Player 1 plays (h(n), e(n)) for its nth-move, then rang(g) is honest. Note that
(1) of Pw� clearly holds. By Lemma 3.4, one has cseq(extract(�, g, w)) = �. Then
extract(�, g, w) ∈ dom(R̃) and hence (2) of Pw� holds. Also (3) of Pw� is true since
R̃(extract(�, g, w), e) holds by choice of e. Thus Player 1 wins and hence � cannot
be a winning strategy for Player 2.

This completes the argument that Player 2 cannot have a winning strategy in Gw� .
By the determinacy of Gw� , Player 1 has a winning strategy. Next, one will need to
show that a winning strategy for Gw� can be found uniformly in w and �.

Lemma 3.6 implies that Pw� has a Suslin representation whose derived semiscale
has norm relations which are Suslin and co-Suslin. From these semiscales, one can
construct a very good semiscale for Pw� (uniformly in w and �) whose associated
norm relations are all Suslin and co-Suslin. In the notation of Fact 2.12, this can be
used to show that the payoff set of each game nHst is Suslin and co-Suslin. nHst is
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determined by Fact 2.8. Fact 2.12 can now be applied to find, uniformly in w and �,
a Player 1 winning strategy 	w� in the game Gw� .

Functions � : ��� → ��� and ϑ : ��� → �� will be defined so that if (g, e) is the
resulting run in the game Gw� where Player 1 uses 	w� against Player 2 using �h , then
�(h) = g and ϑ(h) = e. Formally, let �1 : �� × � → �� and �2 : �� × � → � be the
projections onto the first and second coordinates, respectively. Define � by

�(h)(n) =

{
�1(Σ1

	w
�

(h)(n)), n is even,

Σ1
	w
�

(h)(n), n is odd.

Define ϑ by ϑ(h)(n) = �2(Σ1
	w
�

(h)(2n)). Both � and ϑ are Lipschitz continuous

functions and are produced uniformly from w and � (since they depend only on 	w� ).
Since 	w� is a Player 1 winning strategy in Gw� , one has by (1) of the payoff set Pw�

that for all g ∈ �[��� ], rang(�) ⊆ rang(g) and thus extract(�, g, w) is well defined.
Also since 	w� is a Player 1 winning strategy in Gw� , one has that ϑ[��� ] ⊆ clubcode.
Let W� = ϕ–1

0 [�� ] and let ϕ� :W� → �� be defined by ϕ� = ϕ0 �W� . Since ϕ is a
Γ-norm, one has that the associated prewellordering ϕ� belongs to Δ. Fact 2.13
can now be applied to show ϑ[��� ] is ∃RΔ ⊆ Γ̌ since Γ is closed under ∀R. By
Fact 2.16, there is a club D ⊆ κ (produced uniformly from the set ϑ[��� ]) with the
property that for all e ∈ ϑ[��� ], D ⊆ Ce . By Lemma 3.7, one can find a sequence
h∗ so that rang(�) ⊆ rang(h∗) and if (g, e∗) = Σ1

	w
�

(h∗) is the run according to 	w�
where Player 2 uses h∗, then rang(g) is honest. By Lemma 3.4, extract(�, g, w) = �.
Thus since e∗ = ϑ(h∗), R̃(�, ϑ(h∗)) and hence R(�,Cϑ(h∗)). Since ϑ(h∗) ∈ ϑ[��� ],
one has that D ⊆ Cϑ(h∗). Since R is ⊆-downward closed, one has that R(�,D).
Finally, observe that D is produced uniformly from w and � ∈ dom(R).

By the uniformity observation, it has been shown that there is a function Ψ
so that whenever � ∈ dom(R) and w ∈ WO with ot(w) = |�|, Ψ(�, w) ∈ club and
R(�,Ψ(�, w)). One will need to remove the dependence on w.

Fix � ∈ dom(R). Observe that if f ∈ surj|�|, then G(f) ∈ WO|�| where G is the
simple generic coding function at �1 from Fact 2.18. Let Φ� : surj|�| → club be
defined by Φ�(f) = Ψ(�,G(f)). Note that for all f ∈ surj|�|, R(�,Φ�(f)). Since
surj|�| is comeager in �|�|, Fact 2.20 states that one can find uniformly from Φ�
(which was constructed uniformly from �), a comeager set B� ⊆ surj|�| and club
D� ⊆ κ so that for all f ∈ B� , D� ⊆ Φ�(f). Pick any f ∈ B� . Since R(�,Φ�(f))
and R is ⊆-downward closed, one has that R(�,D�).

By the uniformity of the construction, one can define Λ : dom(R) → club by
Λ(�) = D� . It has been shown that for all � ∈ dom(R), R(�,Λ(�)). Λ is the desired
uniformization, and this completes the proof of the theorem. �

In particular, the following is a corollary of Theorem 3.3.

Theorem 3.8. AssumeZF + AD and all sets of reals are Suslin. Let Γ be a pointclass
closed under∧,∨, and ∀R with the scale property. Then the countable length everywhere
club uniformization holds for �(Γ). In particular, for all n ∈ �, the countable length
everywhere club uniformization holds for �1

2n+1.
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