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Abstract
Network meta-analysis (NMA) enables simultaneous assessment of multiple treatments by combining both direct
and indirect evidence. While NMAs are increasingly important in healthcare decision-making, challenges remain
due to limited direct comparisons between treatments. This data sparsity complicates the accurate estimation of
correlations among treatments in arm-based NMA (AB-NMA). To address these challenges, we introduce a novel
sensitivity analysis tool tailored for AB-NMA. This study pioneers a tipping point analysis within a Bayesian
framework, specifically targeting correlation parameters to assess their influence on the robustness of conclusions
about relative treatment effects. The analysis explores changes in the conclusion based on whether the 95% credible
interval includes the null value (referred to as the interval conclusion) and the magnitude of point estimates.
Applying this approach to multiple NMA datasets, including 112 treatment pairs, we identified tipping points in
13 pairs (11.6%) for interval conclusion change and in 29 pairs (25.9%) for magnitude change with a threshold
at 15%. These findings underscore potential commonality in tipping points and emphasize the importance of our
proposed analysis, especially in networks with sparse direct comparisons or wide credible intervals for correlation
estimates. A case study provides a visual illustration and interpretation of the tipping point analysis. We recommend
integrating this tipping point analysis as a standard practice in AB-NMA.

Highlights
What is already known

• Network meta-analysis (NMA) facilitates simultaneous assessment of multiple treatments by integrating
both direct (from studies comparing treatments directly) and indirect evidence (from trials that share a
common treatment).

• A major challenge in NMA is the limited availability of direct comparisons between all treatment pairs, often
due to the resource constraints and evolving nature of control arms in randomized controlled trials (RCTs).

• This data sparsity complicates the accurate estimation of correlations between the random effects of multiple
treatments within each study when using arm-based NMA models.
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What is new

• To address the challenges brought by sparse data in NMA, we propose a novel tipping point analysis to
assess the robustness of treatment effect conclusions, focusing on the changes of statistical conclusion based
on the credible interval and effect magnitude, by varying correlation strengths between the random effects
of treatments in an arm-based NMA (AB-NMA).

• When applied to 14 NMA datasets, the results reveal potential commonalities in tipping points, highlighting
the importance of our proposed analysis, especially in networks with sparse direct comparisons or wide
credible intervals for estimated correlations.

Potential impact for RSM readers

• The proposed tipping point analysis complements the AB-NMA modeling and provides a novel tool for
researchers to assess the reliability of conclusions regarding treatment effect. It ensures that the findings are
not only supported by the analysis but also robust to variations in correlation assumptions.

1. Introduction

Network meta-analysis (NMA), also known as mixed treatment comparisons meta-analysis or multiple
treatments meta-analysis, has emerged as a powerful tool for synthesizing evidence across multiple
studies, especially when multiple treatments are being compared and direct comparisons among all
treatments are not available.1,2 Traditional pairwise meta-analyses limit comparisons to two treatments
at a time, but NMA extends this framework, allowing for the simultaneous assessment of multiple
treatments. By integrating both direct evidence (from studies comparing treatments head-to-head) and
indirect evidence (derived from two or multiple studies that have a common treatment or control
arm), NMA facilitates a holistic understanding of the treatment landscape. Specifically, direct evidence
refers to the evidence that directly compares the two treatments, for example, treatment A vs. B in a
randomized controlled trial (RCT), while indirect evidence between A vs. B is provided by comparing
A vs. C and C vs. B in two RCTs.3–5 Borrowing information from indirect evidence under suitable
assumptions, such as transitivity and evidence consistency, may yield a more precise evaluation of
treatment effects than those synthesized solely from direct evidence in pairwise meta-analysis.6

There are two main approaches to conducting an NMA: contrast-based (CB) and arm-based (AB).
Each has its own distinct emphasis and underlying assumptions. The CB-NMA operates under the
assumption that relative effects, or contrasts, are exchangeable across studies, and focuses its analysis
on the estimation of the overall relative effect.7–9 In contrast, AB-NMA makes an arguably more
stringent assumption that the absolute effects are exchangeable across studies, offering the added
benefit of estimating both the absolute effects of each treatment and relative effects for each pair
of treatments.10–13 As such, AB-NMA can provide useful information in cost-effectiveness analysis,
aiding in the optimization of resource distribution.14 Moreover, when compared to CB-NMA, AB-
NMA has demonstrated lower sensitivity in the effect estimates to the choice of treatments included
in the treatment network.15 While the AB-NMA model offers several advantages, it also has certain
limitations that warrant consideration. A key limitation is that AB-NMA models can potentially
introduce bias due to breaking randomization when there are systematic differences among trials of
different designs. This concern has been a subject of debate in the literature.16,17 However, the practical
impact of this limitation may need further investigation to determine whether it poses significant
challenges in real-world applications.18

A big challenge in NMA is the sparse information from the lack of direct comparisons between
all treatment pairs, often attributed to the inherent resource limitations and evolutionary nature of
control arms in RCTs. Given financial and operational considerations, an RCT typically compares 2–4
treatments, leading to common scenarios where not all treatments in an NMA are directly compared.
Some NMAs even have a “star-shaped” structure, wherein each treatment is directly evaluated relative
to a common control and never relative to each other within the same trial.19 Such data sparsity makes
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accurate estimation of the correlation among the study-specific random effects of multiple treatments
in AB-NMA challenging.20 New methods have been recommended to improve the estimation of the
correlation matrix compared to the traditional inverse-Wishart (IW) prior in AB-NMA. These include a
separation strategy to separate priors on variances and correlations,20 a uniform prior for the correlation
parameter with a lower boundary that ensures the resulting correlation matrix is positive definite,13 and
a variance shrinkage method for variance estimation.21 A tipping point analysis may supplement more
information about whether the study conclusion is robust across different strengths of the correlation.

A tipping point analysis aims to assess the robustness of research conclusions by investigating how
potential alterations to the analysis assumptions or observed data might influence study conclusions
substantively.22,23 Identifying the “tipping point,” i.e., the juncture where a minor change substantively
alters a study conclusion, may offer insights into the fragility and reliability of study findings. Tipping
point analysis is especially relevant in fields where decisions are informed by data, such as healthcare
or economics, as they help researchers and policymakers gauge the confidence they can place in a given
result, ensuring that conclusions drawn are not only supported by the analysis but also meaningfully
robust to key analysis assumptions.24–29 Han et al.30 recently introduced a tipping point analysis
for pairwise meta-analysis, specifically to assess the robustness of conclusion when incorporating
single-arm studies. Their analysis, which focused on comparisons involving only two treatments,
demonstrated its potential to provide valuable insights that complement conclusions about relative
treatment effects. Such tipping point analysis can be further extended to more complex scenarios, such
as NMA where multiple treatment comparisons are synthesized jointly.

To the best of our knowledge, no methods have been previously proposed for conducting a tipping
point analysis with respect to the assumed correlation structure within an NMA. This article aims
to bridge this gap by introducing a novel sensitivity analysis tool tailored for AB-NMA. Within
the Bayesian framework, our method searches for tipping points in correlation parameters that alter
conclusions about relative treatment effects. These conclusions include: (1) whether the 95% credible
interval includes the null value (referred to as the interval conclusion) and (2) the magnitude of point
estimates. The interval conclusion aligns conceptually with the statistical significance conclusion in the
Frequentist framework, offering a dichotomized conclusion about the strength of evidence.

We organize the content of this article as follows. The proposed method with detailed Bayesian
model specifications and procedure steps is explained in Section 2. Section 3 details some NMA
datasets to which we applied the proposed tipping point analysis. Applied examples and their results
are presented in Section 4. Finally, a comprehensive discussion is provided in Section 5.

2. Statistical analysis methods

2.1. AB-NMA model

Before describing the tipping point analysis method, we first present the model specification for the
AB-NMA. In an NMA reviewing N studies and K treatments, let i denote the study, 𝑖 = 1, 2, . . . , 𝑁; let
k denote the treatment (𝑘 = 1, 2, . . . , 𝐾), and 𝑇𝑖 is the subset of treatments investigated in study i. In
study i for treatment k (𝑘 ∈ 𝑇𝑖), let 𝑦𝑖𝑘 denote the number of events for a binary outcome, 𝑛𝑖𝑘 denote
the total number of subjects, and 𝑝𝑖𝑘 denote the underlying absolute risk. The AB-NMA model with a
logit link can be specified as

𝑦𝑖𝑘 ∼ 𝐵𝑖𝑛(𝑛𝑖𝑘 , 𝑝𝑖𝑘 ) for 𝑘 ∈ 𝑇𝑖;
logit(𝑝𝑖𝑘 ) = 𝜇𝑘 + 𝑣𝑖𝑘 ;

(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝐾 )
𝑇 ∼ 𝑀𝑉𝑁 (0,𝚺),

where 𝜇𝑘 denotes the fixed effect of the treatment k, 𝑣𝑖𝑘 denotes the random effect of the treat-
ment k in study i, and 𝚺 denotes the variance–covariance matrix of the vector of random effects
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(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝐾 )
𝑇 . The population-averaged absolute risk of treatment k can be approximated as

𝐸 (𝑝𝑖𝑘 | 𝜇𝑘 , 𝜎𝑘 ) ≈ expit

{
𝜇𝑘/

√
1 +

256
75𝜋2𝜎

2
𝑘

}
,

where 𝜎𝑘 denotes the standard deviation of the random effect of the treatment k, and the relative risk
(RR), risk difference (RD), and odds ratio (OR) can be calculated based on the absolute risk using
consistency equations.21,31

As recommended by Wang et al.,21 we used the separation strategy and the variance shrinkage
method to assign weakly informative priors to 𝚺. It can be decomposed as 𝚺 = 𝚫R𝚫, where 𝚫 =
diag(𝜎1, . . . , 𝜎𝐾 ), and R is the correlation matrix. By assuming the exchangeable correlation structure,
the correlation matrix is a K by K matrix as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜌 𝜌 · · · 𝜌
𝜌 1 𝜌 · · · 𝜌
𝜌 𝜌 1 · · · 𝜌
...
...
...
. . .

...
𝜌 𝜌 𝜌 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝜌 denotes the correlation.
Then, a uniform prior is used for the standard deviation32:

𝜎𝑘 ∼ 𝑈 (0.0001, 10), for 𝑘 = 1, 2, . . . , 𝐾.

Alternatively, a hierarchical half-Cauchy (HHC) prior for the standard deviation is recommended by
Wang et al.21:

𝜎𝑘 ∼ 𝐻𝐶 (𝑎), for 𝑘 = 1, 2, . . . , 𝐾;
𝑎 ∼ 𝑈 (0, 5).

A uniform prior is commonly used for the correlation parameter 𝜌,

𝜌 ∼ 𝑈

(
−

1
𝐾 − 1

, 1
)
,

where the lower bound is chosen to guarantee that the correlation matrix R is positive definite. For the
fixed effect, 𝜇𝑘 , we assign a non-informative prior:

𝜇𝑘 ∼ 𝑁 (0, 1002).

2.2. Method for tipping point analysis

Our tipping point analysis focuses on the correlation parameter 𝜌. A tipping point is defined as the value
for 𝜌 where some substantive conclusion changes, e.g., the interval conclusion flips or the change in
magnitude of the relative treatment effect exceeds some meaningful threshold. The proposed procedure
for searching for a tipping point is as follows:

1. Conduct the NMA with the model specified in Section 2.1 to estimate:
• Population-averaged point estimate and 95% credible interval of the treatment effect, e.g., RR or

RD, for all pairs of treatments;
• The posterior median, 95% credible interval, and a series of other posterior percentiles for the

correlation parameter 𝜌.
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The number of percentiles for 𝜌 depends on how granular one wants to be when checking for
a tipping point. We recommend using the following 11 percentiles of the posterior samples: 1%,
2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 97.5%, and 99%. These were chosen to include the
important posterior percentiles that are commonly reported in the summary of a Bayesian posterior
distribution: 2.5%, 25%, 50%, 75%, and 97.5%,33 supplemented by additional points to provide
more granularity. While a tighter grid of percentiles may provide a more accurate estimate of the
tipping point, it is more computationally intensive.

2. Repeatedly conduct the NMA with the model described in Section 2.1, but instead of assigning a
prior distribution to 𝜌, set 𝜌 to each value of the estimated percentiles in Step 1. Thus, 11 NMA
models with different assumed values for 𝜌 values are fitted separately, and the mean and 95%
credible intervals of the treatment effects for all pairs of treatments are obtained in each model.
Draw the interval conclusion of the treatment effect based on whether the 95% credible interval
includes the null value, e.g., the null value is 1 for RR and 0 for RD.

3. Search for a tipping point at the 11 data points based on either of the following criteria:
• Interval conclusion change: An interval conclusion change occurs when the interval conclusion of

a treatment effect comparing a pair of treatments based on the result of one or more NMAs in Step
2 is opposite to the interval conclusion for this pair of treatments based on the result of the NMA in
Step 1. For example, an interval conclusion can shift from strong evidence supporting the presence
of a treatment effect (i.e., 95% credible interval does not include the null value) to weak evidence
(i.e., 95% credible interval includes the null value), or vice versa. The 95% credible interval
has been widely used for such conclusion because a posterior probability threshold of 0.975 is
commonly accepted in determining the strength of evidence. However, alternative thresholds
other than 0.975 can be carefully selected depending on the clinical context and specific study
objectives.

• Magnitude change: A magnitude change happens when the percent change in the magnitude of
the mean treatment effect comparing a pair of treatments in Step 2 relative to the result of the
NMA in Step 1 exceeds some meaningful threshold. The choice of thresholds should ideally be
informed by clinical expertise and tailored to the specific disease context and primary outcomes.
To demonstrate the methodology, in the selected NMA datasets, we considered thresholds of
±15% and ±30%, corresponding to low and high thresholds.

Figure 1. Steps of searching for tipping points in correlation parameters that alter conclusions about
relative treatment effects in an NMA.
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A schematic summary of the above steps is presented in Figure 1. In Step 2, the models can be
executed in parallel for a comprehensive search. Alternatively, to reduce the computational demands,
we may also adopt a bisection approach to pinpoint the location of the tipping point by iteratively
narrowing a range of search. Starting with a broad range, for example, from 1 to 99 percentiles, we
only compare two models fitted with the 𝜌 values at the two endpoints of the range. If we observe either
an interval conclusion change or a magnitude change, the search continues and the range is narrowed
down in the next iteration; otherwise, the searching process ends, concluding no tipping point.

All analyses were conducted on JAGS version 4.3.0-gcc7.2.0 through the R package “rjags” in R
version 4.2.2. The JAGS code for Bayesian models is provided in Appendix 1 of the Supplementary
Material.

3. Dataset selection

3.1. Dataset screening and selection

We extracted 453 NMA datasets published between 1999 and 201534 from the R package “nmadb,”35

which provides the Application Programming Interface (API) for an NMA database. With computa-
tional considerations and with the purpose to include various types of networks with a varied sparsity
to demonstrate our method on networks that reflect more typical real-world scenarios, we evaluated
NMA datasets with the following inclusion criteria: (1) a binary outcome, (2) ≤5 treatments, and (3)
≥30 studies. The detailed workflow for this screening process is illustrated in Figure 2. Using these
criteria, we identified 14 candidate NMA datasets that collectively comprised 790 studies with 355,923
total participants.

The candidate NMA datasets are named after the first author and the year of publication. Table 1
describes each of these datasets in terms of the number of studies, number of treatments, primary

Figure 2. A diagram of the dataset screening process.
Note: 453 datasets were extracted from the “nmadb” package in R. All selections were based on the
record in the package.
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Table 1. A summary of selected network meta-analyses.

No. of No. of Total events Median event
Name of NMA study treatment / Total subjects rate (min, max) Primary outcome

Yang2014b44 145 5 10,332 / 12,983 0.82 (0.10, 1.00) Crohn’s disease recurrence
Mills201045 89 4 10,847 / 29,525 0.36 (0.00, 0.85) Smoking abstinence
Hutton201246 77 4 368 / 14,165 0.00 (0.00, 0.21) All-cause mortality
Trikalinos200936 63 4 821 / 26,748 0.01 (0.00, 0.21) All-cause mortality
Eisenberg200847 61 5 3,908 / 26,730 0.14 (0.01, 0.57) Continuous smoking abstinence at 12 months
Furukawa201448 48 4 893 / 2,722 0.33 (0.00, 0.90) The number of patients who responded to depression treatment
Greco201549 46 5 145 / 2,647 0.00 (0.00, 0.32) Mortality in adult cardiac surgery patients
Tadrous201450 46 5 8,486 / 33,227 0.20 (0.02, 0.64) Gastrointestinal related adverse events
Moore200551 45 4 5,853 / 11,315 0.45 (0.04, 0.90) Improved erection dysfunction
Ribeiro201152 39 4 6,462 / 155,185 0.03 (0.00, 0.12) Cardiovascular prevention
Gafter-Gvili200553 37 5 325 / 2,718 0.08 (0.00, 0.71) All-cause mortality
Puhan200954 34 5 7,200 / 26,789 0.24 (0.00, 0.62) Exacerbation in patients with chronic obstructive pulmonary

disease
Edwards2009b55 30 4 4,263 / 5,133 0.88 (0.51, 1.00) Effectiveness of beta-lactams for the treatment of hospitalized

patients with infection
Wang201556 30 5 1,326 / 6,036 0.20 (0.00, 0.78) Febrile neutropenia risk for all chemotherapy cycles without

adjustment for relative dose intensity

https://doi.org/10.1017/rsm
.2025.24 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/rsm.2025.24


8 Wang et al.

Figure 3. Network plots of selected NMA datasets.
Note: The 4th plot in the first row represents the network selected as the case study. The nodes with
uppercase letters indicate the distinct treatments in the network, and the edges indicate the direct
comparisons in an RCT. The weight of each edge is determined by the number of studies with a direct
comparison between the connected treatments.

outcome, total number of events, total number of subjects, and the median (minimum, maximum) event
rate across the studies. These networks encompass a diverse range of therapeutic areas such as car-
diovascular (Ribeiro2011), respiratory (Puhan2009, Mills2010, and Eisenberg2008), gastroenterology
(Yang2014b and Tadrous2014), neurology and psychiatry (Furukawa2014), hematology and oncology
(Wang2015), and infectious disease (Edwards2009b). The median event rates in these studies spanned
from 0.00 to 0.88. This broad range indicated the inclusion of both rare and common primary outcomes
within the selected networks.

Figure 3 shows the network plots for the 14 selected NMA datasets. In these plots, the nodes sym-
bolize the treatments and are labeled with uppercase letters, and the edges between nodes indicate direct
treatment comparisons. The weight of each edge is determined by the number of studies with a direct
comparison between the connected treatments. Additionally, the size of each node is determined by the
number of studies containing the specific treatment, offering an intuitive visual representation of the
treatment’s prevalence within the network. The selected networks exhibited a diverse range of network
plot configurations and sparsity characteristics. For example, Gafter-Gvili2005 and Edwards2009b
had high sparsity demonstrated by star-shaped structures, while Hutton2012 and Puhan2009 had low
sparsity with well-connected networks. Besides these two types of extreme networks, others showed
moderate sparsity with more complex networks with loops and some groups with sparse connections.

Figure 4 displays the forest plot of the estimated correlation between treatments across the 14
selected NMA datasets using AB-NMA models as specified in Section 2.1. These networks exhibited
a broad range of posterior median correlations, from 0.266 to 0.996. Additionally, the 95% credible
intervals of the correlation differed in length, as evidenced by the varying lengths of the blue lines.
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Figure 4. Forest plot of the posterior median correlation estimates based on AB-NMA model in
selected NMA datasets.

Such diversity in the datasets reflected the comprehensive range of selected studies and allowed us to
demonstrate the applicability of the tipping point analysis across diverse real-world examples.

3.2. Dataset of the case study

To illustrate the proposed tipping point analysis in more detail, we selected one network from the
selected 14 networks, the Trikalinos200936 NMA dataset, as a detailed case study. The NMA study by
Trikalinos et al. from 2009 in the Lancet evaluated catheter-based treatments, specifically percutaneous
coronary intervention (PCI), for non-acute Coronary Artery Disease (CAD). The study focused on
medical therapy (including administration of antiplatelet agents, 𝛽 blockers, nitrates, calcium channel
blockers, or aggressive lipid-lowering treatment)37 and 3 main types of PCI interventions: Percutaneous
Transluminal Balloon Coronary Angioplasty (PTCA), Bare Metal Stents (BMS), and Drug-Eluting
Stents (DES). There were 4 outcomes of interest: all-cause mortality, myocardial infarction (MI),
coronary artery bypass grafting (CABG), target lesion or vessel revascularization (TLR/TVR), and any
revascularization. In our case study, we focus on the primary outcome, all-cause mortality.

The Trikalinos2009 NMA included 61 RCTs and a total of 25,388 participants. Since two of the
trials, which reported results for 2 separately randomized strata, were entered as 4 distinct entries in
the meta-analyses, this NMA dataset comprised 63 unique trial entries and 26,748 subjects. Of the 6
possible pairwise treatment comparisons, this NMA dataset contained trials with direct comparisons for
4 of these; there was no trial with a direct comparison of DES and PTCA, or DES and medical therapy.
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In their analysis, Trikalinos et al. used a CB model and assumed the relative effects were
exchangeable. In particular, there were inconsistencies in the results based on the direct pairwise
comparison and the results based on NMA, which included indirect evidence. The RR of death for
PTCA vs. medical therapy evaluated in direct comparisons had an opposite direction compared to the
indirect RR of death when evaluated in the NMA. The overall conclusion was that no evidence showed
PCI treatments (including PTCA, BMS, and DES) were more effective than medical therapy in treating
non-acute CAD.

4. Results

4.1. Results of the selected NMA datasets

We conducted the proposed tipping point analysis on the 14 NMA studies described in Section 3.1 using
RR as the treatment effect measure. The cumulative incidence of a tipping point for interval conclusion
change and magnitude change are shown in Tables 2 and 3, respectively. These counts were arranged
in ascending order based on the distance (in percentiles) between the percentile of the fixed 𝜌 values
and the median estimated correlation from the AB-NMA model in Step 1 in Section 2.2.

From the 112 treatment pairs across the 14 NMAs, there were 13 tipping points for interval
conclusion change. That is, 11.6% of the pairwise treatment comparisons exhibited a tipping point
where the interval conclusion was altered. When setting the relative difference thresholds for the
magnitude change tipping point at 15%, −15%, 30%, and −30%, the cumulative incidences were 29, 22,
20, and 11, corresponding to 25.9%, 19.6%, 17.9%, and 9.8%, respectively. Although there were fewer
tipping points for the larger magnitude change threshold, there were still several pairwise comparisons

Table 2. A summary of the incidences and the cumulative incidences of interval conclusion
change tipping point among the 14 selected NMA datasets, with relative risk as the measure
of treatment effect.

Count of pairs with Cumulative incidence of a
Percentile from median (Percentiles) a tipping point tipping point (% in 112 pairs)

0% (50%) 2 2 (1.8%)
25% (25%, 75%) 4 6 (5.4%)
40% (10%, 90%) 0 6 (5.4%)
45% (5%, 95%) 3 9 (8.0%)
47.5% (2.5%, 97.5%) 3 12 (10.7%)
49% (1%, 99%) 1 13 (11.6%)

Table 3. A summary of the cumulative incidences of the magnitude change tipping point among the
14 selected NMA datasets, with relative risk as the measure of treatment effect.

Percentile from Cumulative incidence of a magnitude change tipping point (% in 112 pairs)

median (Percentiles) Threshold = 15% Threshold = −15% Threshold = 30% Threshold = −30%

0% (50%) 4 (3.6%) 2 (1.8%) 2 (1.8%) 2 (1.8%)
25% (25%, 75%) 6 (5.4%) 2 (1.8%) 2 (1.8%) 2 (1.8%)
40% (10%, 90%) 20 (17.9%) 10 (8.9%) 4 (3.6%) 2 (1.8%)
45% (5%, 95%) 24 (21.4%) 16 (14.3%) 9 (8%) 6 (5.4%)
47.5% (2.5%, 97.5%) 24 (21.4%) 21 (18.8%) 17 (15.2%) 9 (8%)
49% (1%, 99%) 29 (25.9%) 22 (19.6%) 20 (17.9%) 11 (9.8%)
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across the 14 NMAs that exhibited such magnitude change tipping points. These interval conclusion
change and magnitude change tipping points indicated that the statistical conclusion of relative effect
for these treatment pairs may be sensitive to some assumed correlation values within the realm of
plausibility.

It is worth noting that among the 14 selected datasets, 8 out of 13 pairs that exhibited an interval
conclusion change tipping point had limited or no (≤ 1) direct comparisons, as shown in Figure S1
in Appendix 2 of the Supplementary Material. This underscored the importance of the tipping point
analysis when drawing conclusions from NMA for treatment pairs with few direct comparisons.

4.2. Results of the case study

To graphically illustrate the tipping point analysis in the whole range of correlation that makes the
covariance matrix positive definite, we examined the case study Trikalinos2009, expanding the interval
conclusion change and magnitude change tipping point search region to encompass the values from
−0.33 to 0.99, with adjacent values 0.03 units apart. In the initial analysis, the estimated correlation
with a 95% credible interval was 0.875 (0.622, 0.982). Figure 5 displays the plots for both interval
conclusion change and magnitude change tipping points of the RR, along with the density plot of the
correlation estimated in Step 1. Note that treatment pairs without an interval conclusion change tipping
point within the search domain were not shown in the figure.

In the interval conclusion change tipping point plot in Figure 5 (Panel II), a transition from green
to blue denotes the specific tipping point for each treatment pair. The location of the tipping point also
matters: the closer the interval conclusion change tipping point relative to the median of the estimated
correlation, the more probable that the tipping point may be achieved, and thus the more likely the
interval conclusion change may occur. Referring to the density plot of the estimated correlation, the
order of interval conclusion change tipping points for the three treatment pairs, from highest to lowest
density, was BMS vs. medical therapy, DES vs. medical therapy, and PTCA vs. medical therapy. This
sequence also reflects the probability of an altered interval conclusion. Consequently, the RR between
BMS and medical therapy was more sensitive to changes in correlation parameters. This made it more
likely to shift toward strong evidence supporting the presence of a treatment effect, compared to DES
and PTCA. If such a shift occurred, the RR would fall below 1, suggesting a better treatment effect of
BMS relative to medical therapy.

In the magnitude change tipping point plot, the points where the graphs intersect the horizontal grey
lines denote the tipping points for each treatment pair. For instance, considering a threshold at −15%
and referencing the density plot of the estimated correlation, the magnitude change tipping points for
the three treatment pairs, in descending order of the density, were DES vs. medical therapy, BMS vs.
medical therapy, and PTCA vs. medical therapy. This order implied the potential for a decrease in
the population-averaged RR compared to the initial analysis. To fully understand the implications, the
magnitude change tipping point plot should be interpreted alongside the interval conclusion change
tipping point plot. For example, while a change in the interval conclusion for BMS vs. medical therapy
was more probable as the true correlation deviates from the estimated correlation in the AB-NMA
model, the magnitude of the mean RR remained fairly stable.

5. Discussion

In this article, we proposed a novel tipping point analysis to assess the robustness of treatment effect
conclusions, focusing on interval conclusion change and magnitude change, based on the varying
correlation strengths between treatments in an AB-NMA. This proposed tipping point analysis was
carried out on 14 NMA datasets, selected based on outcome type, the count of treatments, and the
number of studies within each network. Our findings highlighted that occurrences of tipping points,
in terms of both interval conclusion change and magnitude change, may be common. To elaborate
more details on the proposed analysis, we focused on one specific NMA dataset as the case study,
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Figure 5. Results of the case study.
Note: The plots from top to bottom panels are the density plot of the estimated correlation in Step 1
(Panel I), the plot of the interval conclusion change tipping point of the relative risk in three treatment
pairs (Panel II), and the plot of magnitude change tipping point of the relative risk in three treatment
pairs (Panel III). Capital letters indicate the treatment. A = medical therapy; B = PTCA; C = BMS;
D = DES. In Panel II, the red color indicates the relative risk estimated in Step 1, the green color
indicates that the interval conclusion is the same as the conclusion in Step 1, and the blue color
indicates that the interval conclusion is opposite to the conclusion in Step 1. In Panel III, the vertical
line indicates the median correlation at 0.875 estimated in Step 1.

visually illustrating the tipping point analysis results and interpreting the results in the context of the
clinical application. Compared to our previous work on pairwise meta-analysis,30 this study extends the
concept of tipping point to the more complex framework of NMA. It incorporates more comprehensive
considerations of the variance–covariance matrix and introduces a generalized tool for identifying
tipping points. The proposed method is also applicable to AB pairwise meta-analysis, as it represents a
special case of AB-NMA involving only two treatments within the network.
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Our analysis of treatment pairs with an interval conclusion change tipping point revealed that the
majority (8 out of 13) had limited or no direct comparisons (≤ 1). This finding highlights the critical
role of tipping point analysis in addressing uncertainties in NMAs where direct comparisons among
treatments are sparse. By identifying and examining tipping points, researchers can better understand
the robustness of the network’s findings and assess how sensitive the results are to assumptions about
the correlation. Such insights are particularly valuable in networks with limited data, where reliance
on indirect evidence is greater. However, sparsity is not the only factor necessitating this sensitivity
analysis. Notably, we observed that three treatment pairs with interval conclusion change tipping points
had more than 10 direct comparisons. This highlights that tipping point analysis remains useful even in
networks where sparsity is not a significant concern. We recommend incorporating the proposed tipping
point analysis as a standard component of AB-NMA to complement the findings in treatment effects
and comment on the robustness of the conclusion across the possible range of correlation, particularly
for networks with sparse direct comparisons.

Moreover, we also recommend incorporating the proposed method for networks with a wide 95%
credible interval for the treatment correlation parameter. For such networks, the wide credible intervals
indicate substantial uncertainty in the estimation of the correlation structure, and the potential range
for encountering a tipping point increases, which reinforces the need for the proposed analysis to
supplement an NMA exhibiting that characteristic.

To draw a holistic conclusion, it is also important to consider additional factors. First, clinically
meaningfulness should be considered once a tipping point is identified within the high-density region
of the correlation parameter. If the assumed correlation value at the tipping point lacks biological
plausibility, a robust conclusion may still be reached. Second, while a dichotomized conclusion about
the strength of evidence such as the statistical significance and the interval conclusion can provide
useful insights, it should not be interpreted in isolation but rather considered alongside effect sizes,
the length of confidence/credible intervals, and the clinical or practical relevance of the findings. Since
the reliance on statistical significance as a sole criterion for drawing conclusions about treatment effects
has been widely debated due to its inherent limitations and the arbitrary nature of cut-off values like
p-value < 0.05.38 We acknowledge this ongoing discussion and emphasize the importance of a holistic
approach when interpreting results, particularly in the context of NMA, where multiple assumptions
and uncertainties are present. Last but not least, NMA is most justifiable under the evidence consistency
assumption, which is defined as the agreement between direct and indirect sources of evidence,39

Violating this assumption may result in a biased treatment effect estimation,40 and may also impact
the conclusion of the proposed sensitivity analysis. Assessment of evidence inconsistency may be
considered before conducting the sensitivity analysis.

The proposed approach and our investigation have some limitations that may present opportunities
for further expansion in future research. Firstly, our proposed method only focused on the exchangeable
correlation structure, assuming a homogeneous correlation across all treatment pairs. This choice
was in response to the limitation of sparse data in estimating more complex correlation structures.
Consequently, our model may not be applicable to other correlation structures with the heterogeneous
correlation assumption.

Secondly, this article focused specifically on the AB-NMA model for binary outcomes. However,
the proposed method can be adapted for other types of outcomes with appropriate modifications. For
instance, in the context of continuous outcomes, the AB-NMA model framework proposed by Zhang
et al.41 and Wang et al.21 could be adopted and modified, and the null value for the interval conclusion
would need to be adjusted to align with the evaluation of treatment effects for continuous data.

Thirdly, our method was specifically tailored to a single outcome and focused exclusively on the
correlation parameter under a uniform prior. Expanding this approach to accommodate multivariate
outcomes in NMAs and incorporating meta-regression frameworks could enhance its applicability and
relevance in broader contexts. Additionally, the methodology for identifying tipping points may be
transferrable to other key parameters of interest in different settings, providing a valuable sensitivity
analysis tool to evaluate the robustness of conclusions across a wide range of applications.
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Lastly, the impact of evidence inconsistency on the proposed method is complex and may require
further investigation as future work. The impact may depend on the direction of the discrepancy
between the direct and indirect evidence, and factors such as the number of studies in each evidence
loop within the network, and the presence and degree of heterogeneity,39 may also impact the estimation
of correlation parameter and need to be carefully accounted for. Moreover, given the inherent challenges
of detecting inconsistency due to the low power of available tests and multiplicity of evidence
loops,42,43 empirical datasets alone may be insufficient. Therefore, simulation studies may be necessary
to systematically explore the impact of evidence inconsistency under different scenarios.

Author contributions. Z.W.: Data curation, formal analysis, methodology, software, visualization, writing—original draft
preparation, writing—review and editing. T.A.M.: Methodology, supervision, writing—review and editing. W.H.: Writing—
review and editing. L.L.: Data curation, funding acquisition, writing—review and editing. L.S.: Funding acquisition, writing—
review and editing. H.C.: Conceptualization, methodology, supervision, funding acquisition, writing—review and editing. All
co-authors contributed materially to the design, analysis, interpretation, composition and/or revision of this article. All co-
authors have reviewed, revised, and edited the article. All the authors have approved the article and agree to its submission and
publication.

Competing interest statement. The authors declare that no competing interests exist.

Data availability statement. The data that support the findings of this study are openly available in the R package “nmadb”
at https://cran.r-project.org/web/packages/nmadb/index.html. We also would like to provide a warning on the data discrepancy
in the “nmadb” package. We observed certain inconsistencies between the NMA datasets from the “nmadb” package and the
data presented in the original papers. For instance, the first author of the Furukawa2014 dataset was mistakenly labeled as
Kingdomawa in the “nmadb” package, and there was a discrepancy in the number of studies recorded (48 in “nmadb” vs. 49 in
the original paper).

Funding statement. This research was partially supported by the National Center for Advancing Translational Sciences grant
UL1 TR002494 (H.C.), the National Library of Medicine grant R01 LM012982 (Z.W., L.L., L.S., and H.C.), and the National
Institute of Mental Health grant R03 MH128727 (L.L.) of the US National Institutes of Health. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. T.M. is
thankful for the support of Medtronic Inc. in the form of a Faculty Fellowship.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/rsm.2025.24.

References
[1] Dias S. Network Meta-Analysis for Decision Making. Hoboken, NJ: Wiley; 2018.
[2] Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorpo-

rating network meta-analyses of health care interventions: Checklist and explanations. Ann. Internal Med. 2015;162(11):
777–784.

[3] Mills EJ, Ioannidis JPA, Thorlund K, Schünemann HJ, Puhan MA, Guyatt GH. How to use an article reporting a multiple
treatment comparison meta-analysis. JAMA. 2012;308(12): 1246–1253.

[4] Mills EJ, Thorlund K, Ioannidis JPA. Demystifying trial networks and network meta-analysis. BMJ. 2013;346: f2914.
[5] Cipriani A, Higgins JP, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Ann. Internal

Med. 2013;159(2): 130–137.
[6] Lumley T. Network meta-analysis for indirect treatment comparisons. Stat. Med. 2002;21(16): 2313–2324.
[7] Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat. Med. 2004;23(20):

3105–3124.
[8] Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J. Amer. Stat. Assoc. 2006;101(474):

447–459.
[9] Lu G, Ades A. Modeling between-trial variance structure in mixed treatment comparisons. Biostatistics. 2009;10(4):

792–805.
[10] Zhang J, Carlin BP, Neaton JD, et al. Network meta-analysis of randomized clinical trials: Reporting the proper summaries.

Clin. Trials. 2014;11(2): 246–262.
[11] Hong H, Chu H, Zhang J, Carlin BP. A Bayesian missing data framework for generalized multiple outcome mixed treatment

comparisons. Res. Synth. Methods. 2016;7(1): 6–22.
[12] Zhang J, Chu H, Hong H, Virnig BA, Carlin BP. Bayesian hierarchical models for network meta-analysis incorporating

nonignorable missingness. Stat. Methods Med. Res. 2017;26(5): 2227–2243.
[13] Lin L, Zhang J, Hodges JS, Chu H. Performing arm-based network meta-analysis in R with the pcnetmeta package. J. Stat.

Softw. 2017;80(5): 1–25.

https://doi.org/10.1017/rsm.2025.24 Published online by Cambridge University Press

https://cran.r-project.org/web/packages/nmadb/index.html
https://doi.org/10.1017/rsm.2025.24
https://doi.org/10.1017/rsm.2025.24


Research Synthesis Methods 15

[14] Welton NJ. Evidence Synthesis for Decision Making in Healthcare. Chichester: John Wiley & Sons; 2012.
[15] Lin L, Chu H, Hodges JS. Sensitivity to excluding treatments in network meta-analysis. Epidemiology. 2016;27(4):

562–569.
[16] White IR, Turner RM, Karahalios A, Salanti G. A comparison of arm-based and contrast-based models for network meta-

analysis. Stat. Med. 2019;38(27): 5197–5213.
[17] Chu H, Lin L, Wang Z, Wang Z, Chen Y, Cappelleri JC. A review and comparison of arm-based versus contrast-based

network meta-analysis for binary outcomes—Understanding their differences and limitations. Comput. Stat. 2024;16:
e1639.

[18] Senn S. Hans van Houwelingen and the art of summing up. Biom. J. 2010;52(1): 85–94.
[19] Nikolakopoulou A, Chaimani A, Veroniki AA, Vasiliadis HS, Schmid CH, Salanti G. Characteristics of networks of

interventions: A description of a database of 186 published networks. PLoS One. 2014;9(1): e86754.
[20] Wang Z, Lin L, Hodges JS, Chu H. The impact of covariance priors on arm-based Bayesian network meta-analyses with

binary outcomes. Stat. Med. 2020;39(22): 2883–2900.
[21] Wang Z, Lin L, Hodges JS, MacLehose R, Chu H. A variance shrinkage method improves arm-based Bayesian network

meta-analysis. Stat. Methods Med. Res. 2021;30(1): 151–165.
[22] Yan X, Lee S, Li N. Missing data handling methods in medical device clinical trials. J. Biopharm. Stat. 2009;19(6):

1085–1098.
[23] Liublinska V, Rubin DB. Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial.

Stat. Med. 2014;33(24): 4170–4185.
[24] Lipkovich I, Ratitch B, O’Kelly M. Sensitivity to censored-at-random assumption in the analysis of time-to-event endpoints.

Pharm. Stat. 2016;15(3): 216–229.
[25] VanderWeele TJ, Ding P. Sensitivity analysis in observational research: Introducing the E-value. Ann. Internal Med.

2017;167(4): 268–274.
[26] Mehrotra DV, Liu F, Permutt T. Missing data in clinical trials: Control-based mean imputation and sensitivity analysis.

Pharm. Stat. 2017;16(5): 378–392.
[27] Gorst-Rasmussen A, Tarp-Johansen MJ. Fast tipping point sensitivity analyses in clinical trials with missing continuous

outcomes under multiple imputation. J. Biopharm. Stat. 2022;32(6): 942–953.
[28] Broeke G, Voorn G, Ligtenberg A. Which sensitivity analysis method should I use for my agent-based model? J. Artif. Soc.

Soc. Simul. 2016;19(1): 5.
[29] Zeeuw A, Li CZ. The economics of tipping points. Environ. Res. Econ. 2016;65(3): 513–517.
[30] Han W, Wang Z, Xiao M, He Z, Chu H, Lin L. Tipping point analysis for the between-arm correlation in an arm-based

evidence synthesis. BMC Med. Res. Methodol. 2024;24(1): 162.
[31] Zeger SL, Liang KY, Albert PS. Models for longitudinal data: A generalized estimating equation approach. Biometrics.

1988;44(4): 1049–1060.
[32] Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006;1(3): 515–533.
[33] Carlin BP, Louis TA. Bayesian methods for data analysis, 3rd ed . New York, NY: Chapman and Hall/CRC; 2008.
[34] Petropoulou M, Nikolakopoulou A, Veroniki AA, et al. Bibliographic study showed improving statistical methodology of

network meta-analyses published between 1999 and 2015. J. Clin. Epidemiol. 2017;82: 20–28.
[35] Papakonstantinou T. nmadb: Network meta-analysis database API. 2019. R package version 1.2.0.
[36] Trikalinos TA, Alsheikh-Ali AA, Tatsioni A, Nallamothu BK, Kent DM. Percutaneous coronary interventions for non-acute

coronary artery disease: A quantitative 20-year synopsis and a network meta-analysis. Lancet. 2009;373(9667): 911–918.
[37] Bucher HC, Hengstler P, Schindler C, Guyatt GH. Percutaneous transluminal coronary angioplasty versus medical treatment

for non-acute coronary heart disease: Meta-analysis of randomised controlled trials. BMJ. 2000;321(7253): 73–77.
[38] Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p < 0.05”. Amer. Stat. 2019;73(sup1): 1–19.
[39] Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. Int. J.

Epidemiol. 2013;42(1): 332–345.
[40] Song F, Xiong T, Parekh-Bhurke S, et al. Inconsistency between direct and indirect comparisons of competing interventions:

Meta-epidemiological study. BMJ. 2011;343: d4909.
[41] Zhang J, Fu H, Carlin BP. Detecting outlying trials in network meta-analysis. Stat. Med. 2015;34(19): 2695–2707.
[42] Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis:

Concepts and models for multi-arm studies. Res. Synth. Methods. 2012;3(2): 98–110.
[43] Lin L. Evidence inconsistency degrees of freedom in Bayesian network meta-analysis. J. Biopharm. Stat. 2021;31(3):

317–330.
[44] Yang Z, Ye X, Wu Q, Wu K, Fan D. A network meta-analysis on the efficacy of 5-aminosalicylates, immunomodulators

and biologics for the prevention of postoperative recurrence in Crohn’s disease. Int. J. Surg. 2014;12(5): 516–522.
[45] Mills EJ, Wu P, Lockhart I, Wilson K, Ebbert JO. Adverse events associated with nicotine replacement therapy (NRT)

for smoking cessation. A systematic review and meta-analysis of one hundred and twenty studies involving 177,390
individuals. Tobacco Induc. Dis. 2010;8: 1–15.

[46] Hutton B, Joseph L, Fergusson D, Mazer CD, Shapiro S, Tinmouth A. Risks of harms using antifibrinolytics in cardiac
surgery: Systematic review and network meta-analysis of randomised and observational studies. BMJ. 2012;345: e5798.

[47] Eisenberg MJ, Filion KB, Yavin D, et al. Pharmacotherapies for smoking cessation: A meta-analysis of randomized
controlled trials. CMAJ. 2008;179(2): 135–144.

https://doi.org/10.1017/rsm.2025.24 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.24


16 Wang et al.

[48] Furukawa TA, Noma H, Caldwell DM, et al. Waiting list may be a nocebo condition in psychotherapy trials: A contribution
from network meta-analysis. Acta Psychiatr. Scand. 2014;130(3): 181–192.

[49] Greco T, Calabrò M, Covello R, et al. A Bayesian network meta-analysis on the effect of inodilatory agents on mortality.
British J. Anaesth. 2015;114(5): 746–756.

[50] Tadrous M, Wong L, Mamdani M, et al. Comparative gastrointestinal safety of bisphosphonates in primary osteoporosis:
A network meta-analysis. Osteoporos. Int. 2014;25: 1225–1235.

[51] Moore RA, Derry S, McQuay HJ. Indirect comparison of interventions using published randomised trials: Systematic
review of PDE-5 inhibitors for erectile dysfunction. BMC Urol. 2005;5(1): 1–16.

[52] Danchin N, Marzilli M, Parkhomenko A, Ribeiro JP. Efficacy comparison of trimetazidine with therapeutic alternatives in
stable angina pectoris: A network meta-analysis. Cardiology. 2011;120(2): 59–72.

[53] Gafter-Gvili A, Fraser A, Paul M, Leibovici L. Meta-analysis: antibiotic prophylaxis reduces mortality in neutropenic
patients. Ann. Internal Med. 2005;142(12 I): 979–995.

[54] Puhan MA, Bachmann LM, Kleijnen J, Ter Riet G, Kessels AG. Inhaled drugs to reduce exacerbations in patients with
chronic obstructive pulmonary disease: A network meta-analysis. BMC Med. 2009;7: 1–14.

[55] Edwards SJ, Clarke MJ, Wordsworth S, Welton NJ. Carbapenems versus other beta-lactams in the treatment of hospitalised
patients with infection: A mixed treatment comparison. Curr. Med. Res. Opin. 2009;25(1): 251–261.

[56] Wang L, Baser O, Kutikova L, Page JH, Barron R. The impact of primary prophylaxis with granulocyte colony-stimulating
factors on febrile neutropenia during chemotherapy: A systematic review and meta-analysis of randomized controlled trials.
Support. Care Cancer. 2015;23: 3131–3140.

Cite this article: Wang Z, Murray TA, Han W, Lin L, Siegel LK, Chu H. Tipping point analysis in network meta-analysis.
Research Synthesis Methods. 2025;0: 1–16. https://doi.org/10.1017/rsm.2025.24

https://doi.org/10.1017/rsm.2025.24 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.24
https://doi.org/10.1017/rsm.2025.24

	1 Introduction
	2 Statistical analysis methods
	2.1 AB-NMA model
	2.2 Method for tipping point analysis

	3 Dataset selection
	3.1 Dataset screening and selection
	3.2 Dataset of the case study

	4 Results
	4.1 Results of the selected NMA datasets
	4.2 Results of the case study

	5 Discussion
	References

