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QUASI-HEREDITARY SKEW GROUP ALGEBRAS

ANNA RODRIGUEZ RASMUSSEN

Abstract. Given an algebra and a finite group acting on it via automor-
phisms, a natural object of study is the associated skew group algebra. In
this article, we study the relationship between quasi-hereditary structures on
the original algebra and on the corresponding skew group algebra. Assuming
a natural compatibility condition on the partial order, we show that the skew
group algebra is quasi-hereditary if and only if the original algebra is. Moreover,
we show that in this setting an exact Borel subalgebra of the original algebra
which is invariant as a set under the group action gives rise to an exact
Borel subalgebra of the skew group algebra and that under this construction,
properties such as normality and regularity of the exact Borel subalgebra are
preserved.

§81. Introduction

Quasi-hereditary algebras are algebras equipped with a partial order on the isomorphism
classes of simples which fulfills certain additional properties. They were first introduced by
Scott in [25], and then became a central notion in the theory of highest weight categories,
initiated by Cline, Parshall, and Scott in [10]. The primary motivation of [10] came from
the theory of representations of semisimple algebraic groups. Among natural examples of
quasi-hereditary algebras arising from this area are the Schur algebras of symmetric groups
and algebras underlying blocks of Bernstein—Gelfand—Gelfand category O associated with
a semisimple complex Lie algebra g.

Many other families of quasi-hereditary algebras of significant interest come from
representation theory of finite-dimensional algebras itself. Among these are all finite-
dimensional algebras of global dimension less than or equal to 2 [13, Th. 2|, in particular
path algebras of quivers and Auslander algebras.

In analogy to Bernstein—Gelfand—Gelfand category O, given a quasi-hereditary algebra
A, there is a set of A-modules known as the standard modules over A, which mimics the
structure and properties of Verma modules over a semisimple complex Lie algebra g.
Similarly to the setting of category O, the category F(A) of A-modules admitting a
filtration by standard modules is of particular interest. By the Dlab—Ringel reconstruction
theorem [14], the algebra A together with its quasi-hereditary structure can be reconstructed
from F(A).

Recall that Verma modules over g are defined by induction from simple finite-dimensional
modules over a Borel subalgebra. In analogy, Koenig introduced in [17] the concept of an
exact Borel subalgebra B of a quasi-hereditary algebra A, which is a directed subalgebra
of A such that, in particular, the induction from B-modules to A-modules maps simple
B-modules to standard A-modules, so that we obtain a bijection between isomorphism
classes of simple B-modules and standard A-modules. Additionally, one requires the
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2 A. RODRIGUEZ RASMUSSEN

induction functor to be exact, whence the name, which enables us to transfer homological
information from modB to F(A). Together, these conditions allow us to describe the
structure of F(A) using an exact Borel subalgebra.

A fundamental theorem in the study of exact Borel subalgebras of quasi-hereditary
algebras is that of Koenig, Kiilshammer, and Ovsienko, proved in [18], which states that
every quasi-hereditary algebra is Morita equivalent to a quasi-hereditary algebra with an
exact Borel subalgebra.

Quasi-hereditary algebras also feature in the work of Chuang and Kessar in [6], which
was later used by Chuang and Rouquier [7] in their proof of Broué’s Abelian Defect Group
conjecture for symmetric groups. There, the quasi-hereditary algebras that appear are Schur
algebras corresponding to blocks of the group algebra of the symmetric group. Of central
interest in this setting are the RoCK blocks. These are blocks of a given weight w which are
Morita equivalent to the wreath product of the principal block with the symmetric group
Sw- The Schur algebras corresponding to these blocks are then also Morita equivalent to
the wreath product of the Schur algebra corresponding to the principal block with the
symmetric group (see [8, Th. 5.1]). This enables Chuang and Rouquier to use previous
results by Chuang and Tan in [9] on the wreath products of quasi-hereditary algebras with
symmetric groups, something which was later again studied by Chan in [5].

Wreath products of quasi-hereditary algebras appear again in a more recent article by
Evseev and Kleshchev [15], which generalizes the result of Chuang and Rouquier from
the group algebra of the symmetric group to arbitrary Hecke algebras. Here, the quasi-
hereditary algebras considered are zigzag algebras.

Recall that the wreath product algebra A5, of an algebra A with a symmetric group S,
is isomorphic to the skew group algebra A®™ % S,,. Thus, one can hope that, after additional
investigation of the structure of tensor products of quasi-hereditary algebras, results on skew
group algebras of quasi-hereditary algebras may be applied to wreath product algebras of
quasi-hereditary algebras.

A skew group algebra Ax G is an algebra constructed from an algebra A with an action
by a group G in the following way:

e As a k-vector space, AxG := AR kG.
e Multiplication is given by

(a®g)-(a'®g"):=ag(a)®gg".

The structure of skew group algebras, including their Morita equivalence class, their
Hochschild cohomology, and their Yoneda algebra, has been studied extensively (see, e.g.,
[11], [20], [21], [23], [26]). The preservation of various structural properties of A under the
skew group construction, such as global dimension, the property of being an Auslander
algebra, or the property of being Calabi—Yau, has also been investigated by many authors,
including [19], [23], [27].

In this article, we examine the relationship between possible quasi-hereditary structures
on A and those on Ax G. Further, we study the relationship between the exact Borel
subalgebras of the two.

Assuming a natural compatibility of the group action with the partial order, we show
that <4 induces a partial order <4.¢ on the isomorphism classes of simple A x G-modules,
and we obtain the following theorem.
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THEOREM 4.14. The algebra (A,<4) is quasi-hereditary if and only if (AxG,<a.q) is
quasi-hereditary.

Moreover, again assuming compatibility with the G-action, we can also relate exact Borel

subalgebras of A and Ax*G.

THEOREM 4.17. Let B C A be a subalgebra of A such that g(B) = B for every g € G.
Then (B,<p) is an exact Borel subalgebra of (A,<a) if and only if (BxG,<p«q) is an
exact Borel subalgebra of (AxG,<axq)-

The structure of the article is as follows. Section 2 contains a brief account of skew group
algebras, including a description of the simple A * G-modules in terms of simple A-modules
and irreducible representations of certain subgroups of G. In Section 3, we recall some of
the central results about quasi-hereditary algebras and exact Borel subalgebras. Section 4
is dedicated to the synthesis of the two concepts and contains our main results. Finally,

=

in Section 5, we describe some exact Borel subalgebras of Auslander algebras of certain
Nakayama algebras, exemplifying our methods from preceding sections.

Notation

Let k be an algebraically closed field. All algebras are assumed to be finite-dimensional
k-algebras, and all modules are assumed to be finite-dimensional as k-vector spaces. Unless
otherwise stated, all modules are assumed to be left modules. Tensor products, if not
otherwise indicated, are tensor products over k. We denote by D := Homy(—,k) the usual
k-duality.

For a module M and an indecomposable module N over some algebra A, we write N|M
if and only if N is isomorphic to a direct summand of M.

We denote by Sim(A) a set of representatives of the isomorphism classes of the simple
A-modules, and for S € Sim(A) we write [M : S] for the multiplicity of S in M. Moreover,
for any module M, we pick a projective cover Pyy.

For any algebra A, we denote by rad the functor

rad : mod A — mod A
mapping a module to its radical and by top the functor
top : mod A — mod A

mapping a module to its top. Recall that top(M) = M/rad(M) for every M € mod A.

82. Skew group algebras

Throughout, let A be a finite-dimensional algebra over k and G be a finite group acting
on A such that |G| does not divide the characteristic of k. In this section, we will repeat some
basic definitions and results about skew group algebras. For a more detailed introduction,
see, for example, [22], [23].

DEFINITION 2.1. For an A-module M, we define gM := M as a k-vector spaces together
with the multiplication

a-gpm =g t(a)m.

Moreover, for an A-linear map f: M — N, we define g(f)(m) := f(m).
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In this way, every g € G gives rise to an autoequivalence
mod A — mod A, M — gM, f — g(f)
such that the map G — Aut(mod A) is a group homomorphism.

The module gM is also sometimes denoted 9M (see, e.g., [23, p. 235]).
However, we have chosen this notation, so that we may identify gM with the set of formal
products {gm : m € M} and then be able to write

a-gm=gg '(a)m.
DEFINITION 2.2 [23, p. 224]. The skew group algebra A« G is defined as
AxG:=ARkG
as a k-vector space together with the multiplication
(a®g) (d'®g') :=ag(a)®gg"

DEFINITION 2.3. Let M be an A-module. We say that M has a G-action if there are
isomorphisms of A-modules

tré\/[ gM — M
such that

try og(tr}) = tr%
for all g,h € M.

REMARK 2.4. Let M,N be two A-modules with a G-action. Then G acts on
Hom 4 (M, N) via

g-f =trg og(f)o (trg")~".

We call a homomorphism f € Hom 4 (M, N) compatible with the actions on M and N, if it
is a fixed point of the induced action on Hom 4 (M, N).

Moreover, note that if M = NNV, then the action of G on End 4 (M) is an action of algebra
automorphisms.

PROPOSITION 2.5 [22, Prop. 4.8].  There is a one-to-one correspondence between modules
(M, (tr)")geq) with a G-action and AxG-modules given by

g-m::try(m),

which induces an equivalence of categories between the A+ G-modules and the A-modules
with a G-action together with the A-linear maps compatible with this action.

REMARK 2.6. Note that with this identification, the G-action on Hom 4 (M, N) for two
A x G-modules defined in Remark 2.4 can be written as

g-f(m)=g(f(g~"'m)).
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DEFINITION 2.7. Let M be an A-module. Then we define an A * G-module kG ® M via
g -(gam):=g'gem
a(gom):=gxg ' (a)m

for g, € G,m e M,a € A.
Moreover, if H is a subgroup of G and M is an A+ H module, then M is in particular a
k H-module, so that we can define an A xG-module kG ® g M in the same way.

REMARK 2.8. Note that if H is a normal subgroup of G, then the G-action on A induces
a G-action on Ax H via

gla®h) =g(a)@ghg™".

DEFINITION 2.9. Let M be an Ax G-module, and let V be a kG-module. Then we
define an A* G-module M ®@V via

g-(mM®v) :=gm®gv

a(m®u) :==am®u

forge G,me M,v eV and a € A.
If f: M — N is a homomorphism of A xG-modules, then

fRIdy : MV >NV
is a homomorphism of A *xG-modules, and
—®V modA+*G > modA«*G,M— MV, f— fRidy

defines an additive functor.
Moreover, note that —@ (Ve V)2 -Vae -V and — (Ve V)2 (- V)V

DEFINITION 2.10. We denote by
Ig:modA —-modAxG,M —kGRIM, f—idkg®f

the induction functor along G.
We denote by

Rg:modAxG — mod A, M 4 M
the canonical restriction functor. Moreover, if H is a subgroup of G, we denote by
Ig g :modAxH — modAxG,M —kG®xu M, frideg®f
the induction functor from Ax H to AxG and by
Rg g :mod AxG — mod Ax H, M + 5,1 M
the canonical restriction functor.
LEMMA 2.11 [23, Th. 1.1C]. We have rad(A*G) =rad(A4) kG.

The content of the following proposition is essentially a compilation of results in [23].
However, for the sake of convenience, we will give a quick proof.
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ProPOSITION 2.12. Let V be an indecomposable kG-module. Then the following
statements hold:

1. For any AxG-module M,
IcRc(M) = M ®kG;
i other words,
kGoM=MekG.
More precisely, there is a natural equivalence
IcRe = —®kG.
2. For any A-module M,

Rela(M) = EPgM.
geG

More precisely, there is a natural equivalence

Rglg = @g.

geG

Rag,Ig, and —®V are additive.

Rg,Ig, and — RV are exact and reflect exact sequences.
Rg,1q, and —®V preserve and reflect projective modules.
Rg,Iq, and —®V preserve and reflect injective modules.
Rg,Iq, and —®V preserve and reflect semisimple modules.

@ N oo w

We have natural isomorphisms I otop = topolg, Rgotop = topoRg, and (—®V)o
top X topo(— V).

Proof. 1. Let M be an A*G-module. Then we define an isomorphism
o) IgRg(M) :kG®A| M—->MkG,gdmm—gm®yg.

It is easy to check that this is an isomorphism of A G-modules and that o = (ans) s
defines a natural isomorphism.
2. Let M be an A-module. Then we define an isomorphism

B i Ralg(M) =4 kG M — @gM,g@m = (8ggm)grecs
geG

where d44 is the Kronecker delta of g and g¢'. It is easy to check that this is an
isomorphism of A-modules and that 5 = (8a)a defines a natural isomorphism.

3. This is obvious.

4. Rg¢ is a restriction functor and thus exact. Moreover, since tensor products over k are
exact, I and —®V are exact.

5. Since 4 is an A*G-module via g-a = g(a),

I6(A) 2 ARkG = A+G.

Since the projective modules in mod A are exactly the modules isomorphic to direct
sums of direct summands of A, and the projective modules in mod A * G are exactly the
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modules isomorphic to direct sums of direct summands of A x G, this implies that I
preserves projectives.

On the other hand, if M is an A-module such that I (M) is projective, then so
is Rolag(M) = @ cq9M, and since M = eM is a direct summand of €, gM, this
implies that M is projective. Similarly,

Ra(AxG) = PgA=|G|A.

geG

Since the projective modules in mod A are exactly the modules isomorphic to direct
sums of direct summands of A, and the projective modules in mod A * G are exactly the
modules isomorphic to direct sums of direct summands of A * G, this implies that R¢
preserves projectives. Moreover, if M is an A * G-module such that RgM is projective,
then so is I¢Rg (M) = M ®kG and since k| kG,

M=Mk|MakG.

This implies that M is projective.
Finally, since V is an indecomposable projective k G-module, it is isomorphic to a
direct summand of kG, so that

—-®V|-®kG = IgRg,

and thus —® V preserves and reflects projectives.

6. Since DkG = kG as a kG-module, this is analogous to the previous statement replacing
Aby DA and AxG by DAxG

7. Let S be a semisimple A-module. Then rad(A)S = (0) and hence

rad(A+G)Ig(S) = (rad(4) ®kG) kG® S =rad(A)(kG®S)
=Y kG®(g(rad(A))S) = > kG ® (rad(A)S) = (0),

geG geG

where the first equality follows from Lemma 2.11 and g(rad(A)) =rad(A) since G acts
on A via algebra automorphisms. Thus, I (S) is semisimple.
On the other hand, if S is a simple A« G module, then rad(A*G)S = (0) and hence

rad(A)Rg(S) =rad(A)S Crad(AxG)S = (0)

so that R (S) is semisimple. Thus, Rg preserves and reflects semisimple modules.
Since for every A*xG-module M we have

Re(M®V)=Rg(M)®V =2dimy(V)Rq(M),

this implies that —® V also preserves and reflects semisimple modules.

Moreover, if S is an A-module such that I¢(S) is semisimple, then so is Rgla(S)
and hence S, since S is a direct summand of Rela(S) = @ eq9S; and if S is an
A x G-module such that Rg(S) is semisimple, then so is IgRg(S) and hence S, since S
is a direct summand of I¢Rg(S) = S®kG.
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8. Let M be an A-module. Then, by Lemma 2.11,
rad(IgM) =rad(A*G)IcM = (rad(4) @k G) (kG ® M).

Since G acts on A via algebra automorphisms, we have g(rad(A)) =rad(A) for every
g € G. Thus,

(rad(4A) ®kG) (kG M) =kGRrad(A)M =kG®@rad(M) = Ig(rad(M)).

Since I is exact, we thus have I5 otop = topolg.
On the other hand, let M be an AxG-module. Then

Rg(rad(M)) = Rg((rad(A) @ G)M ) = Rg(rad(A)M ) =rad(A)Rg (M),

so that, since Rq is exact, we have Rg otop = topoR.
Finally, let M be an A * G-module. Then, by Lemma 2.11, we have

rad(M®@V)=rad(A*G)(M V)= (rad(4) 9kG)(M V)
= (rad(A*G)M)®@V =rad(M) V.

Thus, since —®V is exact, we have (—® V') otop = topo(—®V). U

COROLLARY 2.13. Let H be a subgroup of G, and let Z C G be a set of representatives
of G/H. Then the following statements hold:

Ig oIy is naturally equivalent to Ig.

Ry oRgy g is naturally equivalent to Rg.

Rg/g and Ig g are additive.

Rgyp and Ig g are exact and reflect exact sequences.
Rg g and Ig g preserve and reflect projective modules.
Re/g and Ig/g preserve and reflect injective modules.
Re/p and Ig g preserve and reflect semisimple modules.

R

Moreover, if H is a normal subgroup, then we additionally have

8. For any Ax H-module M

Reula n(M) = @zM.
z€EZ

More precisely, there is a natural equivalence

Re/pla/n = @2

z2€Z
Proof. 1-3. These are obvious.
4. Rg,p is a restriction functor and thus exact. Moreover, k H is semisimple, so that
tensoring over k H is exact.
5.—7. Since

Ig/H|Ig/HO(—®kH) g[@/HOIHORH gIGORH
and
Rg/H’(—®kH)ORG/H gIHORHORG/H gIHO}%G7

this follows from Proposition 2.12(5-7) for H and G.
8. This follows analogously to 2. in Proposition 2.12. O
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COROLLARY 2.14. Let L' be a simple Ax G-module. Then there is a simple A-module
L such that L'|IgL. On the other hand, if L is a simple A-module, then there is a simple
AxG-module L' such that L|RgL'.

Proof. Let L' be a simple Ax G-module. Then RgL' = @LeSim(A)[RGL/ : LIL is
semisimple and L’ is a summand of

L'ekG=IgRel'® @ [Rel':L]IGL.
LeSim(A)

Since L’ is simple, this implies that there is some L € Sim(A) such that L'|IgL.
The second statement is analogous. 0

2.1 An explicit description of the simples

Note that Definition 2.1 tells us that G acts on mod A via autoequivalences. In particular,
gL is simple for any simple A-module L, so that we obtain an induced action of G on Sim(A).
For L € Sim(A) denote by H, the stabilizer of the isomorphism class of L in G and let Zy,
be a set of representatives of G/H..

In this subsection, we will give an explicit description of the simples of A* G in terms
of simple A-modules L and simple representations of the corresponding stabilizers Hp,
rectifying a result in [21].

This description is not needed for our main results, but will make it possible to obtain
an explicit description of the standard modules of AxG (see Lemma 4.11).

LEMMA 2.15. For every isomorphism class of simple A-modules, there exists a repre-
sentative L which is Hy -equivariant.

Proof. Clearly, we can assume that G = Hy,. Moreover, since rad(A) acts as zero on L, we
can assume that A is semisimple. In this case, A is a direct product of matrix rings. Again,
the matrix rings not corresponding to L act via zero, so we can assume that A = Mat,, (k)
and L =Kk".

Now G acts on A via automorphisms, but since A is a matrix ring, all of these are inner,
so we obtain a group homomorphism ¢ : G — Gl, (k). Hence, L obtains the structure of an
Ax Hp-module via try: gL — L,z — ¢(g)x. 0

The following proposition is a rectification of Lemma 2 in [21].
PROPOSITION 2.16. The simple modules of AxG are exactly the modules of the form
kG®xm, (LRV)

for some irreducible k Hp,-module V and an Hp-equivariant simple A-module L. Two
modules kG ®@xp, (L®V) and kG @wp,, (L' @ W) of this form are isomorphic if and only
if there is g € G such that gL = L' and gV = W.

Proof.  First, we show that a module of the form kG ®y g, (L®V) is indecomposable if
V' is indecomposable. First, note that, using Corollary 2.13(8), we have an isomorphism

End ., (kG®yn, (LOV)) = @ Homawn, (2(L&V),kG @y, (LOV)),
zZEZL

[ (f::2(LeV) - kG®yh, (LOV),z20v— f(22Q)).cz
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of vector spaces. It is easy to see that this is in fact an isomorphism of k G-modules, where
the G-action on the left is given by conjugation, and the G-action on the right is given by

9(f::2(Le®V) = kG®xnH, (LOV)).cz
= (f1:2(L®V) = kG @xu, (LRV),2(x®v) = g(fy-1:(97 ' 2(x®))))zez-

Moreover, since kG Qy g, (LRV) = g(kG®xp, (L®V)) as an A Hy-module, we have an
isomorphism

P Homaum, (2(LRV),kG@xp, (LRV))

zZEZL

— @ Homgupy, (2(L®V),2(kG Rk, (LRV))),
z€EZL

(f.:2(LRQV) =2 kGRkp, (LROV)).cz
= (fL2(LRV) = 2kG@kh, (LRV),z > 2(27 f.(2))).

This is again an isomorphism of k G-modules, where the G-action on the right is given by

9(f2:2(LRV) = 2kG Rk, (LOV)).ez
=(9fg-12:2(L®V) = 2kG®xp, (LOV)).ez.

Furthermore, we have an isomorphism

@ Hom g, (2(L@V),2(kG @k g, (LV)))
2€Z1,

— P zHomaun, (LRV,KG @cm, (LRV)),
zZEZL

(fe:2(LeV) = 2(kGxH, (LRV))).ez
— (Z(Z_lfz LRV — kG@kHL (L®V)))zez,

which is again an isomorphism of k G-modules, where the G-action on the right is given by
9(z(f: : LRV = kG @k, (LOV)))zez = (2(fg-1,: LOV = kG @k, (LOV)))zez-
Finally, we have an isomorphism

P zHomaur, (LOV.KG @y, (LOV)) = kG @y g1, Homaup, (LOV,kG @1 pr, LOV),
ZEZL

(2(f: : LOV = kG &, (LOV)))zez = Y 20 f.

z€Z

of k G-modules, where the G-action on the right is given by left multiplication in kG. Now
if —¢ denotes the fix point functor under the G-action,

End (kG @, (LOV)) =Endasn, (kG @y, (LOV))E
~ (kG ®y g, Homarp, (LOV,KG @y a, (LOV)))E
=~ Homauwp, (LOVkKG®xp, (LRV)).
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Note that for z ¢ Hp,
HomA(L®V,2(L®V)) 2= dim(V)?Homu(L,2L) =0
so that for z ¢ Hp,
Hom g, (LR V,2(L®V)) CHoma(L®V,2(L®V)) = (0).
Thus,

Hom gupr,, (LOVKG @, (LOV)) = @D Homasn, (LOV,2(LRV))
zZEZ,

~End g, (L®V) ZEnda(Le V)Hr = (Enda (L) @ Endy (V)=

Since k = End a.p, (L) = End 4 (L), we have End (L) = k with the trivial G-action, so
the above is isomorphic to

(k®Endy(V))"* = Endy g, (V) 2 k.

Hence, kG ®x g, L®V is indecomposable. Since it is semisimple by Corollary 2.13(7), it is
thus simple.

To see that these are up to isomorphism all simple A % G-modules, note that by
Corollary 2.14, every simple A x G-module is a summand of kG ® L for some L € Sim(A)
and

kGRL=kGRyxy, kHL, QL =2kG®xpy, (LOKHL).

So decomposing k H, into indecomposable summands yields the claim.
Clearly, we have isomorphisms of A * G-modules

kG®Rxp, LOV - kGRxp, gLRgV,h@x@v— hgR®z®0.
Finally, suppose we have an isomorphism of A xG-modules
¢ :kG®xu, (LOV)—=kG®kn,, (L'@W).
Then, restricting to A, we obtain an isomorphism
Ra(p) : Ra(kG @k, (L®V)) = Rg(kG@xp,, (L' @W)).
Since

Rga (kG®kHL L®V @dlmk
ZEZL

and Rg (kG @yp,, (I'eoW))= € dim (W

z EZL/

the theorem of Krull-Remak-Schmidt thus yields a g € G such that gL = L. In particular,
Hyp = Hy and, since kG ®y gy, L& g W 2 kG @y g, gL® W, we have an isomorphism

¢ kG, (LeV) =>kGoy, (Leg 'W).
We can restrict this to Ax Hy, to obtain an isomorphism

P :Lev)— @ 2(Leg'Ww).

zE€EZL z€ZL

https://doi.org/10.1017/nmj.2024.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2024.11

12 A. RODRIGUEZ RASMUSSEN

Since LoV, L& g~ 'W are simple A * Hy-modules by the above, we conclude that we have
an isomorphism

¢ LoV =Log 'W
of Ax Hy-modules. Now note that
Hom .z, (LOV,L® g *W) = Homu(L®V,L®g tW)H:
>~ (Homy (L, L) ® Homy (V, g~ W)= = (Homy (V, g~ W)= = Homy g7, (V,g 7' W).
Hence, gV = W. O

The following is a counterexample to Lemma 2 in [21], which claims that every simple
A x G-module is isomorphic to a module of the form S® V where S is a simple AxG
submodule of the socle of A and V is an irreducible representation of G. The error in their
proof lies in the erroneous assumption that if S is a simple A x G submodule of the socle of
A, then Hom4(S,5) = k.

While this is in general false, it holds if, for example, all simple k G-modules are one-
dimensional, that is, if G is commutative. The reason for this is that in this case we have
for any simple A * G-module S and any irreducible representation V of G isomorphisms

End 4. (5 ©V) 2 Enda(S® V)9 = (Enda(S) @ End (V)¢
>~ (End4(S) ®k)Y =2 End 4.¢(S) 2k,

where G acts trivially on Endy (V) as Endy (V) 2k = Endyg(V) = Endy (V)% so that S@V
is irreducible. Thus, the result in [21, Lem. 2] holds in particular if G is commutative.

EXAMPLE 2.17. Consider k =C, A:=k° G := S5 acting on A via permutations of the
entries. A is semisimple and basic, and H; := Hy,, =S4, where L, is the simple corresponding
to the first copy of k, so that by the above proposition we have a simple A x G-module
kS5 @y s, (kx{0}*®@ V) for every irreducible representation V of Sy. In particular, since Sy
has an irreducible representation V of dimension 3, A*G has a simple module of dimension

dimy, (kS5 @y 5, (k x{0}*®@V)) = dimy (k S5/5,) dim V = 5-3 = 15.

Moreover, note that A is a simple A * G-module, and if W is an irreducible representation

of S5,
dimy (A ®@ W) = 5dim, W.

Since S5 has no irreducible representations of dimension 3, this implies that not all simple
AxG-modules are of the form A® W. Additionally, note that

Homu(A,A) = A 2£k.
COROLLARY 2.18. The indecomposable projective AxG-modules are exactly of the form
kG ®xm, (PLoV)

for some irreducible k Hy -module V. They are isomorphic if and only if there is g € G such
that gL=L",qV =W.
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Proof. Since VIkHp, kG®yxp, (PL®V) is a direct summand of kG® Py, as above, and
is therefore projective. Moreover, by Proposition 2.12(8),

top(kG®xp, (PL®V)) =kG®yxp, top(PL V)
=kG®yp, (top(PL)®@V)
=kG®xpu, (LRV).

By Proposition 2.16, this is simple, so that kG ®y g, (Pr, ® V') is indecomposable.
For any finite-dimensional algebra, we have a bijection between the isomorphism classes of
projective indecomposable modules and the isomorphism classes of simple modules given by

[P] = [top(P)].

Now since by Proposition 2.16 every simple A *G-module is isomorphic to a module of the
form kG ®xp, (L®V), and kG Qxp, (PL®V) is a projective indecomposable with top
kG ®x g, (L®V), every projective indecomposable A xG-module is isomorphic to a module
of the form kG ®y g, (L® V). Moreover, since two simple A G-modules kG Qy g, (L®V)
and kG ®xp,, (L' ® V') are isomorphic if and only if there is g € G such that gL = L',
gV =W, their projective covers kG @y, (P, ®V) and kG ®xp,, (P @ V') are also
isomorphic if and only if there is g € G such that gL = L',gV =W. U

83. Quasi-hereditary algebras

In this section, we shall repeat some standard definitions and results about quasi-
hereditary algebras, as introduced by [10], [25]. For an introduction to quasi-hereditary
algebras, see, for example, [14].

Let A be an algebra. Denote by Sim(A) the set of simple A-modules and suppose < is a
partial order on Sim(A).

REMARK 3.1. Suppose < is a partial order on the set Sim(A) of simple A-modules.
Then this induces a partial order on its additive closure add(Sim(A)) via

S<S' s L<L forall LIS, L'|S".
Thus, if < is a partial order on Sim(A), we will also use it to compare semisimple modules.

DEFINITION 3.2. [14, p. 3] We call a partial order < on Sim(A) adapted, if all
M € mod A with simple top top(M) = L and simple socle soc(M) = L', such that L and L’
are incomparable with respect to <, have a composition factor L such that L” > L and
L">1L.

LEMMA 3.3. 1. Let M be a module with a composition factor L'. Then there is a factor

module M’ of M with socle soc(M') = L'.

2. Let M be a module with a composition factor L'. Then there is a submodule M’ of M

with top top(M') = L.

Proof. 1. By definition of a composition factor, there is a factor module M" of M such
that we have an embedding ¢ : L' — M".

Now let N be a maximal submodule of M"” subject to N Nim(:) = (0). Then
M’ := M"/N is also a factor module of M. Denote by

T M —> M
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the canonical projection. Then mo¢: L’ — M’ is injective, so that L'|soc(M’).
Write soc(M’) = mou(L')®S. Then N C 7~ 1(S) and «(L')N7~1(S) = (0). Hence, by
maximality of N, 7=(S) = N, so that S = (0).

2. This is dual to 1. 0

LEMMA 3.4. The partial order < is adapted if and only if every module M which has a
composition factor L' such that L' is incomparable to every summand L of its top top(M)

has a composition factor L" and a composition factor L|top(M) which is a summand of
the top, such that L' > L.

L «— top(M)

L//

Proof. Suppose < is adapted, and let M be a module with a composition factor L’ such
that L’ is incomparable to every summand L of its top top(M).

By Lemma 3.3, M has a factor module M’ with simple socle L. Let L be any summand
of top(M’). Then, since M’ is a factor module of M, we have top(M’)|top(M). Hence,
L is also a summand of top(M), and thus in particular incomparable to L’. Moreover,
we can again apply Lemma 3.3 to obtain a submodule M” of M’ with simple top
top(M") = L. As M" is a submodule of M’ soc(M")|soc(M") = L', so that M" has simple
socle isomorphic to L’. Since L and L’ are incomparable, M"” thus has a composition
factor L"” > L,L’, and since L” is a composition factor of M”, which is a submodule of
a factor module of M, L” is also a composition factor of M. Hence, this proves the first
implication.

On the other hand, suppose that every module M which has a composition factor L’
such that L’ is incomparable to every summand of its top has a composition factor L” and
a composition factor L|top(M) such that L” > L, and let M be a module with simple top
L and simple socle L’ such that L and L’ are incomparable.

Then, by assumption, M has a composition factor L such that L” > L. Without loss of
generality, we can choose L” maximal with respect to L'’ > L. Then, by Lemma 3.3, M has
a submodule M’ with simple top top(M’) = L”. Since M has simple socle L', M’ also has
simple socle L’. Now, if L’ and L” were incomparable, then by assumption M’ would have
a composition factor L' > L”, which is a contradiction to the maximality of L”. Hence,
L' and L" are comparable. Since L” > L and L’ and L are incomparable, this implies that
L'<L". 0

DEFINITION 3.5. Let < be a partial order on Sim(A). Then, for every simple A-module
L, we define

Ap =P/ > im(p)

L'« L,p€Homa(PL/,Pr)
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and

Ap:=P/ > im(¢)

L’>L,QDEH0H]A(PL/,PL)

Denote by 7, : P, — Ap and 7 : Pp, — K’L the canonical projection. Moreover, write

A= @ Ar

LeSim(A)

and

A:: @ AL

LeSim(A)

and call (Ar)resim(a) the collection of standard modules and (AL)Lesml(A) the collection
of pseudostandard modules for (A, <).

Later, in case more than one algebra is involved, we will sometimes add a superscript to
A, A, Ap, and Ay indicating the respective algebra.

LEMMA 3.6. Let L € Sim(A). Then the following statements hold:

1. L' £ L for every summand L' of top(ker(wr)) and for every epimorphism
f:Pr— M such that L' £ L for every summand L' of top(ker(f)) we have an
epimorphism g : M — A such that 7, = go f.

2. L' < L for every composition factor L' of Ap and for every homomorphism
f:Pp, — M such that L' < L for every composition factor L' of M we have a
homomorphism g : A — M such that f =gony.

3. We have top(ker(wr))>L and for every epimorphism f:Pr,— M such that
top(ker(f)) > L we have an epimorphism g : M HAKL such that 7, = go f.

4. L' ¥ L for every composition factor L' of A, and for every homomorphism
f P, — M such that L' # L for every composition factor L' of M we have a
homomorphism g : A’L — M such that f =goTp.

Proof. 1. We have L’ £ L for every summand L’ of top(ker(ry,)) by definition. So let
f: P, — M be an epimorphism such that L’ £ L for every summand L’ of top(ker(f)).
Then we have a projection 7 : @L,anL/PL/ — ker(f) for some ny € Ny. Composing
with the embedding yields that

ker(f) C Z im(yp) = ker(mp,).

L' L,p€Homa (PL/,PL)

Hence, 7y, factors through f.

2. By definition, L’ < L for every composition factor L’ of Ar. So let f: Pp — M such
that L' £ L for every composition factor L' of M. Let L' £ L and let ¢ : P, — Py
Then, since all composition factors of M are less than or equal to L, fop = 0. Hence,
im(p) C ker(f), so that ker(ny) C ker(f) and thus f factors through 7.

3. This is analogous to 1.

4. This is analogous to 2. 0
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LEMMA 3.7. For every L,L’ € Sim(A) such that Ext' (AL, Ar) # (0) we have L' < L

Proof. By definition, the module A 1+ has a projective presentation

@rspnerPrr P, —— Al (0)
for some integers np» € Ny. Suppose Ext! (A7, Ar) # (0). Then
HOIIIA( @ ’I’LL//PL//,AL) 7& (0),
L//>L/
so that for some L"” > L/,
HOH’IA(PLH,AL) ;é (0)

Thus, L” is a composition factor of Ar. Now since every composition factor of Ay is less
than or equal to L, this implies L' < L"” < L. O

The following definition is due to [14]; it resembles the definition of an exceptional
collection, originating in the work of Beilinson [1], [2], developed in [3], [16], the only
difference being that condition 3. is here only required for Ext' instead of for Ext™ for
alln>1.

DEFINITION 3.8. Let < be a partial order on Sim(A). Then a standardizable set for
(A,<) is a family of modules M = (ML) esim(a) such that:

1. top(Mp)=L.
2. HOIHA(ML,ML/) 75 (O) =L< L.
3. Extly(Mp,Mp)#0)=L<L.
REMARK 3.9. Note that (A )y fulfills conditions 1. and 2. in the above definition. Thus,
by Lemma 3.7, if A, = Ay, for every L € Sim(A), then (Ar)r = (AL)r is a standardizable

set.

The following lemma tells us that (Ap)r = (ﬁ 1)1 if and only if < is adapted. Moreover,
the former is the case if and only if any refinement of our partial order will give rise to the
same set of standard modules. Thus, being adapted means that our partial order is, in a
sense, fine enough.

LEMMA 3.10. The following statements are equivalent:
Ap = Ay for every L € Sim(A).
. < is adapted.

(AL is a standardizable set.
HOHIA(AL/,AL) ;é (0) =1 < L.

Proof.

o=

1 = 2 Suppose Ap = A; for every L € Sim(A), and let M be an A-module with simple
top L and socle L’. Suppose that no composition factor L” of M is bigger than L.
Since L = top(M ), there is an epimorphism 7y, : Py, — M. Now since no composition
factor L” of M is bigger than L, Lemma 3.6 yields a homomorphism g : A L—M
such that mps = go7. In particular, ¢ is an epimorphism, so that, since every
composition factor of A ., = Ay is less than or equal to L, every composition factor
of M is less than or equal to L. In particular, L' and L are comparable.
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2 = 3 This holds by Remark 3.9.

3 = 4 This holds by definition.

4 = 1 Suppose that there is some L € Sim(A) such that Ap # Ar. Then A has some
composition factor L' £ L. Let L’ be a maximal such composition factor. Then
there is a nonzero homomorphism f: Py — A 1. Moreover, since L’ is a maximal
composition factor of Ar, we have L # L' for every composition factor L” of Ap.
Thus, Lemma 3.6 yields a homomorphism g : A L — A L such that f =go7y/. In
particular,

Hom (AL, AL) # (0). 0

ExAMPLE 3.11. Consider the algebra A given by the quiver

a—25p L,

with relations (8a) = J? and the partial order on Sim(A) = {L,, Ly, L.} given by L. < L,
and L. < L. Then the indecomposable projective modules are given by

P, = <Z) , Py = (ﬁ) and P, = (c),

SO 31 = P, for every i € {a,b,c}. In particular, HomA(Bb,ﬁa) # (0), so that (ﬁl)z is not
standardizable.
On the other hand, A, = Ly, Ay = Py, and A, = P., so that

Ext(A;,4;) = (0)

for all n > 1, i € {a,b,c} and j € {b,c}. Moreover,

T

(0) Py p Tesp "o, » (0)

is a projective resolution of L,, where r, and g denote right multiplication by « (resp. /)
and 7, is the canonical projection. Since Hom 4 (P, A,) = Hom 4 (Py, A.) = (0), this implies
that

Ext! (Aq,Ag) = (0) = Extl (Ag, A,).
Finally, since
7’;;) : HomA(Pb,Ab) — HomA(Pc,Ab)

is injective, we also obtain that Extl (A4, Ay) = (0). Thus, (4;); is standardizable.

The following definition is an adaptation of the definition of an exceptional sheaf which
can be found in [16], where, as in Definition 3.8, we replace the requirement on Ext" for
n >0 by a requirement only on Ext'.

DEFINITION 3.12. An A-module M is called exceptional if Ext!(M,M) = (0) and
End (M) = k.

LEMMA 3.13. The following statements are equivalent:

1. < is adapted and A = Ay is exceptional for every L € Sim(A).
2. Bvery composition factor L' of rad(Ar) fulfills L' < L.
3. I’IOHIA(AL/,I“Ei,d.(AL))7é (0):>L/<L
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Proof.

1 = 2 Recall that if < is adapted, then (Ap)p = (AL)L. Let L' be a composition factor
of rad(Ar) = rad(Ar). Then L' < L. If L = L', then this induces a nonzero
homomorphism Pj, — rad(Ay) and thus, by Lemma 3.6, an endomorphism Ay —
rad(Ar) — Ar which is neither zero nor invertible. This is a contradiction. Thus,
L'<L.

2 = 3 Suppose Hom4(Ap/,rad(AL)) # (0). Then, since Az, has simple top L', L' is a
composition factor of rad(Az) and thus L' < L.

3=1 If L#L', then

Hom (A, rad(AL)) = (0) < Homa(AL,AL) = (0).
Thus,
Homu(Ap,AL)#(0)= L' <L,

so that < is adapted, EL =Ap,and (Ap)z is a standardizable set by Lemma 3.10.
In particular, Ext'(Ar,Az) = (0).

Moreover, Hom4 (Ap,rad(AL)) = (0), so that any endomorphism of Ay is either
surjective or zero. Thus, End4(Ar) =Enda(Ar) =k. 0

DEFINITION 3.14. We denote by F(A) the full subcategory of mod A which contains all
A-modules admitting a filtration by the Ay, L € Sim(A). In other words, an A-module M
is in F(A) if and only if there is an integer m > 0 and an ascending sequence of submodules

(O)ZM()CMlC"'CMm:M
such that for every 1 <i <m there is an L; € Sim(A) such that M;/M; 1 = Ap,.

PROPOSITION 3.15. [14, Lems. 1.4 and 1.5] The subcategory F(A) is closed under direct
sums, direct summands, and extensions.

DEFINITION 3.16. [10], [12], [24] An algebra A together with an adapted partial order
< on Sim(A) is called:

left standardly stratified, if A € F(A);

quasi-hereditary, if additionally Ay is exceptional for all L € Sim(A);

strongly quasi-hereditary, if additionally every Ay has projective dimension 1;
directed, if Ay, = L for all L € Sim(A).

W D=

DEFINITION 3.17. ([17, p. 405], [4, Def. 3.4]) Let (A, <) be a quasi-hereditary algebra.
Then a subalgebra B C A is called an exact Borel subalgebra if there is a bijection
i:Sim(B) — Sim(A) such that:

1. A is projective as a right B-module;
2. B is directed;
3. ARpL = Ai(L) for all L € Slm(B)

Moreover, it is called:

1. a strong exact Borel subalgebra if there is a maximal semisimple subalgebra of A which
is also a semisimple subalgebra of B;

https://doi.org/10.1017/nmj.2024.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2024.11

QUASI-HEREDITARY SKEW GROUP ALGEBRAS 19

2. a homological exact Borel subalgebra if the induced maps
ARp—: EXt*B(L,L/) — EXtZ(AL,AL/)

are isomorphisms in degree greater than or equal to 2 and epimorphisms in degree 1 for
all L,L’ € Sim(B);

3. a normal exact Borel subalgebra, if there is a splitting of the inclusion ¢ : B — A whose
kernel is a right ideal in A; and

4. a regular exact Borel subalgebra if it is normal and the induced maps

A®B — EXt*B(L, L/) — EXtZ(AZ(L%AZ(L/))
are isomorphisms in degree greater than or equal to 1 for all L, L’ € Sim(B).

REMARK 3.18. Let A be a finite-dimensional algebra, L(4) := A/rad(A), and 74 : A —
A/rad(A) be the canonical projection. By definition, L(*) is the maximal semisimple
quotient of A. However, recall that by the Wedderburn—-Malcev theorem, there is an
embedding

ta: L > A

such that m4 014 =idj sy, which turns L™ into a maximal semisimple subalgebra of A.
Moreover, by the same result, any two maximal semisimple subalgebras of A are conjugated,
so that, in particular, L(*) is up to isomorphism the unique semisimple subalgebra of A.

LEMMA 3.19. Suppose that B is an exact Borel subalgebra of A. Then B is a strong
exact Borel subalgebra of A if and only if Arad(B) C rad(A).

Proof. Let L™ := A/rad(A) and L®) := B/rad(B). By Remark 3.18, L) and L(B)
are up to isomorphism the unique maximal semisimple subalgebras of A and B, respectively.

In particular, a semisimple subalgebra of A is a maximal semisimple subalgebra if and
only if it has the same vector space dimension as LY. Since any semisimple subalgebra of
B is also a semisimple subalgebra of A, this means that B contains a maximal semisimple
subalgebra of A if and only if dimy L4 = dimy L(Z).

Thus, B is a strong exact Borel subalgebra of A if and only if dimy L®) = dimy LY.

Let LE,..., LB be a set of representative of the simple B-modules. Write A := A@p LP
and L :=top(A®p LP). Since B is an exact Borel subalgebra of A, L{,..., L7 is a set of
representatives of the simple A-modules, and Af,... A4 are the corresponding standard
modules.

Let X := Arad(B)/(rad(A) N Arad(B)). Then, as A-modules,

LW = A/rad(A) = ((rad(A) + Arad(B))/rad(A)) ® A/(rad(A) + Arad(B))
>~ Arad(B)/(rad(A) N Arad(B)) @ top(A/Arad(B))
>~ X ®top(A®p B/rad(B))

~ X @ top <@[t0pB : LZB]AL?>

~ xa@PIL? : LP|L.

(2
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Recall that for any n € N we have dimyk" = n = [Mat, (k) : k"]. Moreover, by the
Wedderburn—Artin theorem, any finite-dimensional semisimple algebra over k is isomorphic
to a direct sum of matrix rings, and for any two finite-dimensional algebras R and R’,
Sim(R@® R') is the disjoint union of Sim(R) and Sim(R') where R acts on L' € Sim(R’)
via zero and analogously for L € Sim(R). Hence, the equation above generalizes to any
finite-dimensional semisimple algebra over k, so that we have

dimy LA = [ : LA
for every 1 <i <n. Thus,
dim LA = [LW . LA = [X : LA+ [LB) : LB] = [X : LA +dimy L,
so that
dimy LY = dimy X + > [LYP) : LP] dim, L}

= dimge X + Y [LP): LP((X : L) + dimy (L))

(2

= dim X + Y [X : L [LP) : LP]+dimy L7,

Hence, B is a strong exact Borel subalgebra of A if and only if X = (0), that is, if
Arad(B) C B. 0

84. Quasi-hereditary algebras with a group action

Throughout, let, as before, A be a finite-dimensional k-algebra and let G be a group
acting on A via automorphisms such that the order of G does not divide the characteristic
of k.

DEFINITION 4.1. A partial order <4 on Sim(A) is called G-equivariant if
L<sL & gL<yhL forall g,h€q.
On the other hand, a partial order <4, on Sim(A* Q) is called G-stable if
S<acS &SV <ac S QW
for all kG-modules V,W.

DEFINITION 4.2. 1. Let < be a G-equivariant partial order on Sim(A). Then we define
a partial order < on Sim(A xG) via

S <ga S’ = A S<|A S’

2. Let <’ be a G-stable partial order on Sim(A % G). Then we define a partial order STG
on Sim(A) via

L<gLl:ekGaL<kGaL,

where we extend the partial orders from the simple modules to the semisimple modules
as in Remark 3.1.
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Hence, we define a strict partial order (<4)¢ as the pullback of a strict partial order < 4
along the map

add Sim(A* G) — add(Sim(A)), M > |4 M,

and similarly a strict partial order (<a«g)|c as the pullback of a strict partial order <a.q
along the map

addSim(A) — add(Sim(A*Q)),M — IcM.

Note that since the above maps are not necessarily injective, the pullbacks of <4 (resp.
<axc) along these maps are not necessarily partial orders. For example, if we consider the
case A=k, G =7/27 with the trivial action, and the unique partial order <4 on Sim(A),
then we have AxG = k? with simple modules L1 and L corresponding to the first and second
copies of k, respectively. In this setting, if we tried to define L; <a.q L; < RgL; <A RaL;,
we would obtain that L; < Ly and Ly < Ly since RgL; = RyL,, that is, the asymmetry of
<asx¢ would be violated, so that it would not be a partial order.

On the other hand, the pullback of a strict partial order along any map is always a strict
partial order.

In particular, the above pullbacks yield well-defined partial orders <g and §1G even
for a not necessarily G-equivariant partial order < and a not necessarily G-stable partial
order <’.

However, if, for example, < is not G-equivariant, then there may be some simple AxG
modules S # S’ such that L < L', but L"” £ L"" for some simple summands of L,L" of 4 S
and L', L"" of 4/S’, s0 S and S’ would be incomparable with respect to <g, even though all
summands of |4S and |4S" may be comparable. Hence, even a total order < might result
in an empty order <g, and so there is little hope to conclude adaptedness of <s from
adaptedness of <.

Similar considerations hold for a non-G-stable partial order <’ and its induced partial
order <"G.

PROPOSITION 4.3. 1. Let < be a G-equivariant partial order on Sim(A). Then <g is
the unique G-stable partial order such that

L<I' kG®L<ckG®L .

2. Let <" be a G-stable partial order on Sim(A*G). Then é\,G is the unique G-equivariant
partial order on Sim(A) such that

S<' S w4 S(<g)as
Proof. 1. Clearly, < is G-stable, and
L<l'skGRL<ckGaL.
Now suppose that <’ is another G-stable partial order on Sim(A % G) such that
L<L'©kGe®L<kG®L'

Let S,5" € Sim(A+G). Then there are L,L" € Sim(A) such that L[5S, L'|45". Thus,
kGRLIkG® 4 S = S®kG and kGRL'|kG® 48" = S ®kG.
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Moreover, by Corollary 2.14, there are L”, L"" € Sim(A) such that S|kG® L",S" | kG®
L. In particular, L], kG®L" and L'| 4 kG® L"), so that L = gL" and L' = hL" for
some g,h € G. Hence, kGRL=2kGRL" and kG L' 2kG® L". Thus,

S<'S e SkG<'S9kG=>kG®L<kGeL
e L<l ©kGL<ckGeL = S<g9,

and analogously S <g S’ = S <’ §’.
2. Clearly, <" ¢ 18 G-equivariant and

A|S <TG A‘SI@kG®A|S</kG®A‘ S’
& SekG < kG S< S,

Moreover, if < is another G-equivariant partial order on Sim(A) such that

S§< S a0 8<a 8,

then
L<l's@gL <Pyl <4 kGRL <4 kGRL
geqG geG
SkGRL<KkGRL & L< L'
for all L, L' € Sim(A). 0

COROLLARY 4.4. Let < be a G-equivariant partial order on Sim(A). Then < coincides
with (Sg)‘g.

Let <" be a G-stable partial order on Sim(A*G). Then <’ coincides with (<\,G)G‘ Thus,
the assignments

{G-equivariant partial orders on Sim(A)}
— {G-stable partial orders on Sim(AxQ)},
ol

and

{G-stable partial orders on Sim(AxG)}
— {G-equivariant partial orders on Sim(A)},
< =<
are mutually inverse bijections.

From now on, let <4 be a G-equivariant partial order on Sim(A) and <a.c the
corresponding induced order on Sim(A*G), or the other way around.

LEMMA 4.5. For every g € G, L € Sim(A) we have gAL = Ayr)y and gﬁL = EQ(L)

Proof. This is a direct consequence of the fact that ¢ induces an order-preserving
automorphism of mod A. 1
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PROPOSITION 4.6. For every simple A-module L € Sim(A),
kGoAr2 P [kGoL:S|As,
SeSim(A*G)
where kG ® L : S| denotes the multiplicity of the simple summand S in kG® L.
Proof. Since kG ® Py, is projective with top
top(kG® Pr) 2kG®top(Pr) =kG®L
by Proposition 2.12(8), there is an isomorphism
¢ P KkG®L:S|Ps—+kGRPy.
SeSim(A*G)

For the sake of notation, fix a set Sp of simple A % G-modules such that for any
S € Sim(A x G) there are exactly kG ® L : S| modules in Sy, which are isomorphic to S
and consider instead the isomorphism

QL - @ Ps - kG® Py,
SeSL

For every S € Sy, consider the map
fs:= (kG@%L)OQOLOLPS : Pg —)kG@&L,

where tpg : Ps = @gics, Ps’ is the canonical embedding.

Then since A 1 has a filtration by L’ # 4 L and kG ® — is exact, kG @A 1, has a filtration
by kG ® L’ such that L' % 4 L. Since for every L’ # 4 L any two simple summands S|kG® L
and S'|kG®@ L' fulfill 8" ¥4 S, this means that no composition factor S’ of kG® AL is
greater than any summand S of kG® L.

Hence, Lemma 3.6 implies that for any S € Sy there is a homomorphism ~g : 35 —
kG® AL such that fg =~go7g. Thus, we obtain a homomorphism

v: P As > kGRAL, (zs) SHZVS Ts)
SeSL

such that

Yo (Ts)s Z’YSOWS s) Zfs zs)

- Z (kG@7L)oproips(zs) = (kG@TL)opr((xs)s).
5

In other words, the diagram

@S PS’ (ﬂS)S @S AS

| !

kG@PME@%kG®ﬁL

commutes. On the other hand, note that by Proposition 2.12(2) and Lemma 4.5 we have a
commutative diagram
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Rg(kG®PL) E— @geggPL E— @QEGPQL
lRG(kG@ﬁL) l@gecg(%L) l@geGﬁgL
Re(kG®AL) — @

~

gGGgAL @geG AgL

where the horizontal arrows are isomorphisms. Since Rg(ﬁs) has a filtration by R (S’)
where S’ € Sim(A *G) such that S’ ¥ a.¢ S and any simple summand L’ of Rg(S”) fulfills
S'|kG® L', we have for any composition factor L' of Rg(Ag) that kG® L' # S. Thus, for
S|kG®L, Rg(Asg) has no composition factor L’ such that kG® L’ is greater than kG ® L
and thus no composition factor L’ which is greater than L.

Hence, analogously to the construction of v, we can construct an A-linear map
7 :Ra(kG®AL) = Ra(@gAs) such that the diagram

Ro(kGopy) ¢S99l pokGoAL)

JRG(SOLY1 Vl

Ra((® ~
RG(@SPS) olFe)s RG(@SAS)

commutes.
We obtain a diagram

Ro(kGo Py) FeEC9T) b kGoAL)

Rc;(SDL)‘HRG(goL)‘1 RG(’Y)T\L’Y/

R T -~
Ra(@g Ps) —<' 729, R (@gAs)

where both squares commute, that is,
v oRa(kG®7L) = Ra((s)s) o Ra(pr) "
and R (7)o Ra((7s)s) = Ra(kG@7L)o Ra(pL).
In particular,

Ra(v)ov o Ra(kG®7L) = Ra(y) o Ra((Ts)s) o Ra(er) ™
= Rg(kG®7?L)ORg(goL)ORg((pL)il
=RekG®7L)

and
7' oRg(v)oRa((Ts)s) =7 o Ra(kG®@7L)o Ra(pr)
= Ra((7s)s) o Ra(eor) "o RalpL)
= Ra((Ts)s)-

Since Rg(kG®7r) and Rg((Ts)s) are epimorphisms, this implies that v/ = Rg(y)~!. In
particular, v is bijective and hence an isomorphism.
Thus,

kGoAr= (P As= P [kGoL:SAs. 0
SeSyL, SeSim(A*G)
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COROLLARY 4.7. For every simple AxG-module S € Sim(A*G),

@ [A|SZL]3L,

LeSim(A)

I

4lAs

where [4)S : L] denotes the multiplicity of the simple summand L in 4|S.

Proof. By Corollary 2.14, there is a simple A-module L such that kG ® L : S] # 0. By
Proposition 4.6, this implies that Ag is a direct summand of kG ® Ap. Hence, 4/ Ag is a
direct summand of

Ra(kG®AL) @QBL = @&;L,
geG geG

where the last isomorphism follows from Lemma 4.5. In particular, A|£s is a direct sum of
pseudostandard modules. Moreover, by Proposition 2.12(8),

top(a]As) = ajtop(As) = 48
so that, since every pseudostandard module A 1, has simple top L, we obtain

A|£Sg @ [A|SL]3L D
LeSim(A)

COROLLARY 4.8. A%*C|kG® A4 and A4|Rg(AA*C).

Proof. The first claim follows directly from Proposition 4.6 and Corollary 2.14, while
the second claim follows from Corollary 4.7 and Corollary 2.14. [

ExamMpLE 4.9. Let @ be the quiver

122
B
and A :=kQ/J? where J denotes the arrow ideal. Consider the partial order < on
Sim(A) = {Ly, L2} given by an antichain, that is, all distinct elements are incomparable.
Then the standard modules of A are simple. Moreover, the group G = {e,g} = Z/27Z acts
on A via the k-linear map defined via g(e1) = ez, g(e2) =e1, g(a) = 3, and g(f) = o, and
the G action preserves the partial order. Now, by [21, Lem. 8], AxG is Morita equivalent
to k[z]/(x?), hence Ay = k[z]/(x?) is not simple. In particular, neither Proposition 4.6 nor
Corollary 4.8 holds for (Ay)r instead of (ﬁL)L.

Using Corollary 4.8 and Proposition 2.16, we also obtain a concrete description of
(ﬁg‘*g)s. We denote, as before, by Hj the stabilizer of the isomorphism class of L and,
using Lemma 2.15, choose an Hy-equivariant representative L of this class. Moreover, we
let PZ‘*HL be a projective cover of L as an A x Hy-module. We endow Sim(A* H) with the
partial order induced by the partial order on Sim(A) as in Definition 4.2 and let ﬁz‘*HL be
the pseudostandard module of A Hj, corresponding to L with respect to this partial order.
Then, by Corollary 4.8, the restriction A|£?*H L is isomorphic to a direct sum of standard
modules with top

top(a| A7) =2 4 top(APHE) = 4 L,

so that A|3?*H Lo ﬁf Thus, we obtain the following corollary.
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COROLLARY 4.10. ﬁf has the structure of an Ax Hp-module.

LEMMA 4.11. The pseudostandard modules ﬁé*G for AxG are of the form kG ®@xp,
(3L®V) where V is an irreducible representation of Hy. Moreover, two such modules
kG ®xm, (BL ®@V) and kG Qxp,, (AL/ QW) of this form are isomorphic if and only if
there is g € G such that gL = L' and gV = W.

Proof. By Proposition 4.6 and Corollary 2.13(1),
P kGeoL:SAs=kGOAL kG Run, kHL @A,
SeSim(AxG)
=kG®xm, (AL ®kHr)
~ P [kHL:VIkG@u, (A V).

VeSim(k Hy)

Moreover, kG ®y g, (AL ® V) has simple top kG ®yp, (L® V) and is in particular
indecomposable.
Thus, it is isomorphic to AkG@kHL (LRV)-

Moreover, kG ®yp, (KL ® V) = ng@kaL(L@V) and kG ®up,, (AL/ ® W) =

ﬁkG&HU(L/@W) are isomorphic if and only if kG ®xp, (L®V) and kG @ g, (L'@ W)
are isomorphic, which, by Proposition 2.16, is the case if and only if there is a g € G such
that gL =2 L' and gV = W. O

Now we use the description of the pseudostandard modules to compare properties of
(A, <4) to (A*xG,<axq).

LEMMA 4.12. The following statements are equivalent:

1. <4 is adapted and (A%) is exceptional.
2. <ax 1s adapted and (A5*Y) is exceptional.

Proof. By Lemma 3.13 and Proposition 4.3, <4 is adapted and (A%)7 is exceptional if
and only if

Hom 4 (Ap,rad(AL)) # (0) = L <4 L'
and <a.c is adapted and (A4*%)g is exceptional if and only if

HomA*G(ﬁs,rad(ﬁs/)) 7& (0)
=L < L' for some (equivalently all) L,L" such that S|kG® L and S'|kG® L’

Now if <, is adapted and (A4); exceptional, then for all S,5" € Sim(A*G) and L,L’ €
Sim(A) such that S|kG® L,S’|kG® L' we have

Hom . (Ag,rad(A%)) € Hom (kG ® Ap,rad(kG @ AL))

CHomu(kG®Ap,rad(kGRAL)) @ HomA(EQ(L),rad(ﬁg/(L/))).
9.9'€G

Thus, if HomA*G(ﬁg,rad(ﬁsr)) # (0), there exist g,¢’ € G such that

~ -~

Homa(Ay(ry,rad(Ag (zry)) # (0).
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By assumption, this implies gL <4 ¢’L, and hence, since <, is G-equivariant, L < L’.
Thus, kGRL <. kG® L', so that S <4.g 5.
On the other hand, if <4,¢ is adapted and (AQ*G) exceptional, then

Homa (A, rad(A L)) # (0)
:>HomA*G(kG®£L,l"ad(kG®3L’)) # (0)
= @ HomA*G(ASarad(AS’)) #(0)
S|kG®L,S'|kGRL!
=3S|kG®L,S'|kG® L' : Homa,c(As,rad(Asg)) # (0)
=35 kGRL,S"|kGRL : S <a.c S
sL<a L. U

EXAMPLE 4.13. It is not true that <. is adapted if and only if <4 is adapted.
Consider, for example, A := k[z]/(2?) and G = {1,g} 2 Z/27Z with g(z) = —z. Then A has a
unique simple k and the unique order is clearly G-equivariant and adapted. However, AxG
is given by the quiver

a=T_gg

/_\

=k(1/V2(1+g)) Ly =k(1/V2(1~g))

'\_/

ﬁ:Tga:

with a8 =0 = fa and < 4.g being an antichain. Hence, A} = P; has socle Ly and top L;
and Lo is incomparable to L.

THEOREM 4.14. The following statements hold:

1. (A, <a) is quasi-hereditary if and only if (AxG,<a.q) is quasi-hereditary.

2. (A,<4) is strongly quasi-hereditary if and only if (AxG,<a.qg) is strongly quasi-
hereditary.

3. (A, <4) is directed if and only if (AxG,<a.q) is directed.

Proof. 1. Suppose (A,<4) is quasi-hereditary. Then <, is adapted and (A%) is
exceptional. So, by Lemma 4.12, < 4. is adapted and (AA*G) is exceptional. Moreover
A has a filtration by the Ap = AL Hence, A *G 2 k(G ® A has a filtration by kG® AL
Since these decompose into a direct sum of AS, where S|kG ® L, by Proposition 4.6 and
Ag = 35 by Lemma 3.10, this implies that A« G has a filtration by standard modules
Ag = Ag. Hence, AxG € F(A4*C).

On the other hand, suppose A * G is quasi-hereditary. Then <. is adapted and
(A4*%) is exceptional, so that <4 is adapted and (A#) is exceptional. Moreover, A x*
G has a filtration as an A * G-module by standard modules. Hence, as an A-module
AxG =D, cc9A=|G|A has a filtration by the Rg(Ag), and by Proposition 2.12(2),
Lemma 3.10, and Lemma 4.5,

Ri(Ag) = Ra(Ag)|Ra(kGRAL) @A(L) EBAQ(L)

geG geG
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for S|kG® L', so that, since the standard modules of A are indecomposable, Rg(Ag)
is a direct sum of standard modules and hence |G|A € F(A). Since by Proposition 3.15,
F(A) is closed under direct summands, A € F(A).

2. By 1., (A,<4) is quasi-hereditary if and only if (A% G,<a.g) is quasi-hereditary.
Moreover, if the projective dimension of A“ is less than or equal to 1, so is the
projective dimension of AA4*G = AA*G|kG®AA = kG ® A4, and if the projective
dimension of A4*G is less than or equal to 1, so is the projective dimension of
AA AA]R (AA*G) :Rg(AA*G).

3. By 1., (A,<4) is quasi-hereditary if and only if (A*G <axq) is quasi-hereditary.
Moreover, if A4 is semisimple, so is A4*C = AA*G\kG®AA kG® A4, and if Aa.g
is semisimple, so is A4 = A4|Rg(A4*C) = R (AA*C), 0

REMARK 4.15. Example 4.13 shows that it is not in general true that if (A,<j,) is
standardly stratified, so is (A*x G, <axq).

The following lemma can essentially be found in [21, Lem. 8]. However, we have included
a proof, since the assumptions there slightly vary from our assumptions.

LEMMA 4.16. Let M be an AxG-module. Then G acts on Enda(RgM) via algebra
automorphism as in Remark 2.4, and we have an algebra isomorphism

Orr: Endg(Re M)« G — End g (kG @ M),
f@g— (h@me hg™'® f(gm)).
Proof. 1t is easy to see that the action given by Remark 2.4 is an action of algebra

automorphisms. Let f® g € Ends(RgM) *G. Then, for any h,h' € G, a € A, m € M, we
have

Or(f29)(a@h)(h@m)) = (Om(f ©9))(h'h& (hh') " (a)m)
=HWhg~' @ f(g(hh')~"(a)m)
=h'hg~t @ ((hh'g~") " (a) f(gm))
= (a®@h')(hg~' ® f(gm))
= (a@h)0y(f@g)(h@m).

Thus, Op(f ® g) is Ax G-linear, so that 6y is well defined. Moreover, for any
f,f €Enda(RcM), g,9',h € G, m € M, we have

M(f®g)09M(f’®g/)(h®m)=9M(f®g)( (g) '@ f'(g'm))
=h(g") g™ ®f(gf’ m))
=h(gg) '@ folg-f)g

g'm)
=0m(fo (g f®gg)(h@m)
h®m).

(
=0u((fR9)(f @)
)-

Thus, 05/ is an algebra homomorphism. Let ¢t € End 4.q((kG ®@ M)
Rgt € Enda (D ,cq gM) with a matrix Rt = (t4,1)g,nec Where

Then we can identify

tgn:gM — hM
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and since t is A x G-linear we have
tgn =1g'g.9'n
for all g,¢’,h € G. For g € G, let
Folt) s M = M, fo(t) :=tg e 0 (trg") ™"

and set

t) = ng®g.

geG
Then, for all m € M,h € G, we have
QM(TM h®m ZQM fg (h®m)
geG
= Zhg ® fq(t) Zhg Zhg_1®tg7eo(tr2/1)_1(gm)

geqG geqG geG
_Zhg ®tge Zhg ®thhg—1( )

geG geG

= g®tng(m)=t(h@m).

geG

On the other hand, for f® g € Enda(RgM )+ G, we have
fr(@u(f®g)) =0

unless h = g and

foOu(f®g)=f
Thus, v (0m(f ®g)) = f®g, so that 7 = 9](41, and 6, is an isomorphism. U

THEOREM 4.17. Let (A,<a) be quasi-hereditary, and let B be a subalgebra of A such
that g(B) = B for all g € G. Then there is a partial order <p on Sim(B) such that (B,<p)
is an exact Borel subalgebra of (A,<a) if and only if there is a partial order <p.c on
Sim(B *G) such that (B*G,<p.q) is an exact Borel subalgebra of (AxG,<axq).

Proof. First of all, note that B G is a well-defined subalgebra of AxG, since g(B) C B
for all g € G, and that A G is quasi-hereditary by Theorem 4.14.

Let (L? )1<i<n be a set of representatives of the isomorphism classes of simple B-modules,
and let (Lf *G)lgigm be a set of representatives of the isomorphism classes of simple
B x G-modules.

Suppose first that (B,<pg) is an exact Borel subalgebra of (A,<4).

Recall that Rg both preserves and reflects short exact sequences, and note that we have
a natural isomorphism

(A®B—)ORG—)RGo((A*G>®B*G—) (41)
given by
AR RaM — Rg((A*G) ®B*GM),a®m»—> (a®1g)®m

https://doi.org/10.1017/nmj.2024.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2024.11

30 A. RODRIGUEZ RASMUSSEN

with inverse given by
Ra((AxG)®piag M) = AR ReM,(a® g) @m +— a® gm.

Thus, if A®p — is exact, so is (A*G) @pxg —-
By assumption, we have a bijection

Sim(B) — Sim(A),L? — L == top(A®p LP)
such that LP <p Lf if and only if L <4 L;-L‘. In particular, since

g(top(A®p L)) =top(9(A®p Lp)) = top(A®p gLp))

and <4 is G-invariant, so is <p. Thus, it induces a partial order <p.c on Sim(B xG)
according to Proposition 4.3.

Next, we want to show that there is a bijection between isomorphism classes of simple
modules given by

Sim(B*G) = Sim(AxG),LP*¢ s LY :=top((AxG) ®p.c L7*Y).

Note that for this, it suffices to show that for any semisimple B * G-module S, the induced
map

s2 : Endp.(S) = Enda.(top((4* G) ®p«c 9)), f = top(idaxc ®f)

is a bijection. Recall from Proposition 2.5 that Endp.q(S) = Endg(RgS)¢ and
End .q(top((A * G) @psc S)) = Enda(Rgtop((A * G) @p«c S))¢ where the G-action is
given as in Remark 2.6. Moreover, note that by Proposition 2.12(8) and 4.1, we have a
natural isomorphism

a: Rgotopo((AxG)®p«c —) — topo(A®p —) o Rg,
an  Ratop((AxG) @pwg M) — top(A®p RgM),
(a®g)@m+rad(A*G) @M — a® gm+rad(A) @ M
with inverse given by
ay (@a@m+rad(A)@ M) = (a®1g) @m+rad(A*G) @ M.

Transporting the A x G-module structure of Rgtop((A*G)®p.c S) along ag gives rise to
an A*G-module structure on top(A®p RgS), which is given by

gla®s+rad(A)®S) :=g(a) ®gs+rad(A)® S.

According to Remark 2.4, this induces a G-action on End4(top(A®p RaS)). With this
G-action, the homomorphism

s1: Endg(RgS) — Enda(top(A®p RgS)),
[ top(ida®f)
becomes G-equivariant, since we have
top(ida®(g- f))(a®s+rad(A)®S5) =a®(g- f)(s)+rad(4)® S
=a®g(f(g™'s)) +rad(A) ® S = g(ida(g7(a)) ®g(f(g's)) +rad(A) ® S
= g(top(ida®@f) (g (s®@a+rad(A)®9))) = g- (top(ida @ f))(a® s +rad(A) ® S).
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Additionally, since B is an exact Borel subalgebra of A, s; is an isomorphism. Hence, it
restricts to an isomorphism

s¢ :Endg(RgS)Y — End 4 (top(A®p RaS))C,
f—top(ida®f).
Moreover, for any f € Endg(RgS)%, we have
aglotop(ida®f)oas((a®g)®s+rad(A*G)®S)
= ag'otop(ida®f)(a®g(s) +rad(A) ® S)
= ag ' (a® f(g(s)) +rad(A) ® S) = ag' (a®@g(f(s)) +rad(A) @ )
= (a®1)®g(f(s))+rad(A+G) @S =(a®g)® f(s) +rad(AxG)® S
= top(idac ®f)((a®g)®s+rad(A*xG)® 5).

Hence, conjugation of s by ag gives the desired isomorphism s,. Thus, we have a bijection
Sim(B*G) — Sim(A* Q)
Lf*G — LJA*G =top((A*G) @pwc Lf*G).

Moreover, for every Lf*G,Lf*G € Sim(B * G), we have, using Definition 4.2, Proposition
4.3, and the fact that B is an exact Borel subalgebra of A, that

LP*C <puo L7*9 & RoLP*Y <p R L7 & top(A®p Ra L *%) <a top(A®p Ra L7 *%)
& Ra(top((A* G) ®pug LP*9)) <a Ra(top((AxG) @p.ac L))
& top((A* Q) @pug LP*C) <auq top((A* Q) @ pag LF*C) & LA < [4C.
Finally, by Proposition 4.6,
AxG®pya (kKGR LP)=2kG® (A®p LP)

~kGe @ A
LAeSim(A)

~ P D kGoL!:LApse.

LA€Sim(A) L;‘*GGSim(A*G)

Since for every simple B * G-module LJB*G we have that A* G ®p.qa Lf” *G s a summand of
AxGRp.ckG® L, the module AxG®p.c LJB*G is isomorphic to a direct sum of standard
modules. Since it has indecomposable top Lf*G, this implies that A x G Qpsc Lf *G o
ALJVA*G'

Thus, (B*G,<p.q) is an exact Borel subalgebra of (Ax G, <a.q).

On the other hand, suppose that (Bx* G,<p.g) is an exact Borel subalgebra of
(AxG,<a.q)- Recall that I5 both preserves and reflects short exact sequences, and note
that we have a natural isomorphism

((A*G) R BxG —)O[G — IGo<A®B —), (4.2)
given by
(AG)Rp:c kGOM - kGR AR M,(a®g) @h@m — gh® gh(a) @m
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with inverse given by
kGRA®p M — (A*G)®@p.ckGRM,g0a@m— (g ' (a)®1)®@g@m.

Thus, if (A*G) ®p.q — is exact, so is A®p —.
By assumption, we have a bijection

Sim(B*G) — Sim(A*G), LB*G — LA*G =top((A*G) ®psc LB*G)
such that L?*G <B:c Lf*G if and only if Lf‘*G <axq L;‘*G. In particular, since
(A*G) @puc (LECRV) = (A% G) ®pwc L) 0 V)

for every irreducible representation V of G, and since <4.q is G-stable, so is <pg.g. Thus,
it induces a partial order <p on Sim(B) according to Proposition 4.3.

Next, we want to show that there is a bijection between isomorphism classes of simple
modules given by

Sim(B) — Sim(A), LB — L# :=top(A®p LE).
Note that for this, it suffices to show that for any semisimple B-module S, the induced map
s1:Endp(S) — End4(top(A®p S)), f — top(ida ®f) (4.3)

is a bijection, and, in fact, this holds as soon as it holds for some semisimple B-module S
such that [S: LP] # 0 for all LP € Sim(B). By Corollary 2.14, it thus suffices to consider
the case S = RgLP*¢ where LB*G @LB*GeSun(B*G) jB . By Lemma 4.16, we have an

isomorphism
05+ : Endg(RgL?*%) «G — Endp.q(IgRGLP*C), f@ g (h®@z — hg™' @ f(gz))
as well as an isomorphism
O(AxG)@p.cLPc : Endp(Ra(A* G) ®p.c L) * G = Endaxg (IaRa (A * G) ®p.q LP*),
fog— (he(a®g)@m—hg™ @ f(g-((a®g) @m))).
Moreover, since B x (G is a regular exact Borel subalgebra of A+ G, we have an isomorphism
sy : Endp.a(IgRaLP*Y) = Enda,q(top((A* Q) @ pwa IRGLP*)) f = top(id axg @ f).
Additionally, by Proposition 2.12(8) and (4.2), there are natural isomorphisms

¢1 :topo(A®p —)oRg — Rgotopo((A*G) @pwa —),
¢ : top(A®p ReM) = R (top((A* Q) @p.c M)),
a@m+rad(A)® ReM — (a®1g)@m+rad(A*G) @ M

and

¢2:IgoRgotopo((A*G)®p«g —) — topo((A*xG) ®p«g —)olgoRg
dM : IgRatop(((A* Q) @pwg M)) = top(AxG) @psq IcRaM,
h®((a®g)@m+IgRgrad(A*G)®@ M)
—(h(a)@h)® (1g ®@g(m)) +rad(A*G) ® IgRa M,
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which give rise to isomorphisms
@1 Endy (top(A @ RgLP*)) = Enda (Ra (top(4 % G) @p.c L77))
and
©2 : End gy (top((A % G) @ gy IcRaLP*®)) = End avc (IgRa top((A % G) @ gy LP*)).

Now consider the diagram

0 *
Endp(RagLB*C)« G LG s Endp.q(IgRaLP*%)
31®idel lsz
End4(top(A®p RaLP*%)) «G End a.q(top((A* G) ®pag Ig R LP*Y))

1 ®idk Gl l@z*

Ends(Rg(top((A* Q) @B+ LB*G)g) *G —— Enda.g(IgRatop((AxG) ®pwg LB*))

top((A*G)® g LB*G)

For f € Endg(RgLP*%), g,h € G, a € A, and x € LP*C, we have

p208200p. . 15.c(f®9)(1e®(1a®1le)®@x+rad(A* Q) ® LP*9)Y)
= (05 ) Vo (s200p, 1oc)(fRg)0dE  (lg®((1a®1g)®z+rad(A+G)® LP*F))

= (65" ) o (s200p, o) (F®9)(1a® 1) ® 1o @z +1ad(A*G) ® Ig Rg LP*F)

= (¢5""") Vo (top(id ag ®0p 15-c (2 9)))(1a®1e) @ 1g @z +rad(A*G) ® Ie Rg LP*F)
— (@5 N (asle) @ Orgre-c(f®g)(le ®2)+rad(A*G)® IcReL”*)

= (65" ) T (14 ®16)® 97" @ f(gz) + rad(A* G) ® IgRa L7*)

= (¢ ) N (g 1a) ®g Y @16 ® f(gz) +rad(A* G) ® IgRGLE*C)
=g '®((14®1¢)® f(g(z) +rad(AxG) @ L))

and
Otop((A+G)@p.cLB*0) © (1 ®idka) o (51 ®idke)(f®g)(le® (la®1lg) @
+ IgRarad(AxG) ® LP*C)

= Orop((axG) @ L0y ((1051)(f) @9)(1e ® (1a® 1g) ®z + g Rgrad(A* G) ® LP*F))
=g " @ ((pros1)(N)g((1a® 1) @r+rad(A*G)© L))

=g @l Tosi(fo(of ) T 9((14 @ 16) ®a+rad(A+ G) @ LFC))
=g '® qbe*G 051(f)(14® gz +rad(A)® RgLP*%)

=g @¢L"" otop(ida ®f)(14 ® gz +rad(A) ® ReLB*9)

=g '@t (14® f(g) +rad(4) ® ReLP*)

=g '® (1a®1lg)® f(gx)+rad(AxG)® LB*G).

As all maps are A xG-linear, and elements of the form 16 ® (14 ® 1g) ® x + IR rad (A *
G)® LP*C) generate IgRgtop((A*G) @pwc LP*) as an A * G-module, this proves that
the diagram commutes. Since we know all maps except s; ® idxa to be isomorphisms, we
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can conclude that s; ®idig, and thus s is an isomorphism. This shows that we have a
bijection between the isomorphism classes of simple modules given by

Sim(B) — Sim(A),L? — L :=top(A®p LP).

Moreover, using Definition 4.2, Proposition 4.3, and the fact that B* G is an exact Borel
subalgebra of Ax G, we have that

LP <p LY ©IcLf <p.q IcL?
& top((A*G) @puc Ia L) <axa top((A*G) @p.c L})
la(top(A®p L)) <axc la(top(A@p L}))
Stop(A®p LP) <, top(A®p Lf) e Lt <y Lf.

Finally, by Corollary 4.7,

n

A®p RaLP® = Ro((A% Q) @ . LP%) = Ro(AM9) = DL L)AL
=1

Since for every simple B-module L? we have that A®p L? is a summand of A®p RgLP*C,
the module A ®p LP is isomorphic to a direct sum of standard modules. Since it has
indecomposable top L , this implies that A®p LB A LA-

Thus, (B,<p) is an exact Borel subalgebra of (A <a). 0

PROPOSITION 4.18. Let (A,<4) be quasi-hereditary, and let B be a subalgebra of A such
that g(B) = B for all g € G. Let (B*xG,<p.c) be the corresponding exact Borel subalgebra
of (AxG,<a.c) Then the following statements hold:

1. B s a strong exact Borel subalgebra if and only if BxG is a strong exact Borel subalgebra.

2. B is a normal exact Borel subalgebra if and only if BxG is a normal exact Borel
subalgebra.

3. B is a homological exact Borel subalgebra if and only if BxG is a homological exact
Borel subalgebra.

4. B is a regular evact Borel subalgebra if and only if BxG is a regular exact Borel
subalgebra.

Proof. 1. Suppose B is a strong exact Borel subalgebra. Then, by Lemma 3.19,
Arad(B) C rad(A). Hence, A*xGrad(B*G) Crad(A*G) by Lemma 2.11, so that
again by Lemma 3.19 B G is a strong Borel subalgebra of A*G. On the other hand,
suppose that B G is a strong Borel subalgebra of AxG. Then AxGrad(B*G) C
rad(A*G), so that again by Lemma 2.11

Arad(B) C (AxGrad(B+G))NA Crad(A*G)N A =rad(A).

2. Suppose that B is normal. Then the inclusion ¢: B — A has a splitting 7: A — B
as right B-modules whose kernel is a right ideal of A. Since tensoring over k is
exact, the inclusion ¢ ® idx ¢ has the splitting 7 ® idx ¢ which is a right B % G-module
homomorphism whose kernel is a right ideal of A *G.

On the other hand, suppose that B x G is normal. Then : ® idx ¢ has a splitting
7' AxG — BxG of right B*G-modules whose kernel is a right ideal in A*G. Since
the fixed point functor —¢ for the G-action given by left multiplication is exact
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by [21, Lem. 3], (7/)€ is a splitting of the embedding (:®idy )¢ as right (B *G)%-
modules such that its kernel is a right ideal in (4% G)“. Now since the upward arrows
in the commutative diagram

. el
(BxG)G BT f )@
bHﬁ dec 9(b)®9T TaHﬁ deGg(a)Q@g
B - A

are isomorphisms of algebras, (/)¢ induces a splitting of ¢ as right B-modules such
that its kernel is a right ideal in A.

3.+4. Assume that B is homological (resp. regular). In the latter case, we have already
seen that B G is normal. Let PP be a projective resolution of LEZ. Then A®p
PB is a projective resolution of A4, kG ® PP is a projective resolution of kG ®
LP, kG® (A®p PB) is a projective resolution of kG ® (A®p LP), and similarly
for the restriction of the induction. Now G acts on Endg(Rg(kG ® PP)) and on
Ends(Rg(kG® (A®p PP))), and since Rg(kG ® LP) is semisimple, the map

Endp(Rg(kG® PP)) = Ends(A®p Rg(kG® PB)), f > ida®f

is an epimorphism in homology of degree 1 and an isomorphism in homology of
degree strictly greater than 1 (resp. an isomorphism in homology of degree strictly
greater than 0).As in Theorem 4.17 conjugating with the isomorphism (4.1)

A®pRa(kG®PB) = Ra((A*G) @pwq (kG PB))
yields an isomorphism
Endp(Rq(kG® PP)) — Enda(Rg(A*G) @p.q (kG @ PB)), f = idawg ®Ff,
which is, as before, G-equivariant, so that it induces a homomorphism

Endp.q(kG® PP) = Endp(Re (kG ® PP))¢
—Endg,q((A*G) @psq (kG @ PP)) = Ends (Rg(A*G) ®pwa (kG ® PP))C,
f — idA>a<G ®f

Since the fixed point functor —¢

is exact, this is an epimorphism in homology of
degree 1 and an isomorphism in homology of degree strictly greater than 1 (resp.
an isomorphism in homology of degree strictly greater than 0).Thus, we obtain an
epimorphism in degree 1 and an isomorphism in degree strictly greater than 1 (resp.

an isomorphism in degree strictly greater than 0)

Exth,o(kG® L kG® LP) = Ext’,o((A*G) ®p.q LB, (A* Q) @p.c LP),
[f] = [idasc @ f].

The result now follows from Corollary 2.14.

On the other hand, suppose B G is homological (resp. regular). In the latter
case, we have already seen that B is normal. Let PB*G be a projective resolution
of LB*G. Then (A*G)®p.q PP*C is a projective resolution of A 4.q, RgPP*C is a
projective resolution of Rg(LP*%), and Rg((A*G) ®@p.g PP*¢) =2 A®p Rg(PB*%)

https://doi.org/10.1017/nmj.2024.11 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2024.11

36 A. RODRIGUEZ RASMUSSEN

is a projective resolution of Rg(A*G)®@p.g LP*¢) =2 A®p Rg(LP*C) and similarly
for the induction of the restriction. Since LB*¢ @ kG is semisimple, we have that by
assumption

Extlh,o(LP*¢ @k G, LP*C @ kG) — Exty, (A9 @ kG, AMC 9k Q)

is an epimorphism in degree 1 and an isomorphism in degree strictly greater than
1 (resp. an isomorphism in degree strictly greater than 0).Moreover, G acts on
Endp(Rg(PP*%)) and on Enda(Re((A*G) @psg PP*)) via g- f = gf(g~'—) and,

arguing as in Theorem 4.17, we obtain a commutative diagram

0B«
Endp(RePB*C)«G pos Endp.(IgRaPB*0)
51®idel \LSQ
Ends(A®p Rng*G)*G Enda.c((A*G) ®@paa IgRGpB*G)

p1®idk Gl lsoz

EndA(Rg((A*G) XBxG PB*G))Q*G — EndA*G(IgRg(A*G) QBxG PB*G)

(A+*G)®@ g, PB*G
where 0ps.c and Ops+c and 0(4.q)g 5, pB+c are the isomorphisms from Lemma 4.16,

s1:Endp(RaPP*®) = Enda(A®p PP*Y), f—ida @ f
s9 : Endp.g(IgRePP*%) — Endaxc (A% G) @psg IgRGPP*C), f > idawc @ f

are the maps obtained from the induction functor, and ¢; and ¢, are the
isomorphisms arising from the natural isomorphisms (4.1) and (4.2).

Note that all maps except s; ®idxg and so are isomorphisms and that by
assumption se is an epimorphism in homology degree 1 and an isomorphism in
homology in degree strictly greater than 1 (resp. an isomorphism in homology
in degree strictly greater than 0).Thus, idxg®s; is an epimorphism in homology
degree 1 and an isomorphism in homology in degree strictly greater than 1 (resp.
an isomorphism in homology in degree strictly greater than 0).This implies that s;
is in homology degree 1 and an isomorphism in homology in degree strictly greater
than 1 (resp. an isomorphism in homology in degree strictly greater than 0).

We obtain that the vector space homomorphism

H*(s1) : Exty(RgLP*¢ R LP*Y) = Ext (A®p LB*Y A p LP*Y),[f] — [ida ®f]

is an epimorphism in degree 1 and an isomorphism in degree strictly greater than 1
(resp. an isomorphism in degree strictly greater than 0).
Moreover, since A®p LE 2 A4 for every LE € Sim(B) and

Ro(LP9)= (P  [Ra(LP*C): LF]L
LBeSim(B)

by Proposition 2.12[7], this induces for every L ,Lf € Sim(B) a vector space
homomorphism
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[Ra(LP*€): LP][RG(LP*Y) : L7 Extp(L7, LT)
S [Ra(LP*9) : LY [Re(LP*C) : LP|Ext’y (A s, Aps),
f '_>idA ®f7

which is an epimorphism in degree 1 and an isomorphisms in degree strictly greater
than 1 (resp. an isomorphism in degree strictly greater than 0). Since by Corollary
2.14 [Rg(LB*¢) : LP] # 0 for all 4, this implies that (B,<p) is homological resp.
regular. ]

85. Auslander algebras of Nakayama algebras

In this section, we will give, at some length, an example of the above. However, before
that, we will need two more general statements.

LEMMA 5.1. Let A be a finite-dimensional algebra, and suppose that G is a commutative
group acting on A via automorphisms. Let [X] be the isomorphism class of an indecompos-
able A-module, and let Hix) be the stabilizer of [X]| in G. Then there is a representative
Y € [X] such that Y has an H|x)-action.

Proof. Let n:=|Hx|. Let X be any representative of [X] and consider the A Hjxi-
module k Hjx; @ X. As an A-module, this is isomorphic to the direct sum n.X, so that via
this isomorphism n X obtains likewise the structure of an A* Hx)-module. Thus, we obtain
a group homomorphism ¢ : Hjx) — Mat, (End(X))*, where Mat,,(End4(X))* denote the
invertible elements of Mat,,(End4(X))*. Since End 4(X) is local with residue field k, this
induces a group homomorphism ¢ : Hyx] — Gl, (k) = Gl (Aut(X)). Since G and thus Hpx,
are commutative, the matrices in the image have a common eigenvector. This corresponds
to a summand Y|nX, Y = X which is stable under the action by H{x] on nX defined by
¢’, and thus Y has an Hxj-action. U

The following proposition is related to [23, Th. 1.3(c.iii)].

PROPOSITION 5.2. Let G be a group acting via automorphisms on an algebra D of finite
representation type. Then there is an induced G-action on an algebra A’ Morita equivalent
to the Auslander algebra A of D such that A’ x G is Morita equivalent to the Auslander
algebra of DxG.

Moreover, if G is commutative, there is even an induced action on the Auslander algebra
A of D such that AxG is Morita equivalent to the Auslander algebra of D*G.

Proof. Let {X} be a set of representatives of the isomorphism classes of indecomposable
D-modules, and let M =@ X and N :=IoM =kG® M. Note that for every indecompos-
able AxG-module Y, RgY is a direct summand of M, so that IgRaY is a direct summand
of IcM = N. Since Y|IgRgY by Proposition 2.12(2), this implies that Y is a summand of
N. By definition, A’ := Endp(ReN) is Morita equivalent to the Auslander algebra A of D.
Moreover, as N is a D *G-module, G acts on A’ =Endp(RgN)°P via conjugation. Now,
by Lemma 4.16,

A'+«G=Endp(RgN)°®+«G = (Endp(RgN) *G)°® 2 Endp.c(N @kG)P.

As every indecomposable D x G-module is a summand of N, the latter is Morita equivalent
to the Auslander algebra of D xG.
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Now if G is commutative, choose instead a set of representatives {Y'} for the orbits of the
isomorphism classes of indecomposable D-modules under the G-action which are equipped
with a Hyj-action, according to Lemma 5.1.

Then the module N":= Dy ¢y, kG ®xkny, Y obtains the structure of a D x G-module.
Moreover, for any Y € {Y'}, let Z|y| be a set of representatives of G/Hy]. Let X be an
indecomposable D-module. Then, by assumption, there is a g € G and a Y € {Y'} such
that X = gY. Since hY =Y for every h € Hy], we can assume without loss of generality
that g =z € Zy). Since by Corollary 2.13(8) ReN'= @Dy (y,y @zezm 2Y, we have that
X|ReN. Thus, A :=Endp(N’) is isomorphic to the Auslander algebra of D. As before, we
can use Lemma 4.16 to see that

AxG = EndD(RgN/)Op *G = (EndD (RgN/) * G)Op = EndD*G(Ig(RgN/))Op,

which is Morita equivalent to the Auslander algebra of D x G, arguing as before that
since every indecomposable D-module is isomorphic to a summand of RgN’, every
indecomposable D x G-module is a summand of IgRgN. U

The example we consider arises as follows. Let D :=k[z]/(z") and G = (g|g") =2 Z/nZ
be a cyclic group with n elements and generator g € G.

Consider the G-action on D given by gz = {x where £ is a primitive nth root of unity.
Then, by [23, pp. 241-244], D «G is a self-injective Nakayama algebra with quiver Q

(o7}
€p —— €1

and relations given by all paths of length N, that is, D *G = kQ/J~. The idempotent ej
for 1 <i <n here is given by

n—1

1 .
Z —k k
€; = — f J Xg
n
k=0
and «a; corresponds to the element
n—1
ejr1xze; =1/n E @b =re; =ej .
k=0
In particular, ge; = §’e; and
n—1
v ./ ik 4! k
Qjpjr—1...0; =X€j4j/ _1T€544/_9...T€;41T€; = x’ €; = z’ €j = E f I ®g
k=0
so that
n—1 n—1 n—1
P P L P
g ... 292 :§ ik 4.3 ®gk: 2 :5 JR+G i ®gk+1 :§j+] E 13 Ik . ®gk'
k=0 k=0 k=0
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The indecomposable modules of D are given by M; = D/(zN %) for 0 <i < N —1, and the
irreducible maps between them are given by the canonical projections and embeddings

mi s My — My, d+ (N ") = d+ @V for 0<i< N -2
i My — M;_q,d+ (xN ") = de+ (N7 ) for 1 <i < N—1

with relations

Ti—190L; = Lj4+10T; forl<i<N-1

mTN—20tNy—1=0.

So the Auslander algebra A of D has quiver Q'

) p TN—-2
e A _—
My > My *. My My

with commutator relations at every middle point Mi,... My _o and a zero relation at My _.

Moreover, gM; = M; for all 0 <7 < Ny, so in Proposition 5.2 we may chose N’ := Zﬁgl M;
and obtain that A = Ends(N’)°P is the Auslander algebra of D, and G acts on it via
g(idar,) =idns;, g(m) = m; and g(;) = &4

Note that since G acts trivially on the primitive idempotents, A * G is basic, so that it
is isomorphic to the Auslander algebra of D xG.

By [23, pp. 241-244], the algebra A*G has Gabriel quiver @’ given by

[ J [} . [ ] [
\ " r \

[ ] [ ] . [ ] [
¥ v v ¥

v . v
g g g T

v v

v
[ [ ] .. [ ] [

where the last column is identified with the first column, so that " becomes a cylinder,
with relations given by commutator relations in every parallelogram

[ ]
[ [ ]
[ ]
and a zero relation given between neighbouring points in the last row

N,
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More concretely, the simples correspond to the D x G modules
M ;= PP (@ PPC) = (D*G)ej) /(xV (D *G)ey)
for 1 <i< N, 1< j<n,which is given by the D-module M; together with the multiplication
g (27 ej+aN PP ) = g (ajpjo1...a5) =8 2 e 4 N7 PPE,
and the extensions correspond to the maps

Lij: Mi,j — Mi_lvj_l,a—i—m
N—i pDxG
Pj

N_’PJ»D*G = arej_1+x

N—i—lPD*G
f .

N—i+1 pDxG __ N—i+1 pDxG

WiVjZMiJ—}Mi_*_Lj,CL—i—(L' —a+x

Now consider A. The projective P/ at M; is given by

)

Mil/ M
=

M; 1
= ' / ey
.. i .
MO Ak Ak MN—1
\ L A /
M, o Mn_o
MO / Aok ALk
A L Ak
X ) L
., /
M
My

If we define the partial order M; < M; if and only if ¢ < j, then we obtain that A is
quasi-hereditary with standard modules given by
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A
Ai+1

oy

AA

n

Moreover, note that the subalgebra B of A given by the quiver
Moy —— M, > > My_1
is directed. Additionally, A has a vector space basis consisting of
Li—k0---ot;0idpy, om_jo--rom_j for 0 <i < N—-1;0 < j,k <i.

Thus, as a right B-module,

N—-1 i N—1N-1
A\B = @@Lifko---oLioidMiBg @ @eiB
i=0 k=0 i=0 j=i

is projective, and
A®p LY, = Aidy, /(Arad(B)idyy,) = Piy /AT = AL

Thus, B is an exact Borel subalgebra of A.

Now, since G acts trivially on the simples of A, <4 is automatically G-equivariant.
Hence, we obtain by Proposition 4.3 an induced partial order <4.q on Ax G, given by
M; ;j <asc My j» < i <i', such that by Theorem 4.14 (A% G,<a.q) is quasi-hereditary.
Moreover, by Theorem 4.17, it has an exact Borel subalgebra given by B *G. Using our
explicit description of B, and the fact that G acts trivially on B, we obtain that Bx G is
the subalgebra of A G given by the subquiver
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~ ~ ~ ~ ~
e e
~
® [ ] [ ] L]

of Q'. Moreover, if tg : B — A is the canonical embedding, I C A is the ideal generated by
t1,---,tny—1 and wy : A— A/I is the canonical projection, then 7y o¢p is an isomorphism, so
that tp admits a splitting with kernel I. Hence, B is normal in A, so that B * G is normal
in A%*G by Theorem 4.17.

However, note that for N > 3 the extension of Af' and A4 given by

M,
My
M,

has a submodule X

which is an extension of Ag' and AZ'. Hence, Ext} (Ag,A4) # (0) = ExtE(Lﬁo,th), SO
that B is not regular. Similarly, we can see that B G is not regular by considering the
Ax G-module

Mo 1 My 5

o~
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which is an extension of A1 and A2'3¢, while Extg*G(Lﬁ’g(f,Lf/jﬁ) = (0). For the case
N =2, B is a regular exact Borel subalgebra as seen in [18, Exam. A.1].
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