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Abstract. The paper contains the proof of the fact that every solvable locally compact
separable group is the range of a cocycle of an ergodic automorphism. The proof
is based on the theory of representations of canonical anticommutation relations
and the orbit theory of dynamical systems. The slight generalization of reasoning
shows further that this result holds for amenable Lie groups as well and can be also
extended to almost connected amenable locally compact separable groups.

1. The study of cocycfes of dynamical systems is an important trend in the modern
ergodic theory (see review papers [7], [8] and [9]). In particular, if an ergodic
non-singular action of a locally compact group F on a Lebesgue space (X, fi) and
a 1-cocycle a(x, y) (xeX, yeF) of this action with values in a locally compact
group G are given, then an ergodic action of the group G can be constructed by a
standard procedure (see [9]). According to [9], this new dynamical system is called
the range of the cocycle a of the ergodic F-action.

Mackey formulated the problem of the description of dynamical systems which
are the ranges of cocycles of an ergodic automorphism (the Poincare flows) [9].
Paper [3] contributed considerably to the solution of this problem. On the other
hand, R. Zimmer proved that if a locally compact separable group (l.c.s. group) G
is the range of a cocycle of an ergodic Z-action (see a strict definition below), then
any ergodic action of G is a Poincare flow [14]. Thus the problem arises of
describing the l.c.s. groups which are the ranges of cocycles of ergodic Z-actions.
Zimmer proved that any l.c.s. group which is the range of a cocycle of Z is amenable
[15] and established that compact, discrete Abelian, connected nilpotent Lie groups
and finite direct products of such groups appear as ranges of cocycles of an ergodic
automorphism [13], [14].

In § 3 we use the representation theory of canonical anticommutation relations
[4] (namely the proof of theorem 5, § 4) and the orbit theory of dynamical systems
[11] to prove that any l.c.s. solvable group is the range of a cocycle of an ergodic
Z-action. Similar results will be presented for compact extensions of a solvable
group (§ 6), solvable extensions of a compact group (§ 5) and for similar extensions
of these newly formed groups (§7). It follows from the structure of l.c.s. groups
[10] that the class of groups which are the ranges of cocycles of an ergodic
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automorphism includes, in particular, amenable Lie groups and amenable l.c.s.
groups whose quotient by the topological component of the identity is compact
(almost connected l.c.s. groups).

For each of these groups the paper presents a method of explicit construction of
a 1-cocycle of an ergodic action of the group ©?Li Z2 and, therefore, of Z (according
to [11]), whose range is the given group.

The authors were informed by the referee of this paper that the results obtained
by M. Herman with a different method [6] imply that any amenable l.c.s. group is
the range of a cocycle. By developing further the methods proposed in this paper
and using [2], we construct in [5] the cocycles of some special form so as to obtain
the above result for an arbitrary amenable l.c.s. group. Our technique also permits
the uniqueness of cocycles with a dense range in a given amenable l.c.s. group to
be proved [5, theorem 5.1].

We wish to thank the referee for calling our attention to some errors in an earlier
version of the paper.

2. A Borel map a : X x F - » G such that

a(*, y\yi) = a{x, yx)a{x- y,, y2)

for all yu y 2 e r at almost every (a.e.) x e X is called a cocycle of the dynamical
system (X, /J., F) with values in an l.c.s. group G.

Let fxo be a right Haar measure of G. Then we can consider an action of the
group F on (X x G, ix X/ic):

(x,g)y = (x-y,ga(x, y)), for ye F, (x, g)e X x G. (1)

If this action is ergodic, G is said to be the range of the cocycle a of the ergodic
F-action on (X, p).

It is known that any ergodic Z-action is orbit equivalent to an action of the group
r = ©r=,Z( i ) ,Z( l )sZ2, on the space (X, M) = ( Y, p)N, where Y = {0;l}; v{{0}) =
I ' ({U)=i [!!]• According to [4, theorem 2, § 1], any cocycle of this action is given
by the equation:

- - ••• -MxSk)\ (2)

where fk: X -* G is a Borel map, invariant with respect to 8 , , . . . , Sk, and Sk e F is
a sequence in which the fc'th place is taken by 1 and the others by 0's. Therefore,
we shall construct below the cocycles of the above action of F instead of cocycles
of an ergodic Z-action.

3. THEOREM 3.1. Every solvable l.c.s. group G is the range of a cocycle of an ergodic
Z-action.

Proof. To simplify our notation, suppose that G is a 2-step solvable l.c.s. group. As
will be seen below, the general case can be considered in the same manner.

Let H be a countable subgroup dense in G (2-step solvable too). Denoting its
maximum commutative normal subgroup by K, we note that the quotient group
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H/ K is also commutative. Let {k-\f=x be a sequence of elements of K, in which
every element of K occurs infinitely many times. We also construct a similar sequence
{hj}J=\ for the quotient H/ K and then a sequence {hj}f=x such that tl/(hj) = hj,je N,
where </>: H-* H/ K is the natural projection map. Now we construct the sequence
of integers

Finally, denote by {^} ?= 1 the set of sequences of O's and l's of length j . Let fk be
as follows:

fn(j) = hj,

f _ LCIU) . uCiU-D . . L£{(2) . uC'rU)(L. \ ^ '
Jn(j)+r "j "j-\ ••• " 2 "1 \Kj),

where g{k) = gkg~\ jeN, r = 1, . . . , 2J. Thus we complete the construction of the
cocycle c:X xF-» G given by fk according to (2).

LEMMA 3.2. Let Ac X, /JL(A)>0 and keK, then there exist D^A, /LI (D)>0 and
y € F such that D • y c A and c(x, y) = kfor a.e. xe D.

Proof. Let aeU^^O; 1} such that /j.(AnIN(a))>lfj.(IN(a)) where

IN(a)={xeX: x, = ah i=l,...,N}.

Choose./ e N so that n(j) > N and kj = k. Then there exists a sequence b e FI"1^ (0; 1}
in which b, = a, , . . . , bN = aN and ju,(An/n(j-)(ft))>|/u,(/n0-)(b)). Now choose r =
1, . . . , 2J so that fJ

r(s) = ftn(j), 5 = 1 , . . . , / Then for x e InU)(b)

c(x,5n(,)+r) = /c(-1)Vj)+'. (4)

Write

= An/n O )(b)n{x:xn O ) + r = 0};

An /n0)(b) n {x: xn0)+r = 1}.

Then M(A(0))>*,*( W * ) ) . ^(^(1)) >i/t(/nU)(b)). Take D = A(0) n A(l) • 5nO)+r.
Evidently, fj.{D)>0 and c(x, SnU)+r) = k for a.e. xeD, which was to be
proved. •

LEMMA 3.3. Let Ac X, ju.(A)>0, heH. Then there exist Da A, n(D)>0, keK
and y €T such that D- yc A and c(x, y) = kh for a.e. xe D.

Proof. It follows from the commutativity of the quotient group H/ K that

c(x, SnW) = p(xlt..., xnU))h
lj-]y"u\ (5)

where j8(x,,..., xn0))e K. In other respects the proof is similar to that of
lemma 3.2. •

LEMMA 3.4. Let Ac X, fj,(A)>0,he H. Then there exist Da A, n(D) > 0 and yeY
such that D- y c A and c(x, y) = h for a.e. xe D.

Proof. By lemma 3.3 we can construct D,c A and y, e F such that £>! • y] c ,4 and
c(x, 7i) = ̂  for a.e. x e D,. Then we apply lemma 3.2 to D, and k~'. D

For F we consider the full group [F] of automorphisms of (X, fj.):

https://doi.org/10.1017/S0143385700002741 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002741


50 V. Ya. Golodets and S. D. Sinelshchikov

[1]. Let a(x, y) = c(x, S(x, y)). One can check that a is a cocycle for [F] and
a(x, y) = c(x, y) for y e F . Now we consider a subgroup L of the full group [F]
consisting of those automorphisms y, for which a(x, y) = e for a.e. x e X.

LEMMA 3.5. L acts ergodically on (X, /JL).

Proof. Let E <= X, 0 < ^ ( £ ) < 1. Since F acts ergodically on X, there exist Be E,
A^X\E (/jL(A),fi(B)>0), ft"'e Hand y, e F such that B • y, = A and c{x, y,) =
ft"1 for a.e. xe B. Now we apply lemma 3.4 to Ae X and ft e H and find D<= A,
n{D)>0 and yeF such that D-y^A and c(x, y) = ft for a.e. xeD. Then for
72= TiT and a.e. xe D- yj"1 we have:

«(*, y2) = c(x, y2) = c(x, y,)c(x • y,, y) = <?. (6)

Let D, = D- yj"1, then /i(D,)>0, D,<= E, Dr • y2c X\E. Define an automorphism

yJe[T]:

{y2 forxeD,,
y2"' forx6D,-y2, (7)

id f o r x e X \ ( D , u D , • y2).

Evidently, D, • y2 = D, • y2 and a(x, y2) = e now for a.e. xeX. •
Completion of the proof of theorem 3.1. It is to be proved that the action of F on
(X xG, ix x.fiG) defined by (1) is ergodic, with a(x, y) being the cocycle constructed
above. Let / e L°°(X xG, ixXfiG) and / be F-invariant. Then / is /--invariant, and
it follows from the ergodicity of L that f(x, g) is independent of xe X. Since
{a(x, y)}J|x = H, f must be //-invariant, and it follows from the density of H in
G tha t /= const. This completes the proof. •
In the case of an n-step solvable group a sequence of elements from G(k) is
constructed in a similar way, where Gik) is a maximum fc-step solvable normal
subgroup. When constructing a cocycle, the elements of lower subgroups are conju-
gated with higher subgroup elements. The general proof is quite the same.

4. According to Zimmer's results [13], any compact group is the range of a cocycle
of an ergodic Z-action. In this section we shall give a new version of the proof of
this fact. The methods developed below will be used in subsequent sections.

THEOREM 4.1. Let K be a second countable compact group. Then it is a range of a
cocycle of an ergodic Z-action.

To prove this we require the following standard proposition:

LEMMA 4.2. Let K be a second countable compact group and U a neighbourhood of
the identity in K. Then there exists a neighbourhood of the identity V such that for all
heK, r ' V f i c U.

Proof. Suppose that the statement of the lemma is not valid and {Vn}^=1 is a
fundamental system of neighbourhoods of the identity in K. Then for each n e N
we can find hne K, xne Vn such that

h-xxnhn£U. (8)
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Evidently, limbec xn = e. By picking a subsequence convergent in K to some limit
h, and proceeding thus to the limit in (8), we find that ei. int U; that is, U is not
a neighbourhood of the identity. This is a contradiction. •

The following is straightforward.

COROLLARY 4.3. Let Kbea second countable compact group, U and V neighbourhoods
of the identity in K satisfying the requirements of lemma 4.2. Let {f}"=] form a V-net
in K. Then for any he K, {h~lfih}"=i form a V-net in K.

Proof of theorem 4.1. Let {Wi}^, be a fundamental system of neighbourhoods of
the identity in K. For each ief^J we construct a finite Wj-net in K. We shall regard
fk(x), keN, as constant and define these so that for each /eM there will be a
sequence of natural numbers {«,(&)}"=, such that {fn[ik)+j}j=i is coincident with the
Wj-net constructed above. The cocycle c: X xT-> K is therefore determined by (2).

To prove the theorem, it suffices to show that for any cocycle /3 equivalent to c,
the closed subgroup generated by the set {@(x, y)}Zllx should coincide with K [12,
corollary 3.8]. To do so, it is enough to prove that for any neighbourhood of the
identity U in K a U- net can be constructed of elements of the subgroup generated
by the set {/3(x, y)}xlx- Now we examine the proof of the latter statement.

Let p : X x r -* K be a cocycle equivalent to c; that is, there exists a Borel function
g: X -» K such that

P(x,y) = g(x)c(x, y)g{x-yy
l.

Assume also that an arbitrary neighbourhood of the identity U in K is given. We
choose a neighbourhood of the identity V, so that V= V~' and V- V<= U. Then we
choose i e N so that for any he K, h~l Wth c. V. Let W b e a neighbourhood of the
identity for which

W • W • • • • ' W c V ,

24(i) times

Now we define a neighbourhood of the identity W so that W= W~x and for any
he K there is an inclusion h~x Wh<= W. Finally, we take a neighbourhood of the
identity W such that W'= W'~x and W'-W^ W.

Let A c X, fi(A)>0, be a set on which g(x) is continuous and xo be a point of
density of the set A. Then we find keN such that for all y e Iniik)(x0) n A we have
g(y)eg(xo)W,

Consider a set

P= Pi Un((k)(*o) n A) • 5; n

We can see that P # 0 by the above choice of k and P- S,c /n.(k)(x0)n A for

7 = «,(fc) + 1 , . . . , M,(fc) + <?(/). Let x e P, then for the same j ,

g(x-Sj)eg{x0)W'^g(x)W'-iW'

= g(x)W- W'<=g(x)W.
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Consider

(Oj = c(x, 8ni(k)+iy
x»>^ • . . . • c (x , Snilk)+J.i)~

x"i^*'-'

xc(x, 8ni(k)+J)
(-x)X^kni • c(x, fi,,l(t)+J-,)

x"<<*w- • ... -c(x, S,,l(k)+,)
x".<*>*'

for j = 1 , . . . , q(i). Transformation of this expression gives

Now consider

wj = jB(x, 81,((fc)+,)

Transform this expression for xn(fc)+j =0 :

dij = g(x- 8ni(k)+l)
x"<^< • c(x, Sni.(fc)+I)-

X",<"+'

x- • • xg(x- ^(kj+j-,)'-.'*'^- • c(x, ^ ( l w .

XC(X, S^v+j-t)*",*™-* • g(x- fini(k)+7_,)"X".">+>- • • • • • g(x)X".">+1

x c ( x , 5ni()c)+1)x"'(k)+1 • g(x • 8niW+l)~
x"^*'

e g ( x ) V ' ) - • VV- c(x,8n,(Jfc)+1)-x"^»+' • W- . . . • IV

xc(x, fin.ck)^-,)""".'*)*,-. • ̂ - c(x, 5n((k)+J) • W"- c(x, S^v+j-t)*",™-'

XW- ... W- c(x, «Bl(k)+,)x-.<»+' • W- g(x)-x".<*H-

<= g(x) x "^) - . • c(x, 5n|(t)+1)"x»,<')+' • . . . • c(x, Sn.{k)+J^y\^'-'

x c ( x , 8Bl(fc)+y) • c(x, 8ni(k)+j-l)
x',<*>+J-i • ... • c(x, 8ni(k)+l)\^*'

xg(x)"x"i<"'+l • WW- ... • W- W
2q(i) — I times

«= g(x)x"i<*'*> • <pniik)(x)-' -fndk)+j • <pn>(k)(x) • g(x)-x".<»+- • V.

The same inclusion can be proved similarly for xn.(fc)+J- = 1. By corollary 4.3 we have
that

w,- = g(x)x».-<l>+' • (pn;(k)(x)-' •fn,(k)+j • <pn,(k)(x) • g(xyx»^+'

for j = 1 , . . . , q(i) form a V-net. Since in this case u>j e wjV, evidently {a>j}jL'i form

a f/-net in K •

5. In this section we combine the methods employed when proving theorems 3.1
and 4.1 to establish the following:

THEOREM 5.1. Let G be an l.c.s. group, K a normal compact subgroup in G, whose
quotient group G/K is solvable. Then G is the range of a cocycle of an ergodic
automorphism.

Proof. For simplicity's sake, we shall assume that G/K is an Abelian group. The
general case may be considered in a similar manner.
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Let {hj}f=l = H be a countable dense subgroup in G/K. Its elements may be
arranged into a sequence {hj}f=l in which every h) occurs infinitely many times.
Finally, we construct a sequence {hj}f=l so that ty{hj) = hj, where iji-.G^G/K is
the natural map.

Then, let {Wi}*il be a fundamental system of neighbourhoods of the identity in
G. For each i eN we construct a finite Wrnet {fcj}?L'!c K. Now we consider a
surjective map p: N -» N which takes every value infinitely many times, and construct
the sequence of natural numbers {n{j)}°°=l: n{\) = 1, n(j+ 1) = n{j) + 2J • q{p(j))+ 1.

Finally, we denote by {£{}?Jo the set of all sequences of O's and l's of length /
Define fk as follows:

/nO') = K (g)
ifi(l)(tp0H

- "j "j-\ . . . 2 1 As ,

, r = 0,...,2J-l, s= 1 , . . . , q(p(j)). Thus a cocycle c : X x r ^ G is defined.

LEMMA 5.2. Let A c X, /*( A) > 0, ^ e H. 77ien f/iere exists D c A , / i ( D ) > 0 and y e T
such that D• y c A and ip(c(x, y)) = Z^/or a.e. x e D .

/ It follows from commutativity of the quotient group that

where j8(x , , . . . , xn0)) e K and therefore,

^(c(x,SB0))) = h}-1)""0). (10)

In other respects the proof is exactly the same as that of lemma 3.2. •

Define a cocycle a : X x [ r ] - » G : a(x, y) = c(x, 8(x, y)) where x- y = x- S(x, y), y e
[T],8(x, y)eT.

LEMMA 5.3. The subgroup L = {y e [F]: a(x, y) e X/or a.e. x e X} acts ergodically on
(A».

The proof is similar to that of lemma 3.5 for a cocycle ip(a(x, y)) but using lemma
5.2 instead of lemma 3.4.

LEMMA 5.4. K is the range of the cocycle a' = O | X X L of an ergodic action of the group

Lon(X,n).

Proof. Note first that forp # n(j),j e N, c(x, Sp) e K for all x s X, and since a(x, Sp) =
c(x, Sp), all Sp with /> # n ( ; ) , ; eN, lie in L. Moreover, when xn(1) = fi( 1 ) , . . . , xn(J) =
^r( ;) , we have

)> (11)

where e(xu . . . , xnU)+rq(p(J))+s) e K, so that in this case lemma 4.2 can be applied.
In other respects the proof is similar to that of theorem 4.1. •

Completion of the proof of theorem 5.1. It is to be proved that the action of F on
(XxCfiXfia) defined by (1) is ergodic. Let / e L°°(X xG, n x ^ ) and / be
F-invariant. Then/ is L- invariant. By lemma 5.4, the action of L on (X x gK, /x x /j,K)
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is ergodic for each fixed g e G. Therefore, / is constant on every such set and hence
it can be considered as a function / of G/K. Since {ip(a(x, y))}xlS< = H, f must
be //-invariant. Now it follows from density of H in G/K that / = const and hence
/ = const. This completes the proof. •

6. THEOREM 6.1. Let G be an l.c.s. group, R a solvable normal subgroup in G with the
compact quotient group G/ R. Then G is the range of a cocycle of an ergodic
automorphism.

Proof. Assume again that R is an Abelian group. Let {Wj}"!, be a fundamental
system of neighbourhoods of the identity in G and iff.G^G/R the natural map.
For each ieN we construct a finite ift{ VVf)-net in G/R. Then construct a sequence
{<Pj}JLi, (pj e G/R with the following property: for each /eM there exists a sequence
of natural numbers {pt(k)}t=i such that {<pPi(k)+m}m = \ is coincident with the </»( Wt)-
net constructed above. Now define the sequenceof natural numbers {« ( J )} °1 , : n(l) =
1, n(j+l) = n(j) + 2J+\}. Finally, t a k e / n 0 ) e G so that «/»(/„<,)) = <Pj-

Let H = {r'])jL\ be a countable dense subgroup in R. We construct a sequence
{r,}°L, so that each r] occurs in it infinitely many times. Denote by {^}?1, the set
of all sequences of O's and l's of length/ Define

jeN, /= 1 , . . . , 2J. Thus a cocycle c:X xF-» G is given.
Consider the space (YxZ,vxv), where (V, v) = {Z, TJ) = (X, fi). Define the

action of the group F on this space: (y, z) • y = (y,z), where pj = yj + -yn(;), z, =
Zj + yn(j)\ {n{j)}%\ is an increasing sequence of natural numbers which is com-
plementary to {n{j)}JLi. Define a map 0:X-> YxZ by 6(x) = {y, z), where y} = xnU),
Zj = Xmjy Evidently, 0 is a Borel bijective map which preserves the measure and
satisfies the requirement d(x- y)=6(x)- y, i.e. the actions of T on (X, fi) and
(YxZ, vXr)) are equivalent. The cocycle c constructed above may therefore be
considered as defined on {YxZ, vx-q).

Note also that partition of the space YxZ into the sets y xZ is measurable, and
the measure £ = v x rj may be disintegrated as follows:

JY
= I Vydv(y), (13)

JY

where rjy= py*(r]); py:Z-*yxZ is the natural map.
Denote by F y and F z the subgroups of F generated by {SnU)}f=i and {SMj)}JLi,

respectively.

LEMMA 6.2. R is the range of the cocycle cy(z, y) = c((y, z), y)\yxZxrz of an ergodic
Tz-action on (y xZ,-qy) for any yeY.

The proof is similar to that of theorem 3.1, with K = {e}.

LEMMA 6.3. G/R is the range of the cocycle a(y, y) = ip(c((y,z), •y)|yxzxrv-), zeZ,
of an ergodic Fy-action on (Y, v).

The proof essentially coincides with that of lemma 5.4.
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Now we complete the proof of theorem 6.1. It is to be proved that the action of F on
(YxZxG,vXr]Xfj.G) defined by

(y,z,g) • y = ((y,z)- y,gc{(y,z),y)), yeF,

is ergodic. Let feU°{YxZxG, vXrj Xfia) and / be F-invariant. Then for a.e.
(y, g)e YxG, the function fy% =f\yxZxgR is measurable on {ZxR, rjXfjLR) and
invariant with respect to the action of F z : (z, r) • y = (z • y, rcy(z, y)). Therefore, by
lemma 6.2, fy >g = const. Hence, the function / is a measurable function / o n (Y x
G/R, fXfj.n/R), invariant with respect to the action of F y : {y, p) • y = {y y,
pa(y,y)). By lemma 6.3, / = const and hence /=const, which was to be
proved. •

It is well known that any almost connected amenable Lie group has the structure
indicated in theorem 6.1. We obtain

COROLLARY 6.4. Any almost connected amenable Lie group is the range of a cocycle
of an ergodic Z-action.

1. It is known that any almost connected l.c.s. group G has the following structure:
in an arbitrary neighbourhood of the identity there is a compact normal subgroup
K such that G/ K is isomorphic to a Lie group [10, p. 175].

THEOREM 7.1. Any amenable almost connected l.c.s. group is the range of a cocycle
of an ergodic Z-action.

Proof. The theorem can be proved in general by the methods developed above. We
shall restrict ourselves to the construction of the cocycle and the main stages of the
proof.

Let K be a compact normal subgroup in G such that G/ K is a Lie group. By
the assumptions concerning G, it must be amenable and almost connected, and
hence it contains a solvable normal subgroup R (which will be regarded here as
Abelian) so that (G/K)/R is compact. Let <p : G^> G/K and ip: G/K^(G/K)/R
be the natural maps, and {Wi}^ a fundamental system of neighbourhoods of the
identity in G.

(1) We construct {aj}JL\ c (G/K)/R for which the following is true: for any
ieN, there exists a sequence of natural numbers {Pi(k)}™=i such that {a^^+jjii'}
are «/>° <p{ W^-nets in {G/K)/R, the same for all keN.

(2) We construct the sequence {r,}JLi of elements from a countable subgroup H
dense in R, in whch every element of H occurs infinitely many times.

(3) For every ieN we construct {k's}
d
s=\ which form a Wj-net in K. Choose also

a surjective map u: N-»N which takes every value infinitely many times. Form two
sequences of natural numbers {n(j)}fLt and {k(j)}fL, such that «(1) = 1, n(j+ 1) =
n(j) + 2J- d(u(j))+l\ fc(l)= 1, k(j+l) = k(j) + 2J+\. Define/* so that

J n ( k ( j ) + l) — J n ( k ( j ) ) J n ( k ( j - t ) ) • • • J n(k(2))
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w h e r e <p(r,-) = f), / = 1 , . . . , 2 J ;

7n(<c0)+/)+(m-l)d(u(fc0)+())+s - J „()£(_,•)+/)

As in the preceding section, consider the space (YxZxT, pxyjxp) where
(Y, v) = {Z, i,) = ( T , p ) s ( X , M ) . Denote by {n(j)}J°=i and {£(./)}?_, the increasing
sequences of natural numbers which are complementary to {n(j)}°°=\ and {fc(./)}jii,
respectively, and then construct the action of F on (YxZxT, vXr)Xp) by
(y, z,t)-y = (y, z, t), where % = ys + ynWj)), Zj = Zj + %,, E O ) ) , fj = tj + yHj). This action

is equivalent to the action of F on (X, fj.) because of the properties of the map
0:X^YxZxT: 6{x) = (y,z, t), where y} = xn(kU)), Zj = xn(R(j)), t} = xR(J). Consider

also the space (yXzxT, pyz), where pyz = py,Ap), py,z: T^>yXzxT is the natural

map, and similarly, the space {yxZ, j)y), where Vv = Tv*(v), Try:Z->yxZ is the
natural map. Finally, denote by Fy , Fz , F T the subgroups of F generated by
{8niku))}?=\> {8-(ku))}?=i a n d {8nU)}7=i> respectively.

LEMMA 7.2. K is the range of the cocycle cy<z(t, y) = c((y, z, t), y)\yxzxTxrT of an
ergodic action of TT on (yXzxT, pyz) for all yeY, z e Z.

LEMMA 7.3. R is the range of the cocycle ay(z, y) = <p{c((y, z, t), y)|^xzx,xrz), te T
of the ergodic action of F z on (y xZ,r)y) for all yeY.

LEMMA 7.4. (G/K)/R is the range of the cocycle

P(y, y) = t ° <p(c((y, z, t), y^yxzx.xry), zeZ, teT

of the ergodic action of T y on (Y, v).

The proof of theorem 7.1 is completed in the same manner as that of theorem 6.1.

COROLLARY 7.5. Any connected amenable l.c.s. group is the range of a cocycle of an
ergodic automorphism.
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