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ON THE MILNOR FIBRATION OF CERTAIN NEWTON
DEGENERATE FUNCTIONS

CHRISTOPHE EYRAL and MUTSUO OKA

Abstract. It is well known that the diffeomorphism type of the Milnor fibra-

tion of a (Newton) nondegenerate polynomial function f is uniquely determined

by the Newton boundary of f. In the present paper, we generalize this result to

certain degenerate functions, namely we show that the diffeomorphism type of

the Milnor fibration of a (possibly degenerate) polynomial function of the form

f = f1 · · ·fk0 is uniquely determined by the Newton boundaries of f1, . . . ,fk0 if

{fk1 = · · ·= fkm = 0} is a nondegenerate complete intersection variety for any

k1, . . . ,km ∈ {1, . . . ,k0}.

§1. Introduction

Let f(z) and g(z) be two nonconstant polynomial functions of n complex variables

z= (z1, . . . , zn) such that f(0) = g(0) = 0. (Here, f and g may have a nonisolated singularity

at 0.) The goal of this paper is to find easy-to-check conditions on the functions f and g that

guarantee that their Milnor fibrations at 0 are isomorphic (i.e., there is a fiber-preserving

diffeomorphism from the total space of the Milnor fibration of f onto that of g). In [9],

the second named author proved that if f and g are (Newton) nondegenerate and have

the same Newton boundary, then necessarily they have isomorphic Milnor fibrations (the

special cases where, in addition, f is weighted homogeneous or has an isolated singularity

at 0 were first proved in [8] and [7], respectively). The crucial step in the proof of this

result is a similar assertion, also proved in [9], for one-parameter families of functions. It

says that if τ0 > 0 and if {ft}|t|≤τ0 is a family of nondegenerate polynomial functions with

the same Newton boundary, then the Milnor fibrations of ft and f0 at 0 are isomorphic

for any t, |t| ≤ τ0. This theorem, in turn, is a consequence of another important result, still

proved in [9], which asserts that any family {ft}|t|≤τ0 satisfying the above conditions has a

so-called uniform stable radius for the Milnor fibrations of its elements ft.

Although the scope of the abovementioned theorems is relatively wide, it does not

include, for instance, the following quite common situation. Suppose that f(z) is the

product of k0 ≥ 2 polynomial functions f1(z), . . . ,fk0(z) on Cn with n≥ 3 (so, in particular,

we have dim0(V (fk)∩ V (fk′
)) ≥ n− 2 ≥ 1, where, as usual, V (fk) and V (fk′

) denote

the hypersurfaces defined by fk and fk′
, respectively; here, the upper index denotes an

index, not a power). Then we claim that f is never nondegenerate (and hence the results

of [9] do not apply to this situation). If f is convenient (i.e., if its Newton boundary

intersects each coordinate axis), then our claim is an immediate consequence of a theorem

of Kouchnirenko [5], which asserts that a convenient nondegenerate function always has an

isolated singularity at the origin. In the above situation, since for k �= k′ the intersection

V (fk)∩V (fk′
) is contained in the singular locus of V (f), if the function f is convenient,

then Kouchnirenko’s theorem implies that it must be degenerate (i.e., not nondegenerate).
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In the case where f is not a convenient function, our claim follows from a theorem of

Bernstein [1] and Proposition 2.3 in Chapter 4 of [10], which imply that for k �= k′ the

intersection V (fk
w)∩V (fk′

w )∩C∗n is nonempty whenever w ∈ N∗n is such that fk
w and fk′

w

are not monomials and the dimension of the Minkowski sum Δ(w;fk)+Δ(w;fk′
) is ≥ 2.

Here, Δ(w;fk) (resp. fk
w) denotes the face of the Newton polyhedron of fk (resp. the face

function of fk) with respect to w; similarly for the function fk′
(see §2 for the definitions).

Of course, this implies that the face function fw of f with respect to w has a critical point

in V (fw)∩C∗n, that is, f is degenerate.

In the present paper, we generalize the results of [9] to a class of polynomial functions

that includes the “degenerate” examples mentioned above. A first class of such functions

was already given by the authors in [2] in the case of one-parameter families of functions

of the form ft(z) = f1
t (z) · · ·fk0

t (z) under a condition called Newton-admissibility. This

condition says that the Newton boundaries of the functions fk
t which appear in the

product must be independent of t and the (germs at 0 of the) varieties V (fk1
t , . . . ,fkm

t ) :=

{fk1
t = · · ·= fkm

t =0} must be nondegenerate, uniformly locally tame, complete intersection

varieties for any k1, . . . ,km ∈ {1, . . . ,k0}. The uniform local tameness is a nondegeneracy-

type condition with respect to the variables corresponding to the “compact directions”

of the noncompact faces of the Newton polyhedron, the variables corresponding to the

“noncompact directions” being fixed in a small ball independent of t (for a precise definition,

see [2]).

In fact, under the Newton-admissibility condition, we proved in [2] a much stronger

result on the local geometry of the family of hypersurfaces V (ft): we showed that any

Newton-admissible family is Whitney equisingular and satisfies Thom’s condition. Then,

as a consequence of these two results, we easily obtained that the Milnor fibrations

of ft and f0 at the origin are isomorphic for all small t. Note that in the case of

nonisolated singularities, the Newton-admissibility condition is a crucial assumption when

we want to study geometric properties like Whitney equisingularity or Thom’s condition.

However, if our goal is only to investigate the Milnor fibrations of the family members

ft, then, as we are going to show it in the present work, the uniform local tameness

condition (which appears through the Newton-admissibility condition) can be completely

dropped.

Our first main theorem here says that if the Newton boundaries of the functions fk
t

(1 ≤ k ≤ k0) are independent of t and if the varieties V (fk1
t , . . . ,fkm

t ) are nondegenerate

complete intersection varieties for any k1, . . . ,km ∈ {1, . . . ,k0}, then the Milnor fibrations

of ft and f0 at 0 are isomorphic for all small t (see Theorem 4.5). The main step to

prove this theorem is the following assertion, which is interesting itself. It says that, under

the same assumptions, the family {ft} has a uniform stable radius (see Theorem 4.3 and

Corollary 4.4). In the course of the proof of this assertion, we also show how a stable radius

for the Milnor fibration of a function of the form f(z) = f1(z) · · ·fk0(z) can be obtained

when the corresponding varieties V (fk1 , . . . ,fkm) are nondegenerate complete intersection

varieties for any k1, . . . ,km ∈ {1, . . . ,k0} (see Theorem 3.5).

Our second main theorem, which is deduced from the first one, asserts that given two

polynomial functions f(z) = f1(z) · · ·fk0(z) and g(z) = g1(z) · · ·gk0(z), if V (fk1 , . . . ,fkm)

and V (gk1 , . . . ,gkm) are nondegenerate complete intersection varieties for any k1, . . . ,km ∈
{1, . . . ,k0}, and if for each 1≤ k ≤ k0, the Newton boundaries of fk and gk coincide, then

the Milnor fibrations of f and g at 0 are isomorphic (see Theorem 5.2).
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Note that in the special case where k0 = 1 (for which the functions under consideration

are necessarily nondegenerate), we recover all the results of [9]—a paper from which the

present work is inspired.

§2. Nondegenerate complete intersection varieties

Let z := (z1, . . . , zn) be coordinates for Cn, and let f(z) =
∑

α cα z
α be a nonconstant

polynomial function which vanishes at the origin. Here, α := (α1, . . . ,αn) ∈Nn, cα ∈C, and

zα is a notation for the monomial zα1
1 · · ·zαn

n . For any I ⊆ {1, . . . ,n}, we denote by CI (resp.

C∗I) the set of points (z1, . . . , zn) ∈ Cn such that zi = 0 if i /∈ I (resp. zi = 0 if and only if

i /∈ I). In particular, we have C∅ = C∗∅ = {0} and C∗{1,...,n} = C∗n, where C∗ := C \ {0}.
Throughout this paper, we are only interested in a local situation, that is, in (arbitrarily

small representatives of) germs at the origin.

To start with, let us recall the definition of a nondegenerate complete intersection variety,

which is a key notion in this paper. (A standard reference for this is [10].)

The Newton polyhedron Γ+(f) of the germ of f at the origin 0 ∈Cn (with respect to the

coordinates z= (z1, . . . , zn)) is the convex hull in Rn
+ of the set⋃

cα �=0

(α+Rn
+).

The Newton boundary of f (denoted by Γ(f)) is the union of the compact faces of Γ+(f). For

any weight vector w := (w1, . . . ,wn)∈Nn, let d(w;f) be the minimal value of the restriction

to Γ+(f) of the linear map

x= (x1, . . . ,xn) ∈ Rn �→
n∑

i=1

xiwi ∈ R,

and let Δ(w;f) be the (possibly noncompact) face of Γ+(f) defined as

Δ(w;f) =

{
x ∈ Γ+(f) ;

n∑
i=1

xiwi = d(w;f)

}
.

Note that if all the wi’s are positive, then Δ(w;f) is a (compact) face of Γ(f), and if w= 0,

then Δ(w;f) = Γ+(f). The face function of f with respect to w is the function

z ∈ Cn �→
∑

α∈Δ(w;f)

cα z
α ∈ C.

Hereafter, this function will be denoted by fw or fΔ(w;f).

Now, consider the set I(f) consisting of all subsets I ⊆{1, . . . ,n} such that the restriction

of f to CI (denoted by f I) does not identically vanishes. Clearly, I ∈ I(f) if and only if

Γ(f I) = Γ(f)∩RI is not empty, where RI is defined in a similar way as CI . Hereafter, for

any weight vector w ∈ NI , we shall use the simplified following notation:

f I
w := (f I)w and f I

Δ(w;fI) := (f I)Δ(w;fI).

(Of course, NI is defined in a similar way as CI and RI .) Note that for all w ∈NI , we have

f I
w ≡ f I

Δ(w;fI) = fΔ(w;fI).
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Definition 2.1 (See [5]). The germ at 0 of the hypersurface V (f) := f−1(0) ⊆ Cn is

called nondegenerate if for any “positive” weight vector w ∈ N∗n (i.e., wi > 0 for all i), the

hypersurface

V ∗(fw) := {z ∈ C∗n | fw(z) = 0}

is a reduced, nonsingular hypersurface in the complex torus C∗n. This means that fw has

no critical point in V ∗(fw), that is, the 1-form dfw is nowhere vanishing in V ∗(fw). We

emphasize that V ∗(fw) is globally defined in C∗n.

Now, consider k0 nonconstant polynomial functions f1(z), . . . ,fk0(z) which all vanish at

the origin.

Definition 2.2 (See [10]). We say that the germ at 0 of the variety

V (f1, . . . ,fk0) := {z ∈ Cn | f1(z) = · · ·= fk0(z) = 0}

is a germ of a nondegenerate complete intersection variety if for any positive weight vector

w ∈ N∗n, the variety

V ∗(f1
w, . . . ,f

k0
w ) := {z ∈ C∗n | f1

w(z) = · · ·= fk0
w (z) = 0}

is a reduced, nonsingular, complete intersection variety in C∗n, that is, the k0-form

df1
w∧· · ·∧dfk0

w

is nowhere vanishing in V ∗(f1
w, . . . ,f

k0
w ). Again, we emphasize that V ∗(f1

w, . . . ,f
k0
w ) is

globally defined in C∗n.

Remark 2.3. If V (f1, . . . ,fk0) is a germ of a nondegenerate complete intersection

variety, then, by [10, Chap. III, Lem. 2.2], for any I ∈ I(f1)∩ · · · ∩ I(fk0), the germ at

0 of the variety

V I(f1, . . . ,fk0) := {z ∈ CI | f1,I(z) = · · ·= fk0,I(z) = 0}

is a germ of a nondegenerate complete intersection variety too. In other words, for any

w ∈ N∗I , the k0-form df1,I
w ∧· · ·∧dfk0,I

w is nowhere vanishing in

V ∗I(f1
w, . . . ,f

k0
w ) := {z ∈ C∗I | f1,I

w (z) = · · ·= fk0,I
w (z) = 0}.

(As usual, fk,I is the restriction of fk to CI and fk,I
w is the face function (fk,I)w ≡

(fk,I)Δ(w;fk,I).)

§3. Stable radius for the Milnor fibration

Let again f1(z), . . . ,fk0(z) be nonconstant polynomial functions of n complex variables

z= (z1, . . . , zn) such that fk(0) = 0 for all 1≤ k ≤ k0.

Assumptions 3.1. Throughout this section, we assume that for any k1, . . . ,km ∈
{1, . . . ,k0}, the germ of the variety V (fk1 , . . . ,fkm) at 0 is the germ of a nondegenerate

complete intersection variety.

Remark 3.2. Note that, by Remark 2.3, Assumptions 3.1 imply that for any

k1, . . . ,km ∈ {1, . . . ,k0}, any I ∈ I(fk1) ∩ · · · ∩ I(fkm), and any w ∈ N∗I , the following

https://doi.org/10.1017/nmj.2022.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.37


414 C. EYRAL AND M. OKA

inclusion holds true:

ΣI(fk1
w , . . . ,fkm

w )∩V I(fk1
w , . . . ,fkm

w )⊆
{
z ∈ CI ;

∏
i∈I

zi = 0

}
,

where ΣI(fk1
w , . . . ,fkm

w ) is the critical set of the restriction to CI of the mapping

(fk1
w , . . . ,fkm

w ) : Cn → Cm.

We start with the following lemma which is crucial for the paper. Note that in the special

case where k0 = 1, the function f1 (or the hypersurface V (f1)) is nondegenerate, and the

lemma below coincides with Lemma 1 of [9].

Lemma 3.3. Under Assumptions 3.1, there exists ε > 0 such that for any k1, . . . ,km ∈
{1, . . . ,k0}, any I ⊆ {1, . . . ,n} with I ∈ I(fk1) ∩ · · · ∩ I(fkm), any weight vector

w = (w1, . . . ,wn) ∈ NI , and any (possibly zero) λ ∈ C, if a = (a1, . . . ,an) is a point in

CI satisfying the following two conditions:

(1) fk1,I
w (a) = · · ·= fkm,I

w (a) = 0;

(2) there exists an m-tuple (μk1 , . . . ,μkm) ∈ Cm \{0} such that for all i ∈ I:

m∑
j=1

μkj

∂f
kj ,I
w

∂zi
(a) =

{
λāi, if i ∈ I ∩ I(w),

0, if i ∈ I \ I(w),

where āi is the complex conjugate of ai and I(w) := {i ∈ {1, . . . ,n}; wi = 0};

then we must have

a /∈
{
z ∈ C∗I ;

∑
i∈I∩I(w)

|zi|2 ≤ ε2
}
.

Remark 3.4. Lemma 3.3 amounts to saying that, under Assumptions 3.1, there exists

ε> 0 such that for any k1, . . . ,km ∈ {1, . . . ,k0}, any I ∈I(fk1)∩· · ·∩I(fkm), and anyw∈NI ,

the intersection

V I(fk1
w , . . . ,fkm

w )∩ΣI(fk1
w , . . . ,fkm

w ,�w)∩{z ∈ CI ; �w(z)≤ ε2}

is contained in the set {z ∈ CI ;
∏

i∈I zi = 0}, where

�w(z) :=
∑

i∈I∩I(w)

|zi|2

and ΣI(fk1
w , . . . ,fkm

w ,�w) is the critical set of the restriction to CI of the mapping

(fk1
w , . . . ,fkm

w ,�w) : C
n → Cm×R.

We shall prove Lemma 3.3 at the end of this section. First, let us use it in order to prove

the following first important theorem.

Theorem 3.5. Under Assumptions 3.1, if f(z) := f1(z) · · ·fk0(z), then the number ε

which appears in Lemma 3.3 is a stable radius for the Milnor fibration of f.

We recall that ε is called a stable radius for the Milnor fibration of f if for any 0< ε1 ≤
ε2 < ε, there exists δ(ε1, ε2) > 0 such that for any η ∈ C with 0 < |η| ≤ δ(ε1, ε2), the

hypersurface f−1(η) ⊆ Cn is nonsingular in B̊ε := {z ∈ Cn ; ‖z‖ < ε} and transversely
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intersects the spheres Sε12 := {z ∈ Cn ; ‖z‖ = ε12} for any ε1 ≤ ε12 ≤ ε2. (Equivalently,

Σ(f,�)∩ (Bε2 \ B̊ε1) ⊆ V (f) for any 0 < ε1 ≤ ε2 < ε, where �(z) :=
∑n

i=1 |zi|2, Σ(f,�) is

the critical set of the mapping (f,�) : Cn → C×R, and Bε2 := {z ∈ Cn ; ‖z‖ ≤ ε2}.) The

existence of such a radius was proved by Hamm and Lê in [4, Lem. 2.1.4].

Note that Theorem 3.5 includes Theorem 1 of [9], which is obtained by taking k0 = 1.

Proof of Theorem 3.5. We argue by contradiction. By [6, Cor. 2.8], for δ > 0 small

enough, the fibers f−1(η)∩ B̊ε are nonsingular for any η, 0< |η| ≤ δ. It follows that if the

assertion in Theorem 3.5 is not true, then, by the Curve Selection Lemma (see [3], [6]),

there exist a real analytic curve z(s) = (z1(s), . . . , zn(s)) in Cn, 0 ≤ s ≤ 1, and a family of

complex numbers λ(s), 0< s≤ 1, satisfying the following three conditions:

(i) ∂f
∂zi

(z(s)) = λ(s)z̄i(s) for 1≤ i≤ n and s �= 0.

(ii) f(z(0)) = 0, but f(z(s)) is not constantly zero.

(iii) There exists ε′ > 0 such that ε′ ≤ ‖z(s)‖ ≤ ε.

Note that, by (i) and (ii), λ(s) �≡ 0 and we can express it in a Laurent series

λ(s) = λ0s
c+ · · · ,

where λ0 ∈ C∗. Throughout, the dots “· · ·” stand for the higher-order terms. Let I :=

{i ; zi(s) �≡ 0}. By (ii), I ∈ I(f), and hence I ∈ I(f1)∩· · ·∩I(fk0). For each i ∈ I, consider

the Taylor expansion

zi(s) = ais
wi + · · · ,

where ai ∈ C∗ and wi ∈ N.

Claim 3.6. There exists 1 ≤ k ≤ k0 such that fk,I
w (a) ≡ (fk,I)w(a) = 0, where a and

w are the points in C∗I and NI , respectively, whose ith coordinates (i ∈ I) are ai and wi,

respectively.

Hereafter, to simplify the notation, we shall assume that I = {1, . . . ,n}, so that the

function fk,I is simply written as fk, the intersection I ∩ I(w) is written as I(w) (where,

as in Lemma 3.3, I(w) is the set of all indexes i ∈ {1, . . . ,n} for which wi = 0), and so on.

The argument for a general I is completely similar.

Before proving Claim 3.6, let us first complete the proof of Theorem 3.5. For that purpose,

we look at the set consisting of all integers k for which fk
w(a) = 0, which is not empty by

Claim 3.6. For simplicity again, we shall assume

fk
w(a) = 0 for 1≤ k ≤ k′0 ≤ k0;

fk
w(a) �= 0 for k′0+1≤ k ≤ k0.

Write f = f1 · · ·fk′
0 ·h, where h := fk′

0+1 · · ·fk0 if k′0 ≤ k0− 1 and h := 1 if k′0 = k0. Then,

for all 1≤ i≤ n, we have

∂f

∂zi
(z(s)) =

k′
0∑

k=1

(
∂fk

∂zi
(z(s)) ·h(z(s)) ·

∏
1≤�≤k′

0
� �=k

f �(z(s))

)
+

∂h

∂zi
(z(s)) ·

∏
1≤k≤k′

0

fk(z(s)). (3.1)
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For each 1 ≤ k ≤ k′0, if ok ≡ ordfk(z(s)) denotes the order (in s) of fk(z(s)) and if

ek := d(w;fk)−ok+
∑k′

0

�=1 o�, then

ord

(
∂fk

∂zi
(z(s)) ·h(z(s)) ·

∏
1≤�≤k′

0
� �=k

f �(z(s))

)
≥ d(w;h)−wi+ek, (3.2)

and the equality holds if and only if
∂fk

w

∂zi
(a) �= 0. Since ok > d(w;fk) for 1≤ k ≤ k′0, we also

have

ord

(
∂h

∂zi
(z(s)) ·

k′
0∏

�=1

f �(z(s))

)
≥ d(w;h)−wi+

k′
0∑

�=1

o� > d(w;h)−wi+ek (3.3)

for all 1≤ k ≤ k′0. Still for simplicity, let us assume that

emin := e1 = · · ·= ek′′
0
< ek′′

0 +1 ≤ ·· · ≤ ek′
0
.

The relations (3.1)–(3.3) show that there exist μ1, . . . ,μk′′
0
∈C∗ such that for any 1≤ i≤ n,

∂f

∂zi
(z(s)) =

k′′
0∑

k=1

∂fk
w

∂zi
(a) ·μk ·sd(w;h)−wi+emin + · · · ,

and hence, by multiplying both sides of the relation (i) by swi ,

k′′
0∑

k=1

∂fk
w

∂zi
(a) ·μk ·sd(w;h)+emin + · · ·= λ0āis

c+2wi + · · · . (3.4)

Note that the coefficient λ0āi of s
c+2wi on the right-hand side of (3.4) being nonzero, we

must have d(w;h)+ emin ≤ c+2wi for any 1≤ i≤ n, and since I(w) �= ∅ (by (iii)), in fact,

we have d(w;h)+ emin ≤ c. It follows that for any i /∈ I(w), the sum

Si :=

k′′
0∑

k=1

μk
∂fk

w

∂zi
(a)

vanishes. (Indeed, if there exists i0 /∈ I(w) such that Si0 �=0, then c+2wi0 = d(w;h)+emin ≤
c, which is a contradiction.) Now, if we also have Si = 0 for all i ∈ I(w), then the condition

(2) of Lemma 3.3 is satisfied. (Note that the complex number denoted by λ in Lemma 3.3

may vanish.) However, the relation (iii) implies

a ∈
{
z ∈ C∗n;

∑
i∈I(w)

|zi|2 ≤ ε2
}
, (3.5)

which contradicts the conclusion of this lemma. If there exists i0 ∈ I(w) such that Si0 �= 0,

then it follows that Si �= 0 for any i ∈ I(w), so that for all such i ’s,

Si ≡
k′′
0∑

k=1

μk
∂fk

w

∂zi
(a) = λ0āi.
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Thus, the condition (2) of Lemma 3.3 is satisfied in this case too, and again the relation

(iii) (which implies (3.5)) leads to a contradiction with the conclusion of the lemma. So, up

to Claim 3.6, the theorem is proved.

To complete the proof of the theorem, it remains to prove Claim 3.6.

Proof of Claim 3.6. Again, to simplify, we assume I = {1, . . . ,n}, so that fk,I = fk,

I∩I(w) = I(w), and so on. We argue by contradiction. Suppose fk
w(a) �=0 for all 1≤ k≤ k0.

Then d(w;fk) = ok for all 1≤ k ≤ k0, where ok is the order of fk(z(s)). Furthermore, note

that, by (ii), there exists 1 ≤ k1 ≤ k0 such that fk1(z(0)) = 0. If I(w) = {1, . . . ,n}, then
d(w;fk1) = 0 and

fk1(z(s)) = fk1
w (a)s0+ · · · ,

and therefore 0= fk1(z(0))= fk1
w (a), which is a contradiction. So, from now on, suppose that

I(w) is a proper subset of {1, . . . ,n} and d(w;fk1) �= 0. Put e :=
∑k0

k=1 ok. Then, as above,

there exist nonzero complex numbers μ1, . . . ,μk0 (actually, here, for each k, μk =
∏

� �=k f
�
w(a))

such that for any 1≤ i≤ n,

∂f

∂zi
(z(s)) =

k0∑
k=1

∂fk
w

∂zi
(a) ·μk ·s−wi+e+ · · · ,

and hence, by multiplying both sides of the relation (i) by swi ,

k0∑
k=1

∂fk
w

∂zi
(a) ·μk ·se+ · · ·= λ0āis

c+2wi + · · · .

Again, since λ0āi �= 0 and I(w) �= ∅, we have e ≤ c and the sum
∑k0

k=1μk
∂fk

w

∂zi
(a) vanishes

for all i ∈ I(w)c := {1, . . . ,n} \ I(w). As fk
w is weighted homogeneous, this, together with

the Euler identity, implies that

0 =
∑

i∈I(w)c

aiwi

( k0∑
k=1

∂fk
w

∂zi
(a) ·μk︸ ︷︷ ︸

=0

)
=

k0∑
k=1

( ∏
1≤�≤k0

� �=k

f �
w(a) ·

∑
i∈I(w)c

aiwi
∂fk

w

∂zi
(a)

)

=

k0∑
k=1

( ∏
1≤�≤k0

� �=k

f �
w(a)

)
·d(w;fk) ·fk

w(a) =

( k0∏
�=1

f �
w(a)

)
·

k0∑
k=1

d(w;fk) �= 0,

which is a contradiction too.

This completes the proof of Theorem 3.5 (up to Lemma 3.3).

Now, let us prove Lemma 3.3.

Proof of Lemma 3.3. First, observe that if the assertion fails for some k1, . . . ,km, I, and

Δ(w;fk1), . . . ,Δ(w;fkm) such that I ∩ I(w) = ∅, then for any ε > 0, the set{
z ∈ C∗I ;

∑
i∈I∩I(w)=∅

|zi|2 ≤ ε2
}

is nothing but C∗I and there exists a point a in it that satisfies the conditions (1) and (2)

of the lemma; in particular, a ∈ V ∗I(fk1
w , . . . ,fkm

w ) and the vectors zk1(a), . . . ,zkm(a) ∈ CI
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whose ith coordinates (i ∈ I) are

∂fk1,I
w

∂zi
(a), . . . ,

∂fkm,I
w

∂zi
(a),

respectively, are linearly dependent, that is,

dfk1,I
w (a)∧· · ·∧dfkm,I

w (a) = 0.

However, since I ∈ I(fk1)∩· · ·∩I(fkm) and I∩I(w) = ∅, this contradicts Assumptions 3.1,

which imply that

dfk1,I
w (p)∧· · ·∧dfkm,I

w (p) �= 0

for any p ∈ V ∗I(fk1
w , . . . ,fkm

w ) (see Remark 2.3).

Now, assume that the assertion in Lemma 3.3 fails for some k1, . . . ,km, I and

Δ(w;fk1), . . . ,Δ(w;fkm) such that I ∩ I(w) �= ∅. Again, without loss of generality, and

in order to simplify the notation, we assume that I = {1, . . . ,n}, so that fk,I
w = fk

w,

I ∩ I(w) = I(w), C∗I = C∗n, and so on. Then there is a sequence {pq}q∈N of points in

C∗n and a sequence {λq}q∈N of complex numbers such that:

(1) fk1
w (pq) = · · ·= fkm

w (pq) = 0 for all q ∈ N.

(2) There exists a sequence {(μk1,q, . . . ,μkm,q)}q∈N of points in Cm \ {0} such that for all

q ∈ N and all 1≤ i≤ n,

m∑
j=1

μkj ,q
∂f

kj
w

∂zi
(pq) =

{
λq p̄q,i, if i ∈ I(w),

0, if i /∈ I(w),

where, for each 1≤ i≤ n, p̄q,i denotes the conjugate of the ith coordinate pq,i of pq.

(3)
∑

i∈I(w) |pq,i|2 → 0 as q →∞.

For any ζ ∈C and any z ∈Cn, let ζ ∗z= ((ζ ∗z)1, . . . ,(ζ ∗z)n) be the point of Cn defined

by

(ζ ∗z)i := ζwizi =

{
zi, for i ∈ I(w),

ζwizi, for i /∈ I(w).

Then pick a sequence {ζq}q∈N of points in C∗ that converges to zero sufficiently fast so that

the sequence {ζq ∗pq}q∈N converges to the origin of Cn. Clearly, {ζq ∗pq}q∈N also satisfies

the above properties (1)–(3). Indeed, for any 1≤ j ≤m, we have

f
kj
w (ζq ∗pq) = ζd(w;fkj )

q f
kj
w (pq) = 0,

so {ζq ∗pq}q∈N satisfies (1). For each 1≤ i≤ n, we also have

∂f
kj
w

∂zi
(ζq ∗pq) = ζd(w;fkj )−wi

q

∂f
kj
w

∂zi
(pq),

and since ζwi
q = 1 for all i ∈ I(w) and ζwi

q (which is nonzero) is independent of the index j

(1≤ j ≤m) for all i /∈ I(w), it follows that

m∑
j=1

μkj ,q

ζ
d(w;fkj )
q

∂f
kj
w

∂zi
(ζq ∗pq) =

{
λq p̄q,i, for i ∈ I(w),

0, for i /∈ I(w),
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so that the sequence {ζq ∗pq}q∈N satisfies (2) with the complex numbers μkj ,q/ζ
d(w;fkj )
q

(1≤ j ≤m). Finally, ∑
i∈I(w)

|(ζq ∗pq)i|2 =
∑

i∈I(w)

|pq,i|2 → 0,

as q →∞, so {ζq ∗pq}q∈N also satisfies (3). Altogether, {ζq ∗pq}q∈N satisfies the properties

(1)–(3). Therefore, we can apply the Curve Selection Lemma to this situation in order to

find a real analytic curve a(s) = (a1(s), . . . ,an(s)) in Cn, 0≤ s≤ 1, and a family of complex

numbers λ(s), 0< s≤ 1, such that:

(1′) fk1
w (a(s)) = · · ·= fkm

w (a(s)) = 0 for all s �= 0.

(2′) There exists a real analytic curve (μk1(s), . . . ,μkm(s)) in Cm \{0}, 0< s≤ 1, such that

for all s �= 0 and all 1≤ i≤ n,

m∑
j=1

μkj (s)
∂f

kj
w

∂zi
(a(s)) =

{
λ(s) āi(s), if i ∈ I(w),

0, if i /∈ I(w).

(3′) a(0) = 0 and a(s) ∈ C∗n for s �= 0.

For each 1≤ i≤ n, consider the Taylor expansion

ai(s) = bis
vi + · · · ,

where bi ∈ C∗ and vi ∈ N∗. Since the vi’s are all positive, for each 1 ≤ j ≤ m, the face

Δ
(
v;f

kj
w

)
is a compact face of Δ(w;fkj ), and hence Δ

(
v;f

kj
w

)
is a face of Γ(fkj ), where v

is the point of N∗n whose ith coordinate is vi. Furthermore, note that for each j, we have

d
(
v;f

kj
w

)
> 0, and since

0 = f
kj
w (a(s)) =

(
f
kj
w

)
v
(b)sd

(
v;f

kj
w

)
+ · · ·

for all s �= 0, we also have
(
f
kj
w

)
v
(b) = 0, where b is the point of C∗n whose ith coordinate

is bi. (As usual,
(
f
kj
w

)
v
is the face function of f

kj
w with respect to v.)

Write μkj (s) = μkjs
gj + · · · , where μkj �= 0. If μkj (s)≡ 0, then gj =∞. Let

δ := min{d
(
v;fk1

w

)
+g1, . . . ,d

(
v;fkm

w

)
+gm},

and put

μ̃kj =

{
μkj , if d

(
v;f

kj
w

)
+gj = δ,

0, if d
(
v;f

kj
w

)
+gj > δ.

Claim 3.7. There exists i0 ∈ I(w) such that
∑m

j=1 μ̃kj

∂
(
f
kj
w

)
v

∂zi0
(b) �= 0. (We recall that

μkj (s) �≡ 0 for at least an index j.)

Proof. First, observe that for all 1≤ j ≤m and all 1≤ i≤ n,

∂f
kj
w

∂zi
(a(s)) =

∂
(
f
kj
w

)
v

∂zi
(b)sd

(
v;f

kj
w

)
−vi + · · · .
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Thus, if the assertion in Claim 3.7 fails, then the sum

m∑
j=1

μ̃kj

∂
(
f
kj
w

)
v

∂zi
(b)

vanishes for all i ∈ I(w), and so, by (2′), it vanishes for all 1 ≤ i ≤ n. In other words, if

kj1 , . . . ,kjp are the elements of the set {k1, . . . ,km} for which d
(
v;f

kj�
w

)
+gj� = δ, 1≤ �≤ p,

then the vectors(
∂
(
f
kj1
w

)
v

∂z1
(b), . . . ,

∂
(
f
kj1
w

)
v

∂zn
(b)

)
, . . . ,

(
∂
(
f
kjp
w

)
v

∂z1
(b), . . . ,

∂
(
f
kjp
w

)
v

∂zn
(b)

)
of Cn are linearly dependent, that is,

d
(
f
kj1
w

)
v
(b)∧· · ·∧d

(
f
kjp
w

)
v
(b) = 0.

As
(
f
kj�
w

)
v
= f

kj�
v+νw for any sufficiently large integer ν ∈ N (so that

(
f
kj�
w

)
v
is the face

function of fkj� with respect to the weight vector v+νw) and
(
f
kj�
w

)
v
(b) = 0 for 1≤ �≤ p,

this contradicts the nondegeneracy of V (fkj1 , . . . ,fkjp ) (see Assumptions 3.1).

Combined with (2′) again, Claim 3.7 implies that λ(s) is not constantly zero. Write it as

a Laurent series λ(s) = λ0s
c+ · · · , where λ0 �= 0. Then, still from (2′), we deduce that for

all 1≤ i≤ n,

m∑
j=1

μ̃kj

∂
(
f
kj
w

)
v

∂zi
(b)sδ+ · · ·=

{
λ0b̄i s

c+2vi + · · · , if i ∈ I(w),

0, if i /∈ I(w).
(3.6)

Put Si :=
∑m

j=1 μ̃kj

∂
(
f
kj
w

)
v

∂zi
(b), and define

v0 := min{vi ; i ∈ I(w)} and I0 := {i ∈ I(w) ; vi = v0}. (3.7)

Since the coefficient λ0b̄i on the right-hand side of (3.6) is nonzero and the set of indexes

i ∈ I(w) such that Si �= 0 is not empty (see Claim 3.7), we have δ = c+2v0 and Si �= 0 for

any i ∈ I0. In fact, for any 1≤ i≤ n, the following equality holds:

Si ≡
m∑
j=1

μ̃kj

∂
(
f
kj
w

)
v

∂zi
(b) =

{
λ0b̄i, if i ∈ I0,

0, if i /∈ I0.
(3.8)

Since I0 �= ∅ and
(
f
kj
w

)
v
(b) = 0 (1≤ j ≤m), combined with the Euler identity, the relation

(3.8) implies

0 =
m∑
j=1

μ̃kj ·d
(
v;f

kj
w

)
·
(
f
kj
w

)
v
(b) =

m∑
j=1

μ̃kj

( n∑
i=1

vibi
∂
(
f
kj
w

)
v

∂zi
(b)

)

=
∑
i∈I0

vibi

( m∑
j=1

μ̃kj

∂
(
f
kj
w

)
v

∂zi
(b)

)
= λ0 ·

∑
i∈I0

vi|bi|2 �= 0,

which is a contradiction. This completes the proof of Lemma 3.3.
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§4. Uniformly stable family and uniform stable radius

Now, let f1(t,z), . . . ,fk0(t,z) be nonconstant polynomial functions of n+ 1 complex

variables (t,z) = (t,z1, . . . , zn) such that fk(t,0) = 0 for all t ∈ C and all 1 ≤ k ≤ k0. As

usual, for any t ∈ C, we write fk
t (z) := fk(t,z).

Assumptions 4.1. Throughout this section, we suppose that for any sufficiently small

t (say, |t| ≤ τ0 for some τ0 > 0), the following two conditions hold true:

(1) For any 1≤ k≤ k0, the Newton boundary Γ(fk
t ) is independent of t. (We may still have

Γ(fk
t ) �= Γ(fk′

t ) for k �= k′.).

(2) For any k1, . . . ,km ∈ {k1, . . . ,k0}, the germ at 0 of the variety V (fk1
t , . . . ,fkm

t ) is the

germ of a nondegenerate complete intersection variety.

Note that (1) implies that the set I(fk
t ) is independent of t.

4.1 Statements of the results of §4
By Lemma 3.3, we know that under Assumptions 4.1, there exists ε0 > 0 such that for

any k1, . . . ,km ∈ {1, . . . ,k0}, any I ⊆ {1, . . . ,n} with I ∈ I(fk1
0 )∩ · · · ∩ I(fkm

0 ), any weight

vector w ∈ NI , and any λ ∈ C, if a ∈ CI satisfies the conditions (1) and (2) of this lemma

for the functions fk1,I
0,w , . . . ,fkm,I

0,w , then

a /∈
{
z ∈ C∗I ;

∑
i∈I∩I(w)

|zi|2 ≤ ε20

}
.

(Here, fk,I
0,w denotes the face function (fk,I

0 )w ≡ (fk,I
0 )Δ(w;fk,I

0 ) of f
k,I
0 with respect to w.)

Once for all, let us fix such a number ε0. Then we have the following result which asserts

that if t is small enough, then Lemma 3.3 also holds for the functions fk1,I
t,w , . . . ,fkm,I

t,w with

the same number ε0.

Lemma 4.2. Under Assumptions 4.1, there exists τ with 0 < τ ≤ τ0 such that for any

t ∈Dτ := {t ∈ C ; |t| ≤ τ}, any k1, . . . ,km ∈ {1, . . . ,k0}, any I ⊆ {1, . . . ,n} with I ∈ I(fk1
t )∩

· · ·∩I(fkm
t ), any weight vector w ∈NI , and any λ ∈C, if a= (a1, . . . ,an) ∈CI satisfies the

conditions (1) and (2) of Lemma 3.3 for the functions fk1,I
t,w , . . . ,fkm,I

t,w , that is, if:

(1) fk1,I
t,w (a) = · · ·= fkm,I

t,w (a) = 0;

(2) there exists an m-tuple (μk1 , . . . ,μkm) ∈ Cm \{0} such that for all i ∈ I,

m∑
j=1

μkj

∂f
kj ,I
t,w

∂zi
(a) =

{
λāi, if i ∈ I ∩ I(w),

0, if i ∈ I \ I(w),

where again āi is the complex conjugate of ai and I(w) := {i ∈ {1, . . . ,n}; wi = 0};

then we must have

a /∈
{
z ∈ C∗I ;

∑
i∈I∩I(w)

|zi|2 ≤ ε20

}
,

where ε0 is the number set above.
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We shall prove Lemma 4.2 in §4.3. Note that it generalizes Lemma 3 of [9] (obtained by

taking k0 = 1). Using Lemma 4.2, we shall prove the following second important theorem,

which recovers Theorem 2 of [9] (obtained for k0 = 1).

Put f(t,z) := f1(t,z) · · ·fk0(t,z), and as usual, write ft(z) := f(t,z).

Theorem 4.3. Under Assumptions 4.1, the family {ft}t∈Dτ is a uniformly stable family

with uniform stable radius ε0. (Here, τ is the number that appears in Lemma 4.2 and ε0 is

the number that we have fixed just before the statement of this lemma.)

We recall that the family {ft}t∈Dτ is said to be uniformly stable with uniform stable

radius ε0 if for any 0< ε1 ≤ ε2 < ε0, there exists δ(ε1, ε2)> 0 such that for any η ∈ C with

0< |η| ≤ δ(ε1, ε2), the hypersurface f−1
t (η) is nonsingular in B̊ε0 := {z ∈Cn ; ‖z‖< ε0} and

transversely intersects the sphere Sε12 := {z ∈Cn ; ‖z‖= ε12} for any ε1 ≤ ε12 ≤ ε2 and any

t ∈Dτ .

We shall prove Theorem 4.3 in §4.2, but before giving the proof, let us state the first main

theorem of this paper (Theorem 4.5). For that purpose, we first observe that Theorem 4.3

has the following corollary, which generalizes Corollary 1 of [9] (obtained by taking k0 = 1).

Corollary 4.4. Under Assumptions 4.1, the family {ft}t∈Dτ0
is a uniformly stable

family.

Proof. By Lemma 3.3, for any t0 ∈ Dτ0 , there exists ε(t0) > 0 such that for any

k1, . . . ,km ∈ {1, . . . ,k0}, any I ⊆ {1, . . . ,n} with I ∈ I(fk1
t0 )∩· · ·∩I(fkm

t0 ), any weight vector

w ∈ NI , and any λ ∈ C, if a ∈ CI satisfies the conditions (1) and (2) of this lemma for the

functions fk1,I
t0,w, . . . ,f

km,I
t0,w , then a does not belong to the set{

z ∈ C∗I ;
∑

i∈I∩I(w)

|zi|2 ≤ ε(t0)
2

}
. (4.1)

Then, by (the corresponding version of) Lemma 4.2, there exists τ(t0) > 0 such that for

any t ∈Dτ(t0)(t0) := {t ∈ C ; |t− t0| ≤ τ(t0)}, any k1, . . . ,km ∈ {1, . . . ,k0}, any I ⊆ {1, . . . ,n}
with I ∈ I(fk1

t )∩· · ·∩I(fkm
t ), any weight vector w ∈ NI , and any λ ∈ C, if a ∈ CI satisfies

the conditions (1) and (2) of Lemma 3.3 for the functions fk1,I
t,w , . . . ,fkm,I

t,w , then a does not

belong to the set (4.1). Now, applying (the corresponding version of) Theorem 4.3 shows

that the family {ft}t∈Dτ(t0)
is a uniformly stable family with uniform stable radius ε(t0).

Corollary 4.4 then follows from the compactness of the disk Dτ0 .

Now, by [9, Lem. 2], we know that if {ft}t∈Dτ0
is a uniformly stable family—say, with

uniform stable radius ε—then the Milnor fibrations of ft and f0 at 0 are isomorphic for all

t ∈Dτ0 , that is, for all such t ’s, there exists a fiber-preserving diffeomorphism

B̊ε∩f−1
t

(
Sδ(ε, ε2 )

)
∼−→ B̊ε∩f−1

0

(
Sδ(ε, ε2 )

)
,

where δ(ε, ε2) is the number that appears in the definition of a uniform stable family

given just after the statement of Theorem 4.3, and where Sδ(ε, ε2 )
:= {z ∈ C ; |z| = δ(ε, ε2)}.

Combining this result with Corollary 4.4 gives our first main theorem, the statement of

which is as follows. Again, the special case k0 = 1 (for which the functions ft are necessarily

nondegenerate) is already contained in [9].

Theorem 4.5. Under Assumptions 4.1, the Milnor fibrations of ft and f0 at 0 are

isomorphic for all t ∈Dτ0.
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The following two subsections (§§4.2 and 4.3) are devoted to the proofs of Theorem 4.3

and Lemma 4.2, respectively.

4.2 Proof of Theorem 4.3

It is along the same lines as the proof of Theorem 3.5. We start with the following claim,

which plays a role similar to that of [6, Cor. 2.8] in the proof of Theorem 3.5.

Claim 4.6. There exists δ > 0 such that for any η ∈C with 0< |η| ≤ δ, the hypersurface

f−1
t (η) is nonsingular in B̊ε0 for any t ∈Dτ . (Of course, we work under Assumptions 4.1.)

We postpone the proof of this claim at the end of §4.2, and we first complete the proof of

Theorem 4.3. We argue by contradiction. By Claim 4.6, if the assertion in Theorem 4.3 is

false, then it follows from the Curve Selection Lemma that there exist a real analytic curve

(t(s),z(s)) = (t(s), z1(s), . . . , zn(s)) in Dτ × B̊ε0 , 0≤ s≤ 1, and a family of complex numbers

λ(s), 0< s≤ 1, such that the following three conditions hold:

(i)
∂ft(s)
∂zi

(z(s)) = λ(s)z̄i(s) for 1≤ i≤ n and s �= 0.

(ii) ft(0)(z(0)) = 0, but ft(s)(z(s)) �= 0 for s �= 0.

(iii) There exists ε > 0 such that ε≤ ‖z(s)‖ ≤ ε0.

By (i) and (ii), λ(s) �≡ 0, and we can express it as a Laurent series

λ(s) = λ0s
c+ · · · ,

where λ0 ∈ C∗. Let I := {i ; zi(s) �≡ 0}. By (ii), I ∈ I(ft(s)), and hence I ∈ I(f1
t(s))∩ · · · ∩

I(fk0

t(s)). For each i ∈ I, consider the Taylor expansion

zi(s) = ais
wi + · · · ,

where ai ∈ C∗ and wi ∈ N. The following is the counterpart of Claim 3.6.

Claim 4.7. There exists 1≤ k≤ k0 such that fk,I
t(0),w(a) = 0, where again a and w are the

points in C∗I and NI , respectively, whose ith coordinates (i ∈ I) are ai and wi, respectively.

Again, we shall prove this claim later. First, we complete the proof of the theorem. Once

more, hereafter, to simplify the notation, we shall assume that I = {1, . . . ,n}, so that the

function fk,I
t is simply written as fk

t , the intersection I ∩ I(w) is written as I(w) (where,

as in Lemma 4.2, I(w) is the set of all indexes i ∈ {1, . . . ,n} for which wi = 0), and so on.

Look at the set consisting of all integers k for which fk
t(0),w(a) = 0. By Claim 4.7, this

set is not empty. As in the proof of Theorem 3.5, we assume that fk
t(0),w(a) vanishes for

1 ≤ k ≤ k′0 and does not vanish for k′0+1 ≤ k ≤ k0, and we write f = f1 · · ·fk′
0 ·h where

h := fk′
0+1 · · ·fk0 if k′0 ≤ k0−1 and h := 1 if k′0 = k0; finally, for each 1≤ k ≤ k′0, we put

ek := d
(
w;fk

t(0)

)
−ordfk

t(s)(z(s))+

k′
0∑

�=1

ordf �
t(s)(z(s))

(where, as usual, ordf �
t(s)(z(s)) means the order, in s, of the expression f �

t(s)(z(s)) ≡
f �(t(s),z(s))), and we suppose that

emin := e1 = · · ·= ek′′
0
< ek′′

0 +1 ≤ ·· · ≤ ek′
0
.
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Note that the equality Γ+

(
fk
t(s)

)
= Γ+

(
fk
t(0)

)
implies Δ

(
w;fk

t(s)

)
= Δ

(
w;fk

t(0)

)
and

d
(
w;fk

t(s)

)
= d

(
w;fk

t(0)

)
= d(ŵ;fk) for all s, where ŵ = (w0,w) with w0 defined by the

Taylor expansion t(s) := t0s
w0 + · · · , t0 �= 0. Still as in the proof of Theorem 3.5 (see (3.1)–

(3.4)), it follows from the relation (i) that there exist nonzero complex numbers μ1, . . . ,μk′′
0

such that for any 1≤ i≤ n,

k′′
0∑

k=1

∂fk
t(0),w

∂zi
(a) ·μk ·sd(ŵ;h)+emin + · · ·= λ0āis

c+2wi + · · · ,

and since λ0āi �= 0 and I(w) �= ∅ (by (iii)), by the same argument as the one given after

(3.4), we deduce that the sum

Si :=

k′′
0∑

k=1

μk

∂fk
t(0),w

∂zi
(a)

vanishes for all i /∈ I(w). If it also vanishes for all i∈ I(w), then we get a contradiction with

Lemma 4.2 because z(s) ∈ B̊ε0 , and hence∑
i∈I(w)

|ai|2 = ‖z(0)‖2 ≤ ε20. (4.2)

If there is an index i0 ∈ I(w) such that Si0 �= 0, then

Si =

k′′
0∑

k=1

μk

∂fk
t(0),w

∂zi
(a) =

{
λ0āi, for i ∈ I(w),

0, for i /∈ I(w),

and still by (4.2), we get a new contradiction with Lemma 4.2.

To complete the proof of Theorem 4.3, it remains to prove Claims 4.6 and 4.7. We start

with the proof of Claim 4.7.

Proof of Claim 4.7. It is similar to the proof of Claim 3.6. Again, we assume I =

{1, . . . ,n}, so that fk,I
t(0),w = fk

t(0),w. We argue by contradiction. Suppose that fk
t(0),w(a) �= 0

for all 1≤ k≤ k0. Then fk
ŵ(t0,a) = fk

t(0),w(a) �= 0 and d
(
w;fk

t(0)

)
= d(ŵ;fk) = ordfk

t(s)(z(s))

for all 1≤ k≤ k0 (where ŵ and t0 are defined as above), and by (ii), there exists 1≤ k1 ≤ k0
such that fk1

t(0)(z(0)) = 0. If I(w) = {1, . . . ,n}, then d
(
w;fk1

t(0)

)
= 0 and

fk1

t(s)(z(s)) = fk1

t(0),w(a)s
0+ · · · ,

so that 0 = fk1

t(0)(z(0)) = fk1

t(0),w(a), which is a contradiction. If I(w) is a proper sub-

set of {1, . . . ,n} and d
(
w;fk1

t(0)

)
�= 0, then, exactly as in the proof of Claim 3.6, if

e :=
∑k0

k=1 ordf
k
t(s)(z(s)), then for any 1≤ i≤ n,

k0∑
k=1

( ∏
1≤�≤k0

� �=k

f �
t(0),w(a)

)
·
∂fk

t(0),w

∂zi
(a) ·se+ · · ·= λ0āis

c+2wi + · · · . (4.3)
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As above, since λ0āi �= 0 and I(w) �= ∅, this implies that the sum

k0∑
k=1

( ∏
1≤�≤k0

� �=k

f �
t(0),w(a)

)
·
∂fk

t(0),w

∂zi
(a)

vanishes for all i /∈ I(w), and using the Euler identity, we get exactly the same contradiction

as in the proof of Claim 3.6.

Now, we prove Claim 4.6.

Proof of Claim 3.6. The argument is very similar to that given in the proof of

Theorem 4.3. We argue by contradiction. If the assertion in the claim is false, then, by the

Curve Selection Lemma, there exists a real analytic curve (t(s),z(s))= (t(s), z1(s), . . . , zn(s))

in Dτ × B̊ε0 , 0≤ s≤ 1, such that the following two conditions hold:

(i)
∂ft(s)
∂zi

(z(s)) = 0 for 1≤ i≤ n.

(ii) ft(0)(z(0)) = 0, but ft(s)(z(s)) �= 0 for s �= 0.

Let I := {i ; zi(s) �≡ 0}. By (ii), I ∈ I(f1
t(s))∩·· ·∩I(fk0

t(s)). For each i∈ I, consider the Taylor

expansion

zi(s) = ais
wi + · · · ,

where ai ∈ C∗ and wi ∈ N.

Claim 4.8. There exists 1 ≤ k ≤ k0 such that fk,I
t(0),w(a) = 0, where again a and w

are the points in C∗I and NI , respectively, whose ith coordinates (i ∈ I) are ai and wi,

respectively.

The proof of Claim 4.8 is completely similar to that of Claim 4.7. The only difference is

that the right-hand side of the equality (4.3) is now zero. However, this does not change

anything in the argument.

Once more, we assume I = {1, . . . ,n}, so that fk,I
t(0),w = fk

t(0),w, and we look at the set

consisting of all integers k for which fk
t(0),w(a) = 0. By Claim 4.8, this set is not empty. As

in the proof of Theorem 3.5 or 4.3, we assume that fk
t(0),w(a) vanishes for 1 ≤ k ≤ k′0 and

does not vanish for k′0+1≤ k ≤ k0, and we write f = f1 · · ·fk′
0 ·h where h := fk′

0+1 · · ·fk0 if

k′0 ≤ k0−1 and h := 1 if k′0 = k0; finally, for each 1≤ k ≤ k′0, we put

ek := d
(
w;fk

t(0)

)
−ordfk

t(s)(z(s))+

k′
0∑

�=1

ordf �
t(s)(z(s)),

and we suppose that

emin := e1 = · · ·= ek′′
0
< ek′′

0 +1 ≤ ·· · ≤ ek′
0
.

Still as in the proof of Theorem 3.5 or 4.3, it follows from the relation (i) that there exist

nonzero complex numbers μ1, . . . ,μk′′
0
such that for any 1≤ i≤ n,

k′′
0∑

k=1

∂fk
t(0),w

∂zi
(a) ·μk ·sd(ŵ;h)+emin + · · ·= 0,
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and hence
∑k′′

0

k=1μk
∂fk

t(0),w

∂zi
(a) = 0. In other words, the vectors

(
∂f1

t(0),w

∂z1
(a), . . . ,

∂f1
t(0),w

∂zn
(a)

)
, . . . ,

(
∂f

k′′
0

t(0),w

∂z1
(a), . . . ,

∂f
k′′
0

t(0),w

∂zn
(a)

)
of Cn are linearly dependent, that is,

df1
t(0),w(a)∧· · ·∧df

k′′
0

t(0),w(a) = 0,

which contradicts the nondegeneracy of V
(
f1
t(0), . . . ,f

k′′
0

t(0)

)
if I(w) = ∅. In the case where

I(w) �= ∅, we cannot proceed like that. However, in this case, Lemma 4.2 (applied with

λ= 0) implies

a /∈
{
z ∈ C∗n ;

∑
i∈I(w)

|zi|2 ≤ ε20

}
,

and since z(s) ∈ B̊ε0 , we also have

∑
i∈I(w)

|ai|2 ≤
n∑

i=1

|zi(0)|2 = ‖z(0)‖2 < ε20,

which is a contradiction.

4.3 Proof of Lemma 4.2

If the assertion of this lemma fails for some k1, . . . ,km, I and Δ(w;fk1
0 ), . . . ,Δ(w;fkm

0 )

such that I ∩I(w) = ∅, then, as in the proof of Lemma 3.3, we get a contradiction with the

nondegeneracy condition (see Assumptions 4.1 and Remark 2.3).

Now, assume that the assertion fails for some k1, . . . ,km, I and Δ(w;fk1
0 ), . . . ,Δ(w;fkm

0 )

such that I ∩ I(w) �= ∅. Again, without loss of generality, and in order to simplify the

notation, we assume that I = {1, . . . ,n}, so that fk,I
t,w = fk

t,w, I ∩ I(w) = I(w), C∗I = C∗n,

and so on. Then there exist sequences {pq}q∈N, {λq}q∈N and {tq}q∈N of points in C∗n, C,

and C∗, respectively, such that:

(1) fk1
tq,w(pq) = · · ·= fkm

tq,w(pq) = 0 for all q ∈ N.

(2) There exists a sequence {(μk1,q, . . . ,μkm,q)}q∈N of points in Cm \ {0} such that for all

q ∈ N and all 1≤ i≤ n,

m∑
j=1

μkj ,q

∂f
kj

tq,w

∂zi
(pq) =

{
λq p̄q,i, if i ∈ I(w),

0, if i /∈ I(w),

where, for each 1≤ i≤ n, p̄q,i denotes the conjugate of the ith coordinate pq,i of pq.

(3)
∑

i∈I(w) |pq,i|2 ≤ ε20 and tq → 0 as q →∞.

(Again, f
kj

tq,w denotes the face function (f
kj

tq )w ≡ (f
kj

tq )Δ
(
w;f

kj
tq

) of f
kj

tq with respect to w.)

By an argument similar to that used in the proof of Lemma 3.3, we can assume that the

sequences {pq,i}q∈N converge to 0 for all i /∈ I(w), so that, once again, we can apply the

Curve Selection Lemma to get a real analytic curve (t(s),a(s)) = (t(s),a1(s), . . . ,an(s)) in

C×Cn, 0≤ s≤ 1, and a family of complex numbers λ(s), 0< s≤ 1, such that:
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(1′) fk1

t(s),w(a(s)) = · · ·= fkm

t(s),w(a(s)) = 0 for all s �= 0.

(2′) There exists a real analytic curve (μk1(s), . . . ,μkm(s)) in Cm \{0}, 0< s≤ 1, such that

for all s �= 0 and all 1≤ i≤ n,

m∑
j=1

μkj (s)
∂f

kj

t(s),w

∂zi
(a(s)) =

{
λ(s) āi(s), if i ∈ I(w),

0, if i /∈ I(w).

(3′)
∑

i∈I(w) |ai(s)|2 ≤ ε20, t(0) = 0, ai(0) = 0 for i /∈ I(w), and a(s) ∈ C∗n for s �= 0.

For each 1≤ i≤ n, consider the Taylor expansion

ai(s) = bis
vi + · · · ,

where bi ∈ C∗ and vi ∈ N, and put vmin := min{v1, . . . ,vn}. Then we divide the proof into

two cases depending on whether vmin = 0 or vmin > 0. Let us first assume vmin > 0. In

this case, the proof is similar to that of Lemma 3.3. Indeed, exactly as in this proof, for

each 1≤ j ≤m, the face Δ
(
v;f

kj

0,w

)
is a (compact) face of Γ

(
f
kj

0

)
and d

(
v;f

kj

0,w

)
> 0. Since

Γ+

(
f
kj

t

)
—and hence Δ

(
w;f

kj

t

)
—is independent of t, we have

0 = f
kj

t(s),w(a(s)) = f
kj

0,w,v(b) ·sd
(
v;f

kj
0,w

)
+ · · ·

for all s �= 0, and hence f
kj

0,w,v(b) = 0, where v and b are the points of N∗n and

C∗n, respectively, whose ith coordinates are vi and bi, respectively. Here, according to

our notation, by f
kj

0,w,v, we mean the face function
((
f
kj

0

)
w

)
v

of f
kj

0,w ≡
(
f
kj

0

)
w

with

respect to v.

Write μkj (s) = μkjs
gj + · · · , where μkj �= 0. Again, if μkj (s)≡ 0, then gj =∞. Put

δ := min
{
d
(
v;fk1

0,w

)
+g1, . . . ,d

(
v;fkm

0,w

)
+gm

}
,

and define μ̃kj to be equal to μkj or 0 depending on whether d
(
v;f

kj

0,w

)
+ gj is equal to δ

or not, respectively.

Claim 4.9. There exists i0 ∈ I(w) such that
∑m

j=1 μ̃kj

∂f
kj
0,w,v

∂zi0
(b) �= 0.

Proof. It is along the same lines as the proof of Claim 3.7. More precisely, since Γ+

(
f
kj

t

)
is independent of t, we have

∂f
kj

t(s),w

∂zi
(a(s)) =

∂f
kj

0,w,v

∂zi
(b)sd

(
v;f

kj
0,w

)
−vi + · · ·

for all 1≤ j ≤m and all 1≤ i≤ n. Thus, if the assertion in Claim 4.9 fails, then the sum

m∑
j=1

μ̃kj

∂f
kj

0,w,v

∂zi
(b)

vanishes for all i ∈ I(w), and so, by (2′), it vanishes for all 1 ≤ i ≤ n. As in the proof of

Claim 3.7, this implies that

df
kj1
0,w,v(b)∧· · ·∧df

kjp

0,w,v(b) = 0,
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where the kj� ’s (1 ≤ � ≤ p) are the elements of {k1, . . . ,km} for which d
(
v;f

kj�
0,w

)
+ gj� = δ.

Since f
kj�
0,w,v = f

kj�
0,v+νw for any sufficiently large integer ν ∈ N (so that f

kj�
0,w,v is the face

function of f
kj�
0 with respect to the weight vector v+νw) and f

kj�
0,w,v(b)= 0 for 1≤ �≤ p, and

since vi+νwi > 0 for all 1≤ i≤ n, this contradicts the nondegeneracy of V
(
f
kj1
0 , . . . ,f

kjp

0

)
(see Assumptions 4.1).

Combined with (2′) again, Claim 4.9 implies that λ(s) is not constantly zero. Write it as

a Laurent series λ(s) = λ0s
c+ · · · , where λ0 �= 0. Then, still from (2′), we deduce that for

all 1≤ i≤ n,

m∑
j=1

μ̃kj

∂f
kj

0,w,v

∂zi
(b)sδ+ · · ·=

{
λ0b̄i s

c+2vi + · · · , if i ∈ I(w),

0, if i /∈ I(w).

Now, put Si :=
∑m

j=1 μ̃kj

∂f
kj
0,w,v

∂zi
(b) and define v0 ∈ N and I0 ⊆ {1, . . . ,n} as in (3.7), that

is, v0 := min{vi ; i ∈ I(w)} and I0 := {i ∈ I(w) ; vi = v0}. (Note that, in general, v0 ≥ vmin.)

Then, as in the proof of Lemma 3.3, since λ0b̄i �= 0 and the set {i ∈ I(w) ; Si �= 0} is not

empty (see Claim 4.9), we have δ= c+2v0 and Si �=0 for any i∈ I0. In fact, for any 1≤ i≤n,

the following holds:

Si ≡
m∑
j=1

μ̃kj

∂f
kj

0,w,v

∂zi
(b) =

{
λ0b̄i, if i ∈ I0,

0, if i /∈ I0.
(4.4)

Since I0 �= ∅ and f
kj

0,w,v(b) = 0 (1≤ j ≤m), the relation (4.4) together with the Euler identity

imply

0 =
m∑
j=1

μ̃kj ·d
(
v;f

kj

0,w

)
·fkj

0,w,v(b) =
m∑
j=1

μ̃kj

( n∑
i=1

vibi
∂f

kj

0,w,v

∂zi
(b)

)

=
∑
i∈I0

vibi

( m∑
j=1

μ̃kj

∂f
kj

0,w,v

∂zi
(b)

)
= λ0 ·

∑
i∈I0

vi|bi|2 �= 0,

(4.5)

which is a contradiction. This completes the proof of Lemma 4.2 in the case vmin > 0.

Let us now assume vmin = 0. Clearly, we still have f
kj

0,w,v(b) = 0 for 1≤ j ≤m.

Claim 4.10. Even when vmin = 0, there exists i0 ∈ I(w) such that∑m
j=1 μ̃kj

∂f
kj
0,w,v

∂zi0
(b) �= 0.

Proof. When vmin = 0, the argument given in the proof of Claim 4.9 does not apply. In

fact, in this case, Claim 4.10 directly follows from Lemma 3.3 and our choice of ε0. More

precisely, we know that b ∈ C∗n, f
kj

0,w,v(b) = 0 (1≤ j ≤m), and f
kj

0,w,v = f
kj

0,v+νw for ν ∈ N

large enough. Therefore, arguing by contradiction, if

m∑
j=1

μ̃kj

∂f
kj

0,w,v

∂zi
(b) = 0
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for all i ∈ I(w) (and hence, by (2′), for all 1≤ i≤ n), then Lemma 3.3 and our choice of ε0
show that

b /∈
{
z ∈ C∗n ;

∑
i∈I(v+νw)

|zi|2 ≤ ε20

}
.

However, since I(v+νw)⊆ I(v), we have∑
i∈I(v+νw)

|bi|2 ≤
∑

i∈I(v)

|bi|2 =
∑

i∈I(v)

|ai(0)|2 ≤
∑

i∈I(w)

|ai(0)|2

︸ ︷︷ ︸
≤ε20

+
∑

i∈I(w)c

|ai(0)|2

︸ ︷︷ ︸
=0

≤ ε20,

which is a contradiction. (Here, I(w)c := {1, . . . ,n}\ I(w).)

Combined with (2′), Claim 4.10 shows that λ(s) is not constantly zero, and exactly as

above we deduce that the relation (4.4) holds true for vmin = 0 too. (The subset I0 and the

number v0 are defined as before; we also use the same Laurent expansion λ(s) = λ0s
c+ · · · .)

If v0 = 0, then I0 = I(w)∩ I(v) = I(v+ νw), and since
∑

i∈I(v+νw) |bi|2 ≤ ε20, then, once

again, we get a contradiction with Lemma 3.3 and our choice of ε0. If v0 �= 0, then we

get a contradiction exactly as in (4.5). This completes the proof of Lemma 4.2 in the case

vmin = 0.

§5. The “nonfamily” case

In the previous section, we have studied the case of families of functions. Hereafter, we

investigate the “nonfamily” case. For that purpose, we consider 2k0 nonconstant polynomial

functions f1(z), . . . ,fk0(z) and g1(z), . . . ,gk0(z), each of them in n complex variables

z= (z1, . . . , zn), and as usual we assume that fk(0) = gk(0) = 0 for all 1≤ k ≤ k0.

Assumptions 5.1. Throughout this section, we suppose that the following two

conditions hold true:

(1) For any 1≤ k ≤ k0, the Newton boundaries Γ(fk) and Γ(gk) coincide.

(2) For any k1, . . . ,km ∈ {k1, . . . ,k0}, the germs at 0 of the varieties V (fk1 , . . . ,fkm) and

V (gk1 , . . . ,gkm) are the germs of nondegenerate complete intersection varieties.

Put f(z) := f1(z) · · ·fk0(z) and g(z) := g1(z) · · ·gk0(z). The second main theorem of this

paper is stated as follows. Once more, note that when k0 = 1, the functions f and g are

nondegenerate, and then we recover Theorem 3 of [9].

Theorem 5.2. Under Assumptions 5.1, the Milnor fibrations of f and g at 0 are

isomorphic.

Proof. For any 1≤ k≤ k0 and any t ∈D1 := {t ∈C ; |t| ≤ 1}, we consider the polynomial

functions

fk
t (z) := (1− t)fk+ tF k and gkt (z) := (1− t)gk+ tGk,

where

F k(z) :=
∑

α∈Γ(fk)

cα z
α and Gk(z) :=

∑
α∈Γ(gk)

c′α z
α
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are the Newton principal parts of

fk(z) :=
∑
α∈Nn

cα z
α and gk(z) :=

∑
α∈Nn

c′α z
α,

respectively.

Claim 5.3. The Milnor fibrations of f1 · · ·fk0 and F 1 · · ·F k0 (resp. of g1 · · ·gk0 and

G1 · · ·Gk0) at 0 are isomorphic.

Proof. First, observe that for any 1≤ k ≤ k0 and any positive weight vector w, we have

fk
t,w(z) := ((1− t)fk+ tF k)w = (1− t)fk

w+ tF k
w = fk

w.

From this observation and Assumptions 5.1, we deduce that V (fk1
t , . . . ,fkm

t ) is a nonde-

generate complete intersection variety for any t ∈D1, and since Γ(fk
t ) = Γ(fk), it follows

from Theorem 4.8 that the functions ft(z) := f1
t (z) · · ·fk0

t (z) and f0(z) := f1
0 (z) · · ·fk0

0 (z) =

f1(z) · · ·fk0(z) have isomorphic Milnor fibrations for any t ∈D1. In particular, taking t= 1

gives that F 1 · · ·F k0 and f1 · · ·fk0 have isomorphic Milnor fibrations as announced.

Claim 5.4. The Milnor fibrations of F 1 · · ·F k0 and G1 · · ·Gk0 at 0 are isomorphic.

The proof of this claim is given below. Of course, Theorem 5.2 follows from Claims 5.3

and 5.4.

Now, let us prove Claim 5.4.

Proof of Claim 5.4. For each 1 ≤ k ≤ k0, let νk,1, . . . ,νk,nk
be the integral points of

Γ(fk) = Γ(F k), and for any ck = (ck,1, . . . , ck,nk
) ∈ Cnk , put

hk
ck
(z) :=

nk∑
j=1

ck,j z
νk,j .

Now, consider the set U of points (c1, . . . ,ck0) in Cn1 ×·· ·×Cnk0 such that:

(1) Γ(hk
ck
) = Γ(fk) for any 1≤ k ≤ k0.

(2) For any 1≤ k1, . . . ,km ≤ k0, the variety V (hk1
ck1

, . . . ,hkm
ckm

) is a nondegenerate complete

intersection variety.

Claim 5.5. The set U is a Zariski open subset of Cn1 ×·· ·×Cnk0 ; in particular, it is

path-connected.

The special case k0 = 1 in Claim 5.5 is treated in the Appendix of [7]. Before proving

this claim in the general case, we complete the proof of Claim 5.4.

For each 1≤ k ≤ k0, let

ck(F
k) := (ck,1(F

k), . . . , ck,nk
(F k)) and ck(G

k) := (ck,1(G
k), . . . , ck,nk

(Gk))

be the points defined by

F k(z) := hk
ck(Fk)(z) :=

nk∑
j=1

ck,j(F
k)zνk,j and Gk(z) := hk

ck(Gk)(z) :=

nk∑
j=1

ck,j(G
k)zνk,j .

By Claim 5.5, we can choose a finite sequence of (say, p0) k0-tuples

(c1(1), . . . ,ck0(1)), . . . ,(c1(p0), . . . ,ck0(p0))
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in U, starting at (c1(F
1), . . . ,ck0(F

k0)) and ending at (c1(G
1), . . . ,ck0(G

k0)), such that for

each 1≤ p≤ p0−1, the straight-line segment

�p(t) := (1− t)(c1(p), . . . ,ck0(p))+ t(c1(p+1), . . . ,ck0(p+1))

(1≤ t≤ 1) is contained in U. For each 1≤ p≤ p0−1, we consider the family
{
h�p(t)

}
0≤t≤1

of polynomial functions defined by

h�p(t)(z) := h1
�1p(t)

(z) · · ·hk0

�
k0
p (t)

(z),

where �kp(t) := (1− t)ck(p)+ tck(p+1) is the kth coordinate of �p(t). By Theorem 4.8, the

Milnor fibrations of h�p(0) and h�p(1) at 0 are isomorphic. Claim 5.4 then follows from the

equalities

h�1(0) = F 1 · · ·F k0 and h�p0−1(1) =G1 · · ·Gk0 .

This completes the proof of Claim 5.4 (up to Claim 5.5).

Now, let us prove Claim 5.5.

Proof of Claim 5.5. For any 1 ≤ k ≤ k0 and any positive weight vector w defining a

(compact) face Δ(w;fk) of Γ(fk) with maximal dimension, let us denote by θk,1, . . . , θk,qk
the integral points of Δ(w;fk). Then, for any ak = (ak,1, . . . ,ak,qk) ∈ Cqk , put

φk
ak
(z) :=

qk∑
j=1

ak,j z
θk,j .

Note that φk
ak

is weighted homogeneous with respect to w. Now, consider the set Uw

consisting of the points (a1, . . . ,ak0) in Cq1 × ·· · × Cqk0 satisfying the following two

properties:

(1) Γ(φk
ak
) = Δ(w;fk) for any 1≤ k ≤ k0.

(2) For any 1≤ k1, . . . ,km ≤ k0, the variety V (φk1
ak1

, . . . ,φkm
akm

) is a nondegenerate complete

intersection variety.

To prove Claim 5.5, it suffices to show that Uw is a Zariski open set. To do that, we first

observe that since φ
kj
akj

(1 ≤ j ≤ m) is weighted homogeneous, there exist λ1, . . . ,λn ∈ N∗

such that the polynomial

Φ
kj
akj

(z1, . . . , zn) := φ
kj
akj

(zλ1
1 , . . . , zλn

n )

is homogeneous. Then, since V (φk1
ak1

, . . . ,φkm
akm

) is nondegenerate if and only if

V (Φk1
ak1

, . . . ,Φkm
akm

) is nondegenerate, we may assume that φ
kj
akj

is homogeneous for any

1 ≤ j ≤ m. Now, observe that for any positive weight vector w′, the set Δ(w′;fk
w) is a

(compact) face of Δ(w;fk), and then consider the set Vw(w
′) made up of all the points

(a1, . . . ,ak0 ,z) in Pq1−1×·· ·×Pqk0
−1×Pn−1 for which there exists a subset K ⊆ {1, . . . ,k0}

such that

∀k ∈K, φk
ak,w′(z) = 0 and

∧
k∈K

dφk
ak,w′(z) = 0,

where we still denote by a1, . . . ,ak0 and z the classes of a1, . . . ,ak0 and z in the projective

spaces Pq1−1, . . . ,Pqk0
−1 and Pn−1, respectively. (Once more, let us recall that φk

ak,w′ ≡
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(φk
ak
)w′ denotes the face function of φk

ak
with respect to the weight vector w′.) Let V̄w(w

′)

be the closure of V ∗
w(w

′) := Vw(w
′)∩{z1 · · ·zn �= 0} in Pq1−1 × ·· · ×Pqk0

−1 ×Pn−1. Then

V̄w(w
′) is an algebraic set of dimension dimV ∗(w′) (see [12, Lem. 3.9]). Let

π : (Pq1−1×·· ·×Pqk0
−1)×Pn−1 → Pq1−1×·· ·×Pqk0

−1

be the standard projection, and let

W ∗
w := π(V ∗

w) and W̄w := π(V̄w),

where

V ∗
w :=

⋃
w′∈N∗n

V ∗
w(w

′) and V̄w :=
⋃

w′∈N∗n

V̄w(w
′).

Clearly, Uw is the complement of (p1×·· ·×pk0)
−1(W ∗

w)∪{0}, where pk : Cqk \{0}→ Pqk−1

is the standard canonical map. By the proper mapping theorem (see [11, Satz 23]), W̄w is an

algebraic set containing W ∗
w. In fact, we are going to prove that W ∗

w = W̄w, which implies

that Uw is a Zariski open set. To show the equality W ∗
w = W̄w, we argue by contradiction.

Suppose that W ∗
w � W̄w. Then there exists (a1, . . . ,ak0 ,z) ∈ V̄w such that (a1, . . . ,ak0) ∈

W̄w \W ∗
w. By the Curve Selection Lemma, there exist a real analytic curve

ρ(s) = (a1(s), . . . ,ak0(s),z(s)),

0 ≤ s ≤ 1, and a positive weight vector w′ ∈ N∗n such that ρ(s) ∈ V ∗
w(w

′) for s > 0 and

ρ(0) = (a1, . . . ,ak0 ,z). For each 1≤ k ≤ k0, write

ak(s) = ak+ak,1s+ · · · and z(s) = (b1s
w′′

1 + · · · , . . . , bnsw
′′
n + · · ·).

By the assumption, bi ∈C∗, w′′
i ∈N (1≤ i≤ n) and max{w′′

i ; 1≤ i≤ n}> 0. Moreover, for

any s �= 0, there exists K(s)⊆ {1, . . . ,k0} such that

∀k ∈K(s), φk
ak(s),w′(z(s)) = 0 and

∧
k∈K(s)

dφk
ak(s),w′(z(s)) = 0.

By looking at the leading terms (with respect to s) in the above expressions, it follows that

there exists a subset K(0)⊆ {1, . . . ,k0} such that

∀k ∈K(0),
(
φk
ak,w′

)
Δ
(b) = 0 and

∧
k∈K(0)

d
(
φk
ak,w′

)
Δ
(b) = 0, (5.1)

where b := (b1, . . . , bn), Δ is the (compact) face of Δ(w′;fk
w) on which the linear form

α ∈Δ(w′;fk
w) �→

n∑
i=1

αiw
′′
i ∈ R

takes its minimal value, and
(
φk
ak,w′

)
Δ

is the corresponding face function. However,

since bi ∈ C∗ for all 1 ≤ i ≤ n, the relations (5.1) imply (a1, . . . ,ak0) ∈ W ∗
w, which is a

contradiction.
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[4] H. A. Hamm and D. T. Lê, Un théorème de Zariski du type de Lefschetz, Ann. Sci. Éc. Norm. Supér.
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