
Econometric Theory, 39, 2023, 1273–1291.
doi:10.1017/S0266466621000542

VALIDATING DSGE MODELS WITH
SVARS AND HIGH-DIMENSIONAL

DYNAMIC FACTOR MODELS

MARCO LIPPI

Einaudi Institute for Economics and Finance

A popular validation procedure for Dynamic Stochastic General Equilibrium
(DSGE) models consists in comparing the structural shocks and impulse-response
functions obtained by estimation-calibration of the DSGE with those obtained in an
Structural Vector Autoregressions (SVAR) identified by means of some of the DSGE
restrictions. I show that this practice can be seriously misleading when the variables
used in the SVAR contain measurement errors. If this is the case, for generic values
of the parameters of the DSGE, the shocks estimated in the SVAR are not “made
of” the corresponding structural shocks plus measurement error. Rather, each of the
SVAR shocks is contaminated by noncorresponding structural shocks. We argue that
High-Dimensional Dynamic Factor Models are free from this drawback and are the
natural model to use in validation procedures for DSGEs.

1. INTRODUCTION

The present paper argues against the use of Structural Vector Autoregressions
(SVAR) for validation of Dynamic Stochastic General Equilibrium (DSGE)
models. I show that this practice can be seriously misleading when the variables
used in the SVAR contain measurement errors. If this is the case, for generic
values of the parameters of the DSGE, the shocks estimated in the SVAR are not
“made of” the corresponding structural shocks plus measurement errors. Rather,
each of the SVAR shocks is contaminated by noncorresponding structural shocks.
I argue that High-Dimensional Dynamic Factor Models (DFMs) are free from this
drawback and are the natural model to use in validation procedures for DSGEs.

My negative argument, regarding SVAR models, can be illustrated as follows.
Let the DSGE consist of only one variable yt, one unit-variance shock ut and the
equation

yt = (2.5+1.2L)vt, (1)
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and suppose that yt is measured with an error ηt, which is a white noise process
with σ 2

η = 2.31, orthogonal to the white noise vt at all leads and lags, so that we
observe

xt = (2.5+1.2L)vt +ηt. (2)

Elementary time-series theory shows that

xt = (3+L)Vt, (3)

where Vt is a unit-variance white noise. Now, what is Vt ? For example, if yt is the
rate of change of productivity and vt the technology shock, can we say that Vt is
just vt + eηt for some e , so that we can claim that, after all, Vt is the technology
shock with a measurement error? The answer is an emphatic no. From (2) and (3),
we obtain

Vt = 2.5+1.2L

3+L
vt + 1

3+L
ηt. (4)

Thus Vt is a moving average including all past values of vt and ηt, not a combination
of their current values only.

The situation is much worse in multivariate DSGEs. For example, suppose that
the DSGE contains m ≥ 2 variables and two shocks, a demand shock v1t and a
supply shock v2t, and that the variables are observed with measurement errors.
Then the shock V1t, the one that has been indentified in the SVAR as the “demand
shock,” the identification restriction being one of those holding in the DSGE
model, is dynamically contaminated, like in (4), not only by the measurement
errors, but also by the supply shock also.

My positive argument is that none of these phenomena occur in a High-
Dimensional DFM. I argue that (i) the variables of a DSGE model (free of the
measurement error) can be estimated by a DFM and (ii) the DSGE structural
shocks and impulse-response functions can be identified in the DFM using some
of the DSGE restrictions. Thus the DFM shocks and impulse-response functions
are a natural tool for validation of DSGEs. Moreover, the vector of the common
components is singular, that is, has more variables than shocks, like the vector
of the variables in a DSGE. As a consequence, neither model has to tackle the
fundamentalness problem, that is the possibility that the structural shocks cannot
be recovered by means of current and past values of the variables.

All the technical points presented below are known. Indeed, many of them were
developed in papers that I have coauthored. The contribution of the present paper
consists in putting them together by means of a model which, I believe, is minimal
and yet illustrates crucial issues in DSGE, SVAR, and DFMs. I should also point
out that the paper is only concerned with structure theory. Estimation of the factors
and of SVARs based on the common components are studied in several papers.
Here, I only mention Forni et al. (2020), which is empirically oriented, is very
close to the present paper and contains all necessary references to the estimation
literature.
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The paper is organized as follows. Section 2 contains a brief review of DSGE
models and their Vector Autoregressive Moving Average (VARMA) represen-
tation, singularity (more variables than shocks) as a general feature of DSGE
models, measurement errors as the natural way to reconcile singularity of the
model with observed variables, and validation by means of SVARs. In Section
3, the contamination effects outlined above in Section 1 are studied in detail. It
is shown that contamination occurs for generic values of the parameters of the
DSGE model. It is also shown that nonfundamentalness in a block of the DSGE
variables can be a source of contamination. In Section 4, a short presentation of
DFMs is given, together with the motivation of the claim that SVAR models should
be replaced by DFMs in DSGE validation. Section 5 concludes.

2. DSGE MODELS

Let us start with the log-linearized solution of a DSGE model. The variables of
interest are gathered in an m-dimensional vector

yt = (y1t y2t · · · ymt).

Well-known facts about yt are the following:
(1) The vector yt evolves according to a VARMA equation (see e.g., (Hannan

and Deistler, 1988; Fernández-Villaverde et al., 2007; Morris, 2016)):

C(L)yt = D(L)vt, (5)

where C(L) is a stable m × m polynomial matrix in the lag operator L, D(L) is
an m × p polynomial matrix, vt is a p-dimensional orthonormal white noise, the
shocks driving the system. The underlying economic theory implies restrictions on
the polynomials C(L) and D(L) and therefore on the impulse-response functions
C(L)−1D(L).

(2) The parameters of the model, that is the coefficients of the entries of C(L)

and D(L), are determined by a mixture of calibration and estimation techniques,
see for example, Canova (2007), Chapters 5–7 and 9.

(3) The impulse-response functions and shocks estimated using the DSGE can
be compared with those obtained in a relatively theory-free model such as a
Structural VAR (SVAR), which uses the covariance-structure of the actual data
and some of the DSGE restrictions. This comparison, validation by SVARs, can be
used to modify the DSGE if a mild difference emerges between the SVAR impulse-
response functions and those predicted by the theory, or to reject the DSGE model
if such difference is dramatic.

(3′) It is worthwhile mentioning here some very interesting papers in which
validation runs in the opposite direction. Data are generated according to estimated
DSGE models. Then SVARs are estimated on such data to check if the main
features of the DSGE are detected by the SVARs, and vice versa if significant
results in the SVAR correspond to properties of the DSGE. See in particular
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Christiano, Eichenbaum, and Vigfusson (2007) and Chari, Kehoe, and McGrattan
(2008). This line of research will not be considered here.

(4) Lastly, a general feature of DSGE models is that p < m, that is, the
vector yt is dynamically singular, see Canova (2007, pp. 230–232). Assuming
stationarity for yt, this is equivalent to the singularity of the spectral density
of yt at all the frequencies θ ∈ [−π, π ]. On the other hand, as a rule, the
observed series corresponding to the variables yt, call them xt, do not exhibit
dynamic singularity. However, if it is assumed that each of the observed series xit

contains a measurement error, then under standard assumptions specified below
the singularity in the model is no longer inconsistent with the observed data, see
Canova (2007, p. 233) and the references therein.

Let us denote by ηt the m-dimensional vector representing the measurement
errors. We assume that the measurement errors are additive, so that the observed
variables xt, are obtained as follows:

xt = yt +ηt = D(L)

C(L)
vt +ηt = B(L)vt +ηt, (6)

that is,

C(L)xt = D(L)vt +C(L)ηt. (7)

Standard assumptions are:

Assumption 1. The variables vht and ηkτ are orthogonal for all h = 1,2, . . . ,p,
k = 1,2, . . . ,m, t ∈ Z, τ ∈ Z.

Assumption 2. The vector ηt is white noise with a nonsingular variance-
covariance matrix.

Note that vt is orthonormal white noise, the usual assumption on the structural
shocks, whereas we only assume that the second moments of the variables ηht are
positive.

3. VALIDATION BY MEANS OF AN SVAR MODEL

We discuss validation of a DSGE model by means of an SVAR by using a very
simple specification for C(L) and D(L), namely that C(L) = I and that D(L) =
B(L) is a moving average of order one:

B(L) = B0 +B1L,

so that the DSGE model is yt = B(L)vt and

xt = B(L)vt +ηt = (B0 +B1L)vt +ηt. (8)

Under Assumptions 1 and 2, xt has an MA(1) representation

xt = A(L)Vt = (A0 +A1L)Vt, (9)
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where (i) Vt is an orthonormal m-dimensional white noise, (ii) det [A(L)] has no
roots inside the unit circle. Under (i) and (ii), the orthonormal white noise Vt and
the matrix A(L) are identified up to multiplication by an orthogonal matrix. For
these statements, see Appendix (III), (a) and (b).

Condition (ii) implies that representation (9) fulfills the definition of fundamen-
talness, namely that Vt lies in the space spanned by current and past values of xt.
We also say that Vt is fundamental for xt. Also, it will be useful to observe that
for m = 2, under (i) and (ii), assuming that a12(0) = 0, where a12(L) is the (1, 2)

entry of A(L), identifies A(L) up to a change of sign in the first column, the second
column or both.

Nonsingularity of ηt and orthogonality of ηt to vτ for all t and τ imply more
that (ii), namely that detA(L) has no roots inside or on the unit circle, see again
Appendix (III), (a). As a consequence, xt has the (infinite) VAR representation

A(L)−1(L)xt = Vt. (10)

Equating the right-hand sides of (8) and (9), and denoting by Aad(L) the adjoint
matrix of A(L), we have

det[A(L)]Vt = Aad(L)B(L)vt +A(L)adηt. (11)

Two observations are in order:

Remark 1. Note that VAR analysis usually starts with a VAR for the vector xt,

G(L)xt = Wt, (12)

where G(L) is a finite polynomial, assumed to be a good approximation of the,
generally infinite, autoregressive representation of xt. Assuming that G(L) is
invertible, xt has the infinite MA representation G(L)−1Wt, which is by definition
fundamental (by (12) Wt lies in the space spanned by xt−k,k ≥ 0). Here, on the
contrary, we start with representation (9), which is assumed to be fundamental,
and obtain the infinite autoregression (10). Thus, in our simple model, the inverted
VAR for xt is (by definition) an MA of order one, which is very convenient to carry
on our exercises.

Remark 2. As observed in Remark 1, the MA representation obtained by
inverting a VAR is by definition fundamental. In Section 3.3, we recall and
illustrate an important result on singular stochastic vectors with rational spectral
density, namely that for generic values of the parameters the MA representations
of such processes are fundamental, this holding in particular for the structural
MA representations of DSGE models. However, structural MA representations
of square, nonsingular models are not necessarily fundamental, see Hansen and
Sargent (1991) Lippi and Reichlin (1993) and the review paper Alessi, Barigozzi,
and Capasso (2011).

We assume that some of the theory-based restrictions of the DSGE take the
form of zeros in the matrix B0. Such restrictions are used to identify the SVAR
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model in the validation procedure, so that a correspondence is established between
the structural shocks and the SVAR shocks. For example, if the structural supply
shock v2t is identified by the entry (1, 2) in B0 being zero, the “SVAR supply
shock” is identified by imposing that the same entry in A0 is zero. We show that
for generic values of the parameters the SVAR supply shock is contaminated both
by the measurement error and by the other structural shocks.

The contamination problem is discussed using only population entities and their
moving average representations. Note that in this context the VAR equation for xt is
not really needed. Representations (8) and (9), and the resulting (11) are sufficient
to study the relationship between Vt, vt, and ηt. Of course in empirical situations
an approximation of the matrix A(L) will be obtained by inverting the estimated
VAR.

Lastly, the examples of shock contamination given below are sufficient to
make the main point of the present paper. Contamination of the impulse-response
functions can be studied by the same methods, with similar results, see part (II) of
the Appendix.

3.1. VAR Dimension and Number of Structural Shocks are Equal

Assume that m = p = 2, so that the vector (y1t y2t)
′ in the DSGE is not singular.

This case is not very interesting per se but its results are used in the sequel, see
part (I) in the Appendix, which is used in Sections 3.2 and 3.3.

To fix ideas, the shocks v1t and v2t are a demand and a supply shock, respectively.
Moreover, the supply shock v2t has no contemporaneous effect of the first variable,
so that we write b12(L) = f12L. Equating the right-hand sides of (8) and (9), we have
in this case:(

x1t

x2t

)
=

(
b11(L) f12L
b21(L) b22(L)

)(
v1t

v2t

)
+

(
η1t

η2t

)
=

(
a11(L) g12L
a21(L) a22(L)

)(
V1t

V2t

)
,

(13)

where the matrix A(L) has been identified such that V2t can be labeled as the SVAR
supply shock. Equation (11) takes the form:

det[A(L)]

(
V1t

V2t

)
=

(
a22(L) −g12L

−a21(L) a11(L)

)(
b11(L) f12L
b21(L) b22(L)

)(
v1t

v2t

)
+

(
ε1t

ε2t

)
,

where εt = Aad(L)ηt.
The conditions for noncontamination of V1t by v2t and of V2t by v1t are

a22(L)f12L−b22(L)g12L = 0,

a21(L)b11(L)−a11(L)b21(L) = 0,

that is

a21(L)

b21(L)
= a11(L)

b11(L)
= α(L),

g12

f12
= a22(L)

b22(L)
= β(L). (14)
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Note that β(L) is a constant. Thus:

(
a11(L) Lg12

a21(L) a22(L)

)
=

(
α(L)b11(L) β(L)f12L
α(L)b21(L) β(L)b22(L)

)
. (15)

From (13) and (15), we obtain

(
b11(L) f12L
b21(L) b22(L)

)(
v1t

v2t

)
+

(
η1t

η2t

)
=

(
α(L)b11(L) β(L)f12L
α(L)b21(L) β(L)b22(L)

)(
V1t

V2t

)
.

Equating the spectral densities,

(
|b11(z)|2 +| f12|2 b11(z)b21(z̄)+ zf12b22(z̄)

b11(z̄)b21(z)+ z̄f12b22(z) |b21(z)|2 +|b22(z)|2
)

+
(

σ 2
1 0
0 σ 2

2

)

=
(

|α(z)|2|b11(z)|2 +|β(z)|2| f12|2 |α(z)|2b11(z)b21(z̄)+ z|β(z)|2f12b22(z̄)
|α(z)|2b11(z̄)b21(z)+ z̄|β(z)|2f12b22(z) |α(z)|2|b21(z)|2 +|β(z)|2b22(z)|2

)
,

where z = e−iθ , θ ∈ [−π, π ], α̃(z) = |α(z)|2 − 1, β̃(z) = |β(z)|2 − 1, σ 2
h is the

second moment of ηht. Equating entries:

⎛
⎝ |b11(z)|2 |f12|2

|b21(z)|2 |b22(z)|2
b11(z)b21(z̄) zf12b22(z̄)

⎞
⎠(

α̃(x)
β̃(z)

)
=

⎛
⎝σ 2

1
σ 2

2
0

⎞
⎠ (16)

(the fourth equation is just the conjugate of the third and is therefore omitted). The
linear system (16), in the unknowns α̃(z) and β̃(z) has a solution only if the 3×2
matrix on the left-hand side of (16), call it M(z), has the same rank as the matrix

N(z) =
⎛
⎝ |b11(z)|2 | f12|2 σ 2

1|b21(z)|2 |b22(z)|2 σ 2
2

b11(z)b21(z̄) zf12b22(z̄) 0

⎞
⎠ .

Now, our DSGE model has nine parameters, the seven coefficients of B(L) plus
the two second moments of ηt. Assume that the parameter vector belongs to an
open set 
 ⊂ R

9. Adding z, which varies on the unit circle C, the matrices M(z)
and N(z) are parameterized on the set 
×C. It is very easy to see that the subset of

×C where the rank of M(z) equals the rank of N(z) is nowhere dense in 
×C.
Thus generically the system (16) has no solution, that is, generically the supply
(demand) shock of the SVAR is contaminated by the demand (supply) shock of
the DSGE.
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3.2. VAR Dimension is Larger than Number of Structural Shocks

This is the standard case, in which the vector yt is singular. We have again the
demand shock v1t and the supply shock v2t and augment model (13) with a third
variable which loads both shocks with one period lag:⎛
⎝x1t

x2t

x3t

⎞
⎠ =

⎛
⎝ b11(L) f12L

b21(L) b22(L)

f31L f32L

⎞
⎠(

v1t

v2t

)
+

⎛
⎝η1t

η2t

η3t

⎞
⎠

=
⎛
⎝ a11(L) g12L a13(L)

a21(L) a22(L) a23(L)

g31L g32L a33(L)

⎞
⎠

⎛
⎝V1t

V2t

V3t

⎞
⎠ .

(17)

Again, the restrictions of the DSGE have been reproduced in the SVAR model.
With three zero restrictions, the latter is just identified. The DGSE has 18
parameters: 18−3 for the matrix B(L) plus the 3 second moments of ηt. We assume
that the parameter vector belongs to an open subset of R18.

Define K(L) = Aad(L). Using equation (11), if the shock V1t does not load v2t

and the shock V2t does not load the shock v1t, that is, if there is no contamination,
then:

Lk11(L)f12 + k12(L)b22(L)+Lk13(L)f13 = 0,

k21(L)b11(L)+ k22(L)b21(L)+Lk23(L)f31 = 0.
(18)

In the Appendix, part (I), we sketch a proof that generically equations (18) are not
fulfilled in 
.

3.3. No Measurement Errors, Blocks of Variables,
Nonfundamentalness

An alternative to measurement errors to reconcile the singularity of the DSGE with
observed data consists in selecting blocks of variables so that the number of shocks
and the number of variables are equal, see Canova (2007), pp. 232–233.

Assume that ηt = 0, so that xt = yt, and that from a DSGE with p = 2 we have
selected the variables y1t and y2t. Assuming that they are modeled like in (13),(

y1t

y2t

)
=

(
b11(L) f12L
b21(L) b22(L)

)(
v1t

v2t

)
=

(
a11(L) g12L
a21(L) a22(L)

)(
V1t

V2t

)
.

Because Vt is fundamental by definition, if vt is fundamental the matrices
B(L) and A(L) are equal up to a change of sign in the first column, the second
column or both (see the observations following the definition of fundamentalness
in Section 2). Thus of course equation (14) is fulfilled and no contamination occurs.

Suppose that vt is nonfundamental, that is det[B(L)] has a root of modulus less
than unity, call it z∗, and that equation (14) is fulfilled. Because (i) det[A(L)] has
no roots inside the unit circle, (ii) det[A(L)] = α(L)β(L)det[B(L)], (iii) β(L) is a
constant, then α(L) has a pole at z∗. On the other hand, the entries of A(L) have
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no poles of modulus less than unity so that both b11(L) and b21(L) have a root at
z∗. In conclusion, nonfundamentalness is allowed for vt but only in a special form,
namely the entries of the first column of B(L) must share a root of modulus less
than unity. From (14), we obtain

α(L) = γ
L− z∗

1− z∗L
.

We have, setting δ = β(L):

yt = A(L)Vt =
⎛
⎝γ 1− z∗L

L− z∗ b11(L) δf12L

γ 1− z∗L
L− z∗ b21(L) δb22(L)

⎞
⎠(

V1t

V2t

)

= B(L)

(
γ 1− z∗L

L− z∗ 0

0 δ

)(
V1t

V2t

)
= B(L)vt.

It easily seen that(
V1t

V2t

)
=

(
γ −1 L− z∗

1− z∗L
0

0 1

)(
v1t

v2t

)
.

Thus, although no contamination occurs in this case, the shock Vt is an infinite
moving average of v1t. On the other hand, if B(L) is nonfundamental and (14) is
not fulfilled then contamination occurs.

The nonfundamentalness issue for DSGE linearized solutions can be easily
described in general. Let us go back to model (5):

C(L)yt = D(L)vt.

As recalled in Section 2, the vector yt is dynamically singular, that is m, the
dimension of yt, is larger than p, the dimension of vt. Singularity of yt implies
that generically vt is fundamental for yt. This important result has been proved in
Anderson and Deistler (2008a) and Anderson and Deistler (2008b). An elementary
illustration is the following:

y1t = b1,0vt +b1,1vt−1,

y2t = b2,0vt +b2,1vt−1.

Here m = 2 and p = 1. If b1,0b2,1 −b1,1b2,0 �= 0, we obtain

vt = 1

b1,0b2,1 −b1,1b2,0
(b2,1y1t −b1,1y2t),

so that vt lies in the space spanned by current and past values of yt. Thus, apart
from the lower-dimensional subset of R4 where b1,0b2,1 − b1,1b2,0 = 0, the shock
vt is fundamental for the vector yt.

However, fundamentalness of vt for yt does not imply that vt is fundamen-
tal for a p-dimensional block. In the example above, if y1t = vt − 4vt−1 and
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y2t = vt − 0.5vt−1, vt is fundamental for yt and for the block containing only y2t,
but nonfundamental for the block containing only y1t.

In conclusion, fundamentalness is not an issue for the whole DSGE model.
However, assuming no measurement errors, if a block of p variables is selected
to be used for validation by means of an SVAR, then the block should be carefully
analyzed to ascertain if fundamentalness of the shocks for the block is warranted
by the theory, which is precisely the issue mentioned in Remark 2. For an example
of this kind of analysis see Sims and Zha (2006). The authors, after selecting six of
the variables of a DSGE examine the question “to what extent the econometrician,
if he knew the true parameters of the model, could construct the structural shocks
from observations on this list of six variables,” p. 243, and reach a positive answer.

3.4. No Measurement Errors, More Structural Shocks than SVAR
Dimension

As in the previous section, there are no measurement errors: xt = yt. Suppose
that the SVAR is misspecified in that its dimension is less than the number of
structural shocks. For example, assume that there are two different demand shocks
in the DSGE, v1t and v2t, and one supply shock v3t, but the block selected for VAR
estimation includes only the two variables y1t and y2t. Thus

(
y1t

y2t

)
=

(
b11(L) b12(L) f13L
b21(L) b22(L) b23(L)

)⎛
⎝v1t

v2t

v3t

⎞
⎠ =

(
a11(L) g12L
a21(L) a22(L)

)(
V1t

V2t

)
,

so that:

det[A(L)]

(
V1t

V2t

)
=

(
a22(L) −g12L

−a21(L) a11(L)

)(
b11(L) b12(L) f13L
b21(L) b22(L) b23(L)

)⎛
⎝v1t

v2t

v3t

⎞
⎠ .

The conditions for noncontamination of the supply shock by the demand shocks
are:

a21(L)b11(L)−a11(L)b21(L) = 0,

a21(L)b12(L)−a11(L)b22(L) = 0,

that is

b21(L) = γ (L)b11(L), b22(L) = γ (L)b12(L). (19)

Now observe that b11(L)v1t +b12(L)v2t can be represented as b̃(L)ṽt where ṽt is a
unit-variance white noise, so that, if (19) holds,

b11(L)v1t +b12(L)v2t = b̃(L)ṽt,

b21(L)v1t +b22(L)v2t = γ (L)b̃(L)ṽt,
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and the DSGE model has the representation

(
y1t

y2t

)(
b̃(L) b13(L)

γ (L)b̃(L) b23(L)

)(
ṽt

v3t

)
,

with only one demand shock and the original supply shock. Thus, if there is a
genuine couple of demand shocks, that is condition (19) does not hold, the supply
shock V2t gets contaminated by the demand shocks v1t and v2t.

Lastly, even when (19) is satisfied, the aggregate demand shock ṽt, defined by
b̃(L)ṽt = b11(L)v1t + b12(L)v2t, though depending only on the demand shocks, is
a linear combination of current and past values of them, not only of their current
values (see the same observation for the simple example in Section 1).

4. HIGH-DIMENSIONAL DYNAMIC FACTOR MODELS

4.1. General Definitions

An argument to dismiss the results of the previous section might be that the
coefficients of the matrix A(L) and the shocks Vt are continuous functions of the
parameters of the DSGE, including the second moments of ηt. As a consequence,
if the measurement errors are small and the DSGE is “correct,” then after all
the representation xt = A(L)Vt should be close to yt = B(L)vt and therefore
validation of the DSGE by means of an SVAR is acceptable. This is fairly
reasonable under the assumption that xt includes all the variables of the DSGE
or a block of them whose dimension exceeds the number of structural shocks. In
that case the SVAR-based moving average, which is fundamental by assumption,
would converge, as the measurement errors tend to zero, to the (generically) MA
fundamental representation of the corresponding y’s. Otherwise we can argue,
based on the results in Section 3.3, that either we prove that the structural shocks are
fundamental for the block of variables selected in yt, or the SVAR-based moving
average of yt does not converge to the moving average of the corresponding x’s
even if the DSGE is correct.

However, our claim is that the difficulties arising with SVARs can be solved by
means of DFMs. DFMs provide a natural and simple tool to clean the variables
xt from the error ηt, so obtaining an estimate of yt, of the structural shocks and
impulse-response functions.

To fix ideas let us consider a dataset of macroeconomic time series, call it Xt,
which includes those that are typical of DSGEs, aggregate income, prices, indus-
trial production, rate of interest, and so on plus sectoral and regional economic
indicators. We assume that the dataset contains a number of variables, call it n,
which is large as compared to T, the number of observations for each time series,
so that estimating a VAR is unfeasible. This feature, an n comparable in size to T,
is embodied in definitions and the asymptotic analysis, in which both T and n tend
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to infinity (thus High-Dimensional DFMs). The general form of the DFM is the
following:

xit = χit + ξit

χit = μi1(L)u1t +μi2(L)u2t +·· ·+μiq(L)uqt,
(20)

for t ∈ Z and n ∈ N, where:
(i) The vector ut = (u1t u2t · · · uqt)

′ is an orthonormal white noise, the vector of
the common shocks, also called the dynamic factors.

(ii) The polynomials μij(L) are rational functions of L with no poles inside the
unit circle.

(iii) The variables ξit, called the idiosyncratic components, are zero-mean
stationary. Moreover, they are orthogonal to the common shocks at all leads and
lags, that is, ξit ⊥ ujτ for all t, τ ∈ Z, i ∈ N. As a consequence they are orthogonal
to the variables χit, which are called the common components.

(iv) Idiosyncratic components for different i’s are weakly correlated. This is an
asymptotic definition whose details are not needed here. It requires, for example,
that the mean of the ξ ’s tends to zero as n tends to infinity:

lim
n→∞E

[
1

n

n∑
i=1

ξit

]2

= 0.

This is obviously true if the ξ ’s are mutually orthogonal with an upper bound for
the variance, but is also true if some “local” nonzero covariance among the ξ ’s is
allowed.

(v) The common shocks are pervasive, that is, they affect all the variables xit,
with possibly a finite number of exceptions.

For a statement of the assumptions, representation and estimation results, see
Forni and Reichlin (1998), Forni et al. (2000), Forni and Lippi (2001), Stock and
Watson (2002b), and Stock and Watson (2002a). In these papers, and in the many
others in this literature, it is proved that the shocks ut and the common components
χit can be estimated by taking some averages over the x’s and letting n and T tend
to infinity. The weak correlation property of the ξ ’s, see (iv) above, ensures that in
such averages only the common components survive as n tends to infinity.

The idiosyncratic components are interpreted as a cause of variation of the x’s
that are specific to one or just a few variables, like regional or sectoral shocks, plus
measurement errors. In particular, for the big aggregates like income, consumption,
investment, in which all local or sectoral shocks have been averaged out, the
variable ξit can be interpreted as only containing measurement error. On the other
hand, the common shocks ut, as they are pervasive, see (v) above, are interpreted
as macroeconomic causes of variation.

A common additional assumption in the literature on DFMs is that the space
spanned by the common components χit, for a given t, call it St, has finite
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dimension r. As a consequence,St has a finite stationary basis Ft = (F1t F2t · · · Frt)
′

such that

xit = λi1F1t +λi2F2t +·· ·+λirFrt + ξit. (21)

The variables Fjt are called the static factors and (21) the static representation of
the DFM. For example, if q = 1 and

xit = μi,0ut +μi,1ut−1 + ξit,

we set F1t = ut, F2t = ut−1, and the static representation is

xit = λi1F1t +λi2F2t + ξit,

with λi1 = μi,0,λi2 = μi,1. We see that the static representation is obtained by
replacing the dynamics with “artificial” static factors, so that the dynamics of the
common components has been moved into the static factors:(

F1t

F2t

)
=

(
1
L

)
ut, or

(
1 0

−L 1

)(
F1t

F2t

)
=

(
1
0

)
ut. (22)

The example above is sufficient to motivate the assumption that

r > q, that is, the number of static factors is larger than the number

of dynamic factors,

and therefore that the vector Ft is singular. The moving average representation on
the left in (22) has the generalization

Ft = G(L)ut, (23)

where G(L) is an r ×q matrix of rational functions of L, thus a nonsquare matrix.
Anderson and Deistler, in the papers cited in Section 3.3, show that, for generic
values of the coefficients of the rational functions in G(L), the singular vector Ft

has an autoregressive representation

H(L)Ft = G(0)ut, (24)

where H(L) is an r × r stable polynomial matrix of finite degree. This implies of
course the result mentioned in Section 3.3, that representation (23) is generically
fundamental.

In conclusion, under the assumption that St has finite dimension r, the DFM can
be represented in the form:

xit = λi1F1t +λi2F2t +·· ·+λirFrt + ξit

H(L)Ft = Rut,
(25)

where H(L) is an r × r stable polynomial matrix of finite degree and R is an r ×q
matrix.

Let us insist that, under the assumptions of singularity for Ft and rationality for
the functions μij(L), the results by Anderson and Deistler imply fundamentalness
of vt and the finite degree of H(L), so that representation (25) is quite general.
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Estimation of model (25) requires three steps.
(I) Firstly the dimensions q and r must be determined. From the vast literature

on the topic we only mention here Bai and Ng (2002), the first paper to provide
a criterion for r, consistent for n and T tending to infinity, and Hallin and Liška
(2007) for q.

(II) Once r and q have been specified, the factors Ft and the loadings λij

can be estimated consistently by taking the first r principal components of the
observations xit, i = 1,2, . . . ,n, t = 1,2, . . . ,T .

(III) The estimated factors are used to estimate the nonstandard VAR in (25),
and therefore H(L), R, and the dynamic factors ut. Estimates of μij(L) are easily
obtained. Defining G(L) = H(L)−1R,

χit = (λi1 λi2 · · · λir)Ft = (λi1 λi2 · · · λir)G(L)ut = (μi1(L) μi2(L) · · · μiq(L))ut,

so that, under the assumption of finite dimension for St, we have obtained an
estimate of model (20).

Lastly, let us point out an important difference between High-Dimensional
DFMs and standard Factor Models in which the number of variables is given,
the model is estimated by maximum likelihood and the asymptotic analysis is
conducted for T tending to infinity. The latter require for identification that
the idiosyncratic components are mutually orthogonal whereas in the High-
Dimensional DFM we only need weak correlation, see (iv) above. But measure-
ment errors in variables belonging to the same group, real variables like income and
consumption for example, might well be correlated in macroeconomic datasets.
Thus the assumption of weak correlations seems more realistic. Estimation by
maximum likelihood of a model of the form (7) has been suggested in Sargent
(1989). Giannone, Reichlin, and Sala (2006) apply this idea to estimate a simple
DSGE under the assumption of orthogonal idiosyncratic components.

4.2. Comparing DSGE and DFM

The static representation (21) and the static factors Ft are useful for the estimation
of the DFM. However, if we are interested in structural analysis we must revert to
the original representation (20) and the dynamic factors ut.

Our claim is, as stated above, that if xit is a macroeconomic variable like
aggregate income, investment, or consumption, the idiosyncratic component ξit

can be interpreted as the measurement error, so that the common component χit

is the cleaned version of xit, the variable that should be considered in structural
analysis. On the other hand, as argued in Stock and Watson (2005) and Forni et al.
(2009), identification techniques applied in SVAR or DSGE analysis can be easily
used for identifying DFMs.

Let us concentrate on the DSGE model. We assume that the common compo-
nents of the first m variables of the DFM are the variables of the DSGE: χ t = yt,
where χ t = (χ1t χ2t · · · χmt)

′. Moreover, to fix ideas, let us assume that p = 2, a
demand and a supply shock, and that the number of shocks in the DFM has been
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correctly determined, that is q = 2. Then, if the DSGE model is correct, we have
two rational moving average representations for yt:

yt = B(L)vt = μ(L)ut,

where μ(L) has μij(L) in the (i, j) entry. Both representations are singular, so that
generically both are fundamental. As a consequence, the white noise vectors ut

and vt differ for an orthogonal matrix:

vt = Sut,

where S is a q × q orthogonal matrix (2 × 2 in our case), see Appendix (III), (b).
If the DSGE assumes that the shock v2t has no contemporaneous impact on the
variable y1t = χ1t, the matrix S is identified by the condition

μ11(0)s21 +μ12(0)s22 = 0,

see again Section 2. We believe that this elementary example is sufficient to make
the point that no modification is required to apply an identifying restriction from
DSGE or SVAR analysis within a DFM.

Thus DFMs can be used to validate both SVAR and DSGE models:
(i) The criteria for determining the number of shocks in the DFM can be used as

a data-driven evaluation for the dynamic dimension (number of shocks) of SVAR
and DSGE models.

(ii) Regarding SVARs, one can be interested in the shape of the impulse-
response functions estimated using the error-free macroeconomic variables
χit. Important papers adopting this approach are Bernanke and Boivin (2003),
Bernanke, Boivin, and Eliasz (2005), and Boivin, Giannoni, and Mihov (2009).
Forni and Gambetti (2010) use a DFM to study the effect of monetary policy
shocks on real exchange rate and stock prices. They find that in the DFM neither
the delayed overshooting puzzle nor the price puzzle occurs.

(iii) The use of DFMs for validation of DSGE models is obvious. The variables
yt in equation (5) are estimated in the DFM. The shocks of the DFM can be iden-
tified using some of the theoretical restrictions of the DSGE. The corresponding
impulse-response functions can be compared with those of the DSGE. None of the
contamination problems outlined in Section 3 arises.

5. CONCLUSIONS

The example Section 1, equations 2–4, warning against the widespread misconcep-
tion that measurement errors have no dramatic effect on the processes governing
observable variables, that in particular the estimated shocks are the structural
shocks plus some fraction of the measurement error, goes back as far as Granger
and Morris (1976). The dynamic contamination effects of measurement errors
studied in Section 3 are special cases of the dynamic contamination effects of
aggregation, as analyzed in Forni and Lippi (1997) (incidentally, the interest of
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the present writer for DFMs was spurred by the negative results obtained in that
book).

This line of research, aimed at exposing common misconceptions in macroe-
conometrics and propose feasible alternatives, is close in spirit to some well-known
works by Benedikt Pötscher, to whom the present paper is dedicated. Particular
mention can be given to his joint paper which debunks the common “myth that
consistent model selection has no effect on subsequent inference asymptotically,”
(Leeb and Pötscher, 2005, p. 21).

DFMs have been applied extensively for forecasting. However, as we have seen,
under reasonable assumptions they can be used for validation of DSGEs. For this
purpose, provided that the number of dynamic factors is correctly determined,
their advantages with respect to SVARs are that neither nonfundamentalness nor
contamination of shocks can occur. Although little explored as yet, the application
of DFMs to macroeconomic analysis has a sound theoretical basis and is therefore
very promising.
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APPENDIX

(I) Consider the first of equations (18):

Lk11(L)f12 + k12(L)b22(L)+Lk13(L)f13 = L[a22(L)a33(L)−La23(L)g32] f12

− [a11(L)a33(L)−La13(L)g31]b22(L)+L[La21(L)g32 −La22(L)g31] f13

= ζ0 + ζ1L+ ζ2L2 + ζ3L3 = 0.

This condition is equivalent to

ζs = 0, for s = 0,1,2,3. (26)

It is easily seen that ζs is a polynomial function of (i) the coefficients of the entries of B(L),
(ii) the coefficients of the entries of A(L). The method employed in Forni and Lippi (1997),
Chapters 6 and 10, can be easily adapted to show that the coefficients of the entries of A(L)
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are analytic functions of the coefficients of the entries of B(L) and the three second moments
of ηt (see Forni and Lippi, 1997, Section 10.1). Therefore, ζs is an analytic function of p ∈ 
.
As a consequence, assuming that 
 is open and connected, ζs = 0, for s = 0,1,2,3, holds
either on the whole 
 or on a nowhere dense subset (see Forni and Lippi, 1997, Section
10.2). Thus, it is sufficient to find a point in p∗ ∈ 
 such that ζs �= 0, for some s, to obtain
that generically (26) does not hold in 
.

Finding a point p∗ is fairly easy. Let 
̃ be the subset of 
 which contains all parameter
vectors such that the third row of B(L) vanishes and assume that 
̃ is not empty. For p ∈ 
̃,
we firstly obtain the fundamental representation for (x1t x2t)

′:

(
b11(L) Lb12(L)

b21(L) b22(L)

)(
v1t
v2t

)
+

(
η1t
η2t

)
=

(
a11(L) La12(L)

a21(L) a22(L)

)(
V1t
V2t

)
, (27)

then the fundamental representation for the whole vector:

⎛
⎝x1t

x2t
x3t

⎞
⎠ =

⎛
⎝b11(L) Lb12(L)

b21(L) b22(L)

0 0

⎞
⎠(

v1t
v2t

)
+

⎛
⎝η1t

η2t
η3t

⎞
⎠ =

⎛
⎝a11(L) La12(L) 0

a21(L) a22(L) 0
0 0 1

⎞
⎠

⎛
⎝V1t

V2t
V3t

⎞
⎠,

where V3t = η3t/σ3. As 
̃ is nonempty, the parameters of the model on the left-hand side
of (27) lie in an open connected nonempty subset of R9. Thus the results of Section 3.1
apply and generically in 
̃ contamination occurs, so that ζs �= 0 for some s.

(II) We give here a very simple example to illustrate the contamination occurring in the
impulse-response functions. Consider the model

(
x1t
x2t

)
=

(
b11 f12L
0 b22

)(
u1t
u2t

)
+

(
η1t
η2t

)
, (28)

which is a special case of model (13). Both x1t and x2t are white noise and their covariance
is zero. However, as the covariance between x1t and x2,t−1 is f12b22, the vector xt is not a
white noise in general. As a candidate for the representation xt = A(L)Vt, consider

(
x1t
x2t

)
=

(
a11 g12L
0 a22

)(
V1t
V2t

)
. (29)

As Vt is assumed to be orthonormal, equating covariances between (28) and (29), we obtain
the following three equations for the entries of A(L):

a2
11 +g2

12 = b2
11 + f 2

12 +σ 2
1

a2
22 = b2

22 +σ 2
2

g12a22 = f12b22.
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The system is easily solved:

a2
11 = b2

11 + f 2
12 +σ 2

1 − f 2
12

b2
22

b2
22 +σ 2

2

a2
22 = b2

22 +σ 2
2

g2
12 = f 2

12
b2

22

b2
22 +σ 2

2

sign (g12a22) = sign (f12b22).

(30)

Thus, representation (29), with its coefficients determined in (30), produces the same
covariance matrices as (28). Moreover, det[A(L)] has no roots. Therefore, (29) is the
unique fundamental representation for xt with an orthonormal white noise and fulfilling
the condition that the polynomial in entry (1, 2) vanishes for L = 0 (up to a change of sign
for V1t, for V2t or for both, this corresponding to the multiple solutions of (30)).

We see that a22 depends on b22 and the size of the measurement error η2t. However,
unless σ 2

2 = 0, both a11 and g12 are contaminated by b22. Using the technique briefly
illustrated in part (I), example (28) could be used to show that contamination occurs
generically in model (13).

(III) (a) The spectral density of xt, as defined in (8), is

�x(θ) = (B0 +B1e−iθ )(B0 +B1eiθ )′ +�η,

where �η is the covariance matrix of ηt. Assumption 2 implies that �x(z) is nonsingular for
all z ∈ C. Moreover, the covariance function of xt, that is E(xtx

′
t−k), vanishes for |k| > 1.

Therefore xt has a Wold representation xt = A(L)Vt, where (i) Vt is orthonormal white
noise, (ii) A(L) is an MA(1), (iii) A(z) has no roots inside or on the unit circle (see Rozanov,
1967, pp. 43–50; see also Lütkepohl, 1984).

(b) Let wt be an r-dimensional stochastic vector and suppose that

wt = α(L)vt = β(L)ut,

where vt and ut are q-dimensional and orthonormal white noises and q ≤ r. Suppose that
both vt and ut are fundamental for wt. Then vt = Sut, where S is a q×q orthogonal matrix
(see Rozanov, 1967, pp. 56–57; see also Forni et al., 2009, Section 3.2).
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