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Multidimensional Exponential
Inequalities with Weights

Dah-Chin Luor

Abstract. 'We establish sufficient conditions on the weight functions u and v for the validity of the
multidimensional weighted inequality

([ o) <c( [ormrma)

where 0 < p,q < oo, ® is a logarithmically convex function, and Ty is an integral operator over
star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover,
the estimation of C is given and we apply the obtained results to generalize some multidimensional
Levin—Cochran-Lee type inequalities.

1 Introduction

We investigate the weighted modular inequality of the form

(1.1) (/E¢(ka(x))qu(x) dx) v c(/Eq>(f(x))Pv(x) dx) v

where 0 < p,q < 0o, u and v are weight functions, ® is logarithmically convex, and
Ty is the integral operator defined by

Tif(x) = /S ko0 f(0)dt, x€E,

which averages functions over dilations of a fixed star-shaped region S in R" (the
terms S, Sy, and E are defined below). The kernel k is a positive function defined
on Q = {(x,t) € ExXE :t € S}. A weight function is a measurable function
which is positive and finite almost everywhere on E. The function ® is said to be
logarithmically convex on an open interval I C (—o00, 00) if @ is defined and positive
on I such that log ® is convex on I. We also assume that ® takes its limits, finite or
infinite, at the ends of I. In particular, if ®(x) = ¢* and we replace f by log f, then
(1) can be reduced to

(12 ([@seruna) " <cf [ romma) "
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where f > 0 and G is the geometric mean operator defined by

Gﬁ&%ze@(/k@ﬁﬂ%fmda.
Sx

In the one-dimensional case with S, = (0, x], inequality (1)) has been considered
by Levinson [18] for k(x,t) = r(t)/(fox r(t)dt), p = q = 1,and u(x) = v(x) = 1 with
C = ¢, and by Heinig [9, Theorem 2.2(ii)] for k(x,t) = 1/x, p = g = 1, and v(x) =
x® fxoo =" lu(r)dt, « > 0 with C = e“. Inequality ([.2) has also been investigated
by many authors (see [2,4,7,8,10-13,15-17,19-21,23,24] and the references therein).
The higher dimensional theory of (L) and (L2) for k(x,t) = «Sc|~%|S:|*~! is
discussed by Heinig [9], Drabek—Heinig—Kufner [5], Jain—Persson—Wedestig [14] for
a = 1 and by Cizmesija—Pecari¢—Peri¢ [3] for @ > 0. In these papers, E = R", S,
is the ball B(|x|) in R" centered at the origin and of radius |x|, and |S| is the volume
of S,. Gupta et al. [6] also considered (T.2) for the case when o« = 1, E is a spherical
cone in R”, and Sy is the part of E such that the length of every element in Sy is less
than |x]|.

We call a region S smoothly star-shaped if there exists a nonnegative, piece-wise-C'
function 1) defined on the unit sphere in R” with S = {x € R"\{0} : |x| < ¥(x/|x|)}.
Throughout this paper, we denote E = | J,,., @S, where S C R" is a smoothly star-
shaped region. For nonzero x € E, there is a least positive dilation «,S that contains
x. We write Sy = a,S. Let B = {x € R"\{0} : |x| = ¢(x/|x|)} and note that
x/oy € B so that x is on the boundary of S,. For nonzero x,t € E, we make the
changes of variables x = so and t = y7, where s,y € (0,00) and 0,7 € B. Then
o, = s, and for any measurable g, we have

/ g(t)dr = / / gyn)y" " drdy;
Sy 0 B
/ ﬂﬂw=/ /ﬂWU“Wﬁ%
E\S, s JB

The volume of S,, denoted by |S|, is then |S,| = fs( dr = s"|B|/n.
In this paper, we consider k: 2 — (0, 00) and k satisfies the following conditions.

(K1) [¢ k(x,t)dt = 1 for all nonzero x € E.
(K2) For any € > 0, there exists M (e) > 0 such that

exp(/ k(x,t) log[k(x, )| S:|*7"] dt) > M(e)|S,| for all nonzero x € E.
S

Our main object is to find a condition on weight functions u, v so that (LI)) holds
with a finite constant C independent of f. In particular, a characterization is estab-
lished for (L2) to hold. The estimation of C is also given. Furthermore, we discuss
some applications of our main results to the case k(x,t) = |S|~'¢(|S;|/|Sx|), which
includes k(x,t) = |Sy|7%|S:|*"! and a|S,|7*(|Sy| — |S:|)*~! for & > 0. Our results
are generalizations of works of [3,5,6, 14].
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We assume that all functions involved in this paper are measurable on their do-
mains. For 0 < p < oo and n: E — [0, oco], define

Lj = { f: B 10,00] | fllp = /E f@)n(x) dx) < o).

If n = 1, we write L;; instead ofL;,n. For 0 < z < 0o, we definez* by 1/z+1/z* = 1.
We also take exp(—o0) = 0,10g0 = —00,and 0 - co = 0.

2 Main Results

To prove the main results, we need the following Theorem A, which was proved by
G. Sinnamon [26, Theorem 2.1]. The upper estimation of C in 2.2)) for p < g is
based on the results [26, Theorem 2.2] and [22, Lemma 3.2].

Theorem A (Sinnamon) Let0 < q < 0o, 1 < p < oo, and p, 1 are nonnegative
functions on E. Then

@.1) ( /E ( /S Floyde) ploja) Y o /E Fe0n()d) v

holds for all f € L, , ifand only if A < oo, where

. 1/p* 1/q
sup (/ n(x)' P dx) (/ p(x)dx) ifp <gq,
z€E\{0} \Js, E\S;

{/E</S () =P dt) " (/E\sz p(t) dt) r/pp(z) dz} . ifg < p,

and 1/r = 1/q — 1/ p. Moreover, the best constant C in (2.1)) satisfies

2 JASCSag/pnia+p/gia ifp <a,
. ql/P(p*)l/p*(l _q/p)A <c< PI/P(P*)I/p*(r/q)l/rA 1'fq “

Let0 < p,q < 00, k: Q — (0,00), u, v be weight functions on E, and condition

Z3) hold.

(2.3) / k(x,t)log(1/v(t)) dt is well defined and finite for all nonzero x € E.
Sx

Define w(x) = Gk(l/v)(x)q/f’u(x). For p < g, we define

. 1/q
Ay = sup ‘Sz|(o,l)/p(/ |St|*5q“’w(t)dt> ,
zeE\{0} E\S.

and if g < p, define
a/(p—q) 2 (p—a)/(pD)
Ay = {/(/ R dt) |5, |76a=P)/(p _PQ)W(z)dz} ,
ENJE\S,

Our main result is the following.
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Theorem 2.1 Let0 < p,q < 00, u, v be weight functions, ® be logarithmically
convex on an open interval I, k: Q +— (0, 00), and let k satisfy (K1), (K2), and 23).
Suppose A; < oo for some § > 1. If the range of values of f lies in the closure of I,
Ty f (x) exists for all nonzero x € E, and ®(f) € L}, then (L)) holds with

P,V’
(2.4) C < UsAs,
where

inf( 27 (s — UQ) W( pr(s— Uq) M@ ifp <,

s>1 P (5 - l)q
(25) Us = e P NV s NSO j
(o) (o) e s

Before proving Theorem [Z.1} we first deal with the existence of Gx®(f)(x).

Lemma 2.2 Let p, v,k be given as in Theorem21l Then forallh € L}, ,, Gyh(x) exists
and is finite for all nonzero x € E.

Proof Let x be a nonzero element in E. We first prove that if h € LT, then Gyh(x)
exists. Suppose [ h(t)dt < co. Then fsx k(x, )k(x, )" h(t)dt = fsx h(t)dt < oo.
By [7, Theorem 187], fo k(x,t)log[k(x,t)~'h(t)] dt is well defined and

exp(/s k(%t)log[k(x,t)*lh(t)]dt) :rhf&{/s k(xvt)(k(x,t)flh(t)),dt}l/r

exists and is finite. Since condition (K2) ensures that fs k(x,t) logk(x, t)dt is finite,
we have

/k(x,t)logh(t)dt:/ k(x,t)logk(x,t)dt-l—/ k(x,t)log[k(x,t) ' h(t)] dt.

x x X

Therefore
Geh(x) = exp( / k(x, 1) log k(x, 1) dt) exp( / k(x, ) log[k(x, t)_lh(t)]dt>
Sx Sy
exists and is finite. For h € L , let h = hPv and hence h € L}. Since plogh(t) =
log h(t) + log(l/v(t)) and Gih(x), Gi(1/v)(x) both exist and are finite, we have
Gih(x) = Gyh(x)/?Gi(1/v)(x)!/? exists and is finite. []

Proof of Theorem[2.1] By Lemma 2.2l G,®(f)(x) exists and is finite for all nonzero
x € E. Since @ is logarithmically convex on I, Jensen’s inequality implies that
O(Tif(x)) < Gy®(f)(x). Foranys > I, let i = ®(f)?v. Then h € L. Bya
similar argument to that given in the proof of Lemma 2.2} we see that Gy ®(f)(x) =
Gih(x)* P G(1/v)(x)"/*. Therefore,

co / o7 foyut dx) ' < ( / (Gel)y ¥ wiy dx) .
E E
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where w(x) = Gk(l/v)(x)Q/Pu(x). Suppose As < oo for some § > 1. Holder’s
inequality implies that

« 1/s* 1/s
/ 18"~ h(e) dt < (/ |5, |96 =D dt) (/ h(t)sdt> .
S S S,

For non-zero t € E, we write t = y7, where y € (0,00) and 7 € B. By choosing
gt) = |SyT|(6_S)(5*_1) = (y"|B|/n)®=9% =D in ([L3), we have

G- =1 g, _ (S 1 (0=1)/(s—1)
S dt | S| )
5. 0—1

This shows that fsx |S:|*/*=h(t) dt < oo and hence
exp( /S k(x, 1) log[k(x, t)_1|St|5/5_lh(t)]dt)
is finite. By Jensen’s inequality and (K2), we have
Gh(x) < exp(f /S k(x, 1) loglk(x, £) 1|8,/ 1] dt) /S 1S,/ h(e) dit
< M(5/) 7S |18 h(e) dt.

Sx

Hence the integral in the right-hand side of (2.6) is less than
—sq/ §/s—1 safp. s /
M(8/s)—9/ ( ARG dt) 15,709/ P () dx.
ENJs,

Replace p.q, p(x), 1(x), and f() in Theorem Aby s,sq/ . |Si| =97 w(x), [S.J*", and
|S¢|%/* h(t), respectively. Then

27) ([(Gcorrueas) " < cot( [ neras) "
5 E
holds with
p+ (sp— l)q) 1/q<p (t;(i_l);)q> TG as (p < g,
(2.8) C< 1/qg—1/p s (s=1/p
(20)" () e e

Putting (2.6) and (2.7)) together yields (L)) with C satisfying (2.8)). Since (Z.8)) is true
for arbitrary s > 1, we have (Z4) and (2.5). [ |
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If ® is strictly monotone, then ® ! exists. Replacing f by ®~!(f) in (I.I)), where
f € L, ,, we obtain the inequality of the form

e /E a(n0~ (Nt ds) ' < /E frv ds) .

In the case ®(x) = €5, I = (—00,00) and ®~!(x) = logx. If f € L;,V, then by
Lemmal22l ®(Ty®~(f)(x)) = Grf(x) exists and is finite for all non-zero x € E.
Inequality then can be reduced to (L2). Theorem 2] shows that A5 < oo for
some d > 1is a sufficient condition for (L.2)) to hold for all f € L} ,. Theorem 2.3]

proves that this condition is also necessary.

Theorem 2.3 Let0 < p,q < 00, k, u, and v be given as in Theorem2.1l Then
holds for all f € Ly, , if and only if A; < oo for all § > 1. Moreover,

(2.10) sup LsAs < C < inf UsAy,
5>1 6>1

where Uy is given by 2.5)) and

(%)I/P ifp <gq,

((Sq;q) 1/p min(dff&:;’ dz‘:z;l’j)) ifq < p.

(2.11) Ly =

Here d,, d, are positive constants that satisfy di|Sy| < exp(fs k(x,t)log|S,| dt) <
d,|Sy| for all nonzero x € E.

Proof If A; < oo forall § > 1, then by Theorem 2.1 and (2.9) with ®(x) = ¢,
inequality (L.2) holds for all f € L} , and the estimation of C satisfies (Z.4)—-(2.5) for
all 6 > 1. This gives us the upper estimation of C in (ZI0)). Suppose that (L2)) holds
forall f € Ly ,. Leth = fPv. Then

(2.12) ( / (Geh(x)"?w(x) dx) Y c( / h(x) dx) Ve
E E

holds for all h € LF, where w(x) = Gi(1/v)(x)?/Pu(x) and C is the same as in (L2).
We first consider the case p < g. Let § > 1, £ is a nonzero element in E, and

h(t) = x5, (O]Se] ™" + xmysc (0S¢l S 0.

Then we have

/h(x)dx:1+|sg|°"*1/ 1S, dt

E E\S¢

(2.13) B\ =5 % 5
=1 o—1( 171 —nd+n—1 _ )
+|Se] ( n) /Gf /By drdy 51
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On the other hand, for non-zero x € E\S¢ we have

Sx Sx\Se |S: |

> —logS£|+5(/S\s k(m)dt) 10g[|§ﬂ
x \VE x

> log[Se|* (S« ™1,

and this implies Ggh(x) > [S¢|°~![S,|~%. Hence

(2.14) / (Geh(x))Pw(x) dx > |S|0=Da/» / 18| =%/ Pw(x) dx.
E E\S¢

By (Z12)), (2.13), and (Z.14), we have

& \Ur 1/q
. _ > [S.|0=D/p —oq/p
(2.15) C( 5 1) |Se] ( s, Sy w(x) dx)

Since holds for all nonzero £ € E,

(2.16) c> (5%;1) " .

Inequality (Z.16) is true for all § > 1, so we have the lower estimation given in (Z.10)
and (Z.10).

Consider the case g < p. For m € N, let x,, € mB and we simply write S, for Sy, .
Define

Wi (x) = [min(w(x), m)]xs, (x) + [min(w(x), |Se| 79 xms, (),
where 1/r =1/q —1/p. For § > 1, define

p/(p—a)
B (x) = |S,| 1P/ (=) ( / IS, 729/ P, (1) dt) .

E\S,

We first show that h,, € LT. By (L3) with g(¢) = |S,|~%9/?w,,(t), we have
(2.17)

B @ —p/(p—q) ° > p/(p—q) ng(6—1)/(p—g)—1
/Ehm(x)dx—( n) IB| : ( : g(y)dy) s ds,

where g(y) = [, y~oma/ptn=ly, (yr)dr. The dual Hardy inequality and Holder’s
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inequality show that for some finite constants ¢ and d,

/hm(x)dx S C/ g(y)p/(P_q)yq(fl(s—r&l)/(p_q)dy
E 0

> p/(p—2)
c/ (/Wm()/T)dT) qy”_ldy
0 B

(o)
C/ (/Wm()/’r)p/(p_q)d’r> (BJ2/ =0 =1,
0

B

IN

= d/wm(t)p/(P_q)dt
E

<d mp/(p_q)dt+d/ |S;|72dt < oo.
Sm E\S"l

Hence Gih,,(x) exists and is finite for all non-zero x € E. Replace h by h,, in (2.12)).
Since w,,, < w, we have

(2.18) ( / (Gihn ()2 P i (x) dx) v c( / () dx) v
E E

Condition (K2) implies that d,|S,| < exp(fsx k(x,t)log|S;| dr) < d,|Si| for some
positive constants d; and d,. Therefore

exp< / K, £) logl[S, |0~/ (2=] dt) > |, |1/ (-,
Sy

dq—p

~ o9—p
where d = min(d{”~",dj"~"). This implies

)

- s p/(p—q)
Gt (x) > dP|S,| 1=/ (P~ ( / |St|_°q/pwm(t)dt)
E\Sx

and hence y
q ~
([ Gty ru, 0 dx) ™ = b,
. :

where
a/(p—q)
Bsm = /(/ 1S, %9/ P, (2) dt) |S,|O7 =P/ (0" =Py, () dix.
ENJE\S,

On the other hand, by [25, Lemma 1] we have

0 s

T a/(p—a) ng(6—1)/(p—q)
_ nq((g,l)/o (/5 g(y)dy) g(s)s ds.
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Hence (ZI7) implies
[ |B]\ —#/®=0  p|B]
/Ehm(x)dx_ ( n ) nq(6 — 1)
o s ; /(p—q)
I et
0 B Js B
w §1O0 =)/ (P =pat2n—Ly, (5 dirds
p
= B me
g6 —1) "

Therefore (ZI8) implies C > d((6q — q)/p)l/PBgI_)n;q)/(pq). Let m — oo. Since

Wm — w, we have C > ((dq — q)/p)l/l’d~A5. This holds for all § > 1, so we have
the lower estimation given in and (Z.I1). This completes the proof. [ ]

3 Applications

Suppose that £: (0, 1) — (0, 00) satisfies the following.

(KH1) [, 0(t)dt = 1.

(KH2) M, = exp(f, £(t)log ((t)dt) < oo.

(KH3) M, = exp( ) £(t)logtdt) > 0.

We apply Theorem 23] to the case k(x,t) = |S,|~'4(|S;|/|Sx|). For such a case,

1 o y" —1 !
k(x,t) dt = / /6 — ) y"drd :/ f(u) du =
/sx |Sx| 0 B (06') Y y 0
k(x,t)log[k(x, £)! |St|‘_1] dt

| |s/ / ) tog] Is.l¢~ (a) (le|) } ydrdy

/ t6a g 5167 ( Z2E0) 7z = oglisug oy aas )

and

Hence (K1)—(K2) are satisfied with M(¢) = MflMgfl. Similarly, d; = d, = M, in
(Z.11D. The following Theorem [3.I]can be obtained by Theorem 2.3

Theorem 3.1 Let0 < p,q < oo, u and v be given as in Theorem 21} and let
£:(0,1) — (0,00) satisfy (KH1)-(KH3). Define k: 2 — (0,00) by k(x,t) =
1S¢| 71(]S:|/|Sx|). Suppose that @3) holds. Then holds for all f € L, , if and
only if As < oo for all § > 1. The estimation of C can be obtained by Z10), (2.35)), and
210D with

(3.1) M@/s) = MM, d =dy =
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By taking limits s — 1 in (2.5)), the upper estimation of C satisfies

(3.2) C < {infbl MM A if p <gq,

inf5>1(ﬁ)l/‘f—l/PMll/ngl_W"A(; ifg < p.
Consider the particular case u(x) = |S,|* and v(x) = |S,|*. Then
w(x) = Ge(1/v)(x)"Pu(x) = M, "/P|S,|*=©a/p),

Forg < p,As =ooforalld > 1.If p < gand (a+1)/q= (b+1)/p, then

B . 1/q
As = M, b/p sup |SZ|(0—1)/p(/ |St|“_(b+5)‘1/1’dt)
z€E\{0} E\S;

_ "B\ G-D/p ;[ " B|\ a—(B+5a/p 1/4
:Mzb/Psup(5| \) (/ /(yl I) yn_ldey)
>0 n s B n

_ M—b/Pnl/q Supsn(ﬁfl)/p( Ooynq(lfd)/pfldy) 1/q _ M—b/p( p )Uq
’ =0 . P \og—q/

By (B2) we have

P

Ya o p o —b/p |
=M/'"M —elog M,)'/4.
5q — q> 1 , ' (—elogM,)

C < M/Pa; e ;ngél_(Wp (

Therefore,

/
63 / (Gef ) dx)
E
< M%“’M{”/”(—elogMz)‘/q(/f(x>P|sx|bdx) v
E

The following corollary considers the case £(t) = at®~!, where > 0. For such a
case,

(3.4) M; = ae/*7 1, M, =e Ve,

Corollary 3.2 Let0 < p,q < 0o, and o > 0. Define k: 0 — (0,00) by k(x,t) =
aS |71 /|Sx|*. Suppose that u, v are weight functions, and ([23)) holds. Then

(3.5) (/E{exp(lsja/s |St\o‘*llogf(t)dt) }qu(x)dx) v
< C(/Ef(x)PV(x) dx) v

holds for all f € L, , if and only if As < oo for all 6 > 1. The estimation of C can be
obtained by 2.10), (Z.35), and @II) with BI) and (B4).
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Consider the particular case « = 1. In [5, Theorem 4.1], Drabek-Heinig-Kufner
proved (B5) for the case p = q = 1, E = R", and S, = B(|x|). They showed that
(B3 holds if and only if Ay < oo. Hence Corollary 3.2]is a generalization of [5,
Theorem 4.1]. Another type of characterizations for the case that 0 < p < g < oo
and E is a spherical cone in R” can also be found in [6, Theorem 3.1]. If p < g,
u(x) = |S,]% v(x) = |S|’,and (a + 1)/q = (b + 1)/ p, then by (3.3),

o a—1 1 a Y
(3.6) (/E{exp(|sx|a /S 15| logf(t)dt)} 1] dx)
S Oél/pfl/qel/qu(hfoHrl)/(ap)(/f(x)p|sx|bdx) I/P'
E

Since e'/471/? < (p/q)"/1 for p < g, the constant given in (3.6) is better than that
given in [6, Proposition 3.6] and [14, Theorem 2]. If p =g =1,a=b, E = R", and
S = B(|x]), then reduces to [3, (23)].

We can also apply Theorem [3.1]to the case £(t) = a(1 — t)*~!, where « > 0. In
this case,

(37) Ml _ ael/a—l’ M2 _ e—ﬂ,—I‘/(a+1)/F((y+l)7

where ~y is the Euler constant and I'(x) is the Gamma function. The constant M, can
be obtained by the following equalities

1 1 © _nta—1 /
_ a—1 _ z - I''a+1)
logsza/o z log(lfz)dsza/0 E " dsz’yfm.

n=1
The last equality is based on [1, Theorem 1.2.5]. We have the following corollary.

Corollary 3.3 Let0 < p,q < oo and a > 0. Define k: Q0 — (0,00) by k(x,t) =
a(|Sy| — |S:)271/|Se|®. Suppose that u, v are weight functions, and @2.3)) holds. Then

( /E {exp(@ /S (18:] = [3:)" o f(1)dr ) }"uCx)ax) .
<cf / FxPv(x)dx) vr
E

holds for all f € L}, if and only if A5 < oo for all 6 > 1. The estimation of C can be
obtained by @.10), .35), and @I with BI) and B2).

If p < g ulx) = |S,|% v(x) = |Sc|’,and (a + 1)/q = (b + 1)/p, then by (.3,

(/E{exp(ﬁ /Sx(|sx| — st logf(t)dt) }q|Sx|”dx) &

<c( [ rorisiiax)
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where

C— al/pel/q+(l—(y+a'yb)/(ap)+bf/(a+l)/(pF(aJrl))( I(a+ 1)) 1/
I'a+1)

Remark In our Theorem[2.Jland Theorem[23] we suppose that the kernel k satis-
fies (K1) and (K2). In the following, we replace (K2) by the condition (K2*).

(K2*) There exists M > 0 such that exp( fsx k(x,t) log[k(x,t)~']dt) > M]S| for all
non-zero x € E.

According to the proof of Theorem 2.1} we see that Theorem 2T still holds with (2.4)

being replaced by the following estimation.

p+(@—Dg\Yirp+(6—1Dg\©O-vr
( - ) ((5_1)q) M™PA; (p <),

(ﬁ) 1/q—1/p51/p(%) (6_1)/PM76/’7A5 (@< p).

c<

Similarly, according to the proof of Theorem 23] we obtain a characterization for
to hold for all f € L ,, which is given as follows.

(i) Inthecasep < g,As; < ooforalléd > 1and

(3.8)
0—1\1r
sup| — A; <C
5>Il)( 1) ) 0=
. p+ (6 —1g\ Vs p+(5—1)gy\ @—D/p s/
< PA-.
_ggf( P ) ( (6—1)g ) M4

(i) Inthecaseq < p,A,/; < ooand

p—q\l/r p N\ 2/a=1/p) s p\ 1/p Y
. — <C<L (| —/— = A/
Gor (1) Tasces (55 () My,
We now apply the above results to the case k(x,t) = |[Sc|~'4(|S;|/|Sx|), where

£:(0,1) — (0,00). Then we see that the condition (KH3) in Theorem [3.1] can be
removed and the estimation of C can be obtained by (3.8) and with M = M; .
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