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CANTORIAN MODELS OF PREDICATIVE NF
PANAGIOTIS ROUVELAS

Abstract. Tangled Type Theory was introduced by Randall Holmes in [3] as a new way of approaching
the consistency problem for NF. Although the task of finding models for this theory is far from trivial
(considering it is equiconsistent with NF), ways of constructing models for certain fragments of it have
been discovered. In this article, we present a simpler way of constructing models of predicative Tangled
Type Theory and consequently of predicative NF. In these new models of predicative NF, the universe is
well-orderable and equinumerous to the set of singletons.

§1. Introduction.

1.1. Tangled type theory. The language Lrst of Simple Type Theory is the
many-sorted language of set theory with one binary relation symbol £ and countably
many types (or sorts) indexed by N. Each variable of Lrst is assigned a unique type,
which we indicate by a superscript. The Lrsr-formulas are built inductively from
the atomic formulas x’ey’*! and x’ = y’ in the usual way.

Simple Type Theory (TST) is axiomatized by two sets of axioms. The Axiom of
Extensionality (Ext) is the set of all the following sentences for each type i € N:

vxiﬂ’yiﬂ(xiﬂ _ yi+1 o Vzi(zisxiH o Zisyi+1)). (Extiﬂ)

The Axiom of Comprehension (Co) is the set of all the following sentences for each
type i € N and formula ¢ of Lrst:

Vady Tvxi (x'ey™! « ¢(x'.q)). (Co'th)

where y”rl isnot free in ¢. We define TST = Ext 4+ Co. Foreachi € N, we let CoP'*!
be the axiom we get from Co'*! if we restrict the types of the bound variables in
¢ to not exceed i and the types of the free variables in ¢ to not exceed i + 1. The
Axiom of predicative Comprehension (CoP) is the set of all CoP'*! for i € N. We
define predicative Simple Type Theory (TSTP) as TSTP = Ext + CoP.

Now, the language Lrrr of Tangled Type Theory is the same as Lrst, but its
formulas are built inductively from the atomic formulas x’ = y? and x‘ey’/ for
i < j. For each function s: N — N and each Ltgr-formula ¢, we denote by ¢° the

Received February 9, 2022.

2020 Mathematics Subject Classification. Primary 03E35, 03E70.

Key words and phrases. set theory, Simple Type Theory. TST, Tangled Type Theory, New Foundations,
NF, predicative NF.

© The Author(s). 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/24/8902-0008
DOI:10.1017/js1.2022.75

637
L)

Check f¢
https://doi.org/10.1017/js1.2022.75 Published online by Cambridge University Press Updates.


https://orcid.org/0000-0001-5815-0018
www.doi.org/10.1017/jsl.2022.75
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2022.75&domain=pdf
https://doi.org/10.1017/jsl.2022.75

638 PANAGIOTIS ROUVELAS

Lrrr-formula that we get if we replace each type index i of a variable in ¢ with 5(i).
For each set of Lrst-sentences T, we let

°={¢’:0 € T and s: N — N strictly increasing}.

Tangled Type Theory (TTT) is defined as TTT = TST®, whereas predicative Tangled
Type Theory (TTTP) as TTTP = TSTP®.

A structure for the language Lrst is a sequence (Ao. 41. ... {e}, | }ien). where
Ao, Al, ... are non-empty sets interpreting the countably many types of Lrsr, and
each El i1 © Ai X Ay 1s a binary relation interpreting € for type i € N. Similarly,
a structure A for the language Ltrr is a sequence (Ao, A1, .. {5;"})},< ;. Where
Ay, Ay, ... are non-empty sets, and z—:"“’ CAd; xAj. foralli,je N such that i < j.

Let us now introduce the notion of standard transmve Lrrr-structure. First, we

fix some notation about tuples in our metatheory. For all n-tuples u = (u;. ..., u,)
and 0 < i < n, where n > 0, we let
u, 1fi=0,
(u); = {
Ui, O.W.

DEFINITION 1.1, An Lypr-structure A = (A4g, A4y, ..., {s;’f}}K ;) is standard transi-
tive if:
(i) foralln € N,

An+1 - H?({(H)l U c Ai}),
i=0

(ii) foralli< j,u € A;,and v € 4,
ueibv & (u); € (v)iq1.
To simplify notation, we will denote 4 as (4, A1, ..., €).

NOTE. Let us make the definition above a bit less confusing. First of all. notice that
in Tangled Type Theory, every set of type n has n extensions (one for each type below n).
The elements of A, are basically n-tuples that code this fact. More precisely, it follows
by the definition of ;% that the extension of a set v € A, over type i is its (i + 1)-th
projection (v); 1. It is important to note that the extension of v over type i is a set of
i-th projections of elements of A; and not a set of elements of A;. So, in the sense we
Jjust described, an element of A, is a tuple of its n extensions over types 0, ..., n — 1.
Keep in mind that there is nothing mysterious about the tuples v = ((v)1, ..., (v),) in
A, each (v); is simply an element of P'(Ay). It is also worth noting that we imposed
no restrictions on Ay, which means that Ay can be any set.

It is always easier to work with standard transitive structures, and as we show
below we may always assume that extensional Lrrp-structures (i.e., structures that
satisfy Ext®) are standard transitive.

DEerINITION 1.2. Let A, 8 be two Lrrr-structures. We say that f is an Lypr-
isomorphism from 4 to®B. if f is a sequence (fo. f1....) of functions such that:

(i) foralli €N, f;: A; — B, is a bijection,
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(ii) foralli, j € Nsuchthati < j, and forallu € 4; andv € 4;,

usf}v =N fi(u)ef’;fj(v).
When such an Lrrr-isomorphism exists, we say that 4 and B are Lrrr -isomorphic
(or just isomorphic).

The next proposition follows easily by induction on the complexity of ¢.

PROPOSITION 1.3, Let A and B be two Lrrr-structures. If f: A — B is an Lr1-
isomorphism, then for every formula ¢(x{1 e X of Lrrranday € Aj.....a, € 4;,.
we have that

AEdlar.....an) & B Eo(fi(ar)..... fi,(an)).

Lemma 1.4, Every extensional Lrrr-structure is isomorphic to a standard transitive
Lrrr-structure.

ProOF. Let A = (Ao,Al,...,{e;i"}.}i< ;) be an extensional Lrrr-structure. We

define a standard transitive Lrpr-structure 8 = (By. By.....€). Let By = Ay and
fo be the identity function on Ay. For n € N, we define B,,; = ran(f,,1), where
fni1 s defined such that forall u € 4,1,

T () = ({(fow))o : vegsyqub. oo {(fn () verly ).

It is easy to verify that 8B is standard transitive and that f is an Lprr-isomorphism
from 4 to B. —|

The following lemma establishes a practical criterion for extensionality.

LemMA 1.5. A standard transitive Lrrr-structure A = (Ag, Ay, ..., €) is exten-
sional iff for all0 < i < n,andu,v € A,,
(u);+1 = (U)i-H = u =n.
ProoOF. Just notice that # is extensional iff for all 0 < i < n,
A = Vu" 0" (1" = 0" & V' (w'eu” < w'ev™))
SVuved,(u=ve Ve d(w) € i < () € (v)in1))
SVuv e d,(u=ve ()i = (v)in)

where the second equivalence holds because (1)1, (v);11 € P({(w); : w € 4;}).
_|

NOTE. Notice that by the previous lemma, if A = (Ag. A1, ..., €) is extensional,
then for all 0 <i <n,andu,v € A4,,

(u)i+1 = (U)i+1 S u=.

1.2. New foundations. The language Lnr of New Foundations is the usual one-
sorted language of set theory, {¢}, where ¢ is a binary relation symbol. New
Foundations (NF) is axiomatized by the axioms of TST if we erase all type
superscripts. Similarly, by erasing all type superscripts from the axioms of TSTP,
we get the axioms of predicative NF (NFP).
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What do we know about NFP? First of all, we know that it is a rather weak
subtheory of NF since for example its consistency can be proved in PA (see [1]). We
also know that it is finitely axiomatizable (see [4]), and that if the Union axiom

VzIpVax(xey + Jv(vez A xev)) (Union)

isadded to it, we get full NF ., i.e., NFP + Union = NF (see[1]). The most interesting
fact about NFP though is that it is consistent with properties (like choice principles;
see [1, 3]) that fail in NF (see [6] or [2]). Below, we describe a way of constructing
such models of NFP.

§2. Models of predicative NF. We work in ZF + (V' = L). We are going to
construct a standard transitive model 4 of TTTP. Let x be an infinite cardinal. For
all n € N, we define recursively a set X,,, an ordinal k < a, < k™, and a bijection
fn:k — X,suchthat f, € L Letap = k., Xo = Lq,. and let fo: K — Xy be a
bijection. For n > 0, let

QApt1°

Xn = La,, N ?(Xn—l)v

where a, is the least limit ordinal that is greater than oy, ; and for which f,; € L,,,.
We know that o, < ™ and | X,| = &, so there exists some bijection f,: k — X,.
Let Ay = Xy and for all n > 0, let

Ay ={(f1(a), ..., fula)) < K}.
We define A = (Ay. 4. ..., {6?}»},(./), where foralli < j,u € A;,and v € 4.
“5?)?1 < (u)i € (v)ig1.

Notice that for all n € N, since fo,..., f, € L
have

any and @, is a limit ordinal, we

Xo. oo Xo Ao, oo, Ay € Lo,

LEmMA 2.1. A is a standard transitive model of TTTP.
PrOOF. We have that for alli € N,

{(w); :u € A;} = ran(f;) = X;.
Therefore, for alln € N,

n n n
Awir C [ Jran(fin) =[[ X S T]2PX0) = [[2{w)i s u € 4:}).
i=0 i=0 i=0 i=0

i.e., #A is standard transitive.
We show that # is an extensional structure. Let 0 < i< n, and u,v € 4,. We

know that u = (f1(a). ..., fu(a)) and v = (f1(B). .... f(B)) for some . f < k. If
(t)i11 = (v)it1. then fi1(a) = fi11(B). so since f;1 is 1-1, we have that o = S,
i.e., u = v. Therefore, by Lemma 1.5, A is extensional.

It remains to show that A = CoP°. Let s: N — N be strictly increasing, and let

d(x' uy, ... u,") be some Lrsr-formula

J1 Jjm J1 Jm i i [}
Qi x{" . Qy xaw(x{', x x ),
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where Q,.....Q, are quantifiers. y is quantifier-free. max{ /i, ..., jm} < i, and
max{ii,....i,} <i+1. We show that A (Vu ... uy3y™Vxi(xiey™!
(x\ u, .. ur)))t, e, that

A ):vuf(il)’m}u;(in)ays(i+l)vxs(i)(xs(i)sys(i—o—l) o ¢>(x‘y(i)auf(il) ”"uz(i,,)))‘

s

Letu; € As(il)’ Uy € As(i,,)- Let

y’ = {(X)s(i) X € AS(,-) A\ Ql X € AS(./-I) Qm Xm € As(jm)

A= W (X1, Xy, X, UL, e U) )
Now, by Remark 1.1 and the way ¢ is interpreted in standard transitive structures,
it follows that the statement 4 = w (X1, ..., Xpo X, UL, ..., U,) 1S equivalent to a
quantifier-free Lzp-formula that (apart from xi.....X,.x) has as parameters

only the s(i) + 1 first coordinates of uj.,....u,, where each such coordinate is

in Lo, Moreover, we know that A;y. Ay - Ag(j) eLaS(i)+1 because

5(j1).....8(ju) < s(i). Therefore, since ()1 is a limit ordinal, we have that
y' e Lo, N P(Xs0)) = Xyim1-
Let y € A,(;;1) such that (y)s(,-m = y’. Clearly, y witnesses that
A= Fps DY O (35D ys D oy g (x50 4y uy)). =

We now show that « inherits some interesting properties from L. Below, we
present two such properties. We begin by proving that in A every universe is well-
orderable. Before we proceed though, let us examine what it means for an element
to be a Wiener—Kuratowski pair in #. For each i € N, let Pair; (u’, v, z/*?) be the
following Lrgr-formula:

I X (V! (wiexit < w' = ul) AV (w'exi™ o w' =u' v’ =)
AR lez M2 o X = Xy X = xIH)
expressing that z'*? is the Wiener—Kuratowski pair of u’,v’. Notice that for
s: N — N strictly increasing, i € N, u,v € Ay;), and z € Ay(;,). we have that
A = Pair] (u, v, z) is equivalent to
3x1.x2 € Ay (Vw € Ay ((w) iy € (150741 < (W) gy = (1) 5())
A (Yw € Ay (W) ) € (x2)y)41 ¢ (W) = W)y V (w)s) = (0)(3))
AVX € As(z‘+1)((x)s(i+1) € (Z)s(i+1)+1
“ ()56 = )10 V (05601 = (02)41)-

or in more compact notation iff

Axt. X2 € Ay ()51 = {30001 (02) 50510}
A XD g1 = {0} A (x2) 001 = {W) ). ()5 })-

To simplify notation, let us denote by Pairf""" (u,v, z) the above Lzr-formula which
is equivalent to A = (Pair; (u, v, 2))%.

LemMA 2.2. A = ({“V*! is well-orderable”};en)°.
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ProoF. Lets: N — N be strictly increasing. i € N, and let ¢(u’. v', Wi*?) be the
following Ltsr-formula:

I (e W2 A wiex Aol £ xit),
Let (W *2) be the following Lys7-formula:
Vul v (B v W)V (ol W) v = o)
AV 0w (G of, W) A (ol w, W) = ¢ wi, Wit2))
AVYX T T (uex™™ AV (Viex™ Al £ 0t = d(ulvT, W),
For all W € A(;,2). we have A = x* (W) iff
Vu.v € Ay (¢"“(u v, W)V ¢ (v.u, W)V (u)siy = (W)50))
AVu, v, w € Ay (¢™ (w0, W) A ¢™ (v,0, W) — ¢ (u,w, W))
AVx € Agi)Fu € Asm((u)s(,») € (x)s(,-)ﬂ
AV € Ay (V) 5y € ()01 A W) # (0)) — 67 (v, W),

where ¢ (u, v, W) is the following £zr-formula:

3x € Ay (X si51) € W)y AWy € (X571 A W)y & (X)si)41)-

Let 1//(u, v) be an Lzg-formula that defines some well-ordering of L. Let

= {( )s (i+1) - X € A s(i+1)
ATu e Ao € Ay (0)50) € (X) )1 w((w) ). (0)5)) }-

We know that W' e L, Gana N !P(Xs(,H)) X;(i+1)41. S0 there exists some
W € Ao such that (W )S(l+1)+1 = W’. Notice that W' is the set of all (x),(1)
for which x € A1) and (x)g()41 is an initial segment of the well-ordering defined

by  restricted to X;(;). Therefore. W witnesses that #4 |= y*(W). Now, let
- {( )S I+2 ‘z 6 As(i+2) /\ Hu,'l) E AS(i)(Pairi A"Y(ua 'U,Z) /\ QS(A”S(u:U: W))}
We have that R’ € L, . N P(Xy(i12)) = Xy(i+2)+1. 50 thereexistsan R € A ;3

s(i+2)+1

such that (R);(;,2)41 = R'. It is easy to see that A |= x* (W) implies 4 = (“Ris a
well-ordering of ¥/*+1”)*. Hence, #4 = (“V*! is well-orderable™)*. .

Next, we show that in + every universe is cantorian (i.e., it is equinumerous to the
set of singletons). This essentially follows from the fact that for all i, j € N, there
are functions in +4 witnessing that |X;| = x = |1 X]|.

LeMMA 2.3. A = ({“V*2 is cantorian”};en)°.

Proor. Let s: N — N be strictly increasing, and let i € N. We show that
A = (“V*2 is cantorian™)*, i.e., that
A = (3g'*(“g is a bijection from V2 to 1V +17))s,
An Lrgr-sentence that expresses the statement
i+4(u

Jg g is a bijection from V+2 to (“V+1”)
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is the following:
3t (V2 (2 eg ™ s Fuit ot (Pair,, (it 2i)))
/\vuiJrl ot 3 (Pair, (0, XY A Pairg () w Y p)
A xTFegith g pit3ggitd it — it
/\vut+lgvi+l’wi+l,xi+3 ’*3(Pa1r L i XY A Pairg s (0 wi ), pi )
A xiBegit A yitlegit oy it = 4ith)
AVU 130 23 (Pairy (u ) it 27H3) A 2 egiHe
A Ja'Vb (bev'™ - b' = a'))
AVO T (3a'Vb (b'ev'™! < b = a')
N auiJrl’ Zi+3(Pairl‘+1 (ui+1,'Ui+1, l+3) Az +3€g1+4)))
We therefore have that # |= (“V /2 is cantorian”)* iff
Jg € AS(i+4)(VZ € A i+3)((z)s(i+3) € (g)S(i+3)+1
— Ju.v € Ay (PalrlH(u v,z)))
AU v.w € Ay 1)VX.y € Ayiyy)(Pair) (u, v, x) A Pair) (u.w. y)
A (X)si13) € (@)si+341 A Ws43) € (@)si43)11 = W)ty = (Wsiir1)
AVu,v.w € Ag;y)Vx.y € 4 (,+3)(Pa1r 1 (u,w. x) /\Palr 1(v.w. y)
A (X>s(i+3) € (g)s(i+3)+l A (y)s(i+3) € (g)s(i+3)+l — (u )s(i-H) = (U)s([-H))
AVu € Ay 3o € Ayip1)3z € Agis(Pairt (v, 2) A (2) 13 € (8)si43)11
A3a € A;)Vb € Ay (D)s) € ()11 > (b)) = (@)y(i)))
AV € Ay (Fa € Ay Vb € A1y (b)) € (V)51 < (D)) = (@)yi)
— Ju € A1)z € Ag(iya) (Palr 1,0, 2) A2)g43) € (8)s(43)11)))-
Let

g = {(Z>s (i+3) - Z € Asep NFu.v € 4 (z+1)(Palr,+1(“ v,2)

Ada < "’/‘7(( )s (i+1) — fs (i+1) ( ) ( ) (i)+1 = {fs(z')( )}))}

We have that g’ € L, 311 N P (X (13)) = Xy(i43)11. s0 thereis a g € A 4) such
that (g),(;13)+1 = &'- Clearly. g witnesses that

A = (3g"*(“g is a bijection from V2 to 1V 17))s, B
‘We have shown that
TTTP + ({<V'*! is well-orderable”};cx)°® + ({“V+2 is cantorian”};ey)°

is consistent. By slightly modifying Holmes’ proof for the equiconsistency of TTT
and NF (see [3]). we can now prove the following proposition.

ProPOSITION 2.4. NFP + “V is well-orderable” + “V is cantorian” is consistent.
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PrROOF. Let A = {0y, ....0,} be a finite subset of
TTTP + ({“V"*! is well-orderable”};en)° + ({“V+? is cantorian”};e)°.

Let m € N be such that all variables appearing in oy, ...,0, have types that
are less or equal to m. For each X C N such that |X|=m + 1, let sy be the
unique strictly increasing function from {0,...,m} to X. Let F: [N]"*! — 2»
such that for all X € [N]”"*!, F(X) = (y.....6,). where for each 1 <i <n,
;=1 iff A}=(0;)*¥. By Ramsey’s theorem, there exists some infinite H CN
such that H is homogeneous for F. Let H ={ho, hy,...}, where hy<h; < -,
and let 8 = (A/10=Ah1*"-’{52,11,.“}1‘@))' It is easy to see that 8 is a model of

TSTP+ {“V*! is well-orderable”};en + {“V is cantorian”};en+{o <> a1 : 6 €A},
where ¢t is the sentence we get if we raise the type of every variable of o by
one. By Compactness. it follows that TSTP + {“V7*! is well-orderable”};cn +
{“Vi*2is cantorian”};en + {0 > ¢ : o isa sentence } is consistent. Therefore,
by Specker’s results on ambiguity (see [2] or [7]), it follows that there is
a model of TSTP + {“V*!is well-orderable”};cn + {“V*? is cantorian”}; ¢y
with a type shifting automorphism, which means that there is a model of
NFP + “V is well-orderable” + “V is cantorian.” =

Although NFP is consistent with a very strong choice principle like the one
above, it is inconsistent with some other forms of choice. For example, let AC be the
statement “for any set x of non-empty pairwise disjoint sets, there exists a choice set
z, 1.e., a set that has exactly one element in common with each element of x,” which
can be can be expressed formally as the following Lng-sentence:

Vax (Vy1Vya((piex A yaex — Fo(veyr) A (1 = y2 VVulu ¢ y1 vV u ¢ y2)))
— AzVy(yex — Ja(aez ANVb(bez AN bey <+ a = b)))).

THEOREM 2.5. NFP - —-AC.

ProOF. As Crabbé observed in [1], NFP + Vx(x C 1“V — Jy(x =1“y)) = NF.
But, in NFP, AC implies Vx(x C1“V — Jy(x =1“y)) because if x is a set of
singletons and y is a choice set for x, then x = :“y. So, NFP + AC = NF, which
means that NFP + -AC. =

NOTE. Notice of course that the above form of choice is impredicative, and therefore
not really suitable for a predicative theory. A more sensible and unproblematic statement
in this setting would be the following: “for any set x of non-empty pairwise disjoint
sets, there exists a set of singletons z, where every element of a singleton in z belongs
to exactly one element of x” (notice that in this version, z has the same relative type
as x).

§3. Conclusion. We described a simple way of constructing a model of NFP using
L. We also showed that there are properties of L that can be transferred naturally to
this model. We have chosen to present just two such properties that are inconsistent
with NF, but there are others. It would be nice to have a more general result on what
kind of properties can be transferred though.
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QUESTION 1. What properties of L can be transferred to our model of NFP?

The construction of our model seems to be quite flexible. For example, we could
modify the definition of «, so that more sets are included in X,,. This could lead
us to stronger consistent extensions of NFP. For example, the following question
seems promising.

QUESTION 2. Can this construction be modified so that we get a model of NFP
satisfying some weak version of Union?

Finding consistency proofs for subtheories of Tangled Type Theory is really
important for understanding the problem of the consistency of NF. On the other
hand, the opposite direction is equally interesting: if we assume the consistency of
NF (see [5]). and therefore of Tangled Type Theory, we may get new results in other
areas of set theory. For example, as we have shown, there seems to be a connection
between models of Tangled Type Theory and L.

QUESTION 3. Does the consistency of Tangled Type Theory have any implications
for L?

Acknowledgments. This research was co-financed by Greece and the European
Union (European Social Fund) through the Operational Program “Human
Resources Development, Education and Lifelong Learning” in the context of
the project “Reinforcement of Postdoctoral Researchers—2nd Cycle” (No. MIS-
5033021), implemented by the State Scholarships Foundation (IKY).

REFERENCES

[1] M. CRABBE, On the consistency of an impredicative subsystem of Quine’s NF, this JOURNAL, vol. 47
(1982), no. 1. pp. 131-136.

[2] T. E. FORSTER, Set Theory with a Universal Set: Exploring an Untyped Universe, second ed., Oxford
Logic Guides, vol. 31, The Clarendon Press and Oxford University Press, New York, 1995, Oxford Science
Publications.

[3] M. RANDALL HOLMES, The equivalence of NF-style set theories with “tangled” type theories: The
construction of w-models of predicative NF (and more ), this JOURNAL, vol. 60 (1995), no. 1, pp. 178-190.

[4] . Subsystems of Quine’s “new foundations” with predicativity restrictions. Notre Dame
Journal of Formal Logic. vol. 40 (1999). no. 2. pp. 183-196.

[5] . NF is consistent, preprint, 2022, arXiv:1503.01406.

[6] E. SPECKER, The axiom of choice in Quine’s new foundations for mathematical logic. Proceedings of
the National Academy of Sciences of the United States of America. vol. 39 (1953), pp. 972-975.

[7] , Typical ambiguity, Logic, Methodology and Philosophy of Science (Proceedings of the
1960 International Congress) (E. Nagel, P. Suppes and A. Tarski, editors), Stanford University Press,
Stanford, 1962, pp. 116-124.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PATRAS
26504 RIO PATRAS, GREECE

E-mail: prouve@math.upatras.gr

https://doi.org/10.1017/js1.2022.75 Published online by Cambridge University Press


https://arxiv.org/abs/1503.01406
mailto:prouve@math.upatras.gr
https://doi.org/10.1017/jsl.2022.75

	1 Introduction
	1.1 Tangled type theory
	1.2 New foundations

	2 Models of predicative NF
	3 Conclusion

