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Tournaments and Orders
with the Pigeonhole Property
Anthony Bonato, Peter Cameron and Dejan Delić

Abstract. A binary structure S has the pigeonhole property (P) if every finite partition of S induces a block
isomorphic to S. We classify all countable tournaments with (P); the class of orders with (P) is completely
classified.

1 Introduction

A nontrivial graph G has the pigeonhole property (P) if for every finite partition of the
vertex set of G the induced subgraph on at least one of the blocks is isomorphic to G. The
intriguing thing about (P) is that few countable graphs satisfy it: by Proposition 3.4 of [3]
the only countable graphs with (P) are (up to isomorphism) Kℵ0 (the complete graph on
ℵ0-many vertices), Kℵ0 (the complement of Kℵ0 ), and R (the random graph). Cameron in
[2] originally asked which other relational structures satisfy (P). In [1], the authors gave
an answer to Cameron’s question for various kinds of relational structures. However, in [1]
the classification of countable tournaments with (P) was left open.

The immediate goal of the present article is to present a complete classification of the
countable tournaments with (P) (see Theorem 1 below for an explicit list). In stark contrast
to the situation for graphs, we find there are uncountably many non-isomorphic countable
tournaments with (P). Along the way, we classify the orders and quasi-orders with (P)
in each infinite cardinality (see Theorems 1 and 2). We close with a discussion on the
classification of the oriented graphs with (P).

2 Preliminaries

2.1 Binary Structures and the Pigeonhole Principle

Definition 1 A binary structure S consists of a vertex set (called S as well) and an edge set
ES ⊆ S2. The order of S is the cardinality of the vertex set, written |S|. If |S| > 1, we say S is
nontrivial.

If S is clear from context, we sometimes drop S from ES and simply write E.

Example 1 Directed graphs (digraphs) are binary structures with an irreflexive edge set.
An oriented graph is a binary structure with an irreflexive and asymmetric edge set. Graphs
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are binary structures with an irreflexive, symmetric edge set. Orders (or partial orders) are
binary structures with an irreflexive and transitive edge set; for orders we write x < y for
(x, y) ∈ E. Tournaments are oriented graphs so that for each pair of distinct vertices x, y
either (x, y) or (y, x) is in E.

Definition 2

1. Let S be a binary structure with A ⊆ S. Then S � A is the binary structure with vertices
A and edges E ∩ A2. S � A is the induced substructure of S on A.

2. Given two binary structures S, T, we say that S and T are isomorphic if there is a bijective
map f : S→ T so that (x, y) ∈ ES if and only if

(
f (x), f (y)

)
∈ ET . We write S ∼= T.

We use the notation S � T for the disjoint union of sets S and T.

Definition 3 A binary structure S has the pigeonhole property (P) if S is nontrivial and
whenever S = S1 � · · · � Sn then for some 1 ≤ i ≤ n, S � Si

∼= S.

Note that every binary structure with (P) is infinite.

2.2 Directed Graphs and Duality

Definition 4 Let D be a digraph with edge set E. The converse D∗ of D is the digraph with
vertex set D and edge set E∗ = {(y, x) : (x, y) ∈ E}.

We will make use of the following well-known fact about digraphs.

Principle of Directional Duality For each property of digraphs, there is a corresponding
property obtained by replacing every concept by its converse.

2.3 Results from [1]

We will use a few of the results from [1].

Definition 5 Let S be a binary structure. Define the graph of S, denoted by G(S), to be
the graph with vertices S, and edges {(x, y) : x, y ∈ S so that x 
= y and (x, y) ∈ E or
(y, x) ∈ E}.

Lemma 1 If S is a binary structure with (P), then G(S) satisfies (P).

Definition 6 A graph G is existentially closed (or e.c.) if it satisfies the condition (♣):
for every n,m ≥ 1, if x1, . . . , xn and y1, . . . , ym are vertices of G with {x1, . . . , xn} ∩
{y1, . . . , ym} = ∅, then there is a vertex x ∈ G adjacent to the xi and to none of the y j .

An e.c. graph embeds each countable graph; the random graph R is the unique countable
e.c. graph; see Section 2.10 of [2] for details.

Proposition 1 A graph G that satisfies (P) that is neither null nor complete is e.c.
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Definition 7 Let D be a digraph.

1. For x, y ∈ D, ¬xEy if and only if (x, y) ∈ D2 − E.
2. Let x ∈ D be a vertex.

(a) N∅(x) = {y ∈ D : ¬yEx and ¬xEy and y 
= x}.

(b) No(x) = {y ∈ D : ¬yEx and xEy}. (x, y) is an out-edge.

(c) Ni(x) = {y ∈ D : yEx and ¬xEy}. (x, y) is an in-edge.

(d) Nu(x) = {y ∈ D : yEx and xEy}. (x, y) is an (undirected) edge.

The following property is an essential part of our classification.

Definition 8 A tournament T has property ($) if for � ∈ {i, o}, and for some x ∈ T,
N�(x) 
= ∅ then for all y ∈ T, N�(y) 
= ∅.

T∞ is the generic (or random) tournament and is defined to be the Fraı̈ssé limit of the
class of finite tournaments; see specifically Example 1 of Section 3.3 of [2].

Proposition 2 A countable tournament T is isomorphic to T∞ if and only if T satisfies (P)
and ($).

We will assume the reader is familiar with the basic facts about linear orderings and well-
orderings. Rosenstein [4] is a good reference for our purposes. The set of natural numbers
is denoted ω.

3 The Classification of Tournaments with (P)

The following is our main theorem.

Theorem 1 The countable tournaments with (P) are T∞, {ωα, (ωα)∗ : α a non-zero count-
able ordinal}. In particular, there are uncountably many countable tournaments with (P).

Remark 1 We note that ωα stands for ordinal exponentiation, not cardinal exponentia-
tion.

The proof of Theorem 1 will take the rest of Section 3. To begin the proof, fix D a
countable tournament with (P). We consider the following two cases.

1. D satisfies ($): by Proposition 2, D ∼= T∞.
2. D does not satisfy ($): we first show that D must be a linear order (see Proposition 3). We

then show in Theorem 2 that a linear ordering with (P) must be one of {ωα, (ωα)∗ : α
a non-zero countable ordinal}.
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3.1 The Classification of Tournaments with (P)

3.1.1 From Tournaments to Linear Orders

Definition 9 Let T be a tournament.

1. A vertex a ∈ T is a source if aEb for all b ∈ T − {a}.
2. A vertex a ∈ T is a sink if bEa for all b ∈ T − {a}.
3. A vertex a ∈ T is special if it is a source or a sink.

The following lemma is easy but makes our classification possible.

Lemma 2

1. A tournament has no more than two special points; if it has exactly two special points, there
must be exactly one source and one sink.

2. A nontrivial tournament has ($) if and only if it has no special points.

Proof (1) A tournament with more than two special points would have at least two sinks
or two sources, which is impossible.

(2) If T has ($) and a ∈ T was special, then say Ni(a) = ∅. But then there is some
b ∈ T so that aEb, so that Ni(b) 
= ∅, which is a contradiction.

Conversely, assume T does not satisfy ($). Then for some a, b ∈ T, and some � ∈ {i, o},
N�(a) 
= ∅ and N�(b) = ∅. But then b is special.

Proposition 3 Let T be a countable tournament satisfying (P). If T � T∞ then T is a
linear order.

Proof If T satisfies ($), then T ∼= T∞ by Proposition 2.
Assume T does not satisfy ($). We show that T must be a linear order. By Lemma 2 there

are two cases: T has one or two special points.

Case 1 T has one special point.
Without loss of generality, we assume that T has a source 0 (the case when T has a sink

will follow by the principle of directional duality). We aim to show that T does not have the
intransitive 3-cycle D3 as an induced subtournament; if we succeed then T is a linear order.

Assume T has D3 as an induced subtournament. We find a contradiction. Define S =
{y ∈ T : yEz for all z ∈ X, where X is an induced subtournament of T isomorphic to D3}.

Claim 1 S 
= ∅.
We show that 0 ∈ S. If not then either there is a z in a 3-cycle so that zE0, which is

impossible as 0 is a source, or 0 itself is in 3-cycle, which is impossible as D3 has no source.

Claim 2 S is a linear order.
Otherwise, D3 embeds in S; let X be an induced subtournament of S isomorphic to

D3. But then X ⊆ T, so that for each x ∈ X, xEx (by the definition of S), contradicting
irreflexivity.
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Let A = S, B = T − S. If B = ∅ then D is a linear order by Claim 2 and we have our
contradiction. Assume now that B 
= ∅.

Claim 3 T ∼= T � A.
If not, as T satisfies (P), then T ∼= T � B. If so, then B contains a source 0 ′; that is, for

all y ∈ B − {0 ′}, 0 ′Ey. But 0 ′ /∈ S implies that there is X ⊆ T isomorphic to D3 so that
0 ′ ∈ X or there is some y ∈ X so that yE0 ′. By the proof of Claim 2, X ⊆ B. As before, as
0 ′ is a source in B either case leads to a contradiction.

Claims 2 and 3 contradict our assumption that T has D3 as an induced subtournament.
Hence, in Case 1, T is a linear order with first element 0 and no greatest element. If T
has a sink, a similar argument shows that T is a linear order with last element and no first
element.

Case 2 T has two special points.
Proceed as in Case 1. T is then a linear order with a first and last element.

3.1.2 The Classification of Orders with (P)

We classify orders (even the uncountable ones) with (P). We can consider orders as binary
structures with a binary relation ≤ that is reflexive, anti-symmetric, and transitive; we call
these reflexive orders to distinguish them from their irreflexive counterparts (see Example 1
above). However, reflexive orders are not true oriented graphs (recall that we forbid loops).
Nevertheless, the following result holds for both “irreflexive” and reflexive orders; when
the distinction is irrelevant, we refer to either kind of structure simply as an order. In the
irreflexive case,≤means “< or=”.

The next theorem, in the countable case, will complete the proof of Theorem 1.

Theorem 2 Let P be an order satisfying (P). Then P is an infinite antichain or P is one of
ωα or (ωα)∗, where α is a non-zero ordinal.

Proof An infinite antichain satisfies (P).
Assume P is not an antichain and |P| = δ ≥ ℵ0. For an order P, G(P) is the compa-

rability graph of P. By Lemma 1 and Proposition 1 above, G(P) is e.c. or Kδ ; the first case
is impossible, as every e.c. graph embeds the 5-cycle C5. Hence, G(P) = Kδ so that P is a
linear ordering.

Claim 1 P has endpoints.
Otherwise, let a, b ∈ P with a < b. Define A = {y ∈ P : y ≥ a} − {b}, B = P − A. But

P � A has a least point and P � B has a greatest point, so that neither A nor B is isomorphic
to P, violating (P).

By Claim 1, P has either a least point and no greatest point, a greatest point and no least
point, or both a least and greatest point.

Case 1 P has a least point 0 and no greatest point.
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We show P is a well-ordering. We use the characterization that P is well-ordered if it has
no subordering isomorphic to ω∗. Assume P is not a well-ordering. Define S = {x ∈ P :
x < y for all y ∈ X ⊆ P with X isomorphic to ω∗}.

Claim 2 S 
= ∅.
We show 0 ∈ S. If not, then 0 ≥ y where y is some element of an infinite descending

chain in P, which is a contradiction.

Claim 3 S is well-ordered.
The proof is similar to the proof of Claim 2 of Theorem 3. We show there is no subor-

dering X of S isomorphic to ω∗. Otherwise, say X is a subset of P isomorphic to ω∗. Fix
x ∈ X. Then x < x, which is a contradiction.

Let A = S, B = P − S. By Claims 2 and 3 we may assume B is nonempty.

Claim 4 P ∼= P � A.
If not, then P ∼= P � B by (P). If so, B contains a least element 0 ′. As 0 ′ /∈ S, there is

some y ∈ X ⊆ P with X isomorphic to ω∗ so that y ≤ 0 ′. By the proof of Claim 3, X ⊆ B.
But then there is an infinite descending chain below 0 ′ in B so we arrive at a contradiction.
The contradiction shows that P is well-ordered, and hence, isomorphic to an ordinal α.

We now employ Cantor’s normal form theorem (see Theorem 3.46 of [4]): there are
ordinals α1 > · · · > αk for k ∈ ω − {0}, and n1, . . . , nk ∈ ω − {0} so that

α = ωα1 n1 + · · · + ωαk nk.

Claim 5 k = 1.
Otherwise, k ≥ 2. Let Ai = ω

αi ni , with 1 ≤ i ≤ k. By (P) there is some i so that
P ∼= P � Ai .

Claim 6 ni = 1.
Otherwise, α = ωα1 ni = ω

α1 + · · · + ωα1 (ni times). Again by (P) α is isomorphic to
some ωα1 .

It remains to show sufficiency; namely, we must show that ωα satisfies (P) for α a non-
zero ordinal. We proceed by transfinite induction on α ≥ 1.

As ω satisfies (P) the induction commences. Let 2 ≤ α = β + 1 be a successor ordinal.
Then ωα = ωβω. Let ωα = S1 � · · · � Sn for n ≥ 2. We label the ω copies of ωβ in ωα as
{ωβ(i) : i ∈ ω}. For i ∈ ω, j ∈ {1, . . . , n} define Si j = ω

β(i) ∩ S j .
Then for j ∈ {1, . . . , n}

S j =
∑

i∈ω

Si j .

By the inductive hypothesis ωβ satisfies (P); hence, for each i ∈ ω there is a j(i) ∈
{1, . . . , n} so that Si j(i)

∼= ωβ . By the pigeonhole principle for sets, there is some j ∈
{1, . . . , n} with infinitely many Si j

∼= ωβ .
Recall that for β ≥ 1, ε + ωβ = ωβ for ε < ωβ . By applying this fact and the fact that

the set of blocks equal to ωβ is cofinal in {Si j : i ∈ ω}, we have that S j
∼=
∑

i∈ω ω
β = ωα.
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Now, assume α is a limit ordinal that satisfies α > ω. Then ωα =
∑
β<α ω

β . The
argument in this case is similar to the case when α is a successor ordinal and so is omitted.

Case 2 P has a greatest point and no least point.
In this case, we find that P is of the form (ωα)∗. The argument for Case 2 follows from

the argument of Case 1, and by directional duality.

Case 3 P has a least element 0 and greatest element∞.
We find a contradiction. Define A = S as in Case 1 and B = P − A. It is immediate that

0 ∈ A− B and∞ ∈ B− A. As in Case 1, A is well-ordered.
By (P) one of P � A, P � B is isomorphic to P. If P � A is isomorphic to P, then P is a

well-ordering and hence, isomorphic to an ordinal. But then by Case 1, P is of the form ωα

for some non-zero ordinal α contradicting that P has a greatest point.
If P � B ∼= P, then B has a first-element 0 ′; but as 0 ′ ∈ P − S, 0 ′ ≥ y for some y in an

isomorphic copy of ω∗. This contradiction finishes the proof.

3.1.3 Quasi-Orders with (P)

The classification of orders with (P) also supplies a classification of quasi-orders (or pre-
orders) with (P). A binary structure is a quasi-order if it has a reflexive, transitive edge set.
We write a ≤ b for (a, b) ∈ E. If we define a ∼ b by a ≤ b and b ≤ a, then ∼ is an
equivalence relation; further, the quasi-ordering of S induces an order on the set of blocks
S/∼: [a] ≤ [b] if and only if a ≤ b.

Definition 10 A class of binary structures K is equipped with an equivalence relation R
if for each S ∈ K there is an equivalence relation RS ⊆ S2 satisfying the following two
conditions.

(E1) For S,T ∈ K if f : S → T is an isomorphism, then (x, y) ∈ RS if and only if(
f (x), f (y)

)
∈ RT .

(E2) For all S,T ∈ K with S ≤ T, RS = RT ∩ S2.

Lemma 3 Let S be a member of a class of binary structures equipped with an equivalence
relation R. If S has (P), then S has either a single infinite R-block or has only singleton R-blocks.

Proof If S has a single finite block, then S is finite and so cannot satisfy (P). Assume S has
(P), has more than one R-block, and has some block with at least two elements. We find a
contradiction.

Case 1 S has n blocks, for 1 < n < ω.
Let S have blocks {Si : 1 ≤ i ≤ n}. By (P) some S � Si

∼= S, which is a contradiction,
as an isomorphism preserves the number of blocks by (E1). Hence, we may assume S has
infinitely many blocks.

Case 2 Every block of S is finite.
Fix a block Si with cardinality m ≥ 2. Let A = {Si : |Si | = m}, B = S − A. If B = ∅,

then each block of S has size m. If B 
= ∅, then since A is a union of R-blocks and by (E2),
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S � B has no block of size m, so by (P), S � A ∼= S. In either case, each block of S has size
m. Now, let C consist of one element from each block of S, with D = S−C . Then by (E2)
neither S � C nor S � D have blocks of order m, which is a contradiction.

Case 3 S has some blocks finite, some infinite.
Let A be the union of the finite blocks, B = S − A. Then neither S � A nor S � B is

isomorphic to S, which is a contradiction.

Case 4 S has all blocks infinite.
Let Si , S j be distinct infinite blocks. Fix a ∈ Si , b ∈ S j . Let A =

(
S− (Si ∪ {b})

)
∪ {a},

B = S − A. Then both S � A, S � B have singleton blocks by (E2), contradicting our
hypothesis.

Corollary 1 The quasi-orders with (P) have either a single infinite ∼-block or are reflexive
orders (quasi-orders with singleton∼-blocks) with (P).

Proof If K is the class of quasi-orders, K is equipped with the equivalence relation ∼.
Apply Lemma 3.

3.2 Towards a Classification of Oriented Graphs with (P)

By Proposition 3.4 of [3] and Lemma 1, if D is a countable oriented graph with (P), G(D)
is isomorphic to one of Kℵ0 , Kℵ0 , or R. If G(D) ∼= Kℵ0 , then D is just the countable edgeless
oriented graph on ℵ0-many vertices. If G(D) ∼= Kℵ0 , then D is a tournament, for which we
have a complete classification.

Assuming G(D) ∼= R, then for each x ∈ D, both Nu(x) and N∅(x) are infinite in G(D).
But then Ni(x) ∪ No(x) and N∅(x) are each infinite in D. If for each x ∈ D, Ni(x), No(x)
are nonempty, then we can show that D is isomorphic to the generic oriented graph O (the
Fraı̈ssé limit of the finite oriented graphs).

Definition 11 Let D be an oriented graph. D is 1-e.c. if for each x ∈ D and each � ∈
{∅, i, o}, N�(x) is nonempty.

The following proposition follows from results in [1].

Proposition 4 A countable oriented graph D with (P) is 1-e.c. if and only if D ∼= O.

We do not have an answer to the following problem.

Problem Is there a countable oriented graph D that is not 1-e.c. with G(D) ∼= R so that D
has (P)?

If so, then there is an orientation of the random graph R, distinct from the orientation
giving O, with (P).
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