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The presence of dispersed-phase droplets can result in a notable increase in a system’s
drag. However, our understanding of the mechanism underlying this phenomenon remains
limited. In this study, we use three-dimensional direct numerical simulations with a
modified multi-marker volume-of-fluid method to investigate liquid–liquid two-phase
turbulence in a Taylor–Couette geometry. The dispersed phase has the same density
and viscosity as the continuous phase. The Reynolds number Re ≡ riωid/ν is fixed at
5200, the volume fraction of the dispersed phase is up to 40 %, and the Weber number
We ≡ ρu2

τ d/σ is approximately 8. It is found that the increase in the system’s drag
originates from the contribution of interfacial tension. Specifically, droplets experience
significant deformation and stretching in the streamwise direction due to shear near the
inner cylinder. Consequently, the rear end of the droplets lags behind the fore head. This
causes opposing interfacial tension effects on the fore head and rear end of the droplets.
For the fore head of the droplets, the effect of interfacial tension appears to act against
the flow direction. For the rear end, the effect appears to act in the flow direction. The
increase in the system’s drag is attributed primarily to the effect of interfacial tension on
the fore head of the droplets which leads to the hindering effect of the droplets on the
surrounding continuous phase. This hindering effect disrupts the formation of high-speed
streaks, favouring the formation of low-speed ones, which are generally associated with
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higher viscous stress and drag of the system. This study provides new insights into the
mechanism of drag enhancement reported in our previous experiments.

Key words: multiphase flow, Taylor–Couette flow, turbulence simulation

1. Introduction

Two-phase flows composed of two immiscible and incompressible liquids are ubiquitous in
fields such as petroleum, food, pharmaceuticals and cosmetics (Spernath & Aserin 2006;
McClements 2007; Wang et al. 2007; Kilpatrick 2012). The last few years have witnessed
a renewed interest in two-phase turbulence (Rosti, Brandt & Mitra 2018; Mathai, Lohse
& Sun 2020; Rosti & Takagi 2021; Wang et al. 2022; Yi et al. 2023; Girotto et al. 2024;
Ni 2024). The presence of a droplet phase can significantly alter the momentum transport
within the flow field, leading to changes in the system’s drag. However, the underlying
mechanism of droplet-induced drag modulation has not been clearly understood and
deserves further investigation, especially in the turbulent regime.

For a liquid–liquid two-phase system, the presence of the droplet phase primarily
introduces the influence of the two-phase interface. Consequently, existing studies have
focused on examining the effect of the two-phase interface on the system’s drag, with
particular attention paid to interfacial dynamics, including deformation, breakup and
coalescence, in shear turbulence. Interface-resolved direct numerical simulations were
employed to study the effect of large deformable droplets on drag enhancement in turbulent
channel flow using the interface-capturing method (Scarbolo & Soldati 2015; Scarbolo,
Bianco & Soldati 2016). These studies found that droplet deformability is crucial for
droplet-induced drag enhancement; specifically, the stronger the droplet deformability,
the weaker the drag enhancement effect. Interface-capturing simulations of two-phase
flow in the Stokes regime were conducted to investigate the effect of coalescence by
introducing a short-range repulsive force to prevent droplet merging (de Vita et al. 2019).
By comparing the cases allowing droplets to coalesce numerically with the cases using the
repulsive force to prevent droplet merging, it was found that droplet coalescence effectively
decreases the interfacial surface area, thereby weakening drag enhancement. Conversely,
droplet breakup results in higher drag within the system. Interface-capturing simulations
of homogeneous isotropic turbulence have also garnered widespread attention for studying
the interface’s effect on turbulence (Dodd & Ferrante 2016; Maxey 2017; Mukherjee
et al. 2019). Dodd & Ferrante (2016) investigated how droplet deformation, breakup and
coalescence affect the temporal evolution of turbulent kinetic energy. They showed that
droplet coalescence reduces the total interfacial surface area, causing a decrease in surface
energy and an increase in local kinetic energy. Recently, Rosti et al. (2019) demonstrated
that a statistically stationary state (i.e. a balance between coalescence and breakup rates,
and convergence of energy balance) can be reached in homogeneous shear turbulence.
The statistically stationary state and the balance between coalescence and breakup rates
have also been observed numerically in homogeneous isotropic turbulence (Mukherjee
et al. 2019) and wall-bounded turbulence (Soligo, Roccon & Soldati 2019). Therefore,
from the perspective of interfacial dynamics, droplet deformation plays a key role in drag
enhancement.

Related experiments have also investigated drag modulation in liquid–liquid two-phase
turbulence (Bakhuis et al. 2021; Yi, Toschi & Sun 2021; Wang et al. 2022; Yi et al. 2022).
In Taylor–Couette turbulence, it has been observed experimentally that when breakup
events dominate at low droplet volume fractions, dispersed droplets exhibit a specific size
distribution that is well described by the log-normal distribution (Yi et al. 2021). At a
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Neutrally buoyant and equally viscous droplets in TC flow

fixed Reynolds number, droplets maintain nearly the same average size, while the system’s
drag increases with the droplet volume fraction (Yi et al. 2022). The effective viscosity
as a function of volume fraction shows an increasing trend with the dispersed phase
volume fraction, similar to that observed in rigid particle suspensions at moderate volume
fractions (φ = 0–40 %) (Krieger & Dougherty 1959), although the effective viscosity for
rigid particles consistently exceeds that for dispersed droplets (Yi et al. 2021). Numerical
results from de Vita et al. (2019) have recently reported a similar phenomenon. However,
the underlying mechanisms remain elusive.

Given the challenge of obtaining sufficient experimental data, interface-resolved
simulations of liquid-liquid Taylor–Couette flow at Reynolds number Re = 960 were
conducted by Hori et al. (2023). They reported that the system can be categorized into two
regimes based on the Weber number We: advection-dominated and interface-dominated
regimes for high and low We, respectively. In the advection-dominated regime, drag
enhancement as a function of volume fraction shows a non-monotonic behaviour. This
could be attributed partly to the lower Reynolds number in their study compared
to experimental conditions (Yi et al. 2021), and the significant numerical challenges
related to coalescence encountered with the adapted interface-capturing method used
for the volume fractions studied (Elghobashi 2019). Recent works (Su et al. 2024a,b)
investigated numerically the effect of drops with varying density and viscosity in
turbulent Taylor–Couette flow. It was found that interfacial tension consistently enhances
momentum transport, thereby contributing to drag enhancement. However, the specific
mechanism by which interfacial tension induces drag enhancement remains unclear.

In the interface-capturing method, merging of interfaces occurs automatically whenever
two interfaces come within one grid cell of each other (Elghobashi 2019). This makes
it very difficult to simulate droplets with moderate or high volume fractions. Various
methods have been employed to address this issue, such as adaptive grid refinement
(Innocenti et al. 2021), film drainage models (Thomas, Esmaeeli & Tryggvason 2010),
artificial repulsive forces (de Vita et al. 2019) and multi-marker methods (Coyajee &
Boersma 2009). However, these methods are effective primarily when dealing with a small
number of droplets. Simulating two-phase turbulence with hundreds or more droplets
becomes prohibitively expensive due to significantly increased computational costs. In this
work, we investigate liquid–liquid Taylor–Couette turbulence at moderate volume fractions
(φ = 0–40 %) using a modified multi-marker volume-of-fluid method. This modified
approach allows us to reproduce the experimental drag modulation results reported in Yi
et al. (2021). Our objective is to gain an intuitive understanding of how the droplet phase
modulates the system’s drag.

The paper is organized as follows. In § 2, we describe the numerical method and set-up.
In § 3, we discuss the effect of droplets on the angular velocity flux, and analyse the
modulation mechanism of viscous stress and angular velocity within the boundary layer.
Finally, conclusions are drawn in § 4.

2. Numerical method and setting

The droplet and continuous phases are considered to be immiscible, incompressible
and Newtonian. The two-phase immiscible and incompressible flow is governed by the
Navier–Stokes equations

∇ · u = 0, (2.1)

∂t(ρu) + ∇ · (ρuu) = −∇p + ∇ · τ + f σ , (2.2)
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where u is the velocity field, p is the pressure, τ = μ(∇u + (∇u)T) is the viscous stress
tensor, and f σ represents the interfacial tension. Here, ρ and μ denote the density and
viscosity of the combined phase. In the standard volume-of-fluid (VOF) method, merging
of interfaces occurs automatically whenever two interfaces come within one grid cell of
each other, a phenomenon known as numerical coalescence (Elghobashi 2019; Soligo,
Roccon & Soldati 2021). This makes it challenging to simulate droplets with moderate to
high volume fractions. To address this issue, this work employs a modified multi-marker
VOF method that was originally proposed by Coyajee & Boersma (2009) to prevent
numerical coalescence. Specifically, multiple markers αm are introduced to represent each
group of droplets, where each droplet group is individually marked. The range of αm is
from 0 to 1: αm = 0 represents the continuous phase, αm = 1 represents the dispersed
phase, and 0 < αm < 1 denotes the interface region. This modified multi-marker VOF
method enables the simulation of two-phase flow at moderate droplet volume fractions.
The evolution of αm is governed by the transport equation

∂tαm + ∇ · (αmu) = 0, m = 1, . . . , n, (2.3)

where n is the total number of markers. The interfacial tension is calculated by

f σ =
n∑

m=1

σκm ∇αm, (2.4)

where σ is the surface tension coefficient, and κm = −∇ · (∇αm/|∇αm|) is the interface
curvature. The density ρ and viscosity μ of the combined phase are defined as functions of
the phase fraction α; specifically, ρ = αρd + (1 − α)ρf and μ = αμd + (1 − α)μf , where
ρ and μ with subscripts f and d denote the density and viscosity of the continuous phase
and dispersed phase, respectively. The phase fraction α is defined as α = max{α1, . . . , αn}
(Coyajee & Boersma 2009). In this work, we use ρ = ρf = ρd and μ = μf = μd.

We consider a two-phase flow in Taylor–Couette (TC) turbulence, where the flow is
confined between two coaxial cylinders with radii ri (inner) and ro (outer). The curvature
of the TC system is characterized by the ratio η = ri/ro = 0.714. The outer cylinder (OC)
is fixed, while the inner cylinder (IC) rotates at a constant angular velocity ωi. The torque
T required to drive the IC is examined to study the droplet-induced drag enhancement.
To minimize computational costs without compromising accuracy, we employ a rotational
symmetry of order 6 (i.e. the azimuthal angle of the simulated domain is π/3) and aspect
ratio Γ = L/d = 2π/3 in the simulated TC system, where d is the gap width between
the cylinders, and L represents the axial length. This choice has been validated for both
single-phase and multi-phase TC turbulence (Brauckmann & Eckhardt 2013; Spandan,
Verzicco & Lohse 2018; Assen et al. 2022).

In this work, liquid–liquid TC turbulence is simulated with total droplet volume
fractions φ = 0, 10 %, 20 %, 30 % and 40 %. The Reynolds number Re ≡ ρuid/μ

is fixed at 5200, where ui = riωi is the velocity of the IC. The Taylor number is
Ta ≡ χ(ro + ri)

2(ro − ri)
2ω2

i /(4ν2) = 4.12 × 107, where χ = [(ri + ro)/(2
√

riro)]4 and
ν = μ/ρ. The frictional Reynolds number at the IC, Reτ ≡ uτ d/ν, is 264.86, 281.62,
297.01, 315.37 and 329.76 for φ = 0, 10 %, 20 %, 30 % and 40 %, respectively. Here, uτ is
the friction velocity, defined as

√
τw/ρ, where τw represents the shear stress at the IC. The

Weber number We ≡ ρu2
τ d/σ is 7.96, 8.74. 9.85 and 10.77 for φ = 10 %, 20 %, 30 % and

40 %, respectively.
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Neutrally buoyant and equally viscous droplets in TC flow

No-slip and impermeable boundary conditions are imposed on both cylinder surfaces,
while periodic boundary conditions are applied in the axial and azimuthal directions.
The IC and OC are subjected to Neumann boundary conditions for the phase fraction,
resulting in a default contact angle 90◦. The TC system is discretized using a collocated
grid system consisting of Nθ × Nr × Nz = 336 × 256 × 192 points in the azimuthal, radial
and axial directions, respectively. The grids are uniformly distributed in the azimuthal
and axial directions, but are unevenly spaced and concentrated near the two cylinders in
the wall-normal direction. The grid spacing is measured in units of the viscous length
scale δν = ν/uτ for single-phase flow. In the radial direction, the grid spacing varies
from 0.31δν near the wall to 2.45δν at the centre of the gap. In the azimuthal direction,
it varies from 2.06δν near the IC to 2.89δν near the OC. The grid spacing is uniform in
the axial direction, with value 2.89δν . The Kolmogorov scale, denoted as ηk, is 2.07δν

for single-phase turbulence, determined by the exact dissipation relationships given by
ηk/d = (χ−2 Ta (Nuω − 1))−1/4, where Nuω = Jω/Jω

lam (Eckhardt, Grossmann & Lohse
2007). Here, Jω represents the total angular velocity flux, and Jω

lam corresponds to the flux
under fully laminar and non-vortical conditions. The maximum grid spacing is 1.39ηk
for single-phase turbulence. To ensure sufficient spatial resolution to resolve the smallest
length scales, a resolution test is performed for the single-phase case (see Appendix A).

These simulations utilize the modified multi-marker VOF method with a
piecewise-linear interface calculation (PLIC) algorithm implemented in the interFoam
solver of the open-source OpenFOAM v8 (Rusche 2003; Chen, Zhao & Wan 2022).
Based on the PLIC algorithm, the resolved interface region (0 < α < 1) could be confined
within a single layer of grid cells between the two phases (Su et al. 2024b). Therefore,
the PLIC algorithm also works in reducing the influence of numerical coalescence. The
robustness of OpenFOAM in simulating both single-phase and two-phase TC turbulence
has been demonstrated in our previous works (Xu et al. 2022, 2023; Su et al. 2024b).
The maximum Courant–Friedrichs–Lewy number is set to 0.2. Temporal discretization
employs a blended scheme between the first-order Euler scheme and the second-order
Crank–Nicolson scheme, with blending factor 0.9 for robustness and accuracy. Spatial
discretization uses a second-order linear upwind scheme for the advection term in the
momentum equation. The phase fraction transport equation employs a PLIC scheme
to maintain interface sharpness. The PIMPLE algorithm (Holzmann 2016), which is a
hybrid version of the PISO algorithm and the SIMPLE algorithm, is used to handle the
pressure–velocity coupling to guarantee better stability for two-phase simulations. The
pressure equation is solved using the geometric algebraic multigrid solver coupled with
the simplified diagonal-based incomplete Cholesky smoother, which is commonly used to
speed up the computational efficiency in simulating two-phase flow (Scheufler & Roenby
2019; Chen et al. 2022). Velocity and phase fraction are found using an iterative solver
with a symmetric Gauss–Seidel smoother. In the simulations, a residual tolerance 10−6 is
maintained for all variables, except for the phase fraction, which has tolerance 10−8. The
computational accuracy of these settings has been verified by comparing our results with
those of Ostilla et al. (2013) in our previous work (Su et al. 2024a,b).

For a fixed volume fraction φ in the modified multi-marker VOF method, the dispersed
phase is divided into n groups, and each group is assigned a marker αm, and the droplet
volume fraction is the same for each marker φmvf . A large value of φmvf results in
unphysical numerical coalescence, while a too small value of φmvf limits the maximum
droplet size and is computationally costly as one needs to solve n transport equations.
In our study, we choose φmvf = 5 % for all cases – specifically, n = 2, 4, 6 and 8 for
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Figure 1. (a) The torque T needed to drive the IC rotating at a constant rate ωi. Here, T is normalized by
the single-phase torque Tφ=0. The simulated results are compared with experimental results from our previous
work (Yi et al. 2021). The inset shows the interfacial surface area S/Scyl as a function of time t/t0 at various
droplet volume fractions φ, where Scyl is the surface area of the IC, and t0 is the large eddy turnover time.
(b) The turbulent stress Jω

T , viscous stress Jω
V and interfacial stress Jω

σ contributions to the angular velocity flux.
The operator

∑
denotes a radially averaged quantity. All the contributions are normalized by the total angular

velocity flux for the single-phase flow, Jω
φ=0.

droplet volume fractions 10 %, 20 %, 30 % and 40 %, respectively. This choice is inspired
by previous studies (Rosti et al. 2019; Soligo et al. 2019; Crialesi-Esposito et al. 2022;
Mangani et al. 2024), which used the standard VOF method or phase-field method. In these
studies, the volume fraction is mainly in the range 3–10 %, where the effect of numerical
coalescence is considered to be negligible. The choice φmvf = 5 % faithfully reproduces
the global drag of the system reported in our previous experimental study (Yi et al. 2021).
To ensure that the modified multi-marker VOF method does not qualitatively alter the drag
modulation mechanism, two additional simulations using the standard VOF method are
conducted and compared with the multi-marker VOF method (see Appendix B). During
our simulations, a single-phase case is first simulated to initialize the velocity field. Once
a fully developed flow with a pair of Taylor rolls is obtained, droplets of diameter 0.2d are
uniformly positioned in the simulated domain Ω . The droplets are then randomly marked
by the marker αm (m = 1, . . . , n) in such a way that the total volume of the droplets for
each marker is φmvf VΩ , where VΩ is the volume of the simulated domain. All statistics
presented in the paper are collected over at least 3 × 102 large eddy turnover times, defined
as (ro − ri)/(ωiri), after the two-phase flow reaches a statistically steady state.

To demonstrate that the flow reaches a statistically steady state, the temporal evolution
of the interfacial surface area S is shown in the inset of figure 1(a). This S fluctuates
around a constant value dependent on φ, indicating a balance between droplet breakup
and coalescence within the system. In our simulations, the same grid system is employed
for both single-phase and two-phase cases, and a resolution test is conducted for both
the φ = 0 and φ = 10 % scenarios (see Appendix A). Due to the significant increase
in computational cost with the multi-marker VOF method, conducting a resolution
test for φ = 40 % becomes impractical. The corresponding grid spacing near the wall
is approximately 1.39ηk for φ = 0, and 1.58ηk for φ = 40 %, indicating only mild
degradation in spatial resolution with increasing φ. In figure 1(a), we present the torque
T required to rotate the IC at a constant rate ωi, superimposed with experimental data
from Yi et al. (2021) for comparison purpose. It is evident that T increases with φ in both
numerical and experimental data, indicating drag enhancement due to dispersed interfaces.
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Neutrally buoyant and equally viscous droplets in TC flow

The datasets agree well with each other at φ � 30 %, with a minor deviation observed at
φ = 40 %. However, the method and grid allocation adopted here suffice for the purpose
of this study, i.e. revealing the underlying mechanism of drag enhancement by dispersed
droplets.

3. Results and discussion

In this work, we fix the OC while sustaining the constant rotational velocity of the IC.
The torque T required to drive the IC is examined to study the underlying mechanism of
drag enhancement by dispersed droplets. In the TC system, the angular velocity flux Jω

is conserved in the radial direction. Here, Jω and the torque at IC T are related through
the equation T = 2πLJω (Eckhardt et al. 2007), which provides an efficient way to study
the mechanism of the drag enhancement. Inspired by an analogous situation in turbulent
channel flows (Picano, Breugem & Brandt 2015; Wang, Jiang & Sun 2023), where it is
conventional to decompose the total stress into the viscous part, turbulent part and others,
we decompose Jω into contributions from the turbulent stress τT , the viscous stress τV ,
and the interfacial tension f σ (Eckhardt et al. 2007; Su et al. 2024b), i.e.

Jω ≡ Jω
T (r) + Jω

V (r) + Jω
σ (r) = const., (3.1)

where the three terms represent

(i) the turbulent stress contribution Jω
T (r) = r3〈ρu′

rω
′〉 = r2〈τT〉,

(ii) the viscous stress contribution Jω
V (r) = −μr3 ∂r〈ω〉 = r2〈τV〉,

(iii) the interfacial tension contribution Jω
σ (r) = − ∫ r

ri
〈r2f θ

σ 〉 dr.

Here, u′
r = ur − 〈ur〉, ω′ = ω − 〈ω〉, r is the radial position, ur is the radial velocity, ω is

the angular velocity, and f θ
σ is the azimuthal component of interfacial tension. The operator

〈·〉 denotes the average in the axial and azimuthal directions and over time. In this work,
all contributions are normalized by the total angular velocity flux for single-phase flow
Jω
φ=0. We note that Jω

T (r), Jω
V (r) and Jω

σ (r) all depend on the radial position. To eliminate
the radial dependence, Jω

T (r), Jω
V (r) and Jω

σ (r) are further averaged in the radial direction,
denoted as

∑
Jω

T ,
∑

Jω
V and

∑
Jω
σ , and are depicted in figure 1(b). This approach has

been used widely to study drag modulation in two-phase flows (Ardekani & Brandt 2019;
de Vita et al. 2019; Hori et al. 2023; Wang et al. 2023). Both

∑
Jω

T and
∑

Jω
V are virtually

not changed by the dispersed droplets. However,
∑

Jω
σ (r) increases monotonically with φ.

Figure 1(b) demonstrates that the drag enhancement is dominated by the interfacial tension
contribution, consistent with our previous findings (Su et al. 2024a,b).

In the above analysis, drag enhancement is attributed to the additional contribution
of interfacial tension to the angular velocity flux. However, it remains unclear how the
introduction of the interface increases the overall drag of the system. Figure 1(b) gives
us the impression that viscous stress plays a negligible role in transporting the angular
velocity flux. However, this is not the case, especially in the boundary layer, where viscous
stress dominates over turbulent stress. It should be noted that averaging in the radial
direction masks the important role of the viscous boundary layer, as it represents only
a small fraction of the total volume. Taking the droplet volume fraction φ = 20 % as an
example, Jω

V /Jω
φ=0 is much larger than Jω

T /Jω
φ=0 and Jω

σ /Jω
φ=0 near the IC, as shown in

figure 2(a). Due to the presence of a positive interfacial tension contribution near the
OC, a smaller viscous stress contribution (Jω

V /Jω
φ=0 < 1) is observed, which has also

been reported by Hori et al. (2023). In our previous study, we observed that droplets are
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Figure 2. (a) Angular velocity flux and its three contributions as functions of the radial position for the case
with φ = 20 %. The radial position (r − ri)/d = 0 corresponds to the IC, and (r − ri)/d = 1.0 corresponds
to the OC. (b) Viscous stress 〈τV 〉 (normalized by the single-phase value at (r − ri)/d = 0, i.e. 〈τi,φ=0〉) as a
function of the radial position at various droplet volume fractions. The inset shows a zoom-in of 〈τV 〉/〈τi,φ=0〉
near the IC.

fragmented by dynamic pressure within the boundary layer (Yi et al. 2022). Given the
higher observed viscous stress contribution compared to the single-phase case at the IC
surface (figure 2a), further analysis of the boundary layer near the IC may yield insights
into the underlying mechanism of drag enhancement by dispersed droplets.

Since the viscous stress contribution Jω
V (r) for a specific radial position depends solely

on the viscous stress τV , we will now focus our attention on τV for ease of discussion.
We show the τV distribution at various droplet volume fractions in figure 2(b), where an
enlarged view of τV within the region (r − ri)/d < 0.02 is displayed in the inset. Here,
(r − ri)/d = 0.02 corresponds to y+ = 5.31, 5.61, 5.94, 6.31 and 6.60 for cases with φ =
0, 10 %, 20 %, 30 % and 40 %, respectively. Also, y+ is the distance from the IC in units
of the viscous length scale at the wall. In the boundary layer, τV increases with increasing
volume fraction, in line with the drag enhancement observed in figure 1.

Given the definition of viscous stress τV = −μr ∂rω, the magnitude of viscous stress is
determined by the angular velocity gradient when viscosity and r are fixed. Considering
that the IC has a constant angular velocity, it is likely that in the boundary layer, the
viscous stress is directly related to the angular velocity. Figures 3(a) and 3(b) show contour
plots of the instantaneous angular velocity ω and viscous stress τV on a cylinder surface
with (rcut − ri)/d = 0.0105 for the φ = 40 % case. By carefully examining their spatial
distribution, it can be observed that the low-speed streak regions (blue in figure 3a)
predominantly correspond to the high viscous stress regions (red in figure 3b). To provide
quantitative evidence for this observation, we calculate the joint probability density
function (p.d.f.) between τV/〈τi,φ=0〉 and ω/ωi. The joint p.d.f. basically lies along the
straight dashed line with a negative slope (see figure 3c), suggesting a negative correlation
between τV/〈τi,φ=0〉 and ω/ωi: namely, lower velocity fluid can result in higher viscous
stress. As the volume fraction increases, the p.d.f.s of the viscous stress shift rightwards,
implying an overall increase in τV (see figure 3d). Based on the negative correlation
between τV/〈τi,φ=0〉 and ω/ωi, the rightward shift of τV means that the angular velocity
decreases. Here, we reveal the negative correlation between viscous stress and angular
velocity within the boundary layer, where an increase in viscous stress manifests itself as
a decrease in angular velocity. Figure 3(d) demonstrates that an overall increase in viscous
stress is observed with increasing droplet volume fraction, which would correspond to
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Figure 3. Contour plots of (a) the instantaneous angular velocity and (b) viscous stress on the cylinder surface
with radius (rcut − ri)/d = 0.0105 for two-phase turbulence with φ = 40 %. Here, (rcut − ri)/d = 0.0105
corresponds to y+ = 3.45. (c) Joint p.d.f. between the angular velocity and the viscous stress for φ = 40 %.
(d) The p.d.f.s of τV for different droplet volume fractions. In (c,d), the data are sampled on the same cylinder
surface as in (a,b).

a decrease in angular velocity. Therefore, understanding the reason for the decrease
in angular velocity within the boundary layer becomes crucial for the study of drag
enhancement.

To visually compare the angular velocity distribution in single-phase and two-phase
turbulence, contour plots of the instantaneous angular velocity for cases φ = 0 and 40 %
are illustrated in figures 4(a) and 4(b), respectively. Herring-bone streaks can be observed
in single-phase turbulence due to centrifugal instability (Barcilon et al. 1979; Dong 2007).
Compared to single-phase turbulence, two-phase turbulence exhibits numerous low-speed
streaks. The high-speed streaks are disrupted by the low-speed ones, and their axial size
diminishes. Droplet interfaces (α = 0.5) are depicted as solid lines in figure 4(b). Upon
careful inspection, it is observed that droplets occupy predominantly the low-speed streaks.
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Figure 4. Contour plots of the instantaneous angular velocity ω/ωi on a cylinder surface with (rcut − ri)/

d = 0.02 for (a) single-phase turbulence with φ = 0, and (b) two-phase turbulence with φ = 40 %. The droplet
interfaces (α = 0.5, solid lines) are also superimposed in (b). (c) The p.d.f.s of angular velocity for the droplet
and continuous phases at different cylinder surfaces for the φ = 40 % case. The inset shows the average angular
velocity of the droplet and continuous phases as a function of wall distance. (d) The p.d.f.s of angular velocity
for the droplet and continuous phases at fixed cylinder surface (rcut − ri)/d = 0.02 for various droplet volume
fractions. The inset shows the average angular velocity of the droplet and continuous phases.

This observation suggests that droplets tend to favour the formation of low-speed streaks.
Subsequently, we demonstrate that the presence of droplets indeed impedes the continuous
phase, disrupts the high-speed streaks, and promotes the low-speed ones.

The p.d.f.s of angular velocity for both the continuous and droplet phases are shown in
figures 4(c) and 4(d). In figure 4(c), the droplet volume fraction is φ = 40 %, while the data
are sampled on different cylinder surfaces (rcut − ri)/d = 0.0054, 0.0105, 0.0159 and 0.02,
which correspond to y+ = 1.77, 3.45, 5.25 and 6.60. The first two surfaces are located
inside the viscous sublayer, and the last two are in the buffer layer. In figure 4(d), the data
are sampled on the cylinder surface with (rcut − ri)/d = 0.02, while two-phase turbulence
with different volume fractions is considered. It is observed that the angular velocity of the
droplet phase is consistently lower than that of the continuous phase (see figure 4(c) and
its inset). The observation persists across various volume fractions investigated here (see
figure 4d). Besides, at the fixed radial position (rcut − ri)/d = 0.02, the average angular
velocity of the droplet phase is nearly invariant at different droplet volume fractions,
whereas the average angular velocity of the continuous phase decreases as the droplet
volume fraction increases (see inset of figure 4d). The velocity of the droplets being lower
than in the continuous phase suggests that the droplet phase will impede the continuous
phase surrounding the droplets.
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Figure 5. (a) Contour plot of the instantaneous angular velocity in the r–θ plane for the φ = 40 % case.
Droplet interfaces (α = 0.5) are represented by the solid lines. The inset is an enlarged view of the main
image marked by the red rectangle. The droplet in the inset is divided into fore head and rear end along the
radial direction based on the location of the droplet’s centre of mass. (b) The p.d.f. of the sum of the azimuthal
interfacial tension acting on the fore head

∑
Fore f θ

σ and the sum of the azimuthal interfacial tension acting
on the rear end

∑
Rear f θ

σ is shown for droplets with centres of mass in the range y+ < 24. The two terms in
(b) are normalized by the absolute value of the total azimuthal interfacial tension experienced by all droplets
with centres of mass in the range y+ < 24. Here, the total azimuthal interfacial tension is negative, indicating
that the overall effect of these droplets is to impede the surrounding flow.

To explain why the droplet phase moves slower than the continuous phase near the IC,
we show a cross-section of flow in the r–θ plane for the φ = 40 % case in figure 5(a),
and ideally divide a single droplet in the vicinity of the IC into two parts along the radial
direction, based on the location of the droplet’s centre of mass. The part closer to the
IC is called fore head of the droplet, and the other part is called the rear end of the
droplet. Due to the high shear near the IC, droplets are strongly deformed. However, the
droplets do not align with the azimuthal shear direction but show a slight deviation. This
deviation from the θ direction originates from the fact that a fluid parcel closer to the
rotating IC will generally have a higher angular velocity. In other words, the fore head of
the droplet moves faster than its rear end. To maintain the integrity of the droplet and resist
deformation, the rear end will drag the fore head backwards due to the effect of interfacial
tension. This process will make the fluid inside the fore head move at a slower velocity
than the continuous phase in the same radial position. As a result, the dispersed droplets
impede the continuous phase surrounding the fore head of the droplets. On the other hand,
the rear end will be dragged forwards by the fore head due to the effect of interfacial
tension, thus accelerating the continuous phase surrounding the rear end of the droplets.
The accelerating effect of the rear end will be masked by the hindering effect of the fore
head, which ultimately causes increased drag.

To demonstrate our argument, we examine the interfacial tension experienced by
droplets whose centres of mass fall within the range y+ < 24. This choice ensures that
the majority of the droplets analysed are in the viscous sublayer and buffer layer. For each
individual droplet, we compute the sum of the azimuthal interfacial tension acting on the
fore head, and plot the p.d.f. of these summed values for different droplets in figure 5(b).
Similarly, we perform the analysis on the rear end of each individual droplet. In figure 5(b),
the positive values indicate that the effect of interfacial tension appears to act in the flow
direction, while the negative values suggest that the effect of interfacial tension appears
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Figure 6. A sketch of how the interfacial tension works in a TC system.

to act against the flow direction. It can be observed that for the fore head of the droplet,
the effect of interfacial tension acts predominantly against the flow direction, which slows
down the fluid inside the fore head, thus hindering the surrounding flow. Conversely, for
the rear end, the effect of interfacial tension acts predominantly in the flow direction,
which drives the fluid within the rear end to move faster, thus accelerating the surrounding
flow. To visualize the physical process in which the interfacial tension works, a sketch is
shown in figure 6. Here, the effect of interfacial tension acting against the flow direction
overwhelms that acting in the flow direction. The droplet-induced drag enhancement is
dominated by the effect of interfacial tension on the fore head of the droplet, which leads
to a hindering effect of the droplet on the surrounding continuous phase.

Having gained an insight into how interfacial tension works, we are now able to
comprehend the role of interfacial tension contribution Jω

σ (r) to the total angular velocity
flux, which is plotted in figure 7(a) for various volume fractions. Although the above
discussion focuses on the region near the IC, the analysis of how interfacial tension works
can be extended to the entire TC system. Note that in this paper, the fore head always refers
to the part of the droplet closer to the IC. As shown in the inset of figure 7(a), the interfacial
tension is negative in the region (r − ri)/d < 0.02, i.e. the effect of interfacial tension
acting against the flow direction dominates in this region, as just discussed. Specifically,
the effect of interfacial tension results in a reduction in average angular velocity with
increasing volume fraction in the region (r − ri)/d < 0.02 (see the inset of figure 7b).
This leads to an increase in viscous stress with increasing volume fraction as shown in
the inset of figure 2(b). According to Jω

σ (r) = − ∫ r
ri
〈r2f θ

σ 〉 dr, Jω
σ (r) will increase until 〈 f θ

σ 〉
changes its sign from negative to positive, where Jω

σ (r) attains its local maximum. After
the peak, Jω

σ (r) exhibits a slight decrease. The decrease of Jω
σ (r) indicates that 〈 f θ

σ 〉 > 0.
Near the IC, the droplets are highly deformed. When they are advected away from the
IC, the droplets will relax back to a less deformed state. These cylindrical surfaces are
filled mainly with the rear end of the highly deformed droplets and the fore head of the
less deformed droplets. The slight decrease in Jω

σ (r) can be attributed to the fact that the
effect of interfacial tension experienced by the rear end of the highly deformed droplets
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Figure 7. (a) Interfacial tension contribution Jω
σ (r) as a function of radial position at various droplet volume

fractions. The inset shows the azimuthal component of the interfacial tension in the near-wall region, and the
negative value indicates that the effect of interfacial tension acts against the flow direction. (b) Average angular
velocity 〈ω〉/ωi as a function of radial position at various droplet volume fractions, with the inset showing the
zoom-in of 〈ω〉/ωi near the IC.

is stronger compared to that of the interfacial tension experienced by the fore head of the
less deformed droplets.

In the bulk region, Jω
σ (r) increases slightly with the radial position in the region 0.2 �

(r − ri)/d � 0.8, indicating that the total effect of the interfacial tension in that region is
to impede the local flow. Near the OC, droplets are highly deformed due to the high shear
near the solid surface. In this case, the rear end of the droplet is closer to the OC where the
angular velocity is zero, thus dragging the fore head backwards. This leads to 〈 f θ

σ 〉 < 0,
and Jω

σ (r) obviously increases with the radial position in the region 0.8 � (r − ri)/d �
0.96. On the other hand, the rear end will be dragged forwards by the fore head, thus
resulting in 〈 f θ

σ 〉 > 0, and Jω
σ (r) shows an obvious decrease with the radial position in the

region 0.96 � (r − ri)/d < 1. At the OC with (r − ri)/d = 1, we have Jω
σ (r) > 0, which

indicates that the effect of interfacial tension acting against the flow direction dominates
the modulation of the flow field within the cylinder gap. As a result, the overall reduction
of the average angular velocity with increasing volume fraction is observed within the
cylinder gap, as shown in figure 7(b).

Based on the above analysis, we have attributed the drag enhancement to the effect
of interfacial tension experienced by the fore head of the droplet, which acts against the
flow direction and leads to a hindering effect of the droplet on the surrounding flow.
Although the division of the fore head and rear end based on the location of the droplet’s
centre of mass is somewhat idealized, it is sufficient to reveal the physical mechanism of
the droplet-induced drag enhancement. The hindering effect is also evident in the mean
azimuthal velocity. In figure 8(a), we present normalized mean azimuthal velocity profiles
u+ = (ui − 〈uθ 〉)/uτ versus wall distance y+. In the single-phase case (φ = 0), u+ follows
the linear relation u+ = y+ effectively within the viscous sublayer ( y+ < 5), indicating
sufficient spatial resolution to resolve the boundary layer. At y+ > 30, u+ does not exhibit
a clear logarithmic shape due to the low Reynolds number (Re) in this study (Huisman
et al. 2013). In the two-phase cases, u+ shifts downwards when φ > 10 %. This shift is
observed not only in the buffer layer and above, but also in the viscous sublayer, akin
to drag enhancement observed with rough walls (Zhu et al. 2016; Xu et al. 2023). In
the viscous sublayer, the magnitude of interfacial tension 〈 f θ

σ 〉 increases with increasing
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Figure 8. (a) Mean azimuthal velocity profiles near the IC, where u+ = (ui − 〈uθ 〉)/uτ is the velocity
difference from the IC normalized by the friction velocity. The dashed lines show the linear relation u+ = y+
and the logarithmic law u+ = (1/κ) ln y+ + B with the typical values κ = 0.4 and B = 5.2 (Huisman et al.
2013). (b) Profiles for the azimuthal component of the interfacial tension 〈 f θ

σ 〉. The inset shows the average
phase fraction within the viscous sublayer. The vertical dot-dashed line indicates the location of y+ = 5.

volume fraction (figure 8(b) and its inset), rendering u+ = y+ invalid, and indicating the
significance of both viscous stress and interfacial tension. By examining the phase fraction
distribution, we find that the droplet phase fraction can reach a maximum of 5 % inside the
viscous sublayer. In addition, the magnitude of the azimuthal interfacial tension reaches
its maximum at approximately y+ = 3, indicating that the azimuthal interfacial tension
has the greatest effect inside the viscous sublayer. This finding is consistent with previous
experimental results of Yi et al. (2022). The authors found that the droplets are fragmented
within the boundary layer. Hence the feedback of droplets will attain its maximum within
the boundary layer. The downward shift of u+ may be due to the increased effective
viscosity by interfacial tension, causing y+ to be overestimated. Future theoretical studies
on turbulent boundary layers in two-phase flows should consider the impact of interfacial
tension in the viscous sublayer.

Our findings emphasize the dominant role of interfacial tension in the drag enhancement
caused by droplets. In industrial applications, many existing models (e.g. Euler–Lagrange
approach) may not adequately account for the effects of interfacial tension. Our results
show that to accurately predict drag and flow characteristics in two-phase turbulent flow
systems, models must account for the contribution of interfacial tension, particularly in the
boundary layer region. This provides guidance for the improvement and development of
two-phase flow models.

The budget analysis adopted in this work is widely used to analyse the drag modulation
in two-phase turbulence. In turbulent channel flow laden with dense suspensions
(φ = 0–20 %) of neutrally buoyant spheres, Picano et al. (2015) demonstrated that the
drag enhancement is dominated by the particle-induced stress contribution. Interestingly,
similar to the profile of Jω

σ (r) near the IC, the particle-induced stress contribution is
positive and increases with wall distance, then decreases further away from the wall
(Picano et al. 2015; Wang, Abbas & Climent 2017). In turbulent flow laden with particles,
the exact expression for the particle-induced stress remains unknown. Inspired by the
interfacial tension contribution induced by the droplets, which can be considered as
‘deformable particles’, we can replace the particle-induced stress effect with the integral
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of the particle-induced force in the direction normal to the wall. This means that in the
near-wall region, the particle-induced stress acts against the flow direction, thus hindering
the surrounding continuous phase. Based on the above analysis, we infer that the drag
enhancement induced by droplets and particles is dominated by similar mechanisms within
the boundary layer. Our results provide one possible explanation for why neutrally buoyant
solid particles have a stronger drag enhancement effect compared to droplets as found by
de Vita et al. (2019) and Yi et al. (2021). The stronger drag enhancement effect indicates
that the hindering effect on the surrounding flow field near the wall is more pronounced
for solid particles, which causes larger viscous stress. This may be due to the fact that the
deformability of the droplet allows it to adjust its shape when subject to shear flow, thus
droplets affect the surrounding flow to a lesser degree. As a result, the drag enhancement
caused by droplets is less pronounced than that caused by solid particles.

Given that our work is aimed primarily at reproducing the drag enhancement reported
in our previous experimental study and revealing the underlying mechanism, the
dimensionless parameters in our simulations mainly correspond to Re = 5.2 × 103 cases
in experiments (Yi et al. 2021). Although we kept many fixed dimensionless parameters
(Re, Ta, Γ, η, We, density ratio, viscosity ratio, contact angle) in our simulations, we can
propose some new explanations for the effects of different parameters based on our
findings. By changing the angular velocity of the IC, it is observed that the effective
viscosity decreases with increasing Re (Ta or We), suggesting a shear thinning effect
(Yi et al. 2021). This can be attributed to the fact that the effect of interfacial tension
weakens as the turbulence intensity increases. Specifically, the increase in the near-wall
viscous stress due to interfacial tension gradually diminishes relative to the increase in
viscous stress due to the increase in turbulence intensity. The effects of the density ratio
and viscosity ratio have been studied in our previous work (Su et al. 2024b). We found
that decreasing the density and viscosity ratios of the dispersed phase to the continuous
phase reduces the contribution of local advection and diffusion terms to the momentum
transport, respectively, resulting in drag reduction. The change in contact angle may cause
droplets to attach to the IC and form a lubricating layer, thus contributing to the drag
reduction. Herein, the effect of the attached droplets on the system drag is dominated by the
interfacial tension on the rear end, which appears to act in the flow direction. Specifically,
the effect of interfacial tension tends to increase the angular velocity of the fluid near the
interface of the attached droplets, and decrease near-wall viscous stress, thus contributing
to drag reduction. Therefore, the droplet phase attached to the IC and dispersed within the
system will compete to cause drag modulation. For the parameters characterizing the TC
device (η and Γ ), the choice of aspect ratio Γ = 2π/3 is to minimize computational cost
and corresponds to the cases where the axial length is much larger than the gap width in
real experiments. The choice of curvature ratio η = ri/ro = 0.714 may limit our findings
to only TC systems with curvature ratios close to this value. Further studies are needed
to extend the mechanisms of interface-induced drag modulation to TC systems with other
curvature ratios and even to channel flow systems.

4. Conclusions

In this study, we investigated the mechanism of drag enhancement by neutrally buoyant
droplets in liquid–liquid Taylor–Couette turbulence at Reynolds number 5200 and Weber
number approximately 8. Our focus was on the effect of droplet presence within the
boundary layer at moderate volume fractions. To achieve this, we employed a modified
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multi-marker volume-of-fluid method, which accurately reproduces the drag enhancement
effect and aligns well with experimental results.

Through angular velocity flux analysis, we identified that interfacial tension plays a
pivotal role in drag enhancement. To understand how interfacial tension influences drag
enhancement, we examined the effects of droplets on viscous stress and angular velocity
near the inner cylinder. Our observations revealed that droplets experience significant
deformation and stretching along the streamwise direction due to shear near the inner
cylinder. Consequently, the rear end of the droplets lags behind the fore head. To keep the
integrity of the droplets and resist deformation, the effect of interfacial tension experienced
by the fore head of the droplets appears to act against the flow direction, while the effect
of interfacial tension experienced by the rear end appears to act in the flow direction.
The effect of the interfacial tension acting against the flow direction overwhelms that of
the interfacial tension acting in the flow direction, leading to a hindering effect of the
droplets on the surrounding continuous phase. This hindering effect alters high-speed
streaks, reducing their size and increasing the occurrence of low-speed streaks, which
typically contribute to higher viscous stress and system drag. Furthermore, we observed
that the mean streamwise velocity profile no longer follows the linear relation u+ = y+ in
two-phase turbulence, which may be due to the fact that the interfacial tension increases
the effective viscosity, resulting in an overestimation of y+. Our findings underscore
the necessity of adequately considering interfacial tension in the near-wall region when
modelling two-phase turbulence.
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Appendix A. Resolution test

To obtain reliable numerical results, the grid’s spatial resolutions have to be sufficient. The
requirement for spatial resolution is to have the grid spacing in each direction of the order
of Kolmogorov length ηk. For the single-phase flow with φ = 0, a reasonably resolved
case (Nθ × Nr × Nz = 336 × 256 × 192) with the maximum grid spacing smaller than
1.39ηk, and an extremely well-resolved case (Nθ × Nr × Nz = 448 × 320 × 288) with the
maximum grid spacing smaller than ηk, are considered for the resolution test, as depicted
in figure 9. The same resolution test is also conducted for two-phase flow with φ = 10 %.
Both the cases for φ = 0 and 10 % lie within the 1 % error bar, indicating that the adopted
spatial resolution Nθ × Nr × Nz = 336 × 256 × 192 is sufficient to obtain reliable results.
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Figure 9. Radial dependence of Nuω for two different grid resolutions. An error bar indicating a 1 % error is
provided for reference, and both cases φ = 0 and 10 % lie within the error bar.

Appendix B. Feasibility analysis of the modified multi-marker VOF method

As one of the ways to avoid numerical coalescence in interface-capturing methods, the
multi-marker method has been used effectively in liquid–liquid and gas–liquid two-phase
turbulence simulations (Balcázar et al. 2015; Hasslberger et al. 2020; Nemati et al. 2021).
In brief, the method assigns a separate phase fraction to each bubble or droplet to avoid
numerical coalescence, which would often occur for the single-marker formulation in the
standard VOF method. However, due to the greatly increased computational cost of the
multi-marker method, it is difficult to simulate cases with droplet numbers of hundreds or
more, leading to difficulties in simulating moderate or high droplet volume fractions.

In this work, we have modified the multi-marker method by replacing the assignment
of a separate phase fraction to each droplet with a separate phase fraction for each
group of droplets, thus allowing the simulation of two-phase flow at moderate droplet
volume fractions. From our estimates, simulation of two-phase flow with volume fractions
φ = 10 %, 20 %, 30 % and 40 % using the modified multi-marker VOF method requires
nearly 1.43, 2.39, 3.27 and 4.21 times that of the standard VOF method, respectively.
For simulations with φ = 10 %, 20 %, 30 % and 40 %, each time step takes nearly
0.19 core hours, 0.32 core hours, 0.44 core hours and 0.56 core hours, respectively.
Unfortunately, the modified multi-marker VOF method does not completely resolve the
issue of numerical coalescence, as shown in figure 10. Due to numerical coalescence, the
simulated probability density distribution of droplet sizes deviates from the experimental
results. Therefore, further optimization of the simulation method is needed in future
work to accurately simulate the probability density distribution of droplets at moderate
volume fractions. Despite the influence of numerical coalescence on the simulated drag
enhancement, particularly at volume fractions 30 % and 40 % as shown in figure 1(a), we
have successfully captured the droplet-induced drag enhancement within an acceptable
range of error. Our codes are available at https://github.com/Sujh123/Multi-marker-VOF-
method.

To ensure that the method does not qualitatively change the mechanism of
droplet-induced drag enhancement, we additionally calculate the droplet volume fractions
20 % and 40 % using the standard VOF method, as shown in figure 11(a). These results
are qualitatively consistent with those obtained using the modified multi-marker VOF
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Experimental results

Numerical results
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Figure 10. The p.d.f. of the droplet diameter D with respect to the average diameter Dm for two-phase
turbulence with φ = 40 %. The solid lines denote the fitting results with a log-normal distribution function.
The simulated results are compared with experimental results from our previous work (Yi et al. 2021).
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Figure 11. Angular velocity p.d.f.s for the droplet and continuous phases at the radius cut (rcut − ri)/d = 0.02
obtained using (a) the standard VOF method and (b) the modified multi-marker VOF method. The insets show
the average angular velocity of the droplet and continuous phases.

method as shown in figure 11(b), i.e. the average angular velocity of the dispersed phase
increases with the droplet volume fraction, while the average angular velocity of the
continuous phase decreases with the droplet volume fraction. In addition, it is observed
that the average angular velocities of both the dispersed and continuous phases within the
radius cut obtained by the standard VOF method are larger than those obtained by the
multi-marker VOF method, especially at droplet volume fraction 40 %, which is attributed
to the larger droplet sizes due to the effect of numerical unphysical coalescence in the
standard VOF method. This leads to a weaker ability to resist droplet deformation, reducing
the ability to impede the flow of the surrounding continuous phase. These results indirectly
support the conclusions drawn from this work.

Appendix C. Spurious current

In interface-capturing methods, it is usually non-trivial to compute the interface curvature,
thus making it difficult to achieve a strict Laplace balance between surface tension and
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Figure 12. Spurious currents for two static drops in a TC system with the two cylinders fixed. (a) Contour
of the velocity magnitude. (b) The maximum velocity magnitude |u|max as a function of time, where |u|max
is normalized by the velocity of the IC (ui) considered in our work, and the time t is normalized by the time
required for one full rotation of the IC (ti = 2πri/ui).

pressure gradient. This leads to the production of numerical artefacts called spurious or
parasitic currents. To assess the effect of the numerical artefacts when using the modified
multi-marker VOF method, we show the velocity field induced by the spurious currents
in a two-dimensional cylindrical domain (see figure 12). Figure 12(a) shows a snapshot
of two static drops with different markers. The IC and OC are fixed, and the two drops
have a diameter of half of the gap width. It is observed that the spurious currents appear
mainly near the two-phase interface. After normalizing the maximum velocity magnitude
using the velocity of the IC adopted in our work, the |u|max/ui is below 0.02. This is
acceptable in our simulations since the simulated drag enhancement is consistent with
the experimental results, and the radial dependence of Nuω is less than 1 % across the
cylinder gap, as shown in figure 9, which is a very stringent requirement for numerical
convergence in a TC system. Although there are several methods to evaluate surface
curvature more accurately (Soligo et al. 2021), it is difficult to satisfy both balance and
momentum conservation requirements (Popinet 2018). In addition, the cylindrical system
that we studied poses a greater challenge to existing methods. Considering that our system
needs to strictly guarantee momentum conservation and that the effect of the spurious
currents on the system’s drag can be neglected, the simple continuum surface force model
is adopted in our work.
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