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Abstract
We use Stein’s method to obtain distributional approximations of subgraph counts in the uniform attach-
ment model or random directed acyclic graph; we provide also estimates of rates of convergence. In
particular, we give uni- and multi-variate Poisson approximations to the counts of cycles and normal
approximations to the counts of unicyclic subgraphs; we also give a partial result for the counts of trees.
We further find a class of multicyclic graphs whose subgraph counts are a.s. bounded as n→ ∞.
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1. Introduction
A random uniform attachment graph, denotedGm

n and also known as a uniform random recursive
dag (directed acyclic graph), can be constructed recursively as follows. Fixm� 1. The initial graph
Gm
1 is a single isolated vertex. To construct Gm

n from Gm
n−1, we add vertex n to Gm

n−1, with vertex n
born with m edges, which are labelled by 1, . . . ,m. For i ∈ [m] := {1, . . . ,m}, the other endpoint
of n(i), the ith edge of vertex n, is then uniformly chosen among the existing vertices of Gm

n−1,
i.e., in [n− 1]. Thus, Gm

n has n vertices and (n− 1)m edges, and each edge has a label in [m].
Observe that we allow multiple edges when m� 2. An edge in Gm

n can be thought of as always
pointing towards the vertex with the smaller label, and so there is no real distinction between the
undirected and directed versions of the uniform attachment graph.

Whenm= 1, the model is the random recursive tree first studied in [16]; and whenm� 2, the
model was first introduced in [6]. There is an abundance of literature on random recursive trees
(see e.g. [7] for an overview), but here we mention [9–11, 13], which provide Poisson and normal
approximations to the counts of subtree copies. Form� 2, results on vertex degrees can be found
in [6, 18], and results on depths and path lengths are available in [1, 3, 5, 19]. The recent paper
[14] studies the number of vertices that can be reached from vertex n via a directed path, where
the edge is thought as pointing from the larger vertex label towards the smaller one.

In this article, we consider the counts of subgraphs of Gm
n isomorphic to a given fixed graph as

n→ ∞, where the parameter m is fixed with m≥ 2 (Figure 1). We provide uni- and multivariate
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Figure 1. A 4-cycle (with blue and dotted edges) as a subgraph of G25.

Poisson approximations to the counts of cycles. We also prove that the counts of unicyclic sub-
graphs are asymptotically normal (after suitable renormalisation). We conjecture that the counts
of more general trees are approximately normal and show that this conjecture holds for stars.
All these approximation results are accompanied with convergence rates. We also consider mul-
ticyclic subgraphs. In particular, we show that if in addition to having more than two cycles, the
subgraph is ‘leaf-free’ (i.e. has no vertices of degree one), then the number of copies in the uniform
attachment graph is bounded a.s. For multicyclic subgraphs that are not leaf-free, we identify the
exact rate of growth of the expectation and an upper bound on the variance. We conjecture that
the count of a subgraph of this type converges a.s. after suitable rescaling, and prove a special case.

The distributional approximation tool that we use here is Stein’s method, using in particular
the size-bias coupling for both types of approximations; see [2, 4, 17] for an overview. This is in
contrast to the analytic and contraction methods employed in [9–11]. In [13], Stein’s method was
applied in proving the Poisson and normal approximation results for the counts of subgraphs and
their functionals in random recursive trees. However, we note that, for normal approximation,
the approach that we use here is different from that in [13], which does not provide a convergence
rate.

A major challenge in the distributional approximation problem of subgraph counts in the
uniform attachment graph is the computation of the variance of the counts. In particular, our
methods require a lower bound on the variance. In the casem= 1, the variance can be computed
explicitly by using an elegant bijection between the random binary tree and the random recursive
tree [ [15], Section 2.3.2], as done in [13]. When m� 2, the order of the variance of the count of
certain non-tree subgraphs can be obtained by analysing the covariances of the indicators that a
certain subgraph exists in Gm

n , and finding the pairs of subgraphs that contribute the dominant
term in the variance, but this task becomes difficult in the case of trees. In contrast to the case of
m= 1, it is also much harder to obtain an explicit expression for the mean and variances in the
case of m� 2. This is due to the fact for most subgraphs, the same set of vertices in the uniform
attachment graph can form a copy in several ways. Consequently, we are only able to give the
order of the mean and variance (i.e., within constant factors), and in some cases only an upper
bound, and we only consider fixed subgraphs and a fixedm.

Remark 1.1. It would be interesting to extend the results of this paper to subgraphsHn depending
on n, or to m=m(n) growing with n. Our methods still work in principle, but it becomes more
complicated to estimate the various expressions, and we have not pursued this. We leave these as
open problems.

2. Notation
The objective of this paper is thus to study the number of copies of a given graphH inGm

n . We will
only consider connectedH. We emphasise that we generally see both Gm

n and theH as undirected.
However, each edge in Gm

n has a canonical direction where an edge between the vertices i and j is
directed towards the smaller of i and j. Thus every copy of H in Gm

n also has an induced direction
on its edges. Note, however, that different copies may induce different directions in H.
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LetKm
n be them-fold complete multigraph on n, defined to be themultigraph on [n] such that for

every pair (i, j) with 1� i< j� n, there are m edges j→ i, and these edges are labelled 1, . . . ,m.
We denote the edge j→ i with label a by ji(a). Note that we can regard Gm

n as a subgraph of Km
n

in the obvious way (preserving edge labels); in fact, we may define Gm
n as the subgraph of Km

n
obtained by choosing, for every j ∈ {2, . . . , n} and every a ∈ [m], exactly one of the edges ji(a) with
label a and i ∈ [j− 1], all choices uniformly at random and independent.

Let � be the set of all copies of H in Km
n that do not contain two different edges ji(a)1 and ji(a)2

with i1, i2 < j and the same label a. (If there are two such edges ji(a)1 and ji(a)2 , then the copy can
never be a subgraph of Gm

n .) We say that � is the set of potential copies of H in Gm
n . For α ∈ �,

let 1α be the indicator variable that takes value 1 if α ⊆Gm
n , and 0 otherwise. The number Wn of

copies of H in Gm
n is thus

Wn =
∑
α∈�

1α , (2.1)

and we are therefore interested in approximating the distribution of this sum.

Example 2.1. For a simple example, let H be a triangle. Then, a potential copy of H in Gm
n is

described by its vertex set {i, j, k} ⊆ [n], where we may assume i< j< k, together with its edges ji(a),
ki(b), and kj(c), where a, b, c ∈ [m] and b 	= c.

Remark 2.2. Let mH be the largest integer k such that the k-core of H is non-empty, i.e., there
exists a non-empty subgraph of H where each node has degree at least k (in the subgraph). For
example, mH = 1 if H is a tree, mH = 2 if H is a cycle, and mH = k− 1 if H is the complete graph
on k vertices. Then it is easy to see that if m<mH , then there are no potential copies of H in Gm

n
for any n (since in a copy ofH, the vertex with largest label in themH-core has at leastmH edges to
vertices with smaller labels); hence � = ∅ and thus Wn = 0 deterministically. On the other hand,
if m�mH and n is large enough, then there are potential copies (since we may create a copy by
assigning labels in decreasing order to the vertices of H, each time choosing a vertex that has at
mostmH edges to the remaining vertices).

Remark 2.3. Recall that Gm
n is a loop-less multigraph. Similarly, H can be a loop-less multigraph

in the results below, although we for simplicity write “graph” and “subgraph”.

2.1. Probability distances
To precisely state our results, we also need to define the metrics in consideration here. The total
variation distance dTV between two probability measures ν1 and ν2 supported on Z

+ is defined as

dTV (ν1, ν2)= sup
A⊂Z+

|ν1(A)− ν2(A)|; (2.2)

and the Wasserstein distance dW between two probability measures ν1, ν2 supported on R is
defined as

dW (μ, ν)= sup
f

∣∣∣∣
∫

f (x)dμ(x)−
∫

f (x)dν(x)
∣∣∣∣, (2.3)

where the supremum is over all f :R→R such that |f (x)− f (y)|� |x− y| for any x, y ∈R. Note
that if, for example, Y is a random variable with the standard normal distribution N (0, 1), then
for any random variable X, the usual Kolmogorov distance can be bounded by
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dK
(
L(X),L(Y)

)
:= sup

a∈R

∣∣P[X � a]− P[Y � a]
∣∣=O

(√
dW (L(X),L(Y)

)
. (2.4)

(see e.g. [[17], Proposition 2.1]).

2.2. Further notation
We sometimes tacitly assume that n is not too small.

a.s.−→ and
p−→ denote convergence almost surely (a.s.) and in probability, respectively.

Po(μ) denotes the Poisson distribution with mean μ, and N (0, 1) is the standard normal
distribution.

C denotes constants that may vary from one occurrence to the next. They do not depend on n,
but they may depend onm, H, and other parameters.

3. Main results
Consider first subgraphs that are cycles. The first two theorems show that when n is large, the
count of any cycle with a fixed number of edges is approximately Poisson, and that the joint distri-
bution of the counts of cycles of different numbers of edges can be approximated by independent
Poisson variables. For convenience, we refer to a cycle with � edges and vertices simply as an
�-cycle. Note also we view a pair of parallel edges as a 2-cycle.

Theorem 3.1. Fixing the positive integers m≥ 2 and �� 2, let Wn be the number of �-cycles in Gm
n ,

and let μn := EWn. Then,
μn =�( log n). (3.1)

and there is a positive constant C = C(m, �) such that

dTV (L(Wn), Po(μn))� C log−1 n. (3.2)

Remark 3.2. LetWn be as above and Y ′
n ∼ Po(μn) and define

Zn := Wn −μn√
μn

, Yn := Y ′
n −μn√
μn

. (3.3)

It follows from Theorem 3.1 that
dK
(
L(Zn),L(Yn)

)
� dTV

(
L(Zn),L(Yn)

)
� C log−1 n. (3.4)

On the other hand, the classical Berry–Esseen theorem implies that

dK
(
L(Yn),N (0, 1)

)
� Cμ− 1

2
n , (3.5)

Combining (3.4) and (3.5) with the triangle inequality, and using (3.1), we obtain

dK
(
L(Zn),N (0, 1)

)
� C log− 1

2 n. (3.6)

In particular, the cycle countWn is asymptotically normal. In fact, the estimate (3.6) is sharp. Since
N (0, 1) has a continuous distribution function, while the distribution function of Zn has a jump
P(Wn = k) (if this is non-zero) at (k−μn)/

√
μn, it follows by choosing k= �μn� and using (3.2)

and (3.1) that

dK
(
L(Zn),N (0, 1)

)≥ 1
2P
(
Wn = �μn�

)=�
(
μ

− 1
2

n
)=�

(
log− 1

2 n
)
. (3.7)

Consequently, combining (3.5) and (3.7),

dK
(
L(Zn),N (0, 1)

)=�
(
log− 1

2 n
)
. (3.8)
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In the following corresponding theorem on multi-variate Poisson approximation, the error
bound that we obtain is slightly inferior to the one in Theorem 3.1. As in Remark 3.2, this theorem
implies also a multivariate normal approximation (we omit the details).

Theorem 3.3. Fix the positive integers m, r ≥ 2 and �(i) ∈ [2,∞), i ∈ [r], with �(i) 	= �(j) for i 	= j.
Let W(i)

n be the number of cycles of length �(i) in Gm
n , and let μn,i := EW(i)

n . Then, there is a positive
constant C = C(m, (�(i))i∈[r]) such that

dTV

(
L(
{
W(i)

n

}r
i=1

),
r∏

i=1
Po(μn,i)

)
� C log log n

log n
. (3.9)

Example 3.4. The case �= 2 is simple in Theorems 3.1 and 3.3, since the numbers of pairs of parallel
edges with larger endpoint j are independent for different j; moreover, we have the exact formula
μn = (m

2
)∑n

j=2
1

j−1 . For �= 3, Example 2.1 yields

μn =m2(m− 1)
∑

1�i<j<k�n

1
(j− 1)(k− 1)2

=m2(m− 1)
(
log n+O(1)

)
. (3.10)

Next, we state the normal approximation for the count of any unicyclic graph, i.e., a graph that
contains exactly one cycle. For completeness, we include cycles in the theorem below. Let C� be an
�-cycle, let s≥ 0, and let, for i= 1, . . . , s, Ti be a tree with ti edges and a distinguished root, so that
Ti has ti + 1 vertices. We consider a graph � := ��,t1,...,ts which can be constructed by attaching
each Ti to C�, using a vertex of C� as the distinguished root of Ti. (This does not specify� uniquely,
but we choose one possibility.) By combining the trees Ti that are attached at the same vertex in
the cycle, we may assume that s� � and that each Ti is attached to C� at a distinct vertex. Denote
by � = �

(n,m)
� the set of all potential copies of�; and saving notation, let

Wn :=
∑
α∈�

1α , μn := EWn, σ 2
n := Var(Wn). (3.11)

Theorem 3.5. Fixing the integers m≥ 2, �≥ 2, s≥ 0, t1, . . . , ts ≥ 1, and a unicyclic subgraph � as
above, let Wn, μn and σn be as in (3.11), and Yn := (Wn −μn)/σn. Let t =∑s

i=1 ti ≥ 0; then

μn =�
(
logt+1 n

)
. (3.12)

σ 2
n =�

(
log2t+1 n

)
, (3.13)

and there is a positive constant C = C(m, �, t) such that

dW (L(Yn),N (0, 1))� C log− 1
2 n. (3.14)

Remark 3.6. In view of (2.4) and (3.14), Theorem 3.5 implies an error bound

dK
(
L(Yn),N (0, 1)

)=O
(
log− 1

4 n
)
. (3.15)

for the Kolmogorov distance, which in the case of a cycle is clearly not as sharp as the error bound
in (3.6).

The next theorem concerns trees, and the normal approximation result relies on the assump-
tion that the variance of the counts of the tree of choice is of the exact order �(n). The precise
order of the variance in this case is much harder to establish, essentially due to the fact that the
total covariance of the positively correlated pairs of copies and that of the negatively correlated
pairs of copies are both of order O(n). However, we are able to prove that the variance of the
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count of a star is precisely �(n). Below, let � be a fixed tree on t vertices, let � be the set of
potential copies of�, and define againWn,μn, and σ 2

n by (3.11).

Theorem 3.7. Fix the positive integers m, t and the tree � with t vertices. Let Wn,μn and σn be as
above, and Yn := (Wn −μn)/σn. Then

μn =�(n), (3.16)

σ 2
n =O(n). (3.17)

If σ 2
n =�(n), then there is a constant C = C(m, t) such that

dW (L(Yn),N (0, 1))� Cn− 1
2 . (3.18)

In the trivial cases t = 1 and t = 2 (a single vertex and a single edge, respectively),Wn is deter-
ministic and σ 2

n = 0; thus Yn is not even defined.We conjecture that these are the only cases where
(3.18) does not hold.

Conjecture 3.8. If � is tree with at least 2 edges, then σ 2
n =�(n), and thus the normal approxima-

tion (3.18) holds.

We show in Section 9.2 that this holds at least for stars.

Theorem 3.9. Conjecture 3.8 holds when� is a star S� with �≥ 2 edges.

The remaining subgraphs are the multicyclic ones. We consider in particular the ones that have
the following properties.

Definition 3.10. We say that a graph is

• multicyclic if it has at least two (not necessarily edge- or vertex-disjoint) cycles;
• leaf-free if it has no node of degree 1.

As examples of connected graphs that are both multicyclic and leaf-free, we have two edge-
disjoint cycles joined by an edge, or two cycles that share precisely an edge; see Figure 2 for another
example.

Theorem 3.11. For any connected graph H that is both multicyclic and leaf-free, and any m� 2,
the expected number of copies of H in Gm

n is bounded as n→ ∞.

Remark 3.12. Wemay define the infinite random graph Gm∞ with vertex set {1,2,. . .} as the union
of Gm

n over all n≥ 1. Let H be any fixed graph and let as above Wn be the number of copies of H
in Gm

n ; also, let W∞ ≤ ∞ be the number of copies of H in Gm∞. Then, as n→ ∞, Wn ↗W∞. In
particular, Wn

p−→W∞, and since both (3.12)–(3.13) and (3.16)–(3.17) imply Wn
p−→ +∞, we

see that ifH is unicyclic or a tree, thenW∞ = ∞ a.s. On the other hand, Theorem 3.11 implies by
monotone convergence that if H is multicyclic and leaf-free, then EW∞ <∞ and thusW∞ <∞
a.s.

Note further that sinceWn
a.s.−→W∞ as n→ ∞, in particular,Wn converges in distribution to

W∞ (without any normalisation). However, we do not expect that this limiting distribution has
any nice form such as Poisson, sinceW∞ is mainly determined by the random wirings of the first
few edges in Gm

n .

We also consider the expected counts of a graph that are multicyclic but not leaf-free. Note
that every such graph H can be constructed in the following way. Start with a graph H′ that is
both multicyclic and leaf-free, and let Ti, i= 1, . . . , s be trees with ti edges and a distinguished
root. The graph H is obtained by attaching every Ti to H′, with one of the vertices of H′ as the
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Figure 2. Left: a graph that is both multicyclic and leaf-free. Right: a graph that is multicyclic but not leaf-free.

distinguished root of Ti. As before, we may assume that any pair of Ti do not share the same vertex
of H′. The graph H′ is known as the 2-core of H. See Figure 2 for an example.

In the following theorem, we for convenience include the case t = 0, which is just
Theorem 3.11. (Then s= 0 and H′ =H.) Recall the definition of mH in Remark 2.2, and that
Wn = 0 ifm<mH .

Theorem 3.13. Fixing a connected multicyclic graph H and a positive integer m�mH, let Wn be
the number of copies of H in Gm

n , and let t := ∑
i ti ≥ 0 be the number of vertices in H \H′, where

H′ as above is the 2-core of H. Then,

EWn =�
(
logt n

)
, (3.19)

Var(Wn)=O
(
log2t n

)
. (3.20)

The precise order of Var(Wn) is more difficult to establish for the same reason as for trees. For
this family of graphs, we do not expect the count to be approximately Poisson or normal (after
renormalisation). Instead, we make the following conjecture, where we, as commented above, do
not expect the distribution of the limit to have a nice form.

Conjecture 3.14. Let H and H′ be as in Theorem 3.13, and let Wn and W′
n be the numbers of

copies of H and H′ in Gm
n , respectively. Then there exists a constant c> 0 such that ( log n)−tWn −

cW′
n

a.s.−→ 0 as n→ ∞, and thus

Wn

logt n
a.s.−→ cW′∞. (3.21)

We can prove a special case. It appears likely that the general case can be shown by similar
arguments, but the details seem complicated and we leave this as an open problem.

Theorem 3.15. Conjecture 3.14 holds when t = 1.

We note also that at least for some multicyclic graphs H′, W′∞ = 0 with positive proba-
bility, and thus P(W∞ = 0)� P(W′∞ = 0)> 0; hence although EWn → ∞ by (3.19), P(Wn =
0)� c> 0, which in particular shows that we cannot have Poisson or normal convergence.
We do not know whether this holds for every simple multigraph H′, and we give just one
example.
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Example 3.16. Let H′ be the complete graph on 4 vertices, K4, and construct H by adding a single
edge to H′; thus we take s= 1 and T1 as an edge in the construction above. Let Wn and W′

n be
as above. By Theorem 3.11 (or a simple calculation), we see that a.s. W′

n →W′∞ <∞ as n→ ∞.
Moreover, we claim that P(W′∞ = 0)> 0.

To see this, let H′′ =K−
4 be K4 minus one edge, and let W′′

n be the number of copies of K−
4 in Gm

n .
Fix a large N, and consider only n>N. Let E ′

N be the event that there is a triangle in Gm
N . Let E ′′

N,n be
the event that there is a copy of K4 in Gm

n ∪Km
N with at most 2 vertices in [N]. In other words E ′′

N,n
means that there is either a copy of K4 in Gm

n , or a copy of K−
4 in Gm

n with the two non-adjacent
vertices in [N] and the two others in [n] \ [N]. Note that E ′′

N,n does not depend on the edges of Gm
N ,

and thus E ′
N and E ′′

N,n are independent. If there is a copy of K4 in Gm
n , then either E ′

N or E ′′
N,n holds,

and thus
P(W′

n = 0)� P(not E ′
N)P(not E ′′

N,n). (3.22)

If E ′′
N,n holds, then there is a copy of H′′ =K−

4 in Gm
n with at least two vertices in [n] \ [N], and thus

W′′∞ �W′′
n �W′′

N + 1. Hence, by Markov’s inequality,
P(E ′′

N,n)≤E(W′′∞ −W′′
N)=EW′′∞ −EW′′

N . (3.23)

SinceEW′′
N →EW′′∞ as N → ∞,we can choose N such that EW′′∞ −EW′′

N ≤ 1
2 ; then (3.23) implies

that P(not E ′′
N,n)� 1

2 for all n>N.Moreover,P(not E ′
N)> 0, since there is a positive probability that

all edges in Gm
N lead to 1, and then there is no triangle. Consequently, (3.22) yields P(W′

n = 0)� c,
for some c> 0 that does not depend on n>N; thus also P(W′∞ = 0)� c> 0.

If there are no copies of H′, then there can be no copies of H, and thus we conclude P(Wn = 0)�
c> 0 for all n. Hence, although EWn → ∞ by (3.19),Wn does not converge in probability to +∞,
and in particular Wn cannot be asymptotically normal.

3.1. Discussion on possible future avenues
An important direction for future work is to verify if Conjecture 3.8 holds, or in other words,
to prove that the variance of the count of any tree with at least 2 edges is of the precise order
n. Another direction for future work is to compute the leading coefficients of the means and
variances of the subgraph counts. More precise expressions will possibly also enable us to verify
if the approximation results still hold if m and (or) the number of vertices of the subgraph are
allowed to increase with n. It is also possible to prove a multivariate analogue for the normal
approximation results. This can be done using, for instance, [[4], Theorem 12.1], which also uses
Stein’s method with the size-bias coupling.

3.2. Article outline
In the next section, we state the results from Stein’s method that we apply in the approxima-
tion proofs. These results use a coupling that we construct in Section 5. In Section 6, we prove
Theorem 3.11 and some additional lemmas that will be useful in the approximation proofs
later. We prove the Poisson approximation results (Theorems 3.1 and 3.3) in Section 7 and the
normal approximation for unicyclic graphs (Theorem 3.5) in Section 8, where we also prove
Theorem 3.13. Section 9 contains the proofs of the normal approximation for trees (Theorems 3.7
and 3.9), and in the last section we give a proof of Theorem 3.15.

4. Preliminary: Stein’s method
The error bounds in the Poisson and normal approximation results that we use are obtained from
general results on Stein’s method in terms of a coupling that we now describe. Let (Iα)α∈� be a
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collection of 0-1 valued random variables. For each α ∈ �, let the random variables (Jβα)β∈� be
defined on the same space as (Iα)α∈� , satisfying

L(Jβα ;β ∈ � \ {α} )=L(Iβ ;β ∈ � \ {α} | Iα = 1). (4.1)

Note that this is a special case of the size-bias coupling appearing in the literature of Stein’s
method; see [4, 17], and also [12]. The theorem below is a direct consequence of [[2], Chapter
2, equation (1.2)].

Theorem 4.1. Let (Iα)α∈� be as above, where EIα = πα . Suppose that for each α ∈ �, there is a
coupling of (Jβα)β∈� and (Iα)α∈� such that (4.1) holds. Let W := ∑

α∈� Iα , λ := ∑
α∈� πα . Then,

dTV (L(W), Po(λ))�min
{
1, λ−1}

⎛
⎝∑
α∈�

π2
α +

∑
α∈�

∑
β 	=α

παE|Jβα − Iβ |
⎞
⎠ . (4.2)

Now, assume that there is a partition � =⋃r
j=1 �j. The next theorem quantifies how well

the random vector (
∑
α∈�j Iα)1�j�r can be approximated by a vector of independent Poisson

variables. In our application, �j is to be taken as the set of potential cycles of length �(j).

Theorem 4.2 ([ [2], Theorem 10.K]). Let Wj =∑
α∈�j Iα , EIα = πα and λj =EWj. Suppose that

for each α ∈ �, there is a coupling of (Jβα)β∈� and (Iα)α∈� such that (4.1) holds. Then,

dTV

⎛
⎝L(

{
Wj
}r
j=1 ),

r∏
j=1

Po(λj)

⎞
⎠�

1+ 2 log+ (eminj λj)
eminj λj

∑
α∈�

⎛
⎝π2

α +
∑
β 	=α

παE|Jβα − Iβ |
⎞
⎠ .

(4.3)

We now state a normal approximation result for a collection of 0-1 variables, which follows
from [[17], Theorem 3.20 and Corollary 3.24].

Theorem 4.3. Let (Iα)α∈� be a collection of 0-1 variables and let (Jβα)β∈� be defined on the
same space as (Iα)α∈� , satisfying (4.1). Define W := ∑

α∈� Iα , μ := EW, σ 2 := Var(W) and
Ws := ∑

β∈�\{K} JβK + 1, where the index K ∈ � is chosen randomly with probabilitiesP(K = α)=
EIα/μ. If Z = (W −μ)/σ , then

dW (L(Z),N (0, 1))� μ

σ 2

√
2
π

√
Var (E[Ws −W |W])+ μ

σ 3E[(W
s −W)2], (4.4)

whereN (0, 1) is the standard normal distribution.

5. Construction of the size-bias couplings
As the edges of a uniform attachment graph are independent, we can construct the coupling
appearing in Theorems 4.1–4.3 as follows. Fix the subgraphH, letG := Gm

n be the uniform attach-
ment graph and let � be the set of potential copies of H. For every α ∈ �, we couple two graphs
G and Gα by matching their attachment steps, except for the edges of α. In Gα , the edges of α
are wired in a deterministic fashion to obtain the copy α of H; whereas in G, they are generated
independently from the construction of Gα . For β ∈ �, let as above 1β be the indicator that the
subgraph β is present in G, and let 1αβ be the indicator that β is present in Gα . It follows that for
every chosen α,

L(1αβ ;β ∈ � \ {α} )=L(1β ;β ∈ � \ {α} | 1α = 1). (5.1)
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Let�−
α ⊂ � be the set of copies β ofH such that at least one edge of α has a different endpoint in β ,

and let �+
α ⊂ � \ �−

α be the set of copies ofH that share at least one edge with α, excluding α itself.
Observe that under the coupling, 1αβ � 1β for β ∈ �−

α and 1αβ � 1β for β ∈ �+
α , while 1αβ = 1β for

every β ∈ � \ (�+
α ∪ �−

α ∪ {α} ). The error bound (4.2) in Theorem 4.1 therefore simplifies to

min
{
1, λ−1}

⎛
⎝∑
α∈�

π2
α +

∑
α∈�

∑
β∈�+

α

παE[1αβ − 1β]+
∑
α∈�

∑
β∈�−

α

παE[1β − 1αβ]

⎞
⎠ ; (5.2)

noting that
∑
β∈�+

α
E[1αβ − 1β] and

∑
β∈�−

α
παE[1β − 1αβ] are, respectively, the expected gain and

loss in the copies of H after forcing α to be present in the graph G. We may simplify this further
by omitting the negative terms in (5.2) and noting that, by (5.1),

παE
[
1αβ
]
= P(1α = 1)E

[
1β | 1α = 1

]=E
[
1β1α

]
, (5.3)

which yields the simpler (but somewhat larger) error bound

min
{
1, λ−1}

⎛
⎝∑
α∈�

π2
α +

∑
α∈�

∑
β∈�+

α

E
[
1α1β

]+∑
α∈�

∑
β∈�−

α

παπβ

⎞
⎠ . (5.4)

As for Theorem 4.2, the simplified error bound is the same as (5.2) or (5.4), but with the factor
min{1, λ−1} replaced with

1+ 2 log+ (eminj λj)
eminj λj

. (5.5)

When applying Theorem 4.3, we first sample a copy K ∈ � of subgraph H with probabilities
P(K = α) proportional to E1α , and construct the graphs GK and G as above. The subgraph count
W and its size-bias versionWs can then be found in G and GK , respectively.

6. Proof of Theorem 3.11 and some useful lemmas
Here we prove some lemmas that are useful for proving the main results later. We also prove
Theorem 3.11 here, as some special cases of the result will be applied in the other proofs. To study
the expected number of copies of a graph H, we use the following definition. Let h be the number
of vertices in H.

Definition 6.1 (Vertex marks and mark sequence). Let α be a potential copy of H and suppose
that its vertices are k1 < . . . < kh.We say that the mark of a vertex ki ∈ α is the out-degree of ki in
α regarded as a directed graph (as always, with edges directed towards the smaller endpoint). The
mark sequence is (bi)1�i�h, with bi being the mark of vertex ki and for convenience, we occasionally
refer to bi = k as a k-mark.

In other words, for α to actually be a copy ofH in Gm
n , there are for each i ∈ [h] exactly bi edges

in Gm
n from ki that have to have the endpoints determined by α. Note that the mark sequence does

not entirely encode the configuration of the copy of H in Gm
n , but, together with the sequence of

vertices ki, the mark sequence gives the probability that the copy α is present in Gm
n . In fact, since

the edges in Gm
n choose their endpoints independently,

πα := P(1α = 1)=
h∏

i=1

1
(ki − 1)bi

=
h∏

i=2

1
(ki − 1)bi

, (6.1)
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where the final equality holds because always b1 = 0, since edges are directed towards lower num-
bers, and thus α has no out-edge from k1. Similarly, bh equals the degree of kh in α, since kh has
no in-edge.

Note that for a given unlabelled graph H, there is a finite number (at most h!) of non-
isomorphic labelled versions of H. Hence, in order to obtain estimates of the expected number
of copies, it suffices to consider each possible labelled version separately, and then consider
only potential copies with vertex sequences (ki)h1 where k1 < . . . < kh and ki corresponds to ver-
tex i ∈H. The mark sequence of the potential copy depends only on the labelled version of H.
Different labelled versions of H may yield different mark sequences (bi)h1, but they all have the
same length h= v(H), the number of vertices in H, and the same sum

h∑
i=1

bi = e(H), (6.2)

the number of edges in H.
For the proof of Theorem 3.11, we also use the following definition.

Definition 6.2 (F-number).We define the F-number, F(ai) of a finite sequence (ai) of natural num-
bers as

∑
ai>1 ai +

∑
ai=0 (−2), that is, we ignore all ai with ai = 1, count the ai with ai = 0 with

weight −2 and count all other ai with ai as their weight.

Proof of Theorem 3.11. Consider a connected graph H that is multicyclic and leaf-free, see
Definition 3.10. Let (bi)1�i�h be the mark sequence of a potential copy ofH. By (6.1), the expected
number of copies of H with this mark sequence can be bounded by a constant times

S(b1 · · · bh) :=
∑

1�k1<...<kh<∞

h∏
i=2

1
(ki − 1)bi

. (6.3)

Hence it suffices to show that this infinite sum is finite for every mark sequence (bi)h1.
We will show this by modifying the mark sequence (bi) in such a way that preserves the sum

in (6.2) and increases the sum S(b1 · · · bh) in (6.3) until we reach a sequence where we can show
that S(b1 · · · bh) is finite. Note that we do not claim that the modified sequences actually are mark
sequences for some copies of H; we consider the value S(b1 · · · bh) as defined by (6.3), without
worrying about a probabilistic interpretation in general.

Since H is leaf-free, each vertex in H has degree at least 2, and thus bh > 1. We change the
sequence (bi)h1 as follows: In the first round, if bh > 2 and bi = 0 for some i 	= 1, then decrease bh
by 1 and increase the last such bi (i.e., the one with maximal i) by 1. For instance, 0102023→
0102122. We repeat this process until bh = 2 or bi > 0 for all i 	= 1. In the second round, if bh = 2
and bh−1 > 1, then we repeat the same procedure with bh−1 until bh−1 = 1 or we have exhausted
all bi, i 	= 1, such that bi = 0. Continue in the same way: in the pth round (3� p< h), if bh = 2,
bh−1 = · · · = bh−p+2 = 1, and bh−p+1 > 1, then repeat the procedure for bh−p+1 as we did for
bh−1. Stopwhen suchmoves are no longer possible. Denote the final sequence by (b′

i)
h
1.We empha-

sise that these moves do not change the sum in (6.2) and never decrease
∏h

i=1 (ki − 1)−bi , since
we always shift mass in the mark sequence to the left; thus S(b1 · · · bh)� S(b′

1 · · · b′
h).

All the possible final sequences (b′
i)
h
1 are analysed below:

1. We have at least one intermediate zero left, say b′
q = 0 with 1< q< h and q maximal

among such indices. Then b′
q+1 = · · · = b′

h−1 = 1 and b′
h = 2, since otherwise we would

have modified the sequence further. In other words, we have a sequence of the form
0XXX · · · XXX011 · · · 112. This is not possible, due to the F-number of the final part of
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the sequence b′
q · · · b′

h = 0111 · · · 1112. Note that the moves that we made above cannot
have affected bi for i< q, so they were entirely in this subsequence, and it is easy to see
that each move either preserved or increased the F-number of this subsequence. Thus
0= F(0111 · · · 1112)� F(bq · · · bh). with (bi)1�i�h being the original mark sequence. A
way of interpreting the F-number is as an upper bound of the number of edges directed
from the last h− q+ 1 nodes to the first q− 1 nodes, which equals the sum of the dif-
ferences between outdegree and indegree for the last h− q+ 1 nodes. In any copy of a
connected graph H that is multicyclic and leaf-free, a vertex with mark 0 must receive at
least 2 in-edges and thus contributes at most ai = −2 to the count. A vertex i with mark
1 sends one edge but receives at least 1, and so contributes at most ai = 0 to the count.
Similarly, a vertex i with mark k> 1 may receive some in-edges and so contributes at
most ai = k to the count. Since H is a connected graph, we must have some edge con-
necting the last h− q+ 1 vertices and the first q− 1 vertices in H, and so F(bq · · · bh)> 0,
contradicting the above.

2. We have removed all the zeroes (except the first) and ended up with 0XX · · · XXb′
h where

b′
h > 2 and each X is at least 1. (In this case, we could not reduce the last number down
to 2 before running out of zeroes.) The sequence can be compared to the sequence
0111 · · · 1113 which gives a larger or equal value of (6.3). For the latter sequence we have,
if h≥ 3, by first summing over kh > kh−1,

S(011 · · · 113)=
∑

1�k1<...<kh

h−1∏
i=2

1
ki − 1

· 1
(kh − 1)3

�
∑

1�k1<...<kh−1

h−2∏
i=2

1
ki − 1

· 1
(kh−1 − 1)3

, (6.4)

which is the same sum with h replaced by h− 1; thus induction yields

S(011 · · · 113)� S(03)=
∑

1�k1<k2

1
(k2 − 1)3

=
∑
k2≥2

1
(k2 − 1)2

<∞. (6.5)

3. We have 0XXX · · · XXX2 where the X’s are at least 1. In this case, note that not all the X’s
can be 1, as H for topological reasons has more edges than vertices. Thus at least one X
is at least 2. If b′

2 = 1, we can exchange b′
2 with b′

j for some j< h such that b′
j > 1, again

without decreasing S. We can then compare the sequence to 02111 · · · 1112. By arguing as
in (6.4)–(6.5), we find

S(0211 · · · 112)� S(022)=
∑

1�k1<k2<k3

1
(k2 − 1)2(k3 − 1)2

�
∑

1�k1<k2

1
(k2 − 1)3

= S(03)<∞. (6.6)

This completes the proof of the theorem. �
For the expected number of �-cycles, which is not covered by Theorem 3.11, we use a sim-

pler version of the argument above to prove the following lemma, which essentially says that it
is enough to just consider one particular configuration of an �-cycle. We first observe that in the
mark sequence of a potential copy of a cycle, all marks are 0, 1, or 2; furthermore, there must be
equal numbers of 0-marks and 2-marks by (6.2). An �-cycle has �marks. As noted above, we must
have b1 = 0 and b� = 2, since edges are directed towards lower numbers. Note that an �-cycle has
at most ��/2� vertices of mark 0.
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Lemma 6.3. Among all potential copies of an �-cycle on given vertices k1 < . . . < k�, the configura-
tions with the mark sequence 011 · · · 112 have the largest probability to occur in Gm

n .

Proof. In a cycle, if a vertex sends j edges, it receives 2− j edges. Consider the mark sequence
(bi)�1 of a potential copy of an �-cycle. Since the F-number of the sequence of the last k� �marks
must be positive (by the earlier argument for proving Theorem 3.11), the number of 2-marks
must always be larger than the number of 0-marks, except when k= �, in which case they are
equal. Equivalently,

�∑
�−k+1

(bi − 1)� 0, with strict inequality when 1� k< �. (6.7)

This holds since the cycle is connected, and so the total number of out-edges of the last k vertices
must be larger than their total number of in-edges when k< � (k= � gives equality). The proba-
bility of the cycle appearing in Gm

n is given by (6.1). Consider all sequences (bi)�1 with bi ∈ {0, 1, 2}
such that (6.7) holds. We must have b1 = 0 and b� = 2. If there is another mark bj = 2 with j 	= �

in the sequence, let j be the largest such index. Then there must also be an index i 	= 1 with bi = 0;
let i be the largest such index. We must have i< j, since otherwise (6.7) would be violated for
k= �− i+ 1. It is then easy to see that if we change both bi and bj to 1, then (6.7) still holds, and
the value of (6.1) is increased. Consequently, the mark sequence with the largest probability is of
the form 0111 · · · 1112. �

The lemma below concerns trees and is used when we prove the normal approximation results.

Lemma 6.4. Fix the positive integer t and let T be a rooted tree with t edges and thus t + 1 vertices.
The following results concerning T hold.

(i) Among all potential copies of T on a given vertex set, the configurations with the mark
sequence 011 · · · 11 have the largest probability.

(ii) Let Nx be the number of copies of T with vertex x as its distinguished root. Then ENx =
O( logt n), uniformly for 1� x� n<∞.

Proof. 1: Let 0b2 · · · bt+1 be the mark sequence of a potential copy of T . Note first that if 2� k�
t + 1, then we have, summing over the t + 2− k last vertices,

t+1∑
i=k

bi � t + 2− k. (6.8)

In fact, this sum is the number of edges with upper endpoint in [k, t + 1], which equals the number
of edges with at least one endpoint in [k, t + 1], and in any connected graph, a proper subset of �
vertices is always adjacent to at least � edges. (To see this, collapse all other vertices into one and
pick a spanning tree with � edges in the resulting graph.)

We argue similarly to the proof of Theorem 3.11, now modifing the mark sequence as follows.
As long as some bi ≥ 2, we reduce the rightmost such bi by 1 and increase the rightmost mark
0 to 1. We can never reach a sequence ending with a proper subsequence 011 · · · 11 with some
bk = 0 (k≥ 2) and bk+1 = · · · = bt+1 = 1, because the first time this happens, all previous moves
must have been inside [k, . . . , t + 1], so the sum in (6.8) has not changed and (6.8) still holds, a
contradiction. Consequently, we do not stop until there is no mark 0 except b1, but since the sum
of all marks is t by (6.2) (and this sum is not changed), the final sequence is 011 · · · 11. As the
procedure never decreases the probability (6.1), the mark sequence 011 · · · 11 indeed yields the
largest probability.
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2: We use 1 to obtain

ENx � C

⎛
⎝ ∑

x<k1<...<kt�n

t∏
i=1

1
ki

+
t∑

r=1

∑
k1<...<kr<x<kr+1<...<kt�n

1
x

t∏
i=2

1
ki

⎞
⎠

� C

⎛
⎝ ∑

x<k1<...<kt�n

t∏
i=1

1
ki

+
t∑

r=1

∑
k1<...<kr<x<kr+1<...<kt�n

t∏
i=1

1
ki

⎞
⎠

� C
t∏

i=1

n∑
ki=1

1
ki

� C
(
log n+ 1

)t , (6.9)

which completes the proof. �

7. Proof of the Poisson approximations for cycles
In this section we prove the Poisson approximation results in Theorems 3.1 and 3.3 using
Theorems 3.11, 4.1 and 4.2. We fix in this section the integers m≥ 1 and �≥ 2 and denote by
Wn the count of �-cycles in Gm

n .

Proof of Theorems 3.1 and 3.3.We start by proving the result on the expected number of cycles
μn in (3.1). By Lemma 6.3 and (6.1), μn can be bounded above by

ψ�,m
∑

k1<...<k��n

1
(k� − 1)2

�−1∏
i=2

1
ki − 1

, (7.1)

whereψ�,m is the total number of ways of forming a potential �-cycle on � given vertices. Summing
over k1, . . . , k�−1 (in this order), the above is at most ψ�,m

∑n
k�=�

1
k�−1 , which can be bounded by

ψ�,m( log n+ 1). The calculation for the lower bound is similar, with the factor ψ�,m replaced by
1; we consider just one configuration that has mark sequence 011 · · · 11.

Next, we construct the size-bias coupling of the cycle count described in Section 5. To prove the
approximation result in Theorem 3.1, it then suffices to show that the sums in (5.4) are bounded
as n→ ∞; the error bound then follows from (5.4) and (3.1).

Let � be the set of potential cycles and let as in (6.1) πα be the probability of cycle α ∈ � being
a subgraph of Gm

n . By (6.1) and Lemma 6.3, using the notation (6.3),

∑
α∈�

π2
α � C

∑
k1<...<k��n

k−4
�

�−1∏
i=2

k−2
i � C · S(022 · · · 224)� C · S(011 · · · 113), (7.2)

which is finite by (6.5).
In the sum ∑

α∈�

∑
β∈�+

α

E
[
1α1β

]
, (7.3)

each term E[1α1β]= P[1α1β = 1] is the probability that Gm
n contains a specific copy of a graphH

obtained bymerging the cycles α and β . See Figure 3 for an illustration. There is only a finite num-
ber of such graphs H (up to isomorphism); each copy of a graph H arises for a bounded number
of pairs (α, β); and each such graphH is connected, multicyclic and leaf-free (see Definition 3.10).
Consequently, the sum (7.3) is bounded by a constant times the sum of the expected number of
copies of such graphs H, and Theorem 3.11 shows that this sum is bounded as n→ ∞.

Finally, note that if β ∈ �−
α , then the cycles α and β have at least one common vertex. Consider

a uniform attachment graph G2m
n where the firstm out-edges of any vertex 2� i� n are coloured
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Figure 3. Two examples of positively correlated cycles. In each example, the red dashed edges form the additional segment
that gives rise to the other cycle.

red, and the remainingm out-edges of these vertices are coloured blue. This graph can be thought
of as overlaying two independent copies of Gm

n . Let α·β be the subgraph of K2m
n obtained by

regarding α and β living in the red and blue parts, respectively, and taking the union of them.
(Thus, the i-th edge of vertex j, j(i), that is part of β is now written as j(i+m).) With some slight
abuse of notation, let 1α·β be the indicator of the subgraph α·β in G2m

n . By the edge independence,
we have παπβ =E1α·β , which is the probability that G2m

n contains a given copy of a graphH that,
just as in the argument for �+

α , is obtained by merging the cycles α and β . There is only a finite
number of such graphs H, so it follows from Theorem 3.11 that the expected number of copies of
any of them in G2m

n is bounded as n→ ∞, and thus∑
α∈�

∑
β∈�−

α

παπβ =E

∑
α∈�

∑
β∈�−

α

1α·β =O(1). (7.4)

This completes the proof of Theorem 3.1.
The proof of Theorem 3.3 is similar, using Theorem 4.2; we now have � =⋃r

j=1 �j, where �j
is the set of potential �(j)-cycles. We estimate (7.2)–(7.4) as above, when necessary replacing � by
�(j) and summing over j= 1, . . . , r. �

8. Proof of the normal approximation for unicyclic graphs
8.1 Proofs of (3.12) and (3.19)
We first prove (3.12) in Theorem 3.5 and (3.19) in Theorem 3.13, which have similar proofs.

Proof of (3.12).Given a potential �-cycle α, let(α) be the set of s-tuples (β1, . . . , βs) of potential
copies of Ti, i= 1, . . . , s, that can be added to α to form a potential copy of �. Denote by �cycle
the set of potential �-cycles. By independence of the edges, (3.1) and Lemma 6.4(ii), we have

μn =
∑

α∈�cycle

∑
β∈(α)

E1αE1β �O
(
logt n

) ∑
α∈�cycle

E1α =O
(
logt+1 n

)
, (8.1)

noting that in the inequality we have used the assumption that � and Ti, i= 1, . . . , s, are fixed.
For the lower bound on μn, we choose a suitable configuration on a set of vertices k1 < . . . <

k�+t . We use k1 < . . . < k� to form a cycle whose configuration has themark sequence 011 · · · 112,
and k�+1 < . . . < k�+t to construct the trees (Ti)1�i�s, taking their vertices in some order going
from the roots outwards, so that each non-root vertex in Ti has mark 1; this gives a potential copy
of � with all 1-marks except b1 = 0 and b� = 2. Hence μn is at least, for some constant c> 0, by

https://doi.org/10.1017/S0963548324000294 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000294


Combinatorics, Probability and Computing 105

first summing iteratively over k1 < . . . < k�−1,

∑
k1<...<k�+t�n

1
(k2 − 1) · · · (k�−1 − 1)(k� − 1)2

�+t∏
i=�+1

1
ki − 1

� c
∑

��k�<...<k�+t�n

�+t∏
i=�

1
ki − 1

(8.2)

=�
(
logt+1 n

)
,

as required. �
Proof of (3.19) in Theorem 3.13. The upper bound follows as in (8.1), now letting α be a potential
copy of H′ and summing over all such α, using Theorem 3.11 and, as above, Lemma 6.4(ii). For
the lower bound, it suffices to consider one fixed potential copy of H′. �

8.2 Proofs of variance estimates
We next prove the variance estimates (3.13) in Theorem 3.5 and (3.20) in Theorem 3.13.

Proof of (3.13). Recall that a connected unicyclic graph � can be constructed as follows. Let C�
be an �-cycle and let Ti, i= 1, . . . , s, be a tree with ti edges and a distinguished root, so that Ti
has ti + 1 vertices. We construct �=��,t1,...,ts by attaching Ti to C�, using a vertex of C� as the
distinguished root of Ti, and we may assume that s� � and that at most one Ti attaches to each
vertex in C�. Fixing � throughout this section, we write � = �

(n,m,�,t)
� as the set of all potential

copies of� in the uniform attachment graph G := Gm
n .

Given α ∈ �, denote by �−
α the set of potential copies of � that cannot coexist with α in the

same instance ofGm
n (because at least one edge is incompatible with the edges of α), and denote by

�+
α ⊆ � \ �−

α the set of potential copies of� that share at least one edge with α, and are compatible
with α. (Note that now α ∈ �+

α , unlike in Section 5.)
By edge independence, the covariance between α and any copy of � that does not belong to

�+
α ∪ �−

α is zero. Thus,

σ 2
n =

∑
α∈�

∑
β∈�+

α

(
E1α1β −E1αE1β

)−
∑
α∈�

∑
β∈�−

α

E1αE1β . (8.3)

Consider first the positive covariances, i.e., the first double sum in (8.3). We argue as in the
estimate of (7.3). Let αβ denote the union of the graphs α and β , and note that 1α1β = 1αβ . Then
αβ is a connected graph, which either is unicyclic (an �-cycle with attached trees) or multicyclic,
in both cases with at most 2t edges outside the 2-core; see Figure 4 for examples. Each graph αβ
arises from a bounded number of pairs (α, β), and thus it follows by Theorem 3.13, summing
over the finitely many isomorphism types of αβ that can arise, that the expected number of pairs
(α, β) in Gm

n with β ∈ �+
α and αβ multicyclic is O( log2t n). Similarly, it follows from (3.12), again

summing over a finite number of possible types of αβ , that the expected number of pairs with αβ
unicyclic is�( log2t+1 n). Consequently, we have the exact order∑

α∈�

∑
β∈�+

α

E1α1β =�( log2t+1 n). (8.4)

Furthermore, we have 0≤E1αE1β ≤E1α1β for all α and β ∈ �+
α , withE1αE1β ≤ 1

2E1α1β unless
both α and β contain vertex 1, and it is easy to see that also∑

α∈�

∑
β∈�+

α

(E1α1β −E1αE1β)=�( log2t+1 n). (8.5)

Alternatively, this follows from (8.4) and the argument for �−
α below.
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Figure 4. Examples of positively correlated copies of� (with �= 3 andT1 being a pathwith 2 edges). The blue dashed edges
are the shared edges.

We see also that the dominant term is contributed by pairs α ∈ � and β ∈ �+
α such that α and

β have the same cycle but no other common vertices.
For the negative covariances, we show that the last double sum in (8.3) is of order O( log2t n).

To do so, we modify the argument for showing the sum in (7.4) is bounded. We construct a
uniform attachment graph G2m

n where the first m out-edges of any vertex 2� i� n are coloured
red, and the remaining m out-edges are coloured blue. If α and β are two potential copies of �,
let α·β be the subgraph of K2m

n obtained by regarding α as living in the red part and β in the blue
part, and then taking the union of them (see Figure 5 for examples). Note that if β ∈ �−

α , then
α and β must share at least one vertex. Thus, α·β is connected; furthermore, it contains at least
two cycles, and it has at most 2t edges in the tree parts outside its 2-core. Once again, with some
slight abuse of notation, let 1α·β be the indicator that α·β is present in G2m

n . By independence of
the edges, we have E1αE1β =E1α·β . Since� is fixed, the total negative covariance in the last sum
in (8.3) can thus be bounded by some constant times the expected number of copies of subgraphs
of the possible types of α·β in G2m

n . Again, Theorem 3.13 implies that this is O( log2t n).
Combining the estimates above of the sums in (8.3) yields the result σ 2

n =�( log2t+1 n). �

Proof of Theorem 3.13. We have proved (3.19) in Section 8.1, and (3.20) follows from
Theorem 3.11 and an argument similar to the proof above of (3.13) (where we may simplify
and ignore the negative terms), noting that a subgraph obtained by merging two multicyclic and
leaf-free subgraphs at one or more vertices and edges is still multicyclic and leaf-free. �

8.3 Proof of Theorem 3.5
We now complete the proof of Theorem 3.5 by proving the normal approximation result (3.14).

Proof of (3.14). We bound the error terms appearing in (4.4) using the coupling described in
Section 5. Let Ws

n be the size-bias version of Wn defined there. For α ∈ �, let �−
α and �+

α be the
subsets of � defined at the beginning of this subsection, and let as in Section 5, Gα be the graph
G forced to contain all edges of α. Denote by 1αβ the indicator that a copy β of � is in Gα , and let
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Figure 5. Two examples of two negative correlated copies α and β that are embedded in the graph G2mn , where vertex j is
the common vertex and j(1) (left) and j(2) (right) are the directed edges that have different recipients in α and β. The red solid
(resp. blue dashed) edges are the edges of α (resp. β.).

1̃αβ := 1αβ − 1β . Also, if β ∈ �+
α , let β \ α be the graph obtained from β by deleting the edges that

also are in α; then 1αβ = 1β\α .
If β ∈ �+

α , then 1̃αβ ≥ 0 since if β exists inG, then it will also exist inGα ; furthermore, if β ∈ �−
α ,

then 1αβ = 0 and thus 1̃αβ = −1β , and if β /∈ �+
α ∪ �−

α , then 1̃αβ = 0. Hence, the construction ofWs

in Section 5 yields

E[Ws
n −Wn |G]=

∑
α∈�

E1α
μn

∑
β∈�

1̃αβ =
∑
α∈�

E1α
μn

(∑
β∈�+

α

1̃αβ −
∑
β∈�−

α

1β
)

= :
∑
α∈�

E1α
μn

(
R+
α − R−

α

)
. (8.6)

Taking the variance yields, using the (Cauchy–Schwarz) inequality (a+ b)2 � 2(a2 + b2) for all
real a and b,

μ2
nVar

(
E[Ws

n −Wn |G])� 2 Var
(∑
α∈�

E1αR+
α

)
+ 2 Var

(∑
α∈�

E1αR−
α

)
. (8.7)

We proceed to bound the variances on the right-hand side. The first equals

A1 :=
∑
α∈�

∑
β∈�

E1αE1βCov(R+
α , R

+
β )=

∑
α∈�

∑
β∈�

∑
γ1∈�+

α

∑
γ2∈�+

β

E1αE1β Cov
(
1̃αγ1 , 1̃

β
γ2

)
. (8.8)

In (8.8), we only need to consider pairs of γ1, γ2 that have at least one edge in common, since
otherwise 1̃αγ1 and 1̃

β
γ2 are independent. Moreover, since γ1 ∈ �+

α and γ2 ∈ �+
β , γ1 has an edge (and

thus a vertex) in common with α and γ2 has an edge (and thus a vertex) in common with β . We
argue similarly to the proof of (3.13) above, this time considering the uniform attachment graph
G3m
n , which we regard as three independent copies of G that are coloured red, blue, and green.

Let α·β∗γ1γ2 be the graph formed by a red copy of α, a blue copy of β , and a green copy of
(γ1 \ α)∪ (γ2 \ β). Then

Cov
(
1̃αγ1 , 1̃

β
γ2

)≤E
[
1̃αγ1 1̃

β
γ2

]≤E
[
1αγ11

β
γ2

]=E
[
1γ1\α1γ2\β

]
. (8.9)

and thus

E1αE1β Cov
(
1̃αγ1 , 1̃

β
γ2

)≤E1αE1βE
[
1γ1\α1γ2\β

]=E
[
1α·β∗γ1γ2

]
. (8.10)
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Note that α·β∗γ1γ2 is a connected graph, which has at least two cycles. The edges in the trees
attached to the 2-core of α·β∗γ1γ2 come from the attached trees in α, β , γ1, and γ2, and thus the
total number of them is at most 4t. Consequently, Theorem 3.13 applies. Together with (8.8)–
(8.10), and summing over the finite number of possible types of the graph α·β∗γ1γ2, we obtain

A1 =O
(
log4t n

)
. (8.11)

Similarly, the second variance on the right-hand side of (8.7) equals

A2 :=
∑
α∈�

∑
β∈�

E1αE1βCov(R−
α , R

−
β )=

∑
α∈�

∑
β∈�

∑
γ1∈�−

α

∑
γ2∈�−

β

E1αE1β Cov
(
1γ1 , 1γ2

)
. (8.12)

Again, we only need to consider pairs of γ1, γ2 that have at least one edge in common. Moreover,
since γ1 ∈ �−

α and γ2 ∈ �−
β , γ1 has a vertex in common with α and γ2 has a vertex in common

with β . We consider again G3m
n and now let α·β·γ1γ2 be the graph consisting of a red copy of α, a

blue copy of β , and green copies of γ1 and γ2. Then
E1αE1β Cov

(
1γ1 , 1γ2

)≤E1αE1βE
[
1γ11γ2

]=E
[
1α·β·γ1γ2

]
, (8.13)

and α·β·γ1γ2 is a connected graph with at least three cycles and at most 4t edges outside its 2-core.
Consequently, we now obtain from (3.12) and Theorem 3.13

A2 =O
(
log4t n

)
. (8.14)

By (8.7) and the bounds (8.11) and (8.14) above, we deduce that

μ2
nVar

(
E[Ws

n −Wn |G])=O
(
log4t n

)
. (8.15)

Moreover,Wn is determined by G, and thus the conditional Jensen’s inequality yields
Var

(
E[Ws

n −Wn |Wn]
)=Var

(
E
[
E[Ws

n −Wn |G] |Wn
])
�Var

(
E[Ws

n −Wn |G]). (8.16)

Noting also that σ 2
n =�( log2t+1 n) by (3.13), the first error term in (4.4) is therefore

μn
σ 2
n

√
2
π

√
Var

(
E[Ws

n −Wn |Wn]
)=O

(
log4t/2−(2t+1) n

)=O
(
log−1 n

)
. (8.17)

We now turn to the second error term in (4.4). By first conditioning on the graph G, we have
in analogy with (8.6),

E
[
(Ws

n −Wn)2 |G]=∑
α∈�

E1α
μn

(
R+
α − R−

α

)2 ≤ 2
∑
α∈�

E1α
μn

(
(R+
α )

2 + (R−
α )

2), (8.18)

and thus
μnE

[
(Ws

n −Wn)2
]≤ 2

∑
α∈�

E1α(R+
α )

2 + 2
∑
α∈�

E1α(R−
α )

2. (8.19)

We argue as above. The first sum on the right-hand side equals

B1 :=
∑
α∈�

E1α
∑
γ1∈�+

α

∑
γ2∈�+

α

Cov
(
1̃αγ1 , 1̃

α
γ2

)
. (8.20)

Hence, using (8.9),

B1 �
∑
α∈�

∑
γ1∈�+

α

∑
γ2∈�+

α

E1αE
[
1γ1\α1γ2\α

]=∑
α∈�

∑
γ1∈�+

α

∑
γ2∈�+

α

E1α∗γ1γ2 , (8.21)

where α∗γ1γ2 is the subgraph formed by a red copy of α and a blue copy of (γ1 \ α)∪ (γ2 \ α),
regarded as a subgraph of K2m

n coloured red and blue as above, and 1α∗γ1γ2 is the indicator that
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this subgraph exists in G2m
n . Since γ1, γ2 ∈ �+

α , they have at least one vertex each in common with
α, and thus α∗γ1γ2 is connected. Moreover, α∗γ1γ2 has at least one cycle, and at most 3t edges
outside its 2-core. Consequently, we now obtain from (3.12) and Theorem 3.13

B1 =O
(
log3t+1 n

)
. (8.22)

Similarly, the second sum in (8.19) equals

B2 :=
∑
α∈�

E1α
∑
γ1∈�−

α

∑
γ2∈�−

α

Cov
(
1γ1 , 1γ2

)
�
∑
α∈�

∑
γ1∈�−

α

∑
γ2∈�−

α

E1αE
[
1γ11γ2

]

=
∑
α∈�

∑
γ1∈�−

α

∑
γ2∈�−

α

E1α·γ1γ2 , (8.23)

where α·γ1γ2 is the subgraph formed by a red copy of α and a blue copy of γ1 ∪ γ2. We obtain
from (3.12) and Theorem 3.13

B2 =O
(
log3t+1 n

)
. (8.24)

We obtain from (8.19), (8.22), and (8.24) that
μnE

[
(Ws

n −Wn)2
]=O

(
log3t+1 n

)
. (8.25)

By this and (3.13), we conclude that the second error term in (4.4) is
μn
σ 3
n
E[(Ws

n −Wn)2]=O
(
log3t+1−3(2t+1)/2 n

)=O
(
log− 1

2 n
)
. (8.26)

Finally, we use (8.17) and (8.26) in (4.4) and obtain (3.14), which completes the proof of
Theorem 3.5. �

9. Proof of the normal approximations for trees
In this section we prove Theorem 3.7 and Theorem 3.9.

9.1 Proof of Theorem 3.7.
We start by proving (3.16): By Lemma 6.4 (i) and (6.1), an upper bound is, by summing in the
order k1, . . . , kt ,

μn � C
∑

1�k1<...<kt�n

t∏
i=2

1
ki − 1

� C
∑
kt�n

1= Cn, (9.1)

The lower bound follows similarly, or simply because there are �(nt) potential copies of �, and
each has probability� n−(t−1).

(3.17): To obtain an upper bound on σ 2
n , we argue as in the proof of (3.13). We use again (8.3),

and the only difference from the argument in Section 8 is that for α ∈ � and β ∈ �+
α , their union

αβ does not have to contain a cycle; however, it is always a connected graph with at most 2t edges.
There is still a finite number of types of αβ , and we obtain by using (depending on the number of
cycles in αβ) (3.16), (3.12) and Theorem 3.13∑

α∈�

∑
β∈�+

α

E1αβ �O(n)+O
(
log2t n

)=O(n), (9.2)

which implies (3.17).
If σ 2

n =�(n), thenwe can use Theorem 4.3 to prove the asymptotic normality ofWn in a similar
vein as before. Again, we argue as in the proof of Theorem 3.5 in Section 8, and the only difference
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is that the graphs α·β∗γ1γ2, α·β·γ1γ2, α∗γ1γ2, α·γ1γ2 do not have to contain a cycle. As in the
estimation of variance above, we therefore use not only (3.12) and Theorem 3.13 but also (3.16) in
the estimates; as a result we obtain the bound O(n) in (8.15) and (8.25). Hence, if σ 2

n =�(n), the
terms in (4.4) are

μn
σ 2
n

√
Var(E[Ws

n −Wn |G])=O(n−1/2),
μn
σ 3
n
E[(Ws

n −Wn)2]=O(n−1/2), (9.3)

implying (3.18).

9.2 Proof of Theorem 3.9.
Recall that the upper boundO(n) for the variance σ 2

n is already proved in (3.17). To obtain a lower
bound, we state and prove the following general lemma. In our application of it, X and ξν will be
taken as the count of trees Wn and the recipient of a directed edge ν in the uniform attachment
graph Gm

n .

Lemma 9.1. Let (ξν)ν∈I be a family of independent random variables (where I is an arbitrary index
set), and let X be any random variable such that EX2 <∞. For each ν ∈ I , let

Xν := E(X | ξν)−EX. (9.4)

Then
Var(X)�

∑
ν∈I

Var(Xν)=
∑
ν∈I

Var
[
E(X | ξν)

]
. (9.5)

Proof. Assume first that I is finite and define
Y :=

∑
ν∈I

Xν . (9.6)

Note that
EY =

∑
ν∈I

EXν = 0. (9.7)

It follows from (9.4) that the random variableXν is a function of ξν . Consequently, the variables
Xν are independent, and thus

E(Y2)=Var(Y)=
∑
ν∈I

Var(Xν). (9.8)

Moreover, (9.4) implies also
E [(X −EX)Xν]=E [E(X −EX | ξν)Xν]=E

(
X2
ν

)=Var(Xν). (9.9)

Consequently,

E [(X −EX)Y]=
∑
ν∈I

E [(X −EX)Xν]=
∑
ν∈I

Var(Xν)=E(Y2). (9.10)

Hence,
E [(X −EX − Y)Y]= 0. (9.11)

and thus
E
[
(X −EX)2

]=E
[
(X −EX − Y)2

]+ 2E [(X −EX − Y)Y]+E
[
Y2]

=E
[
(X −EX − Y)2

]+E
[
Y2]

≥E
[
Y2] . (9.12)
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The result follows from (9.12) and (9.8), which completes the proof for finite I .
If I is infinite, the case just proved shows that for every finite subset I1 ⊂ I , we have

Var(X)≥
∑
ν∈I1

Var(Xν), (9.13)

which implies (9.5). �
Remark 9.2. From a more abstract point of view, a minor modification of the proof above shows
that Y is the orthogonal projection of X −EX onto the linear subspace of L2 consisting of sums
of the type

∑
ν∈I fν(ξν), and the inequality (9.5) is thus an instance of the fact that orthogonal

projections in L2 never increase the variance (or the norm).

Proof of Theorem 3.9. Fix j ∈ [n] and a ∈ [m]. Recall that the edge j(a) in Gm
n is randomly chosen

as one of the edges ji(a) (i ∈ [j− 1]) in Km
n ; we denote the recipient of the edge j(a) by ξ = ξj,a; thus

ξ is uniformly distributed on [j− 1], and j(a) = jξ (a). We condition on ξ , and decomposeWn as

Wn =W(0)
n +W(1)

n +W(2)
n , (9.14)

where

• W(0)
n is the number of copies of S� that do not contain the edge ji(a) for any i ∈ [j− 1].

• W(1)
n is the number of copies α of S� that contain j(a) = jξ (a) and such that the center of α

is j.
• W(2)

n is the number of copies α of S� that contain j(a) = jξ (a) and such that the center of α
is ξ .

Then W(0)
n is clearly independent of ξ . Moreover, for every i< j, E(W(1)

n | ξ = i) is the expected
number of stars S�−1 with center j and �− 1 leaves in [n] \ {i, j}. Since the edges from j have their
endpoints uniformly distributed in [j− 1], this number does not depend on i. In other words,
E(W(1)

n | ξ ) does not depend on ξ .
Similarly, E(W(2)

n | ξ = i) is the expected number of stars S�−1 with center i and �− 1 leaves in
[n] \ {i, j}. Hence,

E
(
W(2)

n | ξ = i
)=

�−1∑
q=0

W′
j,i,q, (9.15)

where W′
j,i,q is the number of such copies of S�−1 with q leaves in (i, n] and r := �− 1− q in

[1, i). Assume for simplicity that i� n/10. Then, counting the number of ways to choose first the
vertices and then the edges of such a copy, and multiplying with the probability that it exists in
Gm
n ,

EW′
j,i,q =

(
i− 1
r

) ∑
i<i1<...<iq�n

i1,...,iq 	=j

(
m
r

)
r!mq(i− 1)−r

q∏
k=1

(ik − 1)−1

=
(
1+O

(1
n

))(m
r

)
mq 1

q!

⎛
⎝ n∑

p=i+1

1
p− 1

+O
(1
n

)⎞⎠
q

=
(
m
r

)
mq

q! logq
(n
i

)
+O

(1
n

)
. (9.16)
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Since log (n/i) is positive and monotonically decreasing in i ∈ [n/10, n), it follows that if n
10 � i�

k< j� n, then

E
(
Wn | ξ = i

)−E
(
Wn | ξ = k

)=E
(
W(2)

n | ξ = i
)−E

(
W(2)

n | ξ = k
)

=
�−1∑
q=0

(
W′

j,i,q −W′
j,k,q
)

=
�−1∑
q=0

(
m
r

)
mq

q!
(
logq

(n
i

)
− logq

(n
k

)
+O

(1
n

))

� m�−1

(�− 1)!
(
log�−1

(n
i

)
− log�−1

(n
k

))
+O

(1
n

)
. (9.17)

In particular, if i ∈ [n/10, n/4] and k ∈ [n/3, n/2], then

E
(
Wn | ξ = i

)−E
(
Wn | ξ = k

)
� m�−1

(�− 1)!
(
log�−1 4− log�−1 3

)
+O

(1
n

)
� c. (9.18)

for some c> 0 if n is large enough, say n� n1.
Let ξ ′ be an independent copy of ξ = ξj,a and write g(ξ ) := E(Wn | ξ ). Assume n� n1. Then

(9.18) shows that g(i)− g(k)� c if i ∈ [n/10, n/4] and k ∈ [n/3, n/2]; hence it follows that if j>
n/2, then

Var
[
E(Wn | ξ )]=Var g(ξ )= 1

2E
(
g(ξ )− g(ξ ′)

)2
� 1

2P
(
ξ ∈ [n/10, n/4]

)
P
(
ξ ′ ∈ [n/3, n/2]

)
c2 � c1, (9.19)

for some constant c1 > 0.
We now apply Lemma 9.1 with the family of all random variables ξj,a, thus letting I =

{2, . . . , n} × [m]. Then (9.5) and the lower bound in (9.19) (for j� n/2) show that for n� n1,

Var(Wn)�
n∑

j=�n/2�

m∑
a=1

c1 =�(n). (9.20)

Since VarWn = σ 2
n =O(n) by (3.17), this completes the proof. �

10. Proof of Theorem 3.15

Proof of Theorem 3.15. Let h′ be the number of vertices in H′, and let r ∈ [h] be the number of
them such that attaching an edge at that vertex yields a copy of H.

Fix a copy H′
0 of H′ in Gm∞, and let its vertices be k1 < · · ·< kh′ . For every j ∈N and a ∈ [m],

let Ija be the indicator of the event that the edge j(a) in Gn
m has exactly one endpoint in H′

0 and
moreover that attaching j(a) toH′

0 yields a copy ofH. Then, for n� kh′ , the number of copies ofH
in Gm

n that contain the given subgraph H′
0 is

WH′
0

n :=
n∑
j=1

m∑
a=1

Ija =
n∑

j=kh′+1

m∑
a=1

Ija +O(1). (10.1)

Condition on the existence of H′
0. Then the variables Ija in the final sum are independent and

have the Bernoulli distributions Be (r/(j− 1)). It follows by the lemma below that as n→ ∞,
WH′

0
n / log n a.s.−→ rm. Thus, every copy ofH′ inGm∞ has asymptotically rm log n attached edges that
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make copies of H. Summing over the a.s. finite number of copies H′
0 of H′ in Gm∞, we obtain

Wn
log n

a.s.−→ rmW′∞, (10.2)

which verifies Conjecture 3.14 in this case. �
The proof used the following simple law of large numbers; it is certainly known but for

completeness we include a proof.

Lemma 10.1. Let Ii ∈ Be (pi) be independent random variables with pi ∈ [0, 1], for i= 1, 2, . . . . If∑∞
i=1 pi = ∞, then ∑n

i=1 Ii∑n
i=1 pi

a.s.−→ 1. (10.3)

Proof. Let bn := ∑n
i=1 pi. We have

∞∑
n=1

E(In − pn)2

b2n
�

∞∑
n=1

pn
b2n

= 1
p1

+
∞∑
n=2

bn − bn−1
b2n

� 1
p1

+
∞∑
n=2

∫ bn

bn−1

ds
s2

= 1
p1

+
∫ ∞

b1

ds
s2
<∞. (10.4)

Since the In are independent, it follows that b−1
n
∑n

i=1 (Ii − pi)
a.s.−→ 0, see [ [8], Theorem VII.8.3],

which is equivalent to (10.3). �
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