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Abstract

Plastics are an emerging class of environmental contaminants whose impacts are not yet fully
understood. Trace elements, another class of environmental contaminant and commonly
associated with plastics, have been widely researched and are known to be toxic to organisms.
However, the combined impacts of these two contaminants on the environment remain unclear.
Here, we reviewed the current knowledge of the types and concentrations of trace elements
associated with plastics, the role of plastics in creating new exposure routes, the processes
involved in the release of trace elements from plastics, and the transport of plastics through
environmental compartments. Trace elements inherent in plastics, due to addition during
manufacture for formation or functional properties, are typically present at higher concentra-
tions than those that are acquired from the environment, and consequently are likely to have
greater impacts. Trace elements are continuously released into environmental matrices from
plastics but may be released at higher concentrations when exposed to rapid changes in
environmental conditions (pH, ionic strength, redox potential, salinity, UV levels). Plastics
potentially provide additional exposure routes for organisms to trace elements. For example,
exposure to trace elements may occur when organisms ingest plastics, use them for shelter and
nest building or as a surface to attach onto. Further research to improve our understanding of
this complex contaminant should focus on environmentally relevant studies on trace element
release and their effects.

Impact statement

This systematic review summarises current knowledge on toxic trace elements that are associ-
ated with plastics, including inherent trace elements (intentionally or non-intentionally added)
as well as those acquired from the environment. It considers how, once in the environment,
plastics cycle through ecosystem compartments and assesses the potential impacts of associated
trace elements on the organisms they interact with. Mechanisms through which trace elements
may be released into the environment or organisms were assessed along with the environmental
fate of plastics to determine the impacts of plastic-associated trace elements and identify settings
where impacts are likely to be higher. Routes through which organisms may be exposed to trace
elements, that would not occur in the absence of plastics, were also identified. Key knowledge
gaps were identified, and as plastics are ubiquitous environmental contaminants, further
research on the environmental impacts of plastic-associated trace elements is urgently needed.

Introduction

Plastics are an emerging class of environmental pollutants which have been identified in all
environmental compartments so far examined (air, biota, soil and water), including remote areas
such asAntarctica (Furness, 1985; Reed et al., 2018;Webb et al., 2019; Pereira et al., 2020; Aves et al.,
2022). Human reliance on plastic has been driven by its low cost and versatility in a wide range of
applications. Plastic is used for packaging, building and construction materials, transport, elec-
tronics, medical supplies, and household, leisure and sporting equipment (PlasticsEurope, 2021).

More recently it has been acknowledged that plastics often contain trace elements (TEs) added
during the production and manufacture of plastic items, as well as acquiring them from the
environment (Turner and Filella, 2021). The potential for plastics to act as vectors of TEs over
long distances and increase the exposure of organisms to TEs is of concern. Trace elements are
non-degradable persistent contaminants and therefore may bioaccumulate and biomagnify in
biota, thus resulting in greater effects on organisms higher up the food chain (Wu et al., 2016b).

The environmental fate of plastics and their cycling within and between environmental
compartments is a key factor to be considered when assessing the impacts of plastic-associated
TEs. Sources of plastic entering the environment include wastewater treatment plant (WWTP)
discharges, landfill leachate and aerial resuspension, agriculture, fishing, illegal and accidental
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littering, and the breakdown of large plastic materials through
general wear and tear during usage (Wu et al., 2016a; Koelmans
et al., 2019; Li et al., 2020; Ruffell et al., 2021). Once released into the
environment there is a continuous flow of plastics between air, soil,
biota, surface water, groundwater and sediments (Li et al., 2020).
Major transport mechanisms include water cycling, deposition,
wind erosion, incomplete incineration of plastic waste, wave action
and sea turbulence, and interactions with biota (Ryan, 2015; Dris
et al., 2017; Allen et al., 2020; Prinz and Korez, 2020; Watt et al.,
2021;Weiss et al., 2021; Pantos, 2022). The transport of plastics can
be affected by the density and the additives present, as well as the
size and morphotype of each individual particle (Hoellein et al.,
2019; Kumar et al., 2021; Shamskhany et al., 2021). These charac-
teristics of individual particles can change depending on environ-
mental conditions such as UV exposure, weathering and degree of
biofouling, making it difficult to predict the fate of environmental
plastics (Moret-Ferguson et al., 2010; Liço et al., 2014; Lagarde et al.,
2016).

This review examines the current state of knowledge around the
interaction between plastic-associated TEs and the environment.
The relative environmental hazards of TEs added during manufac-
ture are compared to those of TEs acquired from the environment,
and the composite contaminant that the TE-plastic combination
forms. Potential exposure routes of organisms to TEs associated
with plastics, and the role environmental conditions play in the
level of risk are also examined. The knowledge gaps that need
addressing to better understand the impacts and risk of plastics, a
now ubiquitous class of anthropogenic contaminant, are identified.

Plastic-associated trace elements

Trace elements may either be inherent within plastics, due to their
use in polymer manufacturing, used as additives for improving or
adding desirable properties, or acquired from the surrounding
environment through adsorption due to physicochemical surface
properties of plastic (Bridson et al., 2021; Turner and Filella, 2021).

Inherent

Many toxic substances are inherent within plastic products, having
been deliberately added in order to add or increase some desired
properties of the plastic. These are referred to as additives (Bridson
et al., 2021). Additives (organic or inorganic) are added to the base
polymer during production for improving fire, UV and heat resist-
ance; for adding specific or desirable colours; and as fillers for
reducing cost or increasing hardness and stiffness (Gradin et al.,
1989; Sendra et al., 2021). Plastics may also have other toxic
substances incorporated within the polymermatrix during produc-
tion, such as catalyst residues (e.g., antimony compounds used as a
catalyst in the production of polyester) and impurities that are
unintentionally added, referred to as non-intentionally added sub-
stances (NIAS) (Bridson et al., 2021). The amount of TE additives
present in the final plastic product as a mass percentage varies
between polymer and product types but can range from a few
percent to half of the total mass, in the case of inorganic fillers
(Hahladakis et al., 2018). Trace element use, commonly used
compounds, and chemical formula are summarised in Table 1.
Some inorganic additives have multiple purposes, such as zinc
oxide (ZnO, filler and pigment) and antimony trioxide (Sb2O3,
flame retardant and pigment) (Turner and Filella, 2021). These
TEs are not chemically bound to the polymer matrix and as a result

can diffuse throughout the polymer and into the surrounding
environment due to concentration gradients (Wilson et al., 1982;
Mercea et al., 2017; Chen et al., 2019; Mao et al., 2020). This creates
concern regarding the impacts of TEs being released into the
surrounding environment.

Acquired

The ubiquity of both TEs and plastic in the environment allows for
interactions potentially resulting in TEs being acquired by plastics
through adsorption. Factors determining the adsorption of TEs to
plastics include polymer type, extent of weathering, particle size and
concentration, salinity, pH, dissolved organic matter, and tempera-
ture (Yang et al., 2019; Wang et al., 2019a; Guo et al., 2020; Wang
et al., 2020b; Aghilinasrollahabadi et al., 2021). The rate at which
polymers adsorb TEs generally occurs rapidly, and there is a
constant transfer of TEs between the plastics and matrices they
are in contact with (Guo et al., 2020).

There are three key mechanisms by which TEs have been
reported to accumulate in plastics (Figure 1). Firstly, sorption
through surface complexation or electrostatic interactions can
occur when charged TEs interact with polar or charged regions
on plastic surfaces (Zhang et al., 2020a; Cao et al., 2021). Charged
regions on polymer surfaces arise from the presence of alkene
(C=C), carbonyl (C=O) and hydroxyl (-OH) functional groups
which can result from environmental weathering (Bandow et al.,
2017). Certain plastics (polystyrene [PS], polyethylene terephthal-
ate [PET] and polyvinyl chloride [PVC]) contain polar regions
inherent to the polymer chain (Brennecke et al., 2016; Liu et al.,
2021). The presence of charged additives and other contaminants
also results in charged regions on polymer surfaces enabling elec-
trostatic interactions with TEs (Holmes et al., 2012; Lin et al., 2022).
Liu et al. (2022) investigated the adsorption of cadmium (Cd),
copper (Cu), chromium (Cr) and lead (Pb) to polypropylene
(PP), PS and PVC microplastics (MPs) and identified that halogen
bonds and π- π interactions also contribute to the adsorption of TE
to plastics in addition to electrostatic interactions. Trace elements
can also become associated with environmental plastics through
sorption to biofilms and hydrous oxides on the surface of the
plastics (Ashton et al., 2010; Guan et al., 2020).

Adsorption of TEs is dependent on the polymer type and the
TE. For example, adsorption of Cu wasmuch greater for polyamide
(PA) and polymethyl methacrylate (PMMA) (323.6 and 41.03 μg/g,
respectively) compared to polyethylene (PE), PS, PET and PVC
(<10 μg/g) (Yang et al., 2019). This enhanced adsorption was
attributed to the polar surface functional groups of PA and PMMA.
In contrast, greater amounts of strontium (Sr) adsorbed onto PP
and PS than PA (52.4, 51.4 and 31.8 μg/g, respectively) (Guo et al.,
2020). The extent of adsorption of Cu to UV-aged PA and PMMA
was correlated with the change in C=O functional groups (Yang
et al., 2019). Similarly, UV-ageing of PET increased the adsorption
capacity for Cu from 51.2 to 178.2 μg/g, as well as Zn from 32.7 to
81.5 μg/g (Wang et al., 2020b).

In laboratory studies, it has been demonstrated that water
chemistry plays a key role in the adsorption of TEs to plastics.
Changing pH alters the adsorption of different TEs, withmaximum
adsorption generally reached at pH 6–10 for the studied TEs, Cd,
Cu, Pb and Zn (Gao et al., 2019; Wang et al., 2019a; Wang et al.,
2020b). At lower pH, adsorption was less due to the presence of H+

ions which may outcompete positively charged TEs for binding
sites. Conversely at higher pH, TEs begin to form hydroxyl com-
plexes and precipitate, in some cases reducing adsorption (Wang

2 Hayden Masterton et al.

https://doi.org/10.1017/plc.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/plc.2023.15


et al., 2020b). Changes in salinity and ionic strength can alter the
adsorption of metal ions to plastics (Wang et al., 2019a). Adsorp-
tion of Cd to high-density polyethylene (HDPE) was reduced from
approximately 68 μg/g to 11 μg/g by the addition of 1 mg/L sodium
chloride (NaCl) due toNa outcompeting Cd for binding sites on the
surface and Cl complexing with Cd (Wang et al., 2019a). This
increased ionic strength of high saline conditions also compresses
the electrical double layer surrounding plastic particles, lowering
repulsive forces and increasing aggregation of plastics, leading to a
decrease in surface area and hence adsorption capacity (Alimi et al.,
2018). While increased dissolved organic matter (DOM) concen-
tration in solution increased the sorption of Ag to PS MPs, the
increased sorption was attributed to greater adsorption of silver
(Ag) to DOM bound to PS MPs (Abdolahpur Monikh et al., 2020).

The presence of additives within the polymer may also play a
role in the adsorption of TEs. For example, adding the flame
retardant hexabromocyclododecane to virgin PS increased the
adsorption of Cu, nickel (Ni) and Zn (Lin et al., 2022). The
enhanced adsorption was attributed to the polar bromine groups
within the flame retardant. No other studies considering the effects
of additives on TE adsorption were able to be found.

The ambient temperature may determine the extent of adsorp-
tion of TEs to plastics as TE adsorption is endothermic (Liu et al.,
2021). In a laboratory study, increasing the temperature from 288 K
to 318 K increased the adsorption of Zn from 74.8 to 153.7 μg/g and
Cu from 119.4 to 268.4 μg/g onto PET (Wang et al., 2020b).

Similarly, increasing the temperature was also reported to increase
the adsorption of Pb and aluminium (Al) onto PET, PA and
ethylene vinyl acetate (EVA), albeit to a lesser extent (Öz et al.,
2019). In agreement with the laboratory studies, a marine field-
based study off the coast of China related the higher concentration
of Cd and arsenic (As) adsorbed at one of the three sites to the
higher temperatures (Gao et al., 2019).

The study byGao et al. (2019) is currently the only published field
study measuring the accumulation of TEs onto plastics. Peak con-
centrations for As, Cd, Cr, Cu, manganese (Mn), Pb and Zn were
0.037, 0.023, 0.084, 0.223, 31.3, 0.441 and 0.014 μg/g, respectively,
over 9 months. Chromium and Pb had the greatest adsorption to
both plastics, peaking at 3 months and plateauing thereafter. The
concentration of TEs adsorbed changed with respect to changing
concentration in the surrounding water, showing a dynamic equi-
librium between the two. Exceptions were Cu andMn accumulation,
having no correlation to the surrounding water concentrations.

Trace element concentrations of environmental plastics

The concentrations of TEs associated with environmental plastics
for a range of environmental compartments from multiple studies
are summarised in Table 2. Factors identified as influencing the
sorption of TEs to environmental plastics include polymer type,
population density, nearby land uses and ambient TE concentra-
tions (Ashton et al., 2010; Yang et al., 2019; Carbery et al., 2020).

Table 1. Trace elements used as additives within plastics products, including the most commonly used compounds and chemical formula

Use Metal Compound
Chemical
formula Reference

Antioxidants and
UV stabilisers

Ti Titanium oxide TiO (Ambrogi et al., 2017)

Ni Nickel chelates (Ambrogi et al., 2017)

Biocides Ag, As, Cd, Co, Cu,
Mn, Ni, Zn

Inert matrix containing metal ion (Hahladakis et al., 2018; Prunier et al., 2019)

Catalyst Sb Antimony trioxide Sb2O3 (Turner and Filella, 2021)

Cr Chromium trioxide Cr2O3 (Prunier et al., 2019)

Ti Titanium chloride TiCl4/TiCl3
(with MgCl2)

(Prunier et al., 2019)

Co Cobalt diacetate Co(CH3CO2)2 (Hawkins, 2001)

Ge Germanium dioxide GeO2 (Rosenberg, 2008)

Sn Tin octanoate C16H30O4Sn (Masutani and Kimura, 2014)

Filler Ba Barium sulfate BaSO4 (Prunier et al., 2019; Turner and Filella, 2021)

Ca Calcium carbonate CaCO4 (Turner and Filella, 2021)

Mg Talc Mg3Si4O10(OH)2 (Turner and Filella, 2021)

Zn Zinc oxide ZnO (Prunier et al., 2019)

Flame retardants Br, Cl, F, I Halogen based (Ambrogi et al., 2017)

Al Metal hydrates Al(OH)3 (Ambrogi et al., 2017; Hahladakis et al., 2018)

Mg Metal hydrates (Ambrogi et al., 2017)

Sb Antimony trioxide Sb2O3 (Filella and Turner, 2018)

Heat stabilisers Sn Organotin (Ambrogi et al., 2017)

Ba, Ca, Cd, Pb, Zn Metallic salts (Ambrogi et al., 2017; Turner and Filella, 2021)

Pigments Ce, Cs, Cr, Cu, Fe,
Hg, Mo, Pb, Sb,
Se, Ti, Zn

Various inorganic compounds (Berte, 2001; Charvat, 2003; Ambrogi et al., 2017; Filella and
Turner, 2018; Filella et al., 2020; Catrouillet et al., 2021; Pfaff,
2021, 2022; Turner and Filella, 2021)
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Colour was reported multiple times to be the source of high
concentrations of many TEs (Cd, Cr, Cu, molybdenum [Mo], Pb,
Sb and selenium [Se]) due to the presence of TE-based pigments
inherent in the polymer (Filella and Turner, 2018; Fernandes et al.,
2020; Catrouillet et al., 2021). A key finding is that the concentra-
tions of TEs acquired from the environment are, in most cases,
orders of magnitude lower than those that are inherently present.
For example, barium (Ba), Cd, Cr, mercury (Hg), Pb, Sb and Zn are
common additives to plastics. Themaximum concentrations (μg/g)
for acquired and inherent TEs, respectively, were Ba (59 and
143,000), Cd (11 and 6,760), Cr (14.2 and 77,100), Hg (0.1 and
810), Pb (151 and 23,500), Sb (0.5 and 27,100) and Zn (288 and
26,700). The orders ofmagnitude differences between adsorbed and
inherent TE concentrations (Table 2) highlight that intentionally
added TEs present a greater threat to the environment. Concentra-
tions of TEs adsorbed on environmental plastics are lower than
laboratory-based studies, indicating the adsorption capacities of
plastics demonstrated in the laboratory are not environmentally
relevant.

Release of plastic-associated trace elements

Trace elements can be released from plastics due to changes to
either plastic properties (weathering and fragmentation) or envir-
onmental conditions (UV exposure, temperature, pH, salinity, and
ionic strength). The extent of desorption will depend on the source
of the TE (acquired vs inherent) as well as the environmental
setting. As the concentrations of some TEs (Cd, Cr, Hg, Mn, Pb,
Sb, Se and Zn) inherent within plastics can be elevated, these TEs
will diffuse from the plastic into the surrounding environment due

to the concentration gradient (Bridson et al., 2021). For example,
inherent Cu, Mn, Ni, Pb and Zn were released from virgin PVC
incubated in alkaline paddy soils (Meng et al., 2021) and Sb is
leached from PET bottles into bottled water (Westerhoff et al.,
2008).

The extent of environmental weathering will determine the pro-
portion of inherent TEs released, as weathering exposes more of the
interior of the plastic. For example, the release of a Cd-containing
pigment was greater from acrylonitrile butadiene styrene (ABS)
particles that were mechanically abraded (0.64 μg/mL) compared
to new particles (0.112 μg/mL) (Fowles, 1977). Correspondingly
more adsorbed Zn was released from aged low-density polyethylene
(LDPE) (71.9%) compared to unaged LDPE (10.8%) into an artificial
stormwater solution (Aghilinasrollahabadi et al., 2021).

UV exposure will also alter the proportion of inherent TEs
released, especially for photosensitive compounds such as cad-
mium sulfide (CdS) and cadmium selenide (CdSe) (Halpin and
Carroll, 1974), two commonly used pigments. UV irradiation of
ABS increased Cd release from 0.332–2.26 to 5.6–17.6 μg/mL
(Fowles, 1977). Similarly, 6 hours of UV exposure resulted in four
to five times greater release of Sb from PET bottles compared to
bottles with no UV exposure (Westerhoff et al., 2008). This
enhanced release of Sbwas attributed to the oxidation of the catalyst
residue in PET, Sb2O3 (oxidation state Sb(III)), likely to Sb(OH)6

�

(oxidation state Sb(V)), thus increasing its solubility (Hu et al.,
2014). Increased temperature can also enhance the release of TEs.
For example, higher concentrations of Sbwere released fromPET at
80 °C (7.8–9.7 ppb) compared to 22 °C (0.5–0.64 ppb) (Westerhoff
et al., 2008) as well as greater release of Cd at 37.5 °C (0.332–0.64 μg/
mL) compared to 19 °C (0.124–0.22 μg/mL) (Fowles, 1977).

Figure 1. Interactions of trace elements with surface functional groups and charged regions of plastics in the environment. Adapted from Cao et al. (2021).
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Table 2. Comparison of trace elements acquired from the environment and total (acquired and inherent) for plastics collected from different environments

Trace element concentration environmentally acquired (ppm) Total trace element concentration, acquired and inherent (ppm)

As – 0.05–1.53 – – – – – 0.08–0.11 2.55 1.7–26.4 – 3.08–6.92 – 4–21 – <LOD-0.1856 – –

Trace Element Ba – 2.42–59.08 – – – – – – – – – – – 236–143000 – – 0.4–1.8 20–42.7

Cd 0.6 <LOD-11.46 10.15–54.3 0.002–0.01 0.0013–0.00544 <LOD-0.492 0.04–0.16 8.43 23–6760 – 3.4–8.2 0.003–4285 117–4640 25–147 0.0077–0.5083 0.1–0.2 0.2–815

Co – – – – 0.025–0.101 <LOD-0.787 – 3.82 – – 0.09–0.11 0.002–0.1 – – – 0.01–0.1 0.5–2.7

Cr 14.2 <LOD-2.77 – – 0.019–0.151 0.03–0.74 <LOD-7.97 0.07–0.1 67.56 17–77100 – 1.9–2.5 0.3–2541 21–1240 2.7–46 – 0.2–0.8 5.7–94.1

Cu 13.7 0.09–142.66 24 0.1–1 0.06–0.61 0.08–0.61 <LOD-7.73 0.07–0.11 28.13 – 0.012–0.365 0.22–0.24 0.1–31.9 9.9–718 7.9–123 1.0692–4.0634 0.7–11.7 16.6–111

Hg 0.1 – 0.007–0.015 – – – – – – 3.3–810 – – – 54–273 – 0.0001–0.0008 – –

Mn 14.5 0.02–174.84 – <LOD-9 1.28–8.31 0.19–8.25 0.075–308 0.11–1.77 – – – 4.1–4.7 – – – 0.1–3.9 42.5–437

Mo – – – – 0.007–0.015 – – – – – – <LOD-0.5 0.001–2.1 – – – 0.3–0.4 1–1.4

Ni – – – – 0.04–0.27 <LOD-0.562 0.04–0.09 23.52 – – 0.29–0.33 0.05–23 17–555 8.4–173 <LOD-0.0952 1.2–1.3 6.2–14.9

Pb 13.1 0.01–18.37 10.3–151.3 – 0.15–1.08 0.04–0.85 <LOD-10.3 0.15–0.85 34.23 5.9–23500 0.152–2218 3.3–5.3 0.01–8314 6.3–17500 3.4–47 0.0313–1.4048 0.2–1.2 5.4–418

Sb 0.5 – – – 0.006–0.017 – – – 18.43 33.1–27100 – – 0.0001–240.3 154–12600 31–243 – 0.1 0.3–27.5

Se – <LOD-0.031 – – – – – 0.07–0.1 1.3 156–1670 – – – 214–563 – – 0.1–0.2 0.1–3.2

Sn – – – – 0.018–0.114 – – – 10.21 – – – – 34–2090 – – 0.1–1.4 0.5–0.6

Zn – 0.23–95.2 0.55–0.657 0.3–8 0.42–2.34 0.6–3.61 <LOD-288 0.07–0.1 94.63 – – 5.2–10.6 1.2–327.8 5.1–26700 6.4–36 1.66–4.28 9.6–322 107–540

Environment
type

Terrestrial Marine Marine Marine Marine Marine Marine Marine Terrestrial Freshwater Freshwater Marine Marine Marine Marine Marine Freshwater Freshwater

Sampling
Location

China Australia Vancouver Brazil England Croatia England Nigeria Germany Lake
Geneva

Malaysia Northeast
Atlantic

North
Atlantic
gyre

England England Malaysia Italy Italy

Sample Type MPs Debris Debris Pellets Pellets Pellets Pellets Debris Plastic
>5 mm

Debris MPs Debris Debris Debris Debris Plastics
<10 mm

Pellets MPs

Study (Zhou
et al.,
2019)

(Carbery
et al.,
2020)

(Fernandes
et al.,
2020)

(Vedolin
et al.,
2018)

(Ashton
et al.,
2010)

(Maršić-Lučić
et al., 2018)

(Holmes
et al.,
2012)

(Fred-Ahmadu
et al., 2022)

(Weber
et al.,
2022)

(Filella and
Turner,
2018)

(Purwiyanto
et al.,
2020)

(Martins
et al.,
2020)

(Prunier
et al.,
2019)

(Turner,
2016)

(Turner and
Solman,
2016)

(Noik et al.,
2015)

(Campanale
et al.,
2022)

(Campanale
et al.,
2022)
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In addition to solution pH having a key role in the adsorption of
TEs, it also determines the extent of release of TEs from plastics. At
low pH values, H+ ions exchange with TEs already adsorbed to the
plastic, and at high pH, TEs can form insoluble hydroxides. Similar
competition between ions for binding sites is observed with
increased salinity, mainly increased NaCl concentrations
(Holmes et al., 2014; Wang et al., 2019a). The smaller hydrated
ion radius of Na+ results in the exchange with many TEs adsorbed
to plastics, such as Cd (Nightingale, 1959; Wang et al., 2019a). The
formation of Cl complexes with inherent TEs can also result in the
release of TEs in saline conditions.

Ingestion of plastics by organisms can result in a greater and
more rapid release of TEs and release TEs thatmay otherwise not be
released due to extreme gut conditions such as lower pH and
increased surface area resulting from chewing or grinding. The
elevated concentrations of inherent TEs may also result in acute
exposures (Jones and Turner, 2010; Holmes et al., 2020; Smith and
Turner, 2020). Simulated gastric fluids of marine seabirds have
been demonstrated to release significant proportions of TEs from
<1–78% of Cd, cobalt (Co), Cr, iron (Fe), Mn, Pb and Sb (Turner
and Lau, 2016; Shaw and Turner, 2019; Holmes et al., 2020; Smith
andTurner, 2020; Turner et al., 2020). These studies had incubation
times from 120 to 220 hours; however, a large proportion of each
TE was released rapidly followed by a gradual release to steady-
state. Release of Pb was the most rapid, reaching a steady-state
within the first time point (0.25 hours) (Holmes et al., 2020).
Similarly, Cd (0.009–0.53%), Cu (14–19%) and Zn (14–16%) were
released from plastics into simulated gastric fluids of marine inver-
tebrates over a 5- to 6-hour period (Jones and Turner, 2010; Martin
and Turner, 2019). Again, a rapid release of TEs occurred, with
steady-state reached within 30 minutes in some cases, with the
exclusion of the continual release of Cu over the 5-hour period
(Jones and Turner, 2010). In addition to organisms ingesting plastic
and associated TEs in a single region, they can also be transported
long distances by organisms. For example, shearwaters (family
Procellariidae) can travel over 1,700 km to forage for food for their
chicks, and frequently consume plastic (Skira, 1986). This foraging
behaviour can result in the translocation of plastics and associated
TEs between significantly different ambient environmental con-
tamination levels circumventing gradual loss across gradients.
Consequently, this may result in food contaminated with high TE
loading relative to the local environment being fed to their young in
addition to uptake into the foraging adult. Further research on the
bioavailability of plastic-associated TEs to organisms is needed. The
majority of studies to date have used simple gastric simulants. The
more complex nature of digestive tracts also needs to be considered
including short-term release due to regurgitation, release into other
parts of the digestive tract and more studies on the complex nature
of seabird guts, including high lipid contents (Smith and Turner,
2020).

Impacts of plastics and trace elements

Understanding the potential impacts of plastic-associated TEs is
critical for determining the threat plastic pollution pose to ecosys-
tems. There is however a significant knowledge gap in this area.
Studies examining the impacts of plastic and TEs have, to date,
focused on the determination of the interactions between plastics
and TEs through co-exposure experiments (plastics and TEs added
together as separate contaminants) rather than using plastics with
bound TEs (either acquired or inherent). Such experiments do not

accurately represent real-life exposure conditions resulting from
plastic pollution. No synergistic negative effects were reported for
the majority of these studies (Oliveira et al., 2018; Fu et al., 2019;
Wang et al., 2019b; Lian et al., 2020; Sıkdokur et al., 2020; Zhang
et al., 2020b; Cheng et al., 2021; Dong et al., 2021; Yang et al., 2022).
However, some did see significant reduction in plant root mass,
decreased growth and increased TE accumulation in tissues, bio-
availability and mortality rate (Lu et al., 2018; Abbasi et al., 2020;
Dong et al., 2020; Tunali et al., 2020; Zhou et al., 2020; Wang et al.,
2020a; Li et al., 2021). The key difference between the majority of
studies reporting impacts and those that reported no effect was the
choice of polymer. Most studies reporting reduced or no adverse
toxicological effects used polymers with active surface functional
groups (PS, PET and PVC). Onmixing, the TEsmay have adsorbed
to the plastics, potentially reducing their bioavailability and conse-
quently the toxicological effect of the TEs themselves (Dong et al.,
2021). This is not environmentally relevant as the surface func-
tional groups of plastics will become fully saturated soon after
entering the environment (Guo et al., 2020). Therefore, the pres-
ence of plastics would not decrease the exposure of TEs to organ-
isms as suggested in the cited studies as the majority of TEs will
likely remain waterborne. In contrast, toxic effects of TEs were
more frequently reported for studies using PE, which has a low level
of surface functional groups. In addition, the above studies also do
not take into account TEs that are possibly inherent within the
virgin plastic used which could be causing effects as well.

There is a significant lack of data on the impacts of plastic-
associated TEs on organisms. To date, only two studies on the
impacts due to plastic-associated TEs have been published (Wang
et al., 2020c). Polyethylene MPs with sorbed Cd were more toxic to
water fleas (Moina monogolica) in comparison to virgin PE-MPs.
Exposure of virgin PVC to zebrafish (Danio rerio) resulted in
increased metallothionen levels, a metal-binding protein, due to
the release of inherent Pb (Boyle et al., 2020). The paucity of data on
the toxicity of plastic-associated TEs is a critical data gap as inherent
TEs can be present at elevated concentrations.

The environmental impacts of TEs adsorbed to plastics are likely
to be lower than for inherent TEs.When considering the impacts of
adsorbed TEs on the environment it could be assumed that they
have comparable impacts to TEs sorbed to natural organicmatter as
natural organic matter and plastics have similar environmental
cycling and fate. The higher concentrations of inherent TEs are
of greater environmental concern. These TEs are released over time
and in some cases rapidly. Environmental conditions that can
change rapidly leading to greater release include pH, ionic strength,
redox potential, UV exposure and salinity. Settings where these
rapid changes can happen include plastic release from sediment to
water, transport from freshwater to saltwater, rapid biofilm
removal, discharges from WWTPs and landfills, and ingestion.
Ingestion should also be highlighted as a significant source of high
TE exposure as organisms may incorrectly select plastic as food
based on colour (Okamoto et al., 2022) and high inherent TE
concentrations are frequently due to their use as pigments. Con-
versely, environments where these conditions are more stable, such
as sediments and groundwater, will slow down the release of TEs,
resulting in lesser impacts.

New routes by which organisms are exposed to plastic-
associated TEs are of further concern. This includes the above
ingestion pathway, but also from direct chemical transfer to organ-
isms without the protection of an exoskeleton that uses environ-
mental plastics for shelter, for nest building or as a surface to live on
(Reynolds et al., 2019). Even if the TE exposure is low relative to
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other pathways, it is an additional exposure route that would not
occur in the absence of plastic and the TEs that they contain.

More environmentally relevant studies are required to address
the significant knowledge gaps that exist. This includes the depart-
ure from the use of virgin plastics with no adsorbed TEs and
unknown inherent TEs, to the use of plastics containing known
levels of inherent or acquired TEs under ecologically relevant
conditions.

Conclusions

Trace elements that are deliberately added or inherent within
plastics are present at much higher concentrations than those
acquired in the environment and may therefore have a greater
impact on organisms and the environment due to continuous
release over time. Factors that determine the extent of TE release
include the source of TEs, properties of the associated plastic, the
extent of weathering and environmental conditions such as pH and
redox potential. Key knowledge gaps identified by this review
include the significance of the release of inherent TEs from plastics
into environmental matrices over long periods of time, how rapid
changes in conditions may cause localised TE hotspots, determin-
ing the bioavailable portion of released TEs into marine organisms,
determining if plastics provide previously unrecognised exposure
pathways to organisms, including direct chemical transfer to organ-
isms in contact with plastics and associated TEs, and lastly deter-
mining the impacts of inherent TEs and environmentally acquired
TEs towards organisms. As plastics are now considered to be
ubiquitous environmental contaminants, further research on the
environmental impacts of plastic-associated TEs is urgently
needed.
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