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Abstract-The alteration process of a subvolcanic rock with calcic plagioclase, pyroxene, and olivine as 
major components was investigated by X-ray diffraction (XRD) and analytical and transmission electron 
microscopy (TEMlAEM). Experimental interaction with I M NaOH solution led to the formation of 
dioctahedral beidellite to Fe-rich montmorillonite after 1 and 3 d of reaction. This range of smectite 
composition is similar to that from natural subvolcanic-derived soil formed from the same parent material. 
After 14 d of reaction, a berthierine-smectite (B-S) interstratified clay had partially replaced the smectite. 
Although, the presence of smectite interlayers prevented analysis of pure berthierine, berthierine-rich B­
S interstratifications have a composition similar to pure berthierine. After 40 d, the alteration process led 
to a 7-A S interstratification whose composition falls between greenalite and lizardite. A series of amor­
phous materials were also found in the 14 and 40-d experiments. The most abundant of these is a Si-Ca­
Fe-rich material, whose chemical composition approaches that of the starting rock. In contrast, two other 
amorphous materials had a smectitic composition. 
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INTRODUCTION 

Clay minerals such as smectites are widely distrib­
uted over the earth's crust as the weathering products 
of volcanic glasses or rock-forming minerals. Smec­
tites have been synthesized at low temperature using 
various starting materials. Farmer et ai. (1991a, 
1991b) found that saponite- and nontronite-like struc­
tures developed from aluminosilicate precipitates di­
gested in solutions containing Mg and Fe ions, re­
spectively. Plee et al. (1987) and Schultz et ai. (1987) 
reported the synthesis of beidellite from aluminosili­
cate gel in NaOH solutions at 3OO-340°C. Grauby et 
al. (1993) synthesized smectite in the beidellite-sapo­
nite series using synthetic gels at 200°C. On the basis 
of transmission electron microscopy (TEM) analysis, 
they concluded that the Al-Mg series was continuous 
between beidellite and montmorillonite end-members. 
The formation of beidellite using aluminosilicate gel 
as starting material was also investigated by Kloprog­
ge et ai. (1990), with experiments performed in NaOH 
solutions with pH ranging from 7 .5 to 13.5 at a tem­
perature of 350°C. According to these authors, the 
most highly crystallized beidellite was obtained at 
350°C, 1 Kbar, 5 d of reaction, and a pH of 10 in the 
starting solution. Kawano and Tomita (1992) reported 
the formation of beidellite by hydrothermal alteration 
of volcanic glass below 200°C. More recently, the 
same authors (Kawano and Tomita, 1994) studied the 
growth of smectite from leached layers during the ex­
perimental alteration of albite in deionized-distilled 
water at temperatures ranging from 150 to 225°C. 

Berthierine, less common in nature than smectite, is 
an iron-rich aluminous trioctahedral 1: I-type phyllos-
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ilicate belonging to the serpentine-kaolin group (Bai­
ley, 1980). This layer silicate has been previously re­
fered to as "septechlorite", "septechamosite", cha­
mosite, aluminous lizardite, and "7-A.. chlorite" . Ber­
thierine is chemically similar to chamosite, the 
iron-rich chlorite end-member. The chemical formula 
of berthierine, as proposed by Brindley (1982). is (R2+, 
R3+ ,DMSi2_xAlx)Os(OH)4, where R2+ consists of Fe2+. 
Mg2+, and Mn2+; R3+ comprises Fe3+ and Ap· in oc­
tahedral sites, and 0 represents possible vacant octa­
hedral sites. 

Berthierine is not easy to distinguish from Fe-rich 
chlorites because of the overlap of many of their x­
ray diffraction (XRD) lines. For example. Fe-rich 
chlorite has very intense even basal (ool, I = even) X­
ray reflections and therefore may be very similar to a 
mixture of clinochlore and berthierine. Berthierine also 
shares similarities with kaolinite, a dioctahedral mem­
ber of the serpentine-kaolin group. 

Berthierine commonly occurs in marine sediments, 
especially in marine oolitic ironstone formations (e.g., 

Bhattacharyya, 1983). It usually derives from marine 
rocks or from rocks influenced by marine waters dur­
ing early diagenesis (Hallam and Bradshaw, 1979). 
However, non-marine occurrences have also been de­
scribed. Taylor (1990), for instance, reported a ber­
thierine from non-marine Wealden (Early Cretaceous) 
sediments in southeast England. He described an in­
traformational conglomerate containing pisoids and 
pseudo-ooids with a quartz-siderite-berthierine mineral 
assemblage deposited in a fresh-to-brackish-water 
mudplain. Toth and Fritz (1997) described an Fe-rich 
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Table 1. EMPA analyses and structural formulae of the major minerals of the starting material. 

Clinopyroxene Olivine Plagioclase 

Oxides 2 2 2 4 6 

Si02 49.75 49.73 36.37 36.44 49.58 49.92 48.13 51.39 63.08 67.55 
AIP3 3.16 3.34 O.oI 0.00 31.59 31.59 32.73 30.50 23.65 20.32 
MgO 13.35 13.27 31.43 31.54 0.02 0.03 0.02 0.03 0.39 0.00 
FeO 8.11 8.23 30.99 30.80 0.33 0.31 0.31 0.31 0.40 0.04 
CaO 21.10 20.92 0.31 0.30 14.40 14.43 15.69 13.30 3.87 0.70 
Na20 0.38 0.42 0.02 0.01 3.11 3.18 2.44 3.77 8.43 1.14 
Ti02 2.00 2.11 0.03 0.03 0.07 0.07 0.06 0.10 0.05 0.00 
K20 0.00 0.02 0.00 O.oI 0.17 0.18 0.12 0.25 1.23 0.28 
MnO 0.19 0.16 0.42 0.46 0.00 0.00 O.oI 0.00 O.oI 0.00 

Total 98.04 98.23 99.66 99.69 99.26 99.71 99.52 99.64 101.11 100.03 

Structural formulae 
Si 1.89 1.89 2.00 2.00 
IVAI 0.11 0.11 0.00 0.00 
VIAl 0.03 0.04 0.00 0.00 
Mg 0.76 0.75 2.57 2.58 
Ti 0.06 0.06 0.00 0.00 
Fe 0.26 0.26 1.42 1.41 
Mn O.oI O.oI 0.02 0.02 
Na 0.03 0.03 0.00 0.00 
Ca 0.86 0.85 0.02 0.02 
K 0.00 0.00 0.00 0.00 
k oct. cat. 2.00 2.00 4.03 4.03 
k (Na, K, Ca) 0.89 0.88 0.02 0.02 
0 6.01 6.01 8.02 8.01 

berthierine from a Cretaceous laterite whose formation 
occurred in an exclusively non-marine depositional en­
vironment. 

Berthierine is considered to be a precursor of chlorite 
during diagenesis (e.g., Longstaffe et al., 1992) and, in 
fact, chlorite-berthierine intergrowths were described by 
Jiang et al. (1992). In these assemblages of apparent 
hydrothermal origin, berthierine is thought to have 
formed as a replacement for chlorite under non-equilib­
rium, retrograde conditions. Other authors have report­
ed the same kind of intercalation (Lee and Peacor, 1983; 
Ahn and Peacor, 1985; Amouric et aI., 1988; Jahren 
and Aagaard, 1989; Hillier and Velde, 1992). 

Because most syntheses of smectite were performed 
using synthetic starting materials under hydrothermal 
conditions, the aim of the present study is to understand 
the formation of clay minerals from a subvolcanic rock 
during its interaction with 1 M NaOH solution at room 
temperature. Clearly such a high pH solution is not usu­
al in natural conditions, but the use of this pH was 
necessary to accelerate the reaction process. We used 
smectite from the subvolcanic-derived soil to compare 
experimental conditions with natural ones. The use of 
high-resolution transmission electron microscopy and 
analytical electron microscopy (HRTEMIAEM) was in­
dispensable to characterize the different phases gener­
ated during the alteration process, their chemical com­
positions, and their textural relationships. Interstratifi­
cations of berthierine-smectite (hereafter B-S) and fer­
roan lizardite-smectite (hereafter Fe-rich L-S) not 
previously reported are described. 

2.28 2.29 2.22 2.35 2.77 2.95 
1.72 1.71 1.78 1.65 1.23 1.05 

O.oI 0.01 O.oI 0.01 O.oI 0.00 

0.28 0.28 0.22 0.33 0.72 0.94 
0.71 0.71 0.78 0.65 0.18 0.03 
O.oI 0.01 O.oI O.oI 0.07 0.02 

1.00 1.00 1.00 1.00 0.97 0.99 
8.02 8.02 8.02 8.02 8.01 7.99 

MATERIAL AND EXPERIMENTAL METHODS 

Material 

Geological setting. Experimental alteration was per­
formed using a subvolcanic rock from the External 
Zone of the Betic Cordilleras, near the locality of Al­
cala La Real, southern Spain. The intrusive subvol­
canie rock is emplaced in Triassic sedimentary units 
(Trias Keuper), mostly preserved as small tectonic 
blocks, and usually termed ophites in the regional bib­
liographic references (e.g., Portugal-Ferreira et al., 
1995). The outcrop of the subvolcanic rock has been 
exposed in an abandoned quarry for more than twenty 
years. The subvolcanic-derived soil, hereafter VS, was 
studied by Drief and Nieto (2000). The material was 
used for further comparison with the alteration prod­
ucts found in the present study. Because the occur­
rence of the soil is topographically free from other 
influences, the subvolcanic rock is the only source ma­
terial for the soil. Moreover, the phases, as determined 
by X-ray diffraction and TEMIAEM, show an assem­
blage similar to the parent rock, but with a significant 
amount of smectite and lacking 7-A. clay minerals 
(Drief and Nieto, 2000). 

Petrography. Morata et al. (1997) distinguished two 
groups among the ophites on the basis of petrographic 
characteristics. The group to which our subvolcanie 
rock belongs is characterized by the presence of ol­
ivine. Calcic plagioclase and pinkish Ti-rich augite 
have an ophitic texture. Ti-rich amphibole and biotite 
are accessory minerals, together with apatite and Fe-
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Figure I. X-ray diffraction patterns of air-dried reaction 
products formed during experimental alteration of subvolcan­
i.c rock with I M NaOH solution. PI = plagioclase and Py = 
pyroxene. 

Ti ores. Quartz is absent. We have studied the starting 
rock by TEM/ AEM to be certain that the rock does 
not contain clay minerals. 

Geochemistry. The whole-rock chemistry of the starting 
material determined by X-ray fluorescence (XRF) was 
(in wt. %): 49.35, Si02; 19.42, Al20 3; 8.20, Fe20 ); 4.73, 
MgO; 0.11, MnO; 9.46, CaO; 4.13, Na20; 0.73, K20; 
1.30, Ti02 ; and 0.20, P20 S' The loss on ignition (L.O.I.) 
is 1.66 wt. %. Electron microprobe analysis (EMPA) 
data of the major minerals are listed in Table I. 

Treatment of the material with 1 M NaOH solution 

The subvolcanic rock was gently ground in an agate 
mortar. The specific surface area obtained was 3.16 
m2/g. An amount of 3 g of the sample was placed in 
a glass flask with 500 mL of I M NaOH solution at 
room temperature for 1, 3, 14, and 40 d. After each 
reaction period, solids and solutions were separated. 
The residual material was then cleaned by distilled­
deionized water to remove adhering salts. 

Examination of the material 

X-ray diffraction. The starting material and the whole 
residual solid fraction after each experiment time were 
smeared on glass slides and allowed to dry under at­
mospheric conditions. Three slides for each experi­
ment were prepared for further X-ray analysis. One of 
them was saturated with ethylene glycol at 80°C for 
24 h to ensure maximum saturation and another was 
heated at 550°C for 1 h. X-ray diffractograms were 
obtained using a Philips PW-171O diffractometer (with 
graphite monochromater and automated slit) operating 
at 40 kV and 40 rnA, with a scanning speed of 2 °26/ 
min using CuKa radiation. 

Electron microscopy. Transmission electron microscopy 
was performed with a Philips CM20 instrument 
equipped with an EDAX solid state ultrathin-window 
energy dispersive X-ray (EDX) detector ["Centro de 
Instrumentaci6n Cient{fica" (C.I.c.), Granada Univer­
sity). A small part of solid produced at 3 and at 40 d 
of reaction was dispersed in distilled water and then 
deposited on collodion films coated on copper and gold 
grids. The samples were air-dried at room temperature. 
In addition, a small portion of residual solid produced 
after 14 and after 40 d of reaction was embedded in 
epoxy resin from which a thin section prepared with 
Canadian-Balsam was made. Copper rings were at­
tached to selected zones and the corresponding areas 
were detached by gentle heating and then ion thinned 
using a Gatan 600 ion mill and carbon coated for TEM 
observation. Acceleration voltage of the microscope 
was 200 kV and a lens aperture of 40 ~m was used as 
a compromise between amplitude and phase contrast for 
the images, so reflections with d values >0.4 nm were 
used for the lattice-fringe images. AEM analyses were 
obtained only from thin edges in a scanning TEM 
(STEM) mode «400 counts/s) using a 4-nm diameter 
beam and 20 X 100 nm scanning area. A low-back­
ground condenser aperture and an analytical Be sample 
holder were employed to improve spectrum quality. 
Muscovite, albite, biotite, spessartine, olivine. and titan­
ite were used to obtain k-factors to correct X-ray inten­
sities by the thin-film method of Lorimer and Cliff 
(1976). Average errors for analyzed elements (two stan­
dard deviations), expressed as a percentage of the atom­
ic proportions, are 6 (Na), 3 (Mg), 2 (AI), 4 (K), 4 (Ca), 
5 (Ti), 3 (Mn), and 3 (Fe). A long counting time (200 
s) was used because no alkali loss was observed during 
the analysis. Iron was assumed to be in ferric form for 
smectite (Drief and Nieto, 2000) and in ferrous form 
for berthierine and ferroan lizardite as is usual for the 
sepentine group (e.g. , Abad-Ortega and Nieto, 1995; 
Guggenheim et aI., 1982). 

RESULTS 

X-ray study 

The X-ray diffraction patterns of the material treated 
for 1 d showed a 14-15-A peak (Figure I). This phase 
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Figure 2. X-ray diffraction patterns of the oriented samples corresponding to (a) 3-d and (b) 14-d reaction products. EGC 
= glycoJated sample, and 550°C = heated to 550°C. 

was expanded to 16-17 A by treatment with ethylene 
glycol and collapsed by heating to 10 A (not shown). 
The same patterns were observed for the 3-d reaction 
(Figures 1 and 2a). This behavior is similar to that of 
natural smectites. At 14 d, a new phase precipitated. 
The X-ray pattern of this phase shows a peak at 12.47 
A (Figures 1 and 2b), which expanded to 13.77 A after 
treatment with ethylene glycol (Figure 2b). When 
heated, this phase was partially destroyed and col­
lapsed to 9.55 A. Another peak at 14.28 A shows the 
partial persistence of smectite at 14 d of reaction. The 
same patterns occur after 40 d (not shown). 

Transmission electron microscopy 

Reaction products after three days. After 3 d of re­
action, only smectite had formed. The structural for­
mulae of this smectite based on AEM analyses (on the 
basis of 11 oxygen atoms), along with that of the 
smectite from the soil derived from the subvolcanic 
rock, are listed in Table 2. These formulae show that 
both Si and Al contents range widely. Silica varies 
between 3.23-3.98 per formula unit (Pfu) whereas AI 
ranges from 2.16 to 1.44 pfu. The ranges in which Mg 
and Fe vary are wide as well, suggesting that different 
varieties of smectites are present. The Fe content is, 
in general, higher than that of Mg. These analyses 

showed a very heterogeneous interlayer composition 
with regard to the interlayer cations. 

A plot of the octahedral composition of the reaction 
after 3 d and VS smectites in an AIMg-AW-AIFe ter­
nary system (Giiven, 1988) showed that the 3-d reac­
tion products and VS smectite compositions do not fall 
within a single field assigned to a particular species of 
dioctahedral smectite, but to fields characteristic of 
beidellite to Fe-rich montmorillonite (Figure 3). The 
VS and the reaction smectites have similar dioctahed­
ral compositions. However, their composition begins 
to diverge as they approach the AIMg-AIFe side of the 
plot: the reaction smectite composition is richer in Fe, 
whereas that of the VS smectite is richer in Mg. Gen­
erally, the scattering of the analyses for both samples 
ranges between beidellite and Fe-rich montmorillonite. 

The substitution of VIAl by Fe in the octahedral sites 
varies widely, providing a well-defined negative rela­
tionship (Figure 4a), which is better defined for the 
reaction smectite (R = 0.96) than the VS smectite. A 
similar negative relationship is also observed between 
VIAl and Mg (Figure 4b), although it is better defined 
for the VS smectite. No significant relationship was 
found between Si and Mg or between Fe and Si (not 
shown). Nevertheless, there is a poorly defined posi­
tive relationship between Fe and Mg (Figure4c). Fi-
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Table 2. AEM data for the 3-d reaction product and VS smectites using both copper and gold grids. Analyses were normalized 
for 100 and 2 (OH). 

Si IVAI VIAl Mg Fe I oct. cat. K Ca Na :!: Int. Chao 

Structural formulae of the smectite formed at 3 d of reaction 
Copper grids analyses 

1 3.58 0.42 1.38 0.22 0.49 2.09 0.18 0.09 0.00 0.36 
2 3.61 0.39 1.16 0.25 0.69 2.10 0.09 0.10 0.00 0.29 
3 3.79 0.21 1.41 0.09 0.49 1.99 0.10 0.08 0.00 0.26 
4 3.74 0.26 1.18 0.20 0.61 1.99 0.09 0.17 0.00 0.43 
5 3.64 0.36 1.80 0.13 0.14 2.07 0.00 0.12 0.00 0.24 
6 3.56 0.44 1.14 0.18 0.73 2.05 0.04 0.18 0.00 0.40 

Gold grids analyses 

7 3.88 0.12 1.68 0.12 0.21 2.01 0.00 0.02 0.10 0.14 
8 3.98 0.02 1.71 0.12 0.04 1.93 0.00 0.00 0.38 0.38 
9 3.23 0.77 0.91 0.42 0.76 2.09 0.00 0.10 0.16 0.36 

10 3.53 0.47 1.54 0.15 0.32 2.01 0.00 0.27 0.00 0.54 

Structural formulae of the smectite of the subvolcanic-derived soil 
(from Drief and Nieto, 2000) 

Copper grids analyses 

1 3.23 0.77 1.44 0.26 0.47 2.17 0.25 0.10 0.00 0.45 
2 3.86 0.14 1.27 0.39 0.39 2.05 0.07 0.13 0.00 0.33 
3 3.73 0.22 1.78 0.15 0.19 2.12 0.02 0.07 0.00 0.16 
4 3.81 0.19 1.28 0.52 0.34 2.14 0.04 0.11 0.00 0.26 
5 3.74 0.26 1.27 0.39 0.49 2.15 0.04 0.06 0.00 0.16 
6 3.70 0.30 1.30 0.34 0.44 2.08 0.04 0.17 0.00 0.38 
7 3.44 0.56 1.72 0.18 0.23 2.13 0.11 0.08 0.00 0.27 
8 3.69 0.31 1.36 0.32 0.42 2.10 0.09 0.10 0.00 0.29 
9 3.69 0.21 1.67 0.21 0.29 2.17 0.10 0.08 0.00 0.26 

10 3.43 0.57 1.33 0.36 0.49 2.18 0.18 0.09 0.00 0.36 
11 3.62 0.38 1.09 0.61 0.49 2.19 0.12 0.15 0.00 0.42 

Gold grids analyses 

12 3.27 0.73 1.63 0.22 0.24 
13 3.11 0.89 0.94 0.22 1.07 
14 3.16 0.84 1.84 0.19 0.11 
15 3.84 0.16 l.l0 0.35 0.54 

nally, there is a weakly defined negative relationship 
between Al and Si for the VS smectite that is absent 
for the reaction smectite (Figure 4d). 

Reaction products after fourteen days. At 14 d of re­
action, TEM images show smectite layers with -I-nm 
spacing (Figure Sa), curved at the edges of the packets. 
A berthierine-smectite interstratification was found 
also (Figure 5b). The structural formulae of B-S, cal­
culated from AEM analyses performed on B-S packets 
are listed in Table 3. X-ray results show that, on the 
whole, smectite layers are more abundant than ber­
thierine layers in the B-S interstratifications. However, 
the analyses in Table 3 were performed in berthierine­
rich areas to characterize the chemical composition of 
berthierine and then normalized to 10 0 and 8 (OH) 
assuming that Fe was in ferrous form. In Table 3, Ca 
and K, which cannot enter the octahedral sites of ber­
thierine, indicate smectite layers intergrown with ber­
thierine. Ca is the dominant interlayer cation of smec­
tite interstratified with berthierine at 14 d of reaction. 
Although some analyses showed a small amount of K, 
this cation is generally absent. Tetrahedral and octa-

2.10 0.03 0.21 0.23 0.69 
2.24 0.01 0.12 0.16 0.40 
2.13 0.06 0.16 0.25 0.63 
1.99 0.08 0.06 0.10 0.29 

hedral cations of B-S are plotted in Figure 6. B-S in­
terstratifications showed that VIAl varies widely (0.56-
1.36), whereas Fe remains approximately constant 
(Figure 6a). This was not the case for Mg vS. VIAl, 
where a generally negative relationship is observed 
(Figure 6b). A positive relationship between Si and 
octahedral Al is well defined in Figure 6f. A poor neg­
ative relationship between VIAl and IV Al is also ob­
served in Figure 6c. These changes in the composition 
of B-S are attributed to the number of smectite layers 
intergrown in the berthierine packets rather than to the 
berthierine layers. The analyses in Table 3 show the 
common characteristics of chlorite minerals contami­
nated by dioctahedral phases, such as high Si, low oc­
tahedral-cation sums, and the presence of large cations 
common to interlayer sites. 

TEM images also revealed the presence of amor­
phous material intimately intergrown with smectite 
particles. Spindle-like smectite packets that have de­
tached from the edges of plagioclase (Figure 7a) occur 
with an amorphous Fe-rich material (Figure 7b), as 
shown by chemical analyses of these areas. Fe-rich 
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natural smectite (VS) 

AI Fe 
Figure 3. Projection of the octahedral composition of both 
3-d reaction product and VS natural-soil smectites in the ter­
nary system AlMg-AIAl-AlFe as proposed by Giiven (1988). 
OT = Otay montmorillonite, CH = Chambers montmorillon­
ite, TA = Tatatilla montmorillonite, WY = Wyoming mont­
morillonite, BL = Beidellite, Fe-BL = Fe-rich beidellite, Fe­
M = Fe-rich montmorillonite. AEM analyses are those of 
Table 2. 

amorphous material was sometimes found included 
within smectite packets (Figure 8). Fe-, Si-, and Ca­
rich amorphous substances appear associated with 
smectite particles forming ovoidal to ellipsoidal struc­
tures with sizes of between 25-50 nm in diameter (A 
in Figure 9a and 9b). Another feature of these spher­
ical structures is that they constitute aggregates of 
mostly electron-dense spheres from 2 to 10 nm in di­
ameter (Figure 9b and 9c). Two other types of non­
crystalline substances appear intimately associated 
with this amorphous material and the smectites. One 
consists of hollow spheres with more electron-dense 
walls than centers (A" in Figure 9c). The second shows 
fringe contrast and morphologies similar to strongly 
curved clay-precursor particles (A' in Figure 9c). Bet­
ter contrast was not possible despite tilting the sample. 
Chemical analyses (not shown) of the two kinds of 
amorphous material (A' and A") reveal compositions 
similar to that of the adjacent smectite. 

Reaction products after 40 days. Reaction products are 
similar to those found after reactions were inspected 
after 14 d, with all the same phases present. Randomly 
stratified 0.7- and lO-nm packets were observed (Fig­
ure 10). Figure 10 also shows a two-layer stacking 
sequence with a spacing of 1.4 nm. Unlike the 14-d 
sample, the AEM analyses (Table 4; Figure 6) showed 
this sequence to be ferroan lizardite and smectite in­
terstratifications. The plot of octahedral and tetrahedral 

cations in Figure 6 depicts the same characteristics as 
the B-S after 14 d. In both cases, the scatter of points 
is related to smectite content. However, it can be in­
ferred that the B-S present after 14 d and the Fe-rich 
L-S interstratification are two distinct phases; the plots 
of the tetrahedral and octahedral compositions fall 
within different compositional areas. The values for 
the Mg, Si, and Al contents are quite different; the 
quasi-saturation of the tetrahedral sheet by Si led to a 
decrease in AI in both the tetrahedral and octahedral 
sites. The Mg content after 40 d is greater than after 
14 d: the loss of AI from the octahedral sheet allowed 
the incorporation of Mg from solution to form a Mg­
rich interstratification, with Fe remaining constant. 
The interlayer composition was dominated by Ca. B­
S and Fe-rich L-S interstratifications are related by the 
Tschermak exchange vector Si + Mg ~ IV AI + VIAL 

Amorphous materials found after 40 d are similar 
to those found in the 14-d experiment. These materials 
increased in size in relation to those present after 14 
d. These particles are 200 nm in diameter and contain 
rounded 20-nm electron-translucent centers, probably 
the result of volatiles released when damaged by the 
electron beam. The presence of an oxygen peak and 
rounded areas with light contrast (Figure 11) produced 
by its dehydration during observation under TEM in­
dicates that the Si-Ca-Fe-rich amorphous material is 
an oxyhydroxide. 

DISCUSSION AND CONCLUSIONS 

The general sequence of events observed during the 
alteration process of subvoIcanic rock by interaction 
with 1 M NaOH solution at room temperature in­
cludes: I) the precipitation of dioctahedral smectite, 
with a chemical composition similar to that of smectite 
formed under natural conditions (VS); 2) berthierine­
smectite interstratifications with various amorphous 
materials; and 3) Fe-rich lizardite-smectite interstrati­
fications, found after 40 days. 

Smectite formation 

The structural formulae of smectite formed after 3 
d of reaction are similar to those of VS smectite except 
for the Fe/Mg ratio, which is higher in the former. A 
low interlayer charge is observed after 3-d smectite, 
as well as in the VS smectites. In fact, the assumption 
that Mg only occupies octahedral sites results in an 
overestimation of the amount of octahedral cations and 
an underestimation of the interlayer charge. Most 
smectites contain >2 atoms per half unit cell (on the 
basis of 10 0), indicating the possible presence of Mg 
in the interlayer sites. Christidis (1989) found that in 
the Garyfalakena deposits, Mg occupies - 70% of the 
exchangeable sites. Also, Schiffman and Southard 
(1996) measured the cation-exchange capacity and ex­
tractable cations of smectite with both traditional bulk 
methods and an in situ method using the electron mi-
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Figure 4. Selected binary diagrams showing the compositional variation in the 3-d reaction product and VS smectites. AEM 
analyses are those of Tables 2. R2 and r2 values correspond to 3-d reaction product and VS smectites, respectively. 

croprobe. They found that the in situ method implies 
that Mg is the major extractable cation in this smectite. 
Owing the overlapping of the L band of Cu and the 
K band of Na, we also used gold grids to analyze Na 
and to quantify the interlayer occupancy. When gold 
grids were used for the 3-d reaction product and the 
VS smectites (Table 2), a considerable amount of Na 
was detected. Nonetheless, considerable amounts of 
Ca were always present. The presence of Na in the 
interlayer of smectite may be a result of its incorpo­
ration from solution and/or from the parent plagio­
clase. Note that the EMPA analyses of plagioclase in 
Table 1 show considerable amounts of Na. 

The plot of the octahedral composition in the MgAl­
AIAI-FeAI ternary system (Guven, 1988) of both the 

reaction products after three days and the VS smectite 
show the same degree of heterogeneity: the composi­
tion overlaps dioctahedral smectites from beidellite to 
Fe-rich montmorillonite. This result was also observed 
by Drief and Nieto (2000) for smectites from sedi­
mentary environments. These authors related the fields 
of the ternary system to the specific origin of the 
smectite used to define them. The relationship between 
the octahedral cations of smectite shows that the sub­
stitutions of vIAl by Fe and Mg show a well-defined 
negative relationship (Figure 4). This may reflect the 
influence of the local parent chemistry in the compo­
sition of each smectite crystal. 

Thus, different chemical factors control the forma­
tion of smectite in both natural and experimental en-
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Figure 5. TEM images of clays formed after 14-d. a) lattice­
fringe image of a well-crystallized smectite packet showing 
parallel layers with a 1.0-nm spacing. Some layers appear 
detached at the edge of the packet. b) random mixed-layer 
berthierine-smectite. White and black arrows show berthieri­
ne and smectite layers, respectively. 

vironments. The intense alteration of plagioclase dur­
ing its interaction with a high pH solution involves an 
initial ion exchange followed by diffusion through a 
depleted plagioclase surface composed mainly of Si 
and AI. As a result, a layer depleted in Ca and Na 
forms at the edges of plagioclase. Figure 7a depicts 
particles of smectite 100-200 nm in size detaching 
from plagioclase. Kawano and Tomita (1994) exam­
ined the growth of smectite from leached layers during 
the experimental alteration of plagioclase in deionized­
distilled water at 150-225°C. They found that the 
leached layer increased successively in thickness and 
tended to detach from the albite surface as alteration 
proceeded to produce smectite. 

The leaching of Na and Ca from plagioclase prob­
ably involved the formation of protocrystalline inter­
mediate material such as that observed in Figure 9c 
(A'). Tazaki and Fyfe (1987) observed primitive clay 
precursors that formed on feldspar. Banfield and Eg­
gleton (1990) found similar precursors on feldspar 
weathering products: protocrystalline material was 
considered as a probable intermediate precursor for 

Table 3. AEM analyses for berthierine-rich B-S mixed-layer 
of 14-d reaction product normalized for 10 0 and 8 (OH). 

Structural formulae of berthierine rich B-S mixed layer 

~ oct. 
Si IVAI VIAL Fe Mg cat. K Ca 

1 3.05 0.95 0.56 3.44 2.01 6.01 0.00 0.19 
2 3.45 0.55 1.03 2.64 1.77 5.44 0.00 0.28 
3 3.55 0.45 1.29 2.72 1.35 5.36 0.00 0.19 
4 3.18 0.82 1.12 2.86 1.66 5.63 0.00 0.14 
5 3.16 0.84 1.06 2.70 1.98 5.73 0.00 0.12 
6 3 .19 0 .81 0.88 2.69 2.00 5.57 0 .00 0.36 
7 3.38 0.62 1.29 2.94 1.01 5.24 0.27 0 .28 
8 3.40 0.60 1.30 2.95 1.10 5.35 0.13 0.24 
9 3.22 0 .78 0 .95 2.76 1.97 5 .67 0.00 0.25 

10 3.19 0.81 0.81 2.83 2.00 5 .64 0 .00 0.36 
II 3.34 0.66 1.36 2.74 1.16 5 .26 0.12 0.34 

smectite. However, Banfield et al. (1991) found that 
the replacement of primary silicates (olivine, pyrox­
ene, and feldspar) in the Albert volcanics resulted in 
the formation of smectite, but no persistent metastable 
intermediate phases in the reaction of primary silicates 
to smectites occurred. Ca- and Na-release probably de­
stroyed the plagioclase structure during its interaction 
with the NaOH solution. The crystallization of smec­
tite from the leached surface of plagioclase requires a 
change in the Al form (VIAl in plagioclase to VIAl in 
smectite), a reorganization of tetrahedral and octahe­
dral units, and the addition of hydroxyl groups and 
H20 molecules from solution. The presence of weak 
lattice fringes in the protocrystalline material in Figure 
9c probably reflects the initial stages of smectite re­
crystallization, consisting of the reconstruction of the 
basic 2: 1 structure. 

Smectite may also form by a dissolution-precipita­
tion process. In this model, plagioclase releases Si and 
Al and ferromagnesian minerals, such as olivine and 
pyroxene. The latter minerals would release Mg and 
Fe necessary for the formation of smectite. However, 
the proportion of the cations in solution, in this case, 
is essential for the formation of smectite instead of 
other clay minerals. Smectites formed directly by pre­
cipitation from solution would contain high amounts 
of Mg and Fe since these two elements are readily 
released into solution. In fact, some analyses of smec­
tite showed a high concentration of Fe and Mg in sam­
ple products of three days and in the VS smectites. 

The formation of berthierine-smectite 
interstratifications 

Berthierine is an uncommon mineral in soils. It usu­
ally develops in marine rocks or in sediments influ­
enced by marine waters during early diagenesis. Al­
though some studies describe berthierine from purely 
continental settings (e.g., Taylor, 1990), the occurrence 
is nonetheless rare in both marine and continental en­
vironments. This is probably related to the very special 
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(a) 

I 

Figure 7. a) Low magnification TEM image of smectites 
particles, associated with Fe-rich amorphous material, formed 
at the edge of plagioclase crystal. b) An enlarged image of 
the part shown by the black arrow in (a) showing smectite 
lattice fringes. In some cases the orientation of layers in the 
spindle-like smectite packets does not allow the visualization 
of lattice-fringes. S, PL, and Am designate smectite, plagio­
clase, and Fe-rich amorphous material, respectively. 

conditions required during formation. The formation 
of berthierine in both natural and experimental studies 
requires very special conditions. Fritz and Toth (1997), 
in a study on the estimation of Eh, pH, and pC02 con-

15nm 

Figure 8. TEM micrograph showing smectite layers tightly 
intergrown with amorphous Fe oxyhydroxides. Black arrow 
points to Fe-rich amorphous material. 

ditions during the formation of Fe-rich berthierine 
from a Cretaceous laterite, suggested that the solution 
from which Fe-rich berthierine precipitates must: 1) be 
reducing; 2) have extremely low sulfate concentra­
tions; 3) not be in contact with quartz; and 4) have a 
low [Mg2+]/[Fe2+] ratio. These conditions are met in 
the present study, except where the [Mg2+]/[Fe2+] ratio 
is not as low, as discussed by Fritz and Toth (1997). 
In contrast, however, Fritz and Toth consider Fe-rich 
berthierine, which differs chemically from the ber­
thierine formed in this study. 

The analyses in Table 3 were calculated on the basis 
of 14 0 and 8 (OH). Although smectite generally dom­
inated in the B-S interstratifications, the analyses pre­
sented in Table 3 were chosen in areas where berthier­
ine layers were dominant to determine their chemical 
composition as closely as possible. Nevertheless, cat­
ions such as Ca and K, with no possible sites in the 
berthierine structure, were also found in the analyses 
(Table 3). These impurities resulted from variable 
quantities of smectite, as can be seen in Figure 5b. 
The analyses presented in Table 3 correspond to ber­
thierine-rich B-S interstratifications. Moreover, some 
analyses showed a large number of octahedral vacan­
cies and a high Si content. These results support the 
presence of smectite layers. 

Figure 6. Selected binary diagrams showing the compositional variation of the l4-d and 40-d reaction product. Note random 
interstratifications of berthierine-smectite and Fe-rich lizardite-smectite, respectively, using AEM analyses (see Tables 3 and 
4). The large solid diamond indicates the closest analysis to end-member berthierine. 
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Figure 9. a) Low magnification TEM image of berthierine, smectite, and random interstratified B-S packets occurring together 
with diverse kinds of amorphous material formed after 14 d of reaction. b) Enlargement of the area situated at the bottom 
right of (a) showing curved smectite packets associated with Si-, Ca-, and Fe-rich amorphous material. c) Enlargement of the 
area situated at the bottom left of (a) showing details of three types of amorphous material. S = smectite, B = berthierine, 
B-S = random interstratified berthierine-smectite, A , A' , and An designate the three kinds of amorphous materials (see text 
for explanation). 

The berthierine formed in the present study is sim­
ilar to those reported in, for example James (1966), 
Brindley (1982), Li et al. (1997), and Abad-Ortega and 
Nieto (1995). The slight deviation of the chemical 
composition of the berthierine formed after 14 d of 
reaction from that of those reported in Figure 12 might 
be attributed to the intercalation of smectite. 

Because berthierine occurs interstratified with 
smectite, it is clear that berthierine formed by the 
transformation of smectite. The layer-to-Iayer trans­
formations were reported by several authors includ­
ing: one biotite layer to one chlorite layer (Olives and 
Amouric, 1984; Olives, 1985), one smectite layer to 
one kaolinite layer (Amouric and Olives, 1998), and 
one serpentine layer to one illite layer (Amouric et 
at., 1995). However, the S to B transformation could 
involve also the dissolution of smectite layers and a 
subsequent precipitation of berthierine, as has been 
argued for the neoformation of illite from smectite 
(e.g., Leo Lunch et aI. , 1997) . The S to B transition 

from a dioctahedral to a trioctahedral clay is related 
to the solution chemistry prevailing in the system. 
The plot of the chemical composition of B-S in the 
Si-Al-Fe + Mg ternary system (Figure 12) reveals 
that the transformation of smectite to B-S interstrat­
ification required the loss of Si and Al and a concom­
itant gain of Fe and Mg. 

The main structural modification is the transforma­
tion of the structure from a 2 : I to I : I layer. The mech­
anism occurs at the unit-cell scale and preserves most 
of the pre-existing layers, although some parallel 
chemical changes are necessary for the transformation. 
This modification involves the removal of a tetrahedral 
sheet along with the adjacent interlayer region, to pro­
duce a decrease in volume. In addition, the remaining 
tetrahedral and octahedral sheets are modified, Si is 
replaced partially by Al in the tetrahedral sheet, Fe and 
Mg replace AI in the octahedral sheet, and H is added 
to the oxygen atoms of the I : I layer adjacent to the 
interlayer. 
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Figure 10. TEM image of random mixed-layer Fe-rich L-S 
formed after 40 d of reaction. Layers with I-nm spacing cor­
respond to smectite and those with 0.7 and 1.4 nm to one and 
two-layer ferroan lizardite, respectively. 

No traces of berthierine were found in the subvol­
canic-derived soil. The soil contains only smectite as 
a neoformed phase and some detrital minerals inher­
ited from the parent rock (Drief and Nieto, 2000). The 
lack of berthierine in VS emphasizes the different con­
ditions between natural and experimental environ­
ments. Several factors are responsible for controlling 
the formation of berthierine, with the most important 
being the pH and the amount of Fe and Mg in solution. 
The large supply of easily dissolved subvolcanic rock 
represents an abundant input of Fe and Mg. Under 
natural conditions, these elements can enter the solu­
tion leaving behind low Fe and Mg concentrations 
where smectite cannot transform to berthierine. How-

200nm 

Table 4. AEM analyses for Fe-rich L-S mixed-layer of 40-d 
reaction product normalized for 10 0 and 8 (OH). 

Structural formulae of Fe-rich L-S mixed~layer 

Si IVAI VIAl Fe Mg I oct. cat. K Ca 

1 3.97 0.03 0.42 2.97 2.21 5.60 0.05 0.18 
2 3.83 0.17 0.33 3.13 2.32 5.78 0.00 0.14 
3 3.80 0.20 0.29 2.89 2.53 5.71 0.00 0.25 
4 3.66 0.34 0.17 2.93 2.80 5.89 0.00 0.20 
5 3.83 0.17 0.30 3.11 2.21 5.63 0.04 0.29 

ever, in experimental conditions involving a closed 
system, the Fe and Mg remain. Furthermore, these el­
ements can be incorporated into smectite layers which 
may lead to decomposition to berthierine. The effect 
of Fe on smectite is also observed in Figures 7b and 
8. Another factor that is probably of great interest is 
the pH solution. Berthierine is known to be stable in 
high-pH solutions (Fritz and Toth, 1997). Thus, the 
formation of berthierine in the present study required 
a supply of Fe and Mg from ferromagnesian minerals 
such as pyroxenes, olivine, biotite, and amphibole and 
a reducing environment. Such conditions are not com­
mon in natural environments. 

Amorphous material 

In samples corresponding to reaction products after 
14 and 40 d, the formation of metastable Fe-, Si-, AI-, 
and Ca-rich amorphous substances is favored by the 
high degree of saturation, which leads to irregular co­
ordinations of ions, as well to the lower surface and 
strain energy of the spherical and ovoidal structures 
(Eggleton, 1987). In relation to the chemical compo­
sition of the observed amorphous phases, it is sug­
gested that the first amorphous substances formed are 
especially rich in Fe, because the initial solution has a 
high Fe content released by the dissolution of ferro­
magnesians (pyroxenes and olivine). Analogously, be-

b 
CaK FeK 

OK SiK 

1.00 2.00 3.00 5.00 

FS:200 CPS:307 ents:s KeV:O.90 

Figure II . a) Si-Ca-Fe amorphous material formed at 40 d of reaction showing a spheroidal-like morphology with minor 
rounded particles (arrows) within it. b) EDX spectrum of the rounded material. 
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Mg + Fe 
Figure 12. A synthetic plot in the Si-AI-(Fe + Mg) ternary system of the chemical composition of the starting plagioclase, 
clays formed in the present study along with VS smectite, and berthierine reported in the literature. 

cause Ca is easily leached from plagioclase, Si-, Ca-, 
and Fe-rich amorphous substances are amply present 
in the 40-d reaction products, whereas other ions, such 
as Si and AI, remain a part of the structures of alu­
minosilicates. The persistence of these amorphous 
metastable phases is favored by the slow reaction rates 
of the mineralogenetic process at low temperature 
(Berner, 1984). 

Fe-rich lizardite-smectite interstratijications 

The alteration process of the subvolcanic rock pro­
duced Fe-rich L-S. Because the two phases, B-S and 
Fe-rich L-S interstratifications, are chemically well 
differentiated (see Figures 6 and 12), they are two dis­
tinct phases. The chemical analyses shown in Table 4 
are not consistent with berthierine because the Si con­
tent in the tetrahedral sites is not typical of this min­
eral. In a plot of Mg vs. Fe, such a composition falls 
between the greenalite and lizardite end-members. Al­
though, Fe and Mg are always exchangeable cations, 
structural differences between these two end-members 
preclude the existence of a solid solution between 
them. The chemistry of the Fe-rich L-S is not suffi­
ciently Fe-rich to be greenalite (Guggenheim et al .• 
1982). Moreover, the hOI electron diffraction patterns 
of the Fe-rich L-S (not shown) are not consistent with 

those of the modulated crystal structures of greenalite 
(Guggenheim and Eggleton, 1998). Therefore, the Fe­
rich L-S found in the present study is an Fe-rich platy 
serpentine that should be referred to as "ferroan lizar­
dite" . 

The ferroan lizardite and smectite (Fe-rich L-S) in­
terstratifications showed a small decrease in the d val­
ue (from 12.47 A in the B-S interstratification to 12.33 
A in the Fe-rich L-S interstratification, in Figure I). 
Table 4 shows the analyses corresponding to the Fe­
rich L-S. The main differences between this phase and 
the B-S interstratification occur in the Si, AI, and Mg 
contents (Figure 6). In fact. the increase in Si in the 
tetrahedral sheet produced a decrease in Al (in both 
the tetrahedral and octahedral sheets) and a concomi­
tant increase in Mg in the octahedral sheet, that is, the 
Tschermak vector. The stability of ferroan lizardite in­
stead of berthierine after 40 d of reaction may be of 
importance in understanding the evolution of the sys­
tem. Previous synthesis of iron-containing clay min­
erals showed that reducing conditions are necessary 
and Fe2+ and Mg2+ are suitable for building a brucite­
like layer (Harder, 1978). In the berthierine to ferroan 
lizardite transformation, the Tschermak substitution is 
favored by the progressive increase with time of the 
SilAI ratio into the solution. Al is assumed to be the 
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more immobile cation and therefore the progress of 
the experiment would produce a solution depleted in 
Al in relation to the other cations, as usual in nature. 
Because of the precipitation of Si-, Ca-, and Fe-rich 
amorphous material as a sink for Fe, such substitutions 
involve Mg rather than Fe. 
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