
1 Introduction

Summary

This chapter provides a very brief summary of the types of heterogeneous materials
considered in this book: fiber-reinforced composites, particulate composites, nano-
composites, porous composites, and so on. A succinct summary is given of analytical
homogenization methods to determine the overall properties of particulate compos-
ites based on the upper and lower bounds of Hashin and Shtrikman, the Eshelby
ellipsoidal inclusion theory and the self-consistent method of Eshelby, the Mori–
Tanaka method, and some other semi-analytical methods. Numerical methods such
as the finite element method (FEM), the boundary element method (BEM), extended
finite element method (XFEM), and so on to model a representative volume element
(RVE) of a heterogeneous material are reviewed. The chapter also presents the
motivation for the Computational Grains (CGs) method discussed in the rest of
this book.

1.1 Heterogeneous Materials and Their Applications

Many factors catalyzed the progressive development of modern composite materials.
Since the 1930s, the resin materials have been the subject of extensive academic
research and industrial applications. Due to the low modulus of strength of pure
resin materials, glass fibers were used to reinforce the weaker resin materials to
increase their mechanical properties. In 1936, the first generation of glass fiber-
reinforced plastics (GFRPs) was introduced. Due to their advantages of high perform-
ance and low price, GFRPs still capture a huge market share in material industry.

In the 1960s, Texaco developed high-strength and high-modulus boron fibers
through chemical vapor processes. A boron fiber has a relatively large diameter of
about 100–200 μm, and it is very brittle and sensitive to surface damage. Compared
with boron fibers, carbon fibers, which appeared at the same time, can be manufactured
through simpler processes. The modulus of modern carbon fiber is about four times
higher than that of steel, while the density is about four times lower than that of
steel [1]. Due to such advantages of a simple manufacturing method, low cost, and
high performance, carbon fibers have become some of the most widely used
high-performance fiber materials up to now (Figure 1.1).
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In addition to inorganic fibers, high-performance polymer fiber materials have also
been rapidly developed. From the 1960s to the 1980s, high-performance polymer
fibers such as Kevlar and Zylon, which had many excellent mechanical and thermal
properties (low thermal conductivity, good thermal insulation, excellent toughness,
and corrosion resistance), were developed. The high-performance polymer fiber
materials are widely used nowadays in many fields, such as automobiles, ships, digital
electronic equipment, sports equipment, body armor, aerospace, and so on [3].

Applications of materials in very high-temperature environments necessitated the
development of metal matrix composites (MMCs) and ceramic matrix composites
(CMCs).Metal matrix composites add particles/fibers (such as ceramics, carbon fibers,
etc.) and other enhanced phases to metal or alloy matrices to increase the heat
resistance, strength, and rigidity of light metals and reduce their thermal expansion
coefficients [4]. Currently, the MMC technology has become increasingly mature, and
is widely used in transportation, aerospace, sports equipment, and many other fields.

Compared with MMCs, CMCs have higher strength and melting points, and more
stable chemical properties. In the past thirty years, advances in technologies for
improving the fracture toughness of the CMCs mitigated the problem of brittleness
of CMC materials, allowing them to be widely used in cutting tools, in hot sections of
engines, as brake materials, and in spacecraft insulation systems (Figure 1.2).

Since the 1990s, composite materials reinforced with nano-sized constituents have
gradually become more common. “Nanocomposites” refer to composite materials
containing one or more constituent materials with a size of 1–100 nm, and their
reinforcement phases consisting generally of nanoparticles (nano SiC, nano Al2O3),
nanoflakes (graphite), and nanofibers (carbon nanotubes). Unlike conventional com-
posite materials, the ratio of area to volume or the aspect ratio of nanocomposite
reinforcement phase is very large, and therefore its physical properties can be engin-
eered very significantly. By studying the effect of the size of the reinforcing-phase
material on the mechanical properties of the composite material from an experimental
perspective in detail, it has been shown that, through appropriate manufacturing
processes, nano-sized reinforcing-phase materials can effectively improve the

Figure 1.1 SEM scan of (a) carbon fiber and (b) boron fiber [2]
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mechanical properties, thermal properties, and other physical properties of composite
materials [7].

In addition to the aforementioned composite materials used for strength, stiffness,
and fracture toughness-based structural applications, biomimetic composite materials,
multifunctional composite materials, and other types of novel composite materials
have been vigorously developed for various applications.

1.2 Analytical and Numerical Micromechanics of Heterogeneous Materials

As can be seen from the previous section, composite materials have been developed
rapidly in modern times, and have become one of the most important class of structural
as well as multifunctional materials. Studies of micromechanics of composite mater-
ials play a vital role in the study of stiffness, strength, and durability of such materials;
so it is of great significance to establish efficient and accurate tools for the micro-
mechanical analyses of composite materials. This chapter briefly introduces the status
of the subject of micromechanics of composite materials through analytical as well as
numerical methods.

1.2.1 Analytical Micromechanics Methods

The study of micromechanics of heterogeneous materials usually involves a represen-
tative volume element (RVE) for analysis. From the macroscale perspective, an RVE
can be regarded as an infinitesimal point, and its macro-stress and macro-strain are
uniform. From the microscale perspective, an RVE must represent a large enough
volume so as to contain sufficient microstructural information, and delineate the details
of the internal microscopic stress and strain fields, which are generally nonuniform. By
selecting an appropriate RVE and then using analytical micromechanical methods, we

Figure 1.2 SEM scan of (a) MMCs [5] and (b) CMCs [6]
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can obtain the macroscopic mechanical parameters of the material. The commonly
used semi-analytical micromechanical methods are (i) variational methods [8–12], (ii)
homogenization methods based on the Eshelby inclusion theory [18], and (iii) differ-
ential methods [19].

The commonly used variational methods include the Voigt–Reuss methods of
bounds [8], and the Hashin–Shtrikman variational method [12].

Voigt applied the condition u ¼ ε � x in the entire domain of the RVE, where u
denotes the displacement vector, ε denotes the applied strain tensor, and x denotes the
position vector. This is to assume that the strain field in the reinforcing-phase material
and in the matrix are equal to the applied strain ε, and the equivalent elasticity tensor Cv

of the composite material can be derived for isotropic matrix and isotropic inclusions as:

Cv ¼ ð1� fmÞCm þ
Xn
α¼1

fαCα ð1:1Þ

whereCm andCα denote the elasticity tensors of the matrix and the α th inclusion of
the heterogeneous material, respectively, fm and fα denote the volume fractions of the
matrix and the α th inclusion, respectively; and these notations are used consistently
throughout this chapter. As summarized in [9], for the symmetric elasticity tensorC of
the isotropic materials, transversely isotropic materials, orthotropic materials, and
general anisotropic materials, there are, respectively, two, five, nine, and twenty-one
independent constants. According to the principle of minimum complementary
energy [8], Cv is an upper bound for the true equivalent elasticity tensor of composite

materials. Reuss [10] applied surface boundary conditions t ¼ σ � n and assumed that
the average stress of the reinforcing-phase material and the matrix is equal to the
applied stress σ, and showed that the equivalent elasticity tensor CR of the composite
material can be derived for isotropic matrix and isotropic inclusions as:

CR ¼ ð1� fmÞC-1m þ
Xn
α¼1

fαC
-1
α

 !�1

ð1:2Þ

According to the principle of minimum potential energy [11], CR is a lower bound for
the equivalent elasticity tensor of the composite material.

However, there is a large difference between the upper bound of Voigt and the lower
bound of Reuss, when the elastic moduli of the matrix material and those of the
reinforcement phase materials differ substantially. Later, Hashin and Shtrikman [12]
resolved this problem by using variational principles and extremum methods for the
first time, leading to what are popularly known as the Hashin–Shtrikman variational
bounds. Since the aforementioned methods did not take into account the internal
microstructure of the composite material, it is generally used only to make a general
approximate prediction of the equivalent moduli of the material, but cannot provide
information on the detailed stress and strain fields within the RVE.

Another set of analytical micromechanics methods is based on the celebrated work
of J. D. Eshelby. By employing the Kelvin’s fundamental solution for an isotropic
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material Eshelby [13] gave an analytical solution for an infinite medium containing an
ellipsoidal inclusion which is subjected to a uniform characteristic strain field (eigen-
strain) ε�, which is briefly summarized in here.

First consider the problem of an eigenstrain field ε�ðXÞ prescribed in the ellipsoidal
inclusion W and vanishing outside, where the isotropic elasticity tensor for the entire
solid medium is C [14]:

ε�ðxÞ ¼ ε�ðxÞ; for x in W
0 ; otherwise

�
ð1:3Þ

Let ue be the displacement field produced in the infinite isotropic medium by ε�, and
denote by εe and σe the corresponding strain and stress fields. These strain and stress
fields are expressed as:

εe ¼ 1

2
fð∇ueÞ þ ð∇ueÞTg ð1:4Þ

σe ¼ C: εe � C: ε
� ð1:5Þ

We know that the displacement field u produced by a distributed body force f should be
subject to the following governing equation:

∇ �
�
C :∇⊗uðxÞ

�
þ fðxÞ ¼ 0 ð1:6Þ

By substituting eq. (1.4) and eq. (1.5) into the equations of equilibrium of a solid body
with negligible body force, we get:

∇ � σe ¼ ∇ � ðC : ∇⊗ ueÞ þ∇ � ð�C : ε�Þ ¼ 0 ð1:7Þ

wherein the term ∇ � ð�C : ε�Þ acts like a distributed body force in the governing
equations for the displacement field, shown as eq. (1.6).

The displacement field ue corresponding to the distributed body forces as in eq.
(1.7) can be expressed in terms of the Green’s function G (Kelvin’s solution for an
isotropic material), as:

uei ðxÞ ¼
ð
W
G∞

ki:lðy� xÞCklmnε
�
mnðyÞdVy ð1:8Þ

where ð Þ:l denotes a derivative with respect to xl. The Green’s function G∞
ij ðx� yÞ

from the Kelvin solution shown in eq. (1.8) gives the displacement component in the
xi-direction at point x, produced by a unit point force applied in the xj-direction at point
y, which can be written as:

G∞
ij ðx� yÞ ¼ 1

4πμ
δij

jx� yj �
1

16πμð1� νÞ
∂2

∂xi∂xj
jx� yj ð1:9Þ
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where μ and ν denote the Lamé constant and the Poisson’s ratio of the isotropic
material, jx� yj denotes the distance between the point x and point y, and δij denotes
the Kronecker delta.

The strain field εijðxÞ in the infinite isotropic medium with an isotropic elasticity
tensor Cmnkl thereafter becomes:

εijðxÞ ¼ S∞ijklðx;WÞε�kl ð1:10Þ

where the tensor field S∞ijklðx;WÞ is referred to as the Eshelby tensor, derived as:

S∞ijklðx;WÞ≡
ð
W
Γ∞
ijmnðx� yÞdVy

� �
Cmnkl ð1:11Þ

The tensor field Γ∞ is derived for the Green’s function in eq. (1.9), which is limited to
only an isotropic material:

Γ∞
ijkl ¼ � 1

4
fG∞

ik:jl þG∞
jk:il þG∞

il:jk þG∞
jl:ikg ð1:12Þ

where ð Þ:jk denotes the second-order derivative with respect to xj and xk .
It can be shown that the strain inside the inclusion is uniform, unlike that outside of

the inclusion. On this basis, homogenization methods based on the Eshelby inclusion
theory, for isotropic matrices and isotropic inclusions only, have been widely devel-
oped. The commonly used ones are as follows.

The dilute approximation [13,15] assumes that the strain field of each inclusion in
the RVE is equal to the strain field due to a single inclusion in an infinite solid and
employs the Eshelby equivalent inclusion method, which is to consider the elasticity
tensor of the isotropic inclusion Cc as the elasticity tensor of the isotropic matrix Cm

with the eigenstrain field ε� , as shown as Figure 1.3.

Figure 1.3 Schematic diagram of the Eshelby equivalent inclusion method [Cm is the isotropic
elasticity tensor of the matrix, Cc is the isotropic elasticity tensor of the inclusion, and ε� is the
eigenstrain field shown in eq. (1.3)]
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The strain in the inclusions can be written as:

εα ¼ ½Iþ Sα : C
�1
m : ðCα � CmÞ��1 : ε ð1:13Þ

where εα denotes the strain field due to the α th inclusion, Sα denotes the Eshelby
tensor, Cm and Cα denote the isotropic elasticity tensors of the matrix and the α th
inclusion, respectively, and ε denotes the applied uniform strain. Therefore, we can
obtain the equivalent elasticity tensor as [15]:

Cdilute ¼ Cm þ
XN
α¼1

fαðCα � CmÞ½Iþ Sα : C
�1
m : ðCα � CmÞ��1 ð1:14Þ

where fα denotes the volume fraction of the α th inclusion. Equation (1.14) has been
derived mainly for an isotropic matrix with an elasticity tensor Cm, and isotropic
inclusions with isotropic elasticity tensors Cα.

The dilute approximation shown in eq. (1.14) ignores the arbitrary distribution of
inclusions and the interactions between the inclusions, and is only suitable for the case
of inclusions with small-volume fractions. The Mori–Tanaka method [16] considers
such interactions between inclusions and shows that the strains in the inclusions should
be written as:

εα ¼ ½Iþ Sα : C
�1
m : ðCα � CmÞ��1 : εm ð1:15Þ

where εm denotes the strain in the matrix. By using the equation 〈ε〉¼ fm〈εm〉þXN
α¼1

fα〈εα〉, we can find the strain concentration tensor of each inclusion:

Aα ¼ Tα : fmTm þ
XN
n¼1

fnTn

" #�1

ð1:16Þ

where Tn¼ ½Iþ Sn : C
�1
m : ðCn � CmÞ�-1. By eq. (1.16), the equivalent elastic tensor

of the composite can be obtained as:

CMT ¼ Cm þ
XN
α¼1

fαðCα � CmÞ : Tα : fmTm þ
XN
n¼1

fnTn

" #�1

ð1:17Þ

The Mori–Tanaka method is generally applicable to the case where the volume
fractions of the inclusions are less than 30 percent.

The self-consistent method [18] assumes that the inclusions are buried in the
reference material, whose elastic tensor is equal to the equivalent elastic tensor of
the composite material, as shown in Figure 1.4(a).

The strain in each inclusion can be expressed as:

εα ¼ Iþ Sα : ðCscÞ�1 : ðCα � CscÞ
h i�1

: E ð1:18Þ
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where Sα denotes the Eshelby tensor of the composite material and Csc denotes the
isotropic elasticity tensor of the composite material obtained by the self-consistent
method.

We can derive the equivalent elasticity tensor as follows [17]:

Csc ¼ Cm þ
XN
α¼1

fαðCα � CmÞ : Iþ Sα : ðCscÞ�1 : ðCα � CscÞ
h i�1

ð1:19Þ

The self-consistent method [17] gives an implicit expression of the equivalent modulus
tensor, so that eq. (1.19) needs to be solved iteratively. The generalized self-consistent
method assumes that there is a layer of matrix between the inclusion and the matrix,
where the ratio of matrix to inclusion is the same as its ratio in the composite material.
This method can lead to more accurate predictions.

The differential method [18] consists in adding the inclusion materials one by one to
the matrix gradually, then regarding the resulting homogenized heterogeneousmaterial
as a new uniform matrix material, and calculating its elastic constants, and then
repeating this process until the volume fraction of inclusions in the RVE reaches the
volume fraction in the composite (see Figure 1.5).

Taking a two-phase material as an example, assuming that the matrix volume is jOmj
and the inclusion volume is jOcj, the equivalent elastic tensor of the composite can be
expressed as:

Cdsðf cÞ ¼ Cm þ f cðCc � CmÞ : AðL0Þ ð1:20Þ

where fc¼jOcj=ðjOmjþjOcjÞ denotes the volume fraction of the inclusion, and A
denotes the strain concentration tensor. After adding inclusions jDOcj in this
“homogeneous” material, the equivalent elastic tensor of the newly obtained
material is:

Figure 1.4 Model of (a) self-consistent method and (b) generalized self-consistent method
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Cdsðf c þ Df cÞ ¼ Cdsðf cÞ þ
jDOcj

jOmj þ jOcj þ jDOcj
�
Cc � Cdsðf cÞ

�
: A
�
Cdsðf cÞ

�
ð1:21Þ

Making Df c → 0, we can get a first-order differential equation to solve the equivalent
elastic modulus, which can be written as:

dCdsðf cÞ
dfc

¼ 1

1� f c

�
Cc � Cdsðf cÞ

�
: A
�
Cdsðf cÞ

�
ð1:22Þ

The aforementioned analytical homogenization methods based on the Eshelby
ellipsoidal inclusion theory are limited to materials with isotropic matrices and iso-
tropic inclusions. In addition to the aforementioned commonly used methods, com-
posite sphere models, progressive methods, and other methods are also sometimes
used in composite material performance prediction.

1.2.2 Commonly Used Computer Modeling Methods of Microstructures
of Materials

The analytical micromechanical methods for RVEs shown in Section 1.2.1 can obtain
the overall macroscopic mechanical properties of composite materials quickly and
effectively, but often do not consider the details of the geometry and random distribu-
tion of inclusions in the matrix, and cannot give the detailed stress and strain fields
(such as the fields at the interfaces of the matrix and the inclusions/voids) inside the
RVE. In order to address this problem, computational simulation methods are often
used not only to directly compute the homogenized mechanical properties of hetero-
geneous materials but also to compute the detailed stress and strain fields at the
interfaces, which are necessary for the study of damage and crack initiation in such
materials.

The FEM is one of the most popular numerical simulation methods, and has been
widely used to predict the equivalent elastic or elastic–plastic moduli of micromecha-
nical RVEs, as well as the macroscopic mechanical response of composite structures.
However, the FEM uses simple locally supported polynomials for the displacement
trial functions, and it is often necessary to perform very detailed element meshing of
the composite material when dealing with stress concentration problems (such as at the

Figure 1.5 Schematic diagram of the differential method
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interfaces of inclusions, pores, and microcrack) [19] (see Figure 1.6(a)). This has led to
the traditional FEM being usually used only to build RVEs with only a few inclusions,
and ignoring the influence of the statistical distribution of heterogeneities in real
situations. The simulation of real randommicrostructures with traditional finite elements
requires complicated preprocessing efforts and a very high computational cost.

In recent years, developments in the Extended Finite Element Method (XFEM)
have effectively reduced the complexity of preprocessing. Unlike the traditional FEM,
the core idea of XFEM is to introduce a jump function as the enrichment of the shape
function to simulate the discontinuity of fields. Therefore, the description of the
discontinuous field is completely independent of the mesh, and the mesh boundary
does not need to coincide with the material interface, as shown in Figure 1.6(b).
However, though XFEM can reduce the complexity of preprocessing, it cannot reduce
the requirements of memory and computational time of traditional finite elements [20]
when modeling a large number of heterogeneities.

In FEM, the elastic properties of the matrix and the inclusions can be in general
anisotropic while evaluating the individual element stiffness matrices, and while

Figure 1.6 (a) Al/SiC unit cell model established by ABAQUS; (b) meshing of the single SiCf/
SiC fiber model by XFEM [23]; (c) meshing of BEM for solving the stress fields in porous
materials [24]
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assembling the stiffness matrix of the RVE. Compared with the FEM, the BEM only
needs to discretize the mesh on the surface of the object, in general for only isotropic
materials (as shown in Figure 1.6(c)), and the number of degrees of freedom of the
discrete system is much lower than that of the FEM, and the solution accuracy of the
stress field is higher, which is more suitable for solving the stress concentration
problem of composite materials [21]. However, discretization by the BEM leads to
unsymmetric and densely populated matrices; therefore, the computational cost of
BEM will be significantly increased when the number of total degrees of freedom of
the numerical model increases. Therefore, it is difficult to simulate complex micro-
structures with a lot of inclusions, and one needs to use fast solvers [22].

Moreover, to obtain the elasticity tensor C of a generally anisotropic composite
material from the relationship of the stress tensor and the strain tensor, which is shown as:

〈σ11〉
〈σ22〉
〈σ33〉
〈σ12〉
〈σ23〉
〈σ31〉

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

26666664

37777775
〈ε11〉
〈ε22〉
〈ε33〉
2〈ε12〉
2〈ε23〉
2〈ε31〉

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð1:23Þ

we need to analyze at least six load cases. One can apply unit effective strains
and calculate the resultant effective stresses, and the visa verse. For example,
if we apply effective strains 〈ε11〉¼1 and 〈ε22〉¼〈ε33〉¼2〈ε12〉¼2〈ε23〉¼2〈ε31〉¼0,
then the computed effective stresses will be 〈σ11〉 ¼ C11; 〈σ22〉 ¼ C12; 〈σ33〉 ¼
C13; 〈σ12〉 ¼ C14; 〈σ23〉 ¼ C15; 〈σ31〉 ¼ C16: If we do this with each of the six strains,
the corresponding six rows for the elasticity matrix C in eq. (1.23) can be obtained.
However, in this way, one cannot guarantee that the computed C is symmetric. In
another way, if we use the computed strain energy of the RVE to derive the elasticity
tensorC, which will be shown in Chapter 2, we need to consider twenty-one load cases
to calculate the twenty-one independent elasticity constants in general anisotropic
materials. In this way, the symmetry of C is ensured. Either of these two strategies
will further increase the burden of modeling microstructures of materials using FEM,
XFEM, or BEM, making the direct modeling of a large number of inclusions, fibers,
pores, or crack almost impossible. Such a dilemma has motivated the authors to
develop Computational Grains (CGs), a highly efficient and accurate tool that facili-
tates the direct numerical simulation (DNS) of complex microstructures of heteroge-
neous materials.

1.2.3 Motivation for the Development of Computational Grains

To overcome the shortcomings and lack of general applicability of analytical micro-
mechanics methods and computational methods such FEM, XFEM, and BEM, Dong
and Atluri [25, 26] started to develop special 3D Trefftz Polyhedral Voronoi elements,
each with an embedded spherical and ellipsoidal inclusion or void, for the modeling of
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composite and porous materials, which later became the first of a series of different
CGs for different materials. As shown in Figure 1.7, such a CG is a polyhedral element
with an embedded inclusion or pore, which can be seen as the generalization of
Eshelby’s solution in a finite domain. It uses Voronoi diagram to create a set of
elements, with each containing an embedded heterogeneity, which thus eliminates
the workload of preprocessing to create a finite FEM mesh for complex microstruc-
tures. And because of the use of special trial functions and specifically designed
boundary-type variational principles, the stiffness matrix of each of the CGs (with
nodal displacements as degrees of freedom (DoFs)) can be directly computed and
assembled. As can be seen from Figure 1.7(a–c), in this way, the unit cell modeled by
tens of thousands of simple finite elements can be now accurately simulated by only
one CG, and complex microstructures with many heterogeneities can be easily mod-
eled by assembly of a number of CGs (see Figure 1.7(d)).

Such a work is later followed by the development of a series of different CGs
for particulate composites, fiber composites, three-phase materials, nanocomposites,
multifunctional composites, and so on. And the basic idea is that we use one

Figure 1.7 (a) Al/SiC unit cell model established by ABAQUS; (b) schematic diagram of
a typical computational grain (a polyhedron with a spherical inclusion); (c) comparison of the
stress by a CG and the analytical solution; (d) RVE of 1,000 CGs with spherical inclusions
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grain/superelement to model the mechanical behavior of the smallest topological
building block of various types of composite materials. Thus, each CG can either be a
homogeneous material or include an embedded particle, fiber, void, or crack (as shown
in Figure 1.8). However, different trial functions and variational principles or integral
equations are used to develop each type of the CG, when different topologies, physics,
constitutive relations, interfaces, and types of damages are to be modeled. Thus,
“Computational Grains” is not a specific numerical algorithm, but a series of various
computational models to achieve the same goal for different materials: DNS of complex
microstructures ofmaterials by the assembly of the most basic topological units modeled
by specially designed elements named as Computational Grains. Various algorithms for
different types of CGs and their applications in modeling heterogeneous materials will
be presented in the following chapters of this book, in detail.

1.3 Purpose and Layout of This Book

This book is aimed at presenting high-performance computational tools for the mod-
eling of RVEs for studying not only the homogenized properties of heterogeneous
materials but also the stress/strain fields at the microlevel in detail by using CGs. It is
intended for researchers in academia, industry, and government laboratories to

Figure 1.8 Schematic diagram of typical computational grains for homogeneous material/
composites with spherical/ellipsoid/fiber/coated inclusions/microcrack
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understand the issues, challenges, and technologies involved in modeling heteroge-
neous materials as well as structures made of such materials in an integrated system.
With advances in quantum computing, it will be possible to model entire structural
components using the presently described micromechanical CGs directly rather than
using the currently popular structural finite elements, in the near future. Thus damage
precursors at the microlevel in a structural component canmore easily be identified and
modeled; and strength, degradation, and the life of a structural component can be more
precisely predicted. The topics covered encompass elastic, nonelastic, and multi-
physics problems for solid materials, particle-reinforced composites, fiber-reinforced
composites, nano-size composites, porous materials, and so on. Several numerical
examples are provided to validate and demonstrate the power of the developed
methodologies. MATLAB codes for various CGs are also provided, so that the readers
can implement them in their own computer programs or interface them with the off-
the-shelf computer programs such as ABAQUS/ANSYS.

The rest of this book is organized as follows: Chapter 2 mainly introduces the basic
concepts of the composite material homogenization method using micromechanics
and the realization of attendant numerical algorithm. Chapter 3 introduces the basic
principles of the computational grain method, and elaborates its entire process from
the algorithm for describing the random distribution of inclusions; Voronoi meshing;
finite element format construction; and the calculation of the equivalent moduli of
the composite material; to the multi-scale simulation based on the computational grain
method. Chapter 4 introduces the details of the derivation of Trefftz trial functions in
2D and 3D for various geometrical shapes of inclusions. Chapter 5 introduces the
Trefftz CGs for particulate composites and porous materials in detail, with the corres-
ponding boundary-type variational principles and its algorithmic implementation.
Chapter 6 introduces a different boundary-type variational principle for fiber compos-
ites, and the algorithmic implementation of computational grain method for fiber
composites. Chapter 7 introduces the formulation of CGs for nanocomposites consid-
ering the interface stress effect. Chapter 8 introduces a boundary-type variational
principle for three-phase composites, and the algorithmic implementation of CGs
with coated inclusions. Chapter 9 introduces the governing equations of viscoelasticity
for the matrix and inclusions, and the formulation of CGs for viscoelastic composites.
Chapter 10 introduces the CGs for piezoelectric composites/porous materials.
Chapter 11 introduces the CGs with embedded microcracks in the matrix and inclu-
sions. Chapter 12 introduces the multi-scale algorithm based on the computational
grain method, which is used to quickly and accurately simulate the macro-stress state
for structures and micro-stress states for materials.
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