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Abstract

Background. Patients with schizophrenia experience accelerated aging, accompanied by abnor-
malities in biomarkers such as shorter telomere length. Brain age prediction using neuroimaging
data has gained attention in schizophrenia research, with consistently reported increases in
brain-predicted age difference (brain-PAD). However, its associations with clinical symptoms
and illness duration remain unclear.
Methods. We developed brain age prediction models using structural magnetic resonance
imaging (MRI) data from 10,938 healthy individuals. The models were validated on an
independent test dataset comprising 79 healthy controls, 57 patients with recent-onset schizo-
phrenia, and 71 patients with chronic schizophrenia. Group comparisons and the clinical
associations of brain-PAD were analyzed using multiple linear regression. SHapley Additive
exPlanations (SHAP) values estimated feature contributions to the model, and between-group
differences in SHAP values and group-by-SHAP value interactions were also examined.
Results. Patients with recent-onset schizophrenia and chronic schizophrenia exhibited
increased brain-PAD values of 1.2 and 0.9 years, respectively. Between-group differences in
SHAP values were identified in the right lateral prefrontal area (false discovery rate [FDR]
p = 0.022), with group-by-SHAP value interactions observed in the left prefrontal area (FDR
p = 0.049). A negative association between brain-PAD and Full-scale Intelligence Quotient
scores in chronic schizophrenia was noted, which did not remain significant after correction for
multiple comparisons.
Conclusions. Brain-PAD increases were pronounced in the early phase of schizophrenia.
Regional brain abnormalities contributing to brain-PAD likely vary with illness duration. Future
longitudinal studies are required to overcome limitations related to sample size, heterogeneity,
and the cross-sectional design of this study.

Introduction

Numerous studies have reported that individuals with schizophrenia have a life expectancy
reduced by approximately 10–25 years, primarily due to an increased risk of suicide and
comorbidities such as dyslipidemia, diabetes mellitus, and metabolic syndrome (Correll et al.,
2022; Jayatilleke et al., 2017; Tanskanen, Tiihonen, & Taipale, 2018). Abnormalities in various
biomarkers associated with the aging process, such as shorter telomere length (Russo et al., 2018),
oxidative stress (Flatow, Buckley, &Miller, 2013), and higher inflammatory markers (Lee, Hong,
Martin, Eyler, & Jeste, 2017), have also been observed in patients with schizophrenia. According
to the findings, patients with schizophrenia may undergo accelerated aging and premature death
compared to healthy individuals (Nguyen, Eyler, & Jeste, 2017). As aging affects the brain, cognitive
functions, which are associated with brain aging, are often impaired before or at the onset of
psychotic symptoms in individuals with schizophrenia (McCutcheon, Keefe, & McGuire, 2023).
Extensive evidence on structural brain abnormalities in schizophrenia further supports the notion of
an accelerated aging process in the brains of patientswith schizophrenia (Constantinides et al., 2023).

Brain age prediction using neuroimaging data has garnered significant attention in schizo-
phrenia research, with more than 20 studies being published on this topic. Brain-predicted age
difference (brain-PAD), calculated as the difference between neuroimaging-based brain age and
chronological age, is increased by 3.5 years in patients with schizophrenia compared with healthy
individuals (Constantinides et al., 2023). This increase in brain aging in patients with schizo-
phrenia ismore pronounced in the early phase of the illness, particularly within the first 5 years of
onset than in the later phases. Schnack et al., in a longitudinal study, reported that the brain-PAD
in schizophrenia persisted over the follow-up period from baseline, although the extensive
variability in brain abnormalities during follow-up rendered the increased gap statistically
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non-significant (Hugo G Schnack et al., 2016). In terms of brain-
PAD changes across different illness stages, Kim et al. reported that
patients with treatment-resistant schizophrenia exhibited a more
substantial brain age acceleration compared to those with first-
episode schizophrenia spectrum disorder (Kim et al., 2024; Kim
et al., 2023). While existing research consistently indicates increased
brain-PAD in schizophrenia, the relationship between brain-PAD
and illness duration remains unclear.

The clinical implications of elevated brain-PAD in patients with
schizophrenia remain uncertain. Two large-scale studies have
found no significant associations between brain-PAD and various
clinical factors, including the severity of psychiatric symptoms,
antipsychotic dosage, and illness duration (Constantinides et al.,
2023; Kaufmann et al., 2019). Previous studies consistently report
an increased brain-PAD in patients with schizophrenia; however,
the inter-subject variability in brain-PAD remains unresolved and
warrants future research. The clinical heterogeneity of schizophre-
nia is well-recognized, particularly in terms of response to anti-
psychotic treatment, long-term clinical course, and prognosis (Bosia
et al., 2019; Buchanan&Carpenter, 1994;Dickinson et al., 2018). The
first five years following the onset of schizophrenia are widely
recognized as a critical period that influences long-term clinical
outcomes and prognosis (Birchwood, Todd, & Jackson, 1998).
Numerous studies have reported that beyond this early phase,
patients with schizophrenia often demonstrate reduced responsive-
ness to antipsychotic treatment and encounter greater challenges in
regaining premorbid functioning (McGorry, Hickie, Yung, Pantelis,
& Jackson, 2006). Considering this clinical trajectory, categorizing
patients into recent-onset and chronic groups is advantageous, as
these groups are likely to exhibit distinct neurobiological character-
istics (Wood, Yung, McGorry, & Pantelis, 2011). Although defin-
itions of “recent-onset” and “chronic” schizophrenia vary across
studies, the first five years are frequently adopted as a benchmark
for defining recent-onset schizophrenia (Newton et al., 2018).

Brain age prediction, which estimates an individual’s biological
brain age based on neuroimaging data, has emerged as a valuable
tool for understanding brain development and aging. However,
traditional approaches for brain age prediction have several limi-
tations. Previous studies have predominantly relied on single-
model approaches, which may not fully capture the complexity
and diversity of brain structures and functions (Franke, Ziegler,
Klöppel, Gaser, & Initiative, 2010). Additionally, many studies have
been constrained by small sample sizes, limiting the generalizability
and predictive accuracy of their models (Conrad, Mälzer, Schwar-
zenberger, Wiemer, & Ihlenfeldt, 2022; Safonova et al., 2023).
Multiple studies have demonstrated that smaller datasets signifi-
cantly impact model performance, highlighting the critical need for
larger datasets to enhance prediction accuracy and generalizability
(Cole et al., 2017). Ensemble learning methods address these chal-
lenges by combining predictions from multiple models, thereby
compensating for individual model weaknesses and enhancing
predictive stability and accuracy (Kyriakides & Margaritis, 2019).
This approach is particularly valuable in brain age prediction,
where diverse brain characteristics must be comprehensively con-
sidered (Couvy-Duchesne et al., 2020; Kuo et al., 2021; Xiong et al.,
2023). Furthermore, utilizing large datasets can significantly
improve the performance of machine learning models in brain
age prediction. Large datasets that encompass diverse populations
and brain structures enable models to learn from a wider range of
cases, thereby improving their ability to generalize. These expanded
datasets allow models to capture infrequent changes in brain struc-
ture or function that can be crucial for accurate age prediction.

In this study, we used neuroimaging data from over 10,000
healthy individuals, sourced from 20 public databases, to develop
brain age prediction models. These models were validated on
independent test data of healthy controls and patients with schizo-
phrenia. The patients with schizophrenia were categorized into the
recent-onset and chronic schizophrenia groups based on an illness
duration of 5 years. We analyzed changes in brain-PAD across
these groups and further explored the associations between brain-
PAD and clinical variables. Figure 1 illustrates the workflow for
brain age prediction in our study.

Methods

Study samples

To develop a brain age prediction model, we collected de-identified
T1-weighted MRI data from 20 public databases. The final dataset
comprised 10,938 healthy individuals aged between 5 and 95 years.
Detailed demographics and dataset-specific characteristics are pro-
vided in Supplementary Table 1.

For the independent test sample, we combined data from three
different cohorts recruited from the Asan Medical Center, a
university-affiliated hospital. The first cohort (AMC 1) included
49 patients with recent-onset schizophrenia and 24 healthy controls.
The second cohort (AMC 2) comprised 27 patients with schizophre-
nia, 24 patients with bipolar disorder, and 55 healthy controls. The
third cohort (AMC 3) involved 52 patients with chronic schizophre-
nia.We excluded three participantswho enrolled inmore than one of
these cohorts. Detailed information about each cohort can be found
in the SupplementaryMaterial. We categorized patients with schizo-
phrenia as having recent-onset schizophrenia or chronic schizophre-
nia based on an illness duration of 5 years (Newton et al., 2018).
Illness durationwas defined as the period from the onset of psychotic
symptoms to the date of the clinical interviewwith participants. After
excluding patients with bipolar disorders, the independent test sam-
ple included 79 healthy controls, 57 patients with recent-onset
schizophrenia, and 71 patients with chronic schizophrenia. Different
tools were employed across cohorts to assess neurocognitive per-
formance and psychiatric symptoms. The severity of psychiatric
symptoms was measured using the Positive and Negative Syndrome
Scale (PANSS) (Kay, Fiszbein, & Opler, 1987) for patients in the
AMC 1 and AMC 3 cohorts. Full-scale Intelligence Quotient (FSIQ)
and Memory Quotient (MQ) scores were also collected for partici-
pants in the AMC 1 and AMC 3 cohorts. Participants in the AMC
2 cohort were assessed using the Cogstate brief battery (Maruff et al.,
2009), which solely focuses on cognitive functions. Further details on
the clinical and cognitive assessments used in each cohort are pro-
vided in the Supplementary Material.

The authors assert that all procedures contributing to this
work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in 2008. The
present study was approved by the IRB of the Asan Medical
Center (IRB No. 2021–1128).

Image acquisition, preprocessing, and analysis

Information on scanners and T1-weighted MRI acquisition
parameters for the training samples and test samples are detailed
in Supplementary Tables 2 and 3. All MRI data were rigorously
inspected to ensure quality, and only participants with MRI data
deemed adequate for downstream analysis were included in the
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final study population. T1-weighted images from all participants
were processed identically using the automated FreeSurfer v7.4
(http://surfer.nmr.mgh.harvard.edu) pipeline. For cortical par-
cellation, we utilized the Schaefer atlas (Schaefer et al., 2018),
chosen for its capacity to parcellate the cerebral cortex based on
intrinsic functional connectivityMRI, enabling a higher degree of
functional integration and segregation, thus yielding neurobio-
logically meaningful features. Additionally, we selected seven
subcortical regions from each hemisphere—accumbens, amyg-
dala, caudate, hippocampus, thalamus, pallidum, and putamen.
This resulted in 215 brain features, including cortical thickness
and surface area of 100 cortical regions, volumes of 14 subcortical
regions, and total intracranial volume. To account for site-
specific variability inherent in this multi-center neuroimaging
study (Dufumier et al., 2022), we applied neuroCombat (Fortin
et al., 2018), an adaptation of the ComBat harmonization method
(Johnson, Li, & Rabinovic, 2007), which effectively mitigates site
effects. Details on the effectiveness of ComBat harmonization are
provided in the Supplementary Material.

Model development and validation

We trained and evaluated 32 models, including base models and
their ensemble variants, which utilized stacking and bagging tech-
niques to enhance predictive performance. Detailed descriptions
for each algorithm and stacking and bagging techniques are
described in Supplementary Material.

Model training

The brain age prediction model was trained using AutoGluon
(Erickson et al., 2020), an open-source automatedmachine learning
(AutoML) library chosen for its efficiency and ease of use. Auto-
Gluon supports high-level tuning, stacking, and bagging ensemble
techniques withminimal code using preset configurations.We used
the “best_quality” preset, which, although computationally inten-
sive, applies advanced techniques to optimize performance. For
bagging, we employed 8-fold cross-validation to enhance model
stability and generalization, allowing the system to integrate the

Figure 1. Overview of the workflow for brain age prediction.
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strengths of diverse models for potentially superior prediction
accuracy.

Following comprehensive performance evaluations, we selected
the best-performingmodel to conduct further analyses on brain age
prediction. To assess model reliability, we performed 5-fold cross-
validation within the training dataset, identifying the model with
the highest performance, which was then retrained on all available
training samples to maximize predictive power. This retrained
model, optimized on the full dataset, was used for the final analysis.

Model training was optimized using root mean squared error
(RMSE) as the loss function to enhance prediction accuracy. The
training process was conducted on a hardware setup comprising an
Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz and four NVIDIA
RTX 4090 24GB GPUs, running on Ubuntu 20.04.6 LTS.

Statistical analysis

All statistical analyses were conducted using R software
(version 4.0.2; R Development Core Team, Vienna, Austria). Stat-
istical significance was set at an alpha value of <0.05. Between-
group differences in continuous variables were tested using the
t-test or analysis of variance (ANOVA), as appropriate. The chi-
square tests were applied to evaluate between-group differences in
categorical variables.

Given the strong associations between chronological age and
brain-PAD (Supplementary Figure 4), linear regression models
were used to adjust brain-PAD for age, age-squared, and sex. We
excluded outliers identified as values greater than 1.5 IQR above the
median or lower than 1.5 IQR below themedian of the age-adjusted
brain-PAD values. Between-group comparisons of brain-PAD
were performed using analysis of covariance (ANCOVA) with
age, age-squared, and sex as covariates, and post-hoc analyses were
conducted using Tukey’s method. Clinical associations with brain-
PAD were examined using linear regression models, where
unadjusted brain-PAD was the dependent variable, and clinical
variables, age, age-squared, and sex were the independent variables.
We conducted linear regression analyses within each group and
determined the clinical associations based on the standardized
coefficients for each clinical variable. Multiple comparisons were

corrected using an FDR of q < 0.05, accounting for the number of
clinical variables (n = 7).

Feature importance was assessed using SHapley Additive
exPlanations (SHAP) values (Lundberg, 2017). SHAP values meas-
ure howmuch each feature contributes to a model’s predictions. By
analyzing how predictions change when features are included or
excluded, SHAP calculates the importance of each feature while
accounting for their interactions, providing a fair assessment of
feature impact. To derive feature importance, SHAP values were
calculated for the entire test dataset, and the top 20 features were
selected based on their absolute SHAP values. An ANOVA was
used to examine between-group differences in SHAP values and
group-by-SHAP interactions for the age-adjusted brain-PAD.Mul-
tiple comparisons were adjusted for the number of features (n = 20)
using an FDR of q < 0.05.

Results

Demographic and clinical characteristics of the independent
test sample

Table 1 presents the demographics and clinical characteristics of the
participants in the independent test sample. Significant differences
were observed among the three groups in age (F = 18.71, p < 0.001),
FSIQ sores (F = 32.21, p < 0.001), and MQ scores (F = 31.33,
p < 0.001). The mean illness durations in the recent-onset and
chronic schizophrenia groups were 2.3 (3.7) and 15.1 (8.8) years,
respectively. No significant differences in PANSS total and subscale
scores were observed between the two patient groups. However,
patients with chronic schizophrenia had significantly higher Global
Assessment of Functioning scores than those with recent-onset
schizophrenia (t = 6.428, p < 0.001).

Model performance

We evaluated the performance of multiple machine learning models
for brain age prediction using 5-fold cross-validation. Table 2 pre-
sents the performance metrics for each model, including mean
absolute error (MAE), RMSE, Pearson’s correlation coefficient (R),

Table 1. Demographics and clinical characteristics of the independent test sample

Group Statistic

HC Recent-onset SCZ Chronic SCZ F or t p Post-hoc

Number of participants 79 57 71

Age, mean (SD), year 32.6 (6.9) 28.5 (6.3) 37.7 (11.4) 18.71 <0.001 C > H > R

Male sex, n (%) 25 (31.7) 23 (40.4) 31(43.7) 2.447 0.294

Duration of illness, mean (SD), year NA 2.3 (3.7) 15.1 (8.8) 9.028 <0.001

FSIQ, mean (SD) 120.1 (9.2) 97.2 (15.9) 90.4 (16.4) 32.21 <0.001 H > R, C

MQ, mean (SD) 109.4 (11.9) 83.8 (21.0) 73.1 (16.1) 31.33 <0.001 H > R > C

PANSS positive, mean (SD) NA 16.6 (7.4) 14.5 (4.9) �1.669 0.098

PANSS negative, mean (SD) NA 16.7 (7.1) 18.6 (6.5) 1.381 0.171

PANSS general, mean (SD) NA 28.9 (7.5) 32.5 (10.4) 1.979 0.051

PANSS total, mean (SD) NA 62.2 (15.9) 65.6 (19.7) 0.948 0.346

GAF, mean (SD) NA 44.1 (14.3) 63.1 (11.4) 6.428 <0.001

C, chronic schizophrenia; FSIQ, Full-scale Intelligence Quotient; GAF, Global Assessment of Functioning; H, healthy controls; HC, healthy controls; MQ, Memory Quotient; NA, not available; PANSS,
Positive and Negative Syndrome Scale; R, recent-onset schizophrenia; SCZ, schizophrenia.
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and coefficient of determination (R2). Among the 32 models evalu-
ated, the WeightedEnsemble_L3 model demonstrated the best per-
formance, achieving the lowest MAE of 6.555 years. This model also
recorded a strong R of 0.868 and R2 of 0.752.

Between-group differences in brain-PAD

We performed an ANCOVA, adjusting for age, age-squared, and
sex, to investigate between-group differences in brain PAD among
healthy controls, patients with recent-onset schizophrenia, and
patients with chronic schizophrenia. Figure 2 shows a significant
between-group difference in brain-PAD (F = 281.086, p < 0.001).

Compared with healthy controls, patients with recent-onset schizo-
phrenia (t = 3.209, p = 0.004) and those with chronic schizophrenia
(t = 2.742, p = 0.018) had greater brain-PADs. The mean age-
adjusted brain-PADs of healthy controls, patients with recent-onset
schizophrenia, and patients with chronic schizophreniawere� 0.70
(1.63), 0.48 (2.54), and 0.19 (1.96) years, respectively. Patients with
recent-onset schizophrenia and those with chronic schizophrenia
showed increased brain-PAD of 1.2 and 0.9 years, respectively,
compared to healthy controls.

Clinical association of brain-PAD

We performed linear regressions with covariates, including age and
age-squared, to explore associations between brain-PAD and clin-
ical symptoms (Supplementary Table 5). In patients with chronic
schizophrenia, FSIQ scores demonstrated a negative association
with brain-PAD (ß = �0.0402, uncorrected p = 0.042). However,
after adjusting for multiple comparisons, this association was not
significant.

Between-group differences in SHAP values and group-by-SHAP
value interactions

We selected the top 20 features based on their absolute SHAP values
and investigated between-group differences in SHAP values. We
also explored group-by-SHAP value interactions for age-adjusted
brain-PAD. Supplementary Table 6 shows the top 20 features and
the statistics for the group comparisons and interactions, demon-
strating a significant between-group difference in the SHAP value
of the RH_Cont_PFCl_1_thickness (cortical thickness of the right
lateral prefrontal area in the control network) (F = 7.062, FDR
p= 0.022) and a significant group-by-SHAP value interaction in the
LH_Default_PFC_3_thickness (cortical thickness of the left pre-
frontal area in the default mode network) (F = 6.198, FDR
p = 0.049) (Figure 3). Healthy controls had increased SHAP values
of RH_Cont_PFCl_1_thickness compared with patients with
chronic schizophrenia (p = 0.044) and recent-onset schizophrenia
(p = 0.001) (Supplementary Figure 5).

Discussion

In this study, using structural MRI data from over 10,000 healthy
individuals, we developed brain age prediction models. These
models were validated on an independent test dataset comprising
healthy controls, patients with recent-onset schizophrenia, and
patients with chronic schizophrenia. The results indicated that
patients with recent-onset schizophrenia and those with chronic
schizophrenia exhibited increased brain-PAD of 1.2 and 0.9 years,
respectively, compared to healthy controls. Regarding associations
with clinical variables, a negative correlation between brain-PAD
and FSIQ was observed in patients with chronic schizophrenia;
however, this association did not remain significant after correction
formultiple comparisons. Feature importance, as assessed based on
SHAP value, was compared across the groups, and group-by-SHAP
value interactions for age-adjusted brain-PAD were analyzed. A
significant between-group difference in SHAP value was identified
for the thickness of the right lateral prefrontal area in the control
network, and a significant interaction effect was observed for the
thickness of the left prefrontal area in the default mode network.

Our findings revealed that patients with recent-onset schizo-
phrenia and chronic schizophrenia exhibited increased brain-PAD
of 1.2 and 0.9 years, respectively, compared to healthy controls. The

Table 2. Performance evaluation of brain age prediction

Model MAE RMSE R R2

CatBoost_BAG_L1 7.518 10.173 0.848 0.718

CatBoost_BAG_L2 6.748 9.514 0.868 0.753

CatBoost_r177_BAG_L1 7.621 10.268 0.844 0.712

CatBoost_r177_BAG_L2 6.751 9.513 0.868 0.753

CatBoost_r9_BAG_L2 6.718 9.472 0.869 0.755

ExtraTreesMSE_BAG_L1 9.265 12.255 0.776 0.590

ExtraTreesMSE_BAG_L2 6.810 9.566 0.866 0.750

KNeighborsDist_BAG_L1 12.783 17.049 0.487 0.207

KNeighborsUnif_BAG_L1 12.810 17.071 0.485 0.205

LightGBMLarge_BAG_L1 7.949 10.770 0.830 0.684

LightGBMLarge_BAG_L2 6.674 9.477 0.869 0.755

LightGBMXT_BAG_L1 7.447 10.100 0.850 0.722

LightGBMXT_BAG_L2 6.731 9.482 0.869 0.755

LightGBM_BAG_L1 7.603 10.320 0.844 0.709

LightGBM_BAG_L2 6.717 9.500 0.868 0.754

LightGBM_r131_BAG_L2 6.699 9.482 0.869 0.755

LightGBM_r96_BAG_L2 6.751 9.493 0.868 0.754

NeuralNetFastAI_BAG_L1 7.012 9.819 0.859 0.737

NeuralNetFastAI_BAG_L2 7.013 9.713 0.862 0.743

NeuralNetFastAI_r191_BAG_L2 6.834 9.652 0.864 0.746

NeuralNetTorch_BAG_L1 6.812 9.928 0.856 0.731

NeuralNetTorch_BAG_L2 6.744 9.777 0.861 0.739

NeuralNetTorch_r22_BAG_L2 6.638 9.765 0.862 0.740

NeuralNetTorch_r79_BAG_L1 6.886 10.022 0.854 0.726

NeuralNetTorch_r79_BAG_L2 6.560 9.657 0.865 0.746

RandomForestMSE_BAG_L1 9.020 12.085 0.780 0.602

RandomForestMSE_BAG_L2 6.816 9.603 0.865 0.748

WeightedEnsemble_L2 6.732 9.635 0.864 0.747

WeightedEnsemble_L3 6.555 9.537 0.868 0.752

XGBoost_BAG_L1 7.782 10.528 0.837 0.698

XGBoost_BAG_L2 6.723 9.523 0.868 0.753

XGBoost_r33_BAG_L2 10.565 13.288 0.821 0.518

MAE, mean absolute error; R, Pearson’s correlation coefficient; R2, coefficient of
determination; RMSE, root mean square error; L1, stacking level 1; L2, stacking level 2; L3,
stacking level 3; BAG: bagging; r#, version identifier.
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differences in brain-PAD between the patient and control groups in
our study were smaller than those reported in previous studies
(Hajek et al., 2019; Nenadic, Dietzek, Langbein, Sauer, & Gaser,
2017; Shahab et al., 2019), where patients with schizophrenia exhib-
ited increased brain-PADs ranging from2.6 to 7.8 years compared to
healthy controls. In a large-scale study, Constantinides et al. also
reported a higher brain-PAD of 3.55 years in patients with schizo-
phrenia than in healthy controls (Constantinides et al., 2023). The
discrepancies may be attributed to several factors, including differ-
ences in the clinical characteristics of study populations, neuroima-
ging features used for model development, and variations in brain
age prediction models (Han, Kim, Lee, & Lee, 2022). The greater
increase in brain-PAD in recent-onset schizophrenia than in chronic
schizophrenia observed in the present study aligns with previous
findings by Schnack et al. (H. G. Schnack et al., 2016), who reported
that the acceleration rate of brain-PAD in schizophrenia slows to a
normal rate approximately 5 years after illness onset. However, our
findings are in contrast to those of Kim et al. (Kim et al., 2023; Kim
et al., 2024), who reported a greater increase in brain-PAD inpatients
with treatment-resistant schizophrenia compared to those with first-

episode schizophrenia. This difference may be attributed to struc-
tural brain abnormalities in treatment-resistant schizophrenia being
compounded by the effects of disease progression (e.g. illness dur-
ation) and distinct biological characteristics specific to treatment-
resistant schizophrenia (Potkin et al., 2020). Our finding of a more
pronounced increase in brain-PAD during the early phase of the
illness than the later phase supports the neurodevelopmental hypoth-
esis of schizophrenia pathophysiology (Fatemi & Folsom, 2009).
Although brain age as a single metric offers a simplified approach
to understanding the complex structural abnormalities of the brain,
the underlying causes of accelerated brain aging remain unclear,
warranting further investigation.

We observed a potential association between brain-PAD and
general intelligence in patients with chronic schizophrenia; how-
ever, this association did not remain statistically significant after
adjusting for multiple comparisons. The lack of significance may be
attributed to the small sample size of the present study. Moreover,
as Kaufmann et al. highlighted, a limitation of brain-PAD is its
reliance on a summary metric, which overlooks regional contribu-
tions of structural brain abnormalities (Kaufmann et al., 2019).

Figure 3. Group-by-SHAP value interactions in thickness of the left prefrontal cortex in the default mode network.
Healthy controls, patients with recent-onset schizophrenia, and patients with chronic schizophrenia are represented in blue, red, and green, respectively. Brain-PAD, brain-
predicted age difference; PFC, prefrontal cortex; SHAP, SHapley Additive exPlanations; SCZ, schizophrenia.

Figure 2. Between-group differences in age-adjusted brain-PAD among healthy controls, patients with recent-onset schizophrenia, and patients with chronic schizophrenia.
Blue, pink, and green violin plots indicate healthy controls, patients with recent-onset schizophrenia, and patients with chronic schizophrenia. Brain-PAD, brain-predicted age
difference; SCZ, schizophrenia; * p < 0.05, ** p < 0.01.
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Therefore, it is necessary to consider the spatial and regional
characteristics of brain abnormalities to better elucidate the clinical
relevance of brain-PAD. Further research is required to clarify the
associations between brain-PAD, cognitive deficits, and negative
symptoms in schizophrenia, leveraging larger sample sizes and
more targeted study designs.

We calculated SHAP values to investigate the extent to which
individual features impact brain-PAD across the three groups.
Significant between-group differences in SHAP values were
observed in the right lateral prefrontal area within the control
network, and group-by-SHAP value interactions were found in
the left prefrontal area within the default mode network. Regarding
the significant group-by-SHAP value interaction effects, our find-
ings indicated group differences in the associations between the
contribution of cortical thickness in the left prefrontal area to the
model and brain-PAD. These findings should be interpreted with
caution, as they do not suggest a direct link between structural
changes in the left prefrontal area and accelerated brain aging in
schizophrenia. This may be due to the limited understanding of
how changes in this region influence the model. The right pre-
frontal area is widely recognized for its role in cognitive control and
executive function, as part of the frontoparietal network (Friedman
& Robbins, 2022). Hypoactivation of the right prefrontal area is
associated with negative symptoms (Fuentes-Claramonte et al.,
2022), and reduced connectivity between the right prefrontal area
and the inferior parietal area within the frontoparietal network has
also been observed in schizophrenia (Ćurčić-Blake, Kos, & Aleman,
2022). The left prefrontal area is involved in the default mode
network which is associated with various brain functions, including
self-referential processing, social cognition, and episodic and auto-
biographical memory (Menon, 2023). Extensive evidence highlights
abnormalities in the default mode network in schizophrenia
(Hu et al., 2017), with the left prefrontal area specifically implicated
in thought disorder (Marumo et al., 2014) and impaired memory
encoding and retrieval (Ragland et al., 2009). Ballester et al. identified
the total gray matter volume as the most predictive feature for brain
age in schizophrenia, reporting that the total gray matter volume did
not show significant interactions with brain-PAD in a non-psychotic
depression dataset (Ballester et al., 2023). Our findings differed from
those of Ballester et al., as cortical thickness, rather than gray matter
volume, in the left or right prefrontal area was associated with
between-group differences and group-by-SHAP value interactions
in our study. In addition to the differences in neuroimaging features
and prediction models, it is important to note that our study cat-
egorized patients into the recent-onset schizophrenia and chronic
schizophrenia groups, which may further explain these discrepan-
cies. Our results suggest that the regional impact of structural abnor-
malities on brain age prediction may vary with illness duration.
However, the cross-sectional design of this study limits the interpret-
ation of these findings. Longitudinal studies with larger sample sizes
are needed to further explore these relationships and address this
issue comprehensively.

Our findings highlight the critical role of sophisticated machine
learning approaches in accurately predicting brain age based on
structural MRI data, revealing valuable insights into the computa-
tional techniques that can effectively capture the complex morpho-
logical signatures of brain aging. The remarkable performance of
ensemble methods, particularly the CatBoost_r9_BAG_L2 model
with an MAE of 6.718 years, substantiates the growing recognition
of ensemble learning’s potential in neuroimaging analysis. These
results demonstrate that ensemble techniques can effectively miti-
gate individualmodel limitations by integrating diverse algorithmic

perspectives. Similarly, the LightGBM-based models, specifically
LightGBMLarge_BAG_L2 and LightGBMXT_BAG_L2, demonstrated
comparable performance with MAEs of 6.674 and 6.731 years,
respectively. Conversely, simpler algorithms, such asKNeighborsDist_
BAG_L1 and KNeighborsUnif_BAG_L1, exhibited a significantly
lower performance, with MAEs of 12.783 and 12.810 years, respect-
ively. Simple distance-based algorithms struggle to navigate high-
dimensional, non-linear morphological variations across different
brain structures. This limitation underscores the necessity of sophis-
ticated machine-learning approaches that can capture subtle, complex
interactions between brain structural features. TheWeightedEnsemble
models, particularly the L3 architecture, demonstrated the potential of
hierarchical model stacking. By strategically combining multiple base
models, these approaches can comprehensively represent the multifa-
ceted nature of brain aging. The L3 model’s superior performance
suggests that deeper ensemble architectures can more effectively inte-
grate diverse feature representations and predictive signals. Our results
align with and build upon the findings of Zhang et al. and Li et al.
(Li et al., 2024; Z. Zhang et al., 2022), reinforcing the consensus that
ensemblemethods offer significant advantages in neuroimaging-based
predictive modeling. The consistent outperformance of gradient
boosting and ensemble approaches across different studies indicates
a robust methodological trend in brain age prediction research.

We utilized a large-scale dataset of structural MRI findings of
healthy individuals to develop brain age prediction models, which
significantly enhanced their performance and accuracy. The clin-
ical implications of brain-PAD were investigated considering ill-
ness duration in the patient group, providing insights into the
clinical characteristics of schizophrenia in the context of brain-
PAD interpretation. However, certain limitations of the present
studymust be acknowledged. First, the independent test dataset was
relatively small and consisted of three different cohorts, with par-
ticipants recruited based on MRI data obtained using different
scanners and imaging parameters. Although we applied a harmon-
ization method to standardize individual datasets before inputting
them into the prediction model, this variability should be con-
sidered when interpreting our findings. Second, the chronic schizo-
phrenia group included patients with treatment-responsive and
those with treatment-resistant schizophrenia. Previous studies have
reported distinct biological characteristics of the brains of patients
with treatment-resistant schizophrenia (Potkin et al., 2020). This
heterogeneity likely contributed to the relatively smaller increase in
brain-PAD observed in the chronic schizophrenia group, reflecting
amixture of two biologically distinct subgroups. Third, the number
of clinical variables was limited due to the integration of three
separate cohorts into a single test dataset. A more comprehensive
assessment of psychiatric symptoms and neurocognitive functions
is necessary to deepen the understanding of the clinical implica-
tions of the changes in brain-PAD in patients with schizophrenia.
Fourth, educational attainment has been recognized as a proxy for
cognitive reserve and is associated with brain-PAD. Steffener et al.
(Steffener et al., 2016) reported that a higher educational level was
associated with a lower brain-PAD, suggesting a protective effect on
accelerated brain aging. In the present study, the test dataset
comprised three cohorts evaluated using different tools, which
limited the inclusion of educational attainment as a covariate in
the analyses. Further studies with more rigorous adjustments for
confounding factors are needed to revealmore accuratemeasures of
brain aging in schizophrenia. Fifth, we used the Schaefer atlas for
cortical parcellation which offers neurobiologically meaningful
features by capturing intrinsic functional connectivity patterns
(Schaefer et al., 2018). However, its application to structural MRI
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data warrants careful consideration. Functional atlases are primar-
ily designed to reflect connectivity patterns, which may not always
correspond directly to the brain’s structural organization. Despite
these concerns, we selected the Schaefer atlas based on its estab-
lished utility in previous studies (Hansen et al., 2024; Kuchenhoff
et al., 2024; Luppi et al., 2024; Serio et al., 2024; Valk et al., 2020;
L. Zhang et al., 2025), where it demonstrated robust performance in
extracting biologically relevant features even from structural data.
Finally, the cross-sectional design of this study limits the ability to
infer causal relationships.

In this study, we utilized a large-scale structural MRI dataset of
healthy individuals to develop accurate brain age prediction models
and showed increased brain-PADs in patients with schizophrenia,
particularly during the early phase of illness. These findings support
the neurodevelopmental hypothesis and highlight accelerated brain
aging as a potential biomarker for schizophrenia. While brain-PAD
showed potential associations with clinical characteristics such as
general intelligence, these associations did not remain significant after
correcting formultiple comparisons, possibly due to the small sample
size and heterogeneity within the chronic schizophrenia group. Fea-
ture importance analyzed based on SHAP values revealed regional
variations in the contributions of cortical thickness in brain age
prediction across the groups, emphasizing the need to consider spatial
and regional characteristics when interpreting brain-PADs. Future
longitudinal studies with larger, clinically homogeneous samples and
comprehensive symptom and cognitive function assessments are
necessary to validate these findings and refine the clinical utility of
brain-PAD in understanding the pathophysiology of schizophrenia.
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