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We examine the fluid flow forced by precession of a rotating cylindrical container
using numerical simulations and experimental flow measurements with ultrasonic
Doppler velocimetry. The analysis is based on the decomposition of the flow field into
contributions with distinct azimuthal symmetry or analytically known inertial modes and
the corresponding calculation of their amplitudes. We show that the predominant fraction
of the kinetic energy of the precession-driven fluid flow is contained only within a few
large-scale modes. The most striking observation shown by simulations and experiments
is the transition from a flow dominated by large-scale structures to a more turbulent
behaviour with the small-scale fluctuations becoming increasingly important. At a fixed
rotation frequency (parametrized by the Reynolds number, Re) this transition occurs when
a critical precession ratio is exceeded and consists of a two-stage collapse of the directly
driven flow going along with a massive modification of the azimuthal circulation (the zonal
flow) and the appearance of an axisymmetric double-roll mode limited to a narrow range
of precession ratios. A similar behaviour is found in experiments which make it possible
to follow the transition up to Reynolds numbers of Re ≈ 2 × 106. We find that the critical
precession ratio decreases with rotation, initially showing a particular scaling ∝Re−(1/5)

but developing an asymptotic behaviour for Re � 105 which might be explained by the
onset of turbulence in boundary layers.
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1. Introduction

A precessing body is a rotating object whose axis of rotation undergoes a periodic change
of its orientation. In case of a precessing container filled with a liquid, the force caused
by precession directly acts on the liquid, thus driving a complex three-dimensional flow
that is unstable and usually ends in a turbulent state (McEwan 1970; Vanyo & Likins
1971; Vanyo 1973, 1991; Goto et al. 2007, 2014; Le Bars, Cébron & Le Gal 2015; Barker
2016; Le Bars 2016). Precessing flows are applied in technical devices because of their
efficiency in mixing aimed at the homogenization of viscous fluids (Meunier 2020).
Mixing inside a liquid goes along with a redistribution of the internal angular momentum
and/or torque, which in the case of freely precessing bodies can lead to surprising changes
in the orientation of the inertial axes so that, in turn, the stability of trajectories of
flying and rotating bodies with liquid payload can be impacted (Vanyo & Likins 1973;
Rogers, Costello & Cooper 2013). On a larger scale, precession also affects the stability
of vortices in the atmosphere, for example the formation and decay of hurricanes (Reasor,
Montgomery & Grasso 2004) or the fluid flow in the liquid interior of planets, moons or
asteroids (Le Bars 2016). Indeed, precessional forcing is a promising additional source to
explain the strong magnetic field of the ancient moon three to four billion years ago with a
field strength comparable to that of the Earth’s magnetic field today (Dwyer, Stevenson &
Nimmo 2011; Noir & Cébron 2013; Weiss & Tikoo 2014; Tikoo et al. 2017; Cébron et al.
2019; Tikoo & Evans 2022). Another example is the flow in the liquid core of the Earth, for
which the forcing is rather strong due to the rather fast precession time scale of ∼26 000 yrs
(compared with other planets in the solar system) and the large angle between rotation
axis and precession axis (∼23.5◦). For many years it has been a subject of (still ongoing)
discussion as to whether precession would be suitable to impact the electrically conducting
fluid in the liquid interior of the Earth in a way such that a large-scale magnetic field
can be generated (Stewartson & Roberts 1963; Malkus 1968; Vanyo 1991; Le Bars et al.
2015), although it is generally assumed that the forcing mechanism for the geodynamo
is thermal or chemical convection. In particular, for the early geodynamo, which already
functioned shortly after the formation of the Earth (Tarduno et al. 2020), precession could
help to overcome inconsistencies related to the available energy budget (Olson 2013). The
question of precession-driven dynamos in liquid planetary cores is intimately connected
with the energy budget which would be available for (self-)sustaining of the magnetic field
(Landeau et al. 2022). A rough estimate of the order of the flow amplitude that is expected
to be directly driven from precessional forcing shows that the corresponding flow probably
is too small to sustain the Earth’s magnetic field (Loper 1975; Rochester et al. 1975).
However, in the turbulent case, it might be possible to maintain the geomagnetic field,
if the parameters involved (shear, viscosity) adopt extreme values that lie at the edge of
their assumed value range (Landeau et al. 2022). Indeed, from experimental investigations
of precession-driven flows with a small precession angle, it is known that the directly
driven flow is unstable, giving rise to chaotic small-scale flows as well as large-scale flow
patterns different from the structure of the volume force due to the precession (Manasseh
1992, 1994, 1996), a phenomenon that has been called resonant collapse (McEwan 1970).
In this case, precession acts as a kind of catalyst that allows a transfer of kinetic energy
from the rotational movement of the liquid into a different flow pattern that may be capable
of generating a magnetic field via electromagnetic induction.

In order to examine the ability of a precession-driven flow to excite and sustain
a magnetohydrodynamic dynamo, an experimental facility is under construction at
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), which will be used to drive a flow
of liquid sodium solely by precession (Giesecke et al. 2015a, 2018; Stefani et al. 2015).
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The global flow state in a precessing cylinder

In this experiment, named DRESDYN, the forcing of a fluid flow by precession will be
realized in a cylindrical container, similar to the smaller experiment conducted by Gans
(1970, 1971) in the 1970s, where a threefold amplification of an external magnetic field
was found, indicating that dynamo action can be expected in the vicinity of the transition
from a laminar flow state to vigorous turbulence if the system is sufficiently large. This
was recently supported by applying a combination of hydrodynamic experiments and
numerical simulations with a kinematic dynamo model (Giesecke et al. 2018, 2019). In
these studies, it was shown that, in the planned precession experiment, dynamo action
is best possible in a parameter regime where the flow structure is determined by a
combination of the non-axisymmetric directly forced flow and an axisymmetric double
roll, which emerges in the transitional regime of the global flow state mentioned above.
This transition goes along with a significant generation of a mean azimuthal circulation
(zonal flow), which is known from earlier experiments (Kobine 1995, 1996), and recent
simulations indicate that this is a feature specific for the large-angle precession (Lopez &
Marques 2016).

The present study takes up this preliminary work and aims at a comprehensive
classification of the flow state of a precession-driven flow in a cylindrical cavity. We are
conservative regarding a classification as ‘laminar’ or ‘turbulent’, because in all cases
large-scale components dominate the flow and in particular the Reynolds number that
is achievable in the simulations is too low to associate the flow state with developed
turbulence. Therefore, we label the individual regimes as subcritical and supercritical
states with a transitional regime separating the two states (comparable to the classification
of Pizzi et al. (2022) applying a low state and a high state). We focus on the series of
changes that take place at the transition regime between subcritical and supercritical states,
which represents the most striking phenomenon in the case of a large precession angle.

The outline of the study is as follows: in § 2 we list the basic equations and explain
the set-up of our model. Our analyses are continued in § 3, where we characterize the
spatial structure of the flow and the evolution of the kinetic energy when the forcing due to
precession is increased. In § 4 we compare the amplitude of the directly forced flow with
the result of the nonlinear model recently presented by Gao et al. (2021). The extension
of the expected flow behaviour to more extreme parameters that cannot be achieved in
numerical simulations is carried out in § 5 by means of experimental observations at a
down-scaled water experiment hosted at HZDR. Finally, we summarize and conclude our
results in § 6.

2. Problem set-up and base state

The general set-up used for the description of a precessing flow in a cylindrical cavity
is sketched in figure 1. The system is determined by the height H and the radius R of
the cylinder. The direction of the motion of the container is described by the orientation
of two rotation axes, which are given by the unit vectors kp for the precession and ẑ for
the rotation. The corresponding angular velocities are then given by Ωc = Ωcẑ due to
the rotation of the container and Ωp = Ωpkp due to the precession of the rotation axis.
The nutation angle α describes the relative orientation of Ωc and Ωp and is defined by
cos α = Ωc · Ωp/(ΩcΩp). In the present study we always assume α to be fixed at 90◦. We
further consider a fixed geometry with the aspect ratio Γ = H/R = 2. In the following,
we use the time scale Ω−1

c and the length scale R so that u denotes the velocity in units of
the rotation velocity at the outer boundary of the cylinder (ΩcR) and P denotes the scaled
pressure in units of Ω2

c R2.
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Turntable

H

R

r z
ϕ

Ωc

Ωp

Figure 1. Sketch of the cylindrical domain subject to precessional forcing with the illustration of the direction
of rotation and precession axes. The grey grid in the meridional plane shows the distribution of the spectral
elements utilized in the numerical simulations with the code SEMTEX.

In our analysis we refer to two different frames of reference. In the precession frame
of reference the observer follows the rotational motion due to the precession (Ωp) and
looks at the spinning cylinder (Ωc). Thus the observer rotates around kp at Ωp whereas
the cylinder axis (rotating along ẑ) is fixed in this frame of reference. The fluid flow u is
described by a Navier–Stokes equation that simply reads

∂u
∂t

+ u · ∇u + 2Pokp × u = −∇P + 1
Re

∇2u, (2.1)

where we introduce the Reynolds number, Re = ΩcR2/ν, defined with the rotation
velocity of the outer wall, the kinematic viscosity ν and the Poincaré number Po = Ωp/Ωc.
The boundary conditions applied in our models reflect the rotation of the container, i.e.
ubc = Ωc × r. Explicitly, this gives ur,z = 0 at R = 1 and z = ±H/2 = ±1 and uϕ =
Ωcr at z = ±1. Since it allows a simple numerical implementation which only requires
appropriate boundary conditions for the description of the rotation of the cylinder, all
numerical simulations are carried out in this reference system. This has the additional
advantage that the flow structure, which in this reference frame is essentially dominated
by a standing wave that goes along with a stationary geometric structure of the flow, allows
a simple calculation of a mean flow.

In order to compute the time evolution of a precession-driven flow in a cylindrical
container we use the code SEMTEX, which provides numerical solutions of the
incompressible Navier–Stokes equations applying a coupled continuous-Galerkin nodal
spectral element Fourier spatial discretization with semi-implicit temporal integration
via a time-splitting scheme in Cartesian as well as in cylindrical coordinates. The
algorithm is described in detail in Blackburn & Sherwin (2004) and Blackburn et al.
(2019), including various test problems that demonstrate the robustness and accuracy of
the scheme. Precessional forcing has been analysed with SEMTEX and shows a good
agreement between flow data from simulations and experiments (Albrecht et al. 2015a,b,
2016; Giesecke et al. 2018, 2019). The code uses a standard Fourier decomposition
in the azimuthal direction (ϕ) and quadrilateral spectral elements with standard nodal
Gauss–Lobatto–Legendre basis functions in the meridional plane r, z. Within a spectral
element, the solution is approximated by a polynomial of degree eight. The maximum
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The global flow state in a precessing cylinder

Ωc

Ωp

Figure 2. Streamlines of the directly forced flow with the simplest possible axial structure. This mode is an
inertial wave that is standing in the precession frame of reference.

Reynolds number applied in our simulations is Re = 104. For larger values it is not possible
to resolve the boundary layers while still maintaining a reasonable computation time on
standard high-performance computing systems. We use a non-uniform grid with increasing
resolution in the vicinity of the boundaries so that Ekman and Stewartson layers are
properly resolved (see figure 1). All simulations start with a solid body rotation profile
u(t = 0) = Ωcreϕ with the impact of precession being abruptly switched on at t = 0.

For small precession ratios in the precession frame, the flow is predominantly
co-rotating with the wall so that u ∼ O(1). However, the usual disadvantage of the higher
velocities in this reference frame, which is associated with smaller time steps in the
numerical solution of the equations, turns out to be much less serious, since the typical
flow velocities reach the same order of magnitude in both the precession frame of reference
and the reference frame that is co-rotating with the container wall. In this reference system
the precession axis is no longer stationary and the evolution of the flow is described by the
incompressible Navier–Stokes equation, including the Coriolis force and a time-dependent
volume force, the Poincaré force caused by the perpetual acceleration due to the periodic
change of the orientation of the rotation axis. The equation reads (Tilgner 1998)

∂

∂t
u + u · ∇u = −∇P −2(Pokp + ẑ) × u︸ ︷︷ ︸

Coriolis force

−Po(kp × ẑ) × r︸ ︷︷ ︸
Poincaré force F p

+ 1
Re

∇2u, (2.2)

subject to no-slip boundary conditions ubc = 0 at all boundaries. The precession vector
kp(t) is now time dependent and executes a retrograde gyroscopic motion which causes
the additional forcing term that describes the Poincaré force on the right-hand side of
(2.2). The dynamically relevant part of the Poincaré force is F p = −Po(kp(t) × ẑ) × r =
−rPo sin α cos(t + ϕ)ẑ, which is responsible for the primary flow with an amplitude
characterized by the Poincaré number Po = Ωp/Ωc. The structure of the forcing is
antisymmetric with respect to the equatorial plane and proportional to cos ϕ in the
azimuthal direction, which is immediately transferred to the geometric structure of the
directly driven flow so that only a direct forcing of inertial modes with azimuthal
wavenumber m = 1 and with an odd axial wavenumber k is possible. With an aspect ratio
Γ = H/R = 2 the simplest case (i.e. with the smallest possible wavenumbers) results in a
characteristic flow pattern given by an axial recirculation, as shown in figure 2.

In the co-rotating frame of reference the directly forced flow constitutes an inertial wave
that rotates opposite to the rotation of the container with the frequency of the cylinder,
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whereas in the precession frame of reference these modes are standing waves since the
forcing has the frequency of the rotation of the cylinder. Higher inertial modes arise due
to instabilities (Kerswell 1999) or nonlinear (self-)interactions of the primary flow in the
bulk and in the boundary layers (Meunier et al. 2008). However, according to Greenspan
(1969), first-order nonlinear interactions are forbidden on the long time scale with an order
given by the strength of the nonlinear terms. Therefore, it is usually assumed that all
higher modes are predominantly generated due to interactions (linear and nonlinear) in
the boundary layers. The breaking of the axial symmetry, i.e. the emergence of inertial
modes with even axial wavenumber, was emphasized by Tilgner (2005), who found that
the dynamo effect was more efficient (i.e. started at smaller magnetic Reynolds number or
led to larger magnetic energies) if the axial symmetry of the flow was broken.

3. Dependence on the forcing by precession

3.1. Flow structure
Previously, we have described the base flow in a precessing container as a forced standing
inertial wave superimposed on the solid body rotation caused by the spinning container.
In a complementary approach, Busse (1968) assumed that the fluid flow in a precessing
body obeys a uniform vorticity solution (as originally proposed by Poincaré 1910) as the
zeroth-order solution, and a balance of torques is responsible for maintaining a steady flow.
The corresponding flow is a rotational motion around an axis which coincides neither with
the rotation axis of the container nor with the precession axis. Physically, the existence of
the distinguished rotation axis of the fluid is the result of a perpetual spin-up process
that reflects the effort of the fluid to align the rotational motion due to the rotation of
the container with the motion due to the precession, whose axis direction is permanently
changing. The explicit calculation in a precessing spheroidal cavity includes the saturation
due to the formation of boundary layers and yields an implicit equation for the fluid
rotation axis ωf (see also Noir et al. (2003) for a calculation based on the balance of
torques and the recent results from Kida (2020, 2021) that include higher-order terms).
The solution of Busse has the interesting property that, for fixed forcing and sufficiently
large ellipticity, bistability exists in terms of two stable solutions with a possible abrupt
transition between them. The transition features a hysteresis, which means that, when
increasing the forcing, the transition to the supercritical state occurs at a critical Poincaré
number Poc

1 which is larger than the value Poc
2 marking the transition from the supercritical

state to the subcritical state when reducing the forcing. The theory has been confirmed
in numerics (Tilgner 1999; Tilgner & Busse 2001) and experiments (Noir et al. 2003),
and more recently it was adopted to the case of a precessing ellipsoid (Burmann & Noir
2022). However, Busse’s theory cannot be straightforwardly applied to the case of the
cylinder, because of the presence of corners at the end caps of the cylinder, which perform
a rotational motion due to the precession and prevent the realization of a simple torque
balance so that a uniform vorticity solution is not a good representation for a base state
in a cylindrical geometry. This is also reflected, for example, in the emergence of wave
beams originating in the corners or the emergence of turbulent injections from the sharp
shear layer close to the sidewalls (Marques & Lopez 2015).

In the following, we examine the change in the geometry of the flow in dependence on
the strength of the precession. For this we consider the time-averaged flow field defined as
〈u〉 = (�t)−1 ∫

u dt, where �t represents a time period in the statistical stationary regime.
This representation reflects the flow behaviour rather well, which can be recognized by
comparison with the time-resolved behaviour of the flow fields which is available as a
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Ωc

Ωp
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Ωp
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Ωp
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Ωp
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Ωp

Ωc

Ωp
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(a)

(g)

(d )

(b)

(h)

(e)

(c)

(i)

( f )

Figure 3. Structure of the time-averaged flow. From (a) to (i), Po = 0.001, 0.01, 0.05, 0.075, 0.0875,

0.1, 0.125, 0.1375, 0.2. The streamlines represent the rotational fluid motion in the bulk. The coloured
isosurfaces show the axial velocity uz. The colour of the streamlines represents the axial flow as well. However,
since this component is small in the region where the streamlines are calculated, the streamlines are mostly
white, showing that the axial flow in this location is quite small.

supplementary movie available at https://doi.org/10.1017/jfm.2024.602. This visualization
also shows that the scale of the spatial fluctuations decreases with increasing Po and for
large Po these fluctuations form a (weak) wave pattern that rotates around the precession
axis. Averaging in time, the fluctuations and the time–space periodic variations cancel
out so that in all cases the overall structure is dominated by the non-axisymmetric
mode with m = 1, which is standing in the precessing system. This is illustrated in
figure 3, which shows the structure of the core flow in the precessing cylinder for different
precession ratios. These plots also show that, with increasing Po, the flow changes its
azimuthal position and becomes more and more concentrated adjacent to the sidewall. The
streamlines in the bulk visualize the presence and orientation of a particular fluid rotation
axis whereas the iso-surfaces in the same figure denote the axial velocity uz at 50 % of the
rotation velocity of the sidewall of the cylinder. For small forcing (Po = 0.001, figure 3a) it
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is justified to classify the internal bulk flow as a rotational motion around an own particular
rotation axis, which is (slightly) different from the rotation axis of the cylinder. However,
already the case Po = 0.01 (figure 3b) demonstrates the impact of the end caps, which
enforces the fluid rotation motion to be parallel to the end cap and thus cause a bending
of the fluid rotation axis, leading to an S-shaped pattern. When the forcing is sufficiently
large so that the angle between the fluid rotation axis and the rotation axis of the cylinder
is large enough, the involvement of the end caps is reduced and the ‘bending’ of the fluid
rotation axis decreases again.

We thus can identify two quasi-stationary states, one characterized by the fluid rotation
axis being roughly directed parallel the rotation axis of the cylinder, and the second with
the fluid rotation axis directed perpendicular to the direction of the rotation axis of the
cylinder, with an abrupt transition between these states.

We emphasize that the flow in the bulk, which determines the rotational motion and
hence the direction of the fluid rotation axis, is weak in comparison with the flow in the
vicinity of the sidewalls, which – especially for large values of the Poincaré number in the
supercritical region – is largely independent of the fluid rotation axis.

3.2. Kinetic energy
The change in the flow structure, as described in the previous section, is accompanied by
a significant change in the amplitudes of the individual components of the flow. We will
discuss this in the following in terms of the kinetic energy. For this discussion we switch to
the co-rotating frame of reference, which better allows us to analyse the decomposition of
the energy into axisymmetric and non-axisymmetric parts. This affects the axisymmetric
part of the azimuthal component, since the associated transformation consists of only a
rotation, leaving the other contributions unchanged.

3.2.1. Onset of the triadic instability
We start with weak forcing in figure 4, which shows the time evolution of the kinetic
energy for the leading azimuthal wavenumbers m for four exemplary Po with Po ≤ 0.0025.
Figure 4(a) represents the case Po = 0.001, which is stable and time independent and only
consists of the forced (resonant) mode corresponding to figure 3(a). Increasing Po, the
m = 1 contributions remain highly dominant in all cases (blue curves in figure 4), however,
the directly driven flow is prone to a triadic resonance which adds two free inertial modes.
Theoretical (Kerswell 1999; Lagrange et al. 2011), experimental (Herault et al. 2019)
and numerical (Albrecht et al. 2015a; Giesecke et al. 2015b) investigations have proven
the occurrence of triadic resonances in precession-driven flows and have demonstrated
their characteristic properties in the form of selection rules for the wavenumbers and
frequencies. These relations read mf = 1 = m2 − m1, kf = |k2 − k1| and ωf = 1 = ω2 −
ω1, with the triplet {mf , kf , ωf } comprising the azimuthal wavenumber, axial wavenumber
and the frequency of the directly forced mode and the triplets with the indices 1 and
2 describe the corresponding characteristics of two resonantly interacting free inertial
modes. At aspect ratio Γ = 2 the simplest possible triadic resonance that is involved
with the forced mode at m = 1, k = 1 and ωf = 1 emerges in terms of two free inertial
modes with wavenumbers m = 5, k = 1 and m = 6, k = 2 (Lagrange et al. 2011; Marques
& Lopez 2015; Lopez & Marques 2018). This instability sets in at Po ≈ 0.00125 and
can be identified in the temporal evolution of the kinetic energy by means of the
flow contributions with m = 5 and m = 6, as shown in figure 4(b). The growth of
these modes is accompanied by a corresponding drop in energy of the directly forced
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Figure 4. (a–d) Kinetic energy of the flow contributions with the lowest azimuthal wavenumbers. From (a)
to (d), Po = 0.001, 0.0015, 0.002, 0.0025. Note that, for case (d), the final state is reached only after a second
transition around t = 1000 and t = 1500. In these cases the periodic variation of the energies indicates the
transition from rotating wave to a modulated rotating wave. In all cases we have Re = 104, H/R = 2, and
α = 90◦.

flow. The onset of the triadic instability complies with a first Hopf bifurcation from
a standing wave to a rotating wave. However, the energies of the m = 5 and m = 6
contributions do not show any time dependency, because these modes exhibit a stationary
geometric structure, which rotates with constant frequency around the axis of the
cylinder.

If one increases the Poincaré number further, additional contributions with larger m
appear (figure 4c) caused by interactions of the three initial modes among themselves.
The emergence of the new modes is accompanied by a secondary transition to an
oscillating energy that corresponds to the transition from a rotating wave to a modulated
rotating wave. This secondary transitions occurs earlier when further increasing the
forcing (see figure 4d). Furthermore, the amplitude of the oscillations increases as well
as the number of involved frequencies. In figures 4(c) and 4(d) four different branches
of solutions can be identified. In figure 4(c) we recognize two different behaviours: for
t ∈ [500, 1000] and for t > 1000. In the first interval, there are no oscillations so the
solution looks like the solution of figure 4(b). This behaviour is unstable, since the final
state (t > 1000) displays oscillations. Dynamically speaking, this means that the solution
is approaching, for t ∈ [500, 1000], an unstable configuration with the same dynamical
properties (non-oscillatory) as the solution of figure 4(b). This configuration is unstable
since the final state is oscillatory, indicating a Hopf-like bifurcation, which basically
consists in adding a new temporal frequency to the flow. This final state is a modulated
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Figure 5. Growth rates calculated from numerical simulations in comparison with the weakly nonlinear theory
developed in Lagrange et al. (2011). The dashed vertical line at Po = 0.00125 denotes the threshold for the onset
of the triadic instability.

rotating wave, so branch 2 appears to be due to a second Hopf bifurcation. However, the
first part of figure 4(d) (unstable up to t = 1500) seems to be not of the type of any final
state of previous panels, so it should belong to another branch number 3, which may arise
from further bifurcations on branch 2. The branch number 4 emerges for t > 1500 in
figure 4(d) and seems to be related to branch 3 by means of period halving. All involved
modes and their frequencies are still resulting from combinations of the originally
occurring waves of the first instability and we do not observe the occurrence of a
linearly independent (incommensurable) further triadic resonance. This is in contrast
to the spherical Couette system, where the base flow is axially symmetric so that a
first bifurcation is required in order to break this axisymmetry and therefore another
incommensurable triad is observed (Garcia et al. 2020; Garcia, Giesecke & Stefani 2021).

Figure 5 compares the growth rates calculated from the exponential growth of the
kinetic energy of the unstable modes, as shown in figure 4, with the results calculated
from the theory presented in Lagrange et al. (2011) (dashed curve, calculated with their
(4.17) adapted to the aspect ratio Γ = 2.0; see page 120 of Lagrange et al. 2011). For
all Po values the modes m = 5 and m = 6 exhibit a similar growth rate. We see a
good agreement between theory and simulations, in particular the critical value of Po
that is required for the onset of the instability agrees nearly perfectly. However, for
increasing forcing the growth rates from the simulations are systematically smaller than
the theoretical predictions. This can be explained by the reduced theoretical model of
Lagrange et al. (2011) that only considers four different modes (namely the axisymmetric
mode, the directly forced mode and the two free inertial waves with m = 5, k = 1 and
m = 6, k = 2), whereas the simulations include further modes even at relatively low
supercriticality (see figure 4c,d), which extract energy from the forced mode so that
its amplitude decreases as soon as the free Kelvin modes appear (this can be seen
explicitly in figure 10(a) later on). Another possible cause for the deviation might
be that the theoretical model is only valid for the exact resonance so that detuning
effects are neglected, and saturation is only caused by surface and volume viscous
damping.
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Figure 6. (a) Time evolution of the kinetic energy of the flow, directly driven by precessional forcing for
various values of Po. (b) Higher non-axisymmetric contributions with m > 1. (c) Time evolution of the kinetic
energy for the particular case Po = 0.1. The axisymmetric energy (red curve) reaches roughly 90 % of the total
kinetic energy, and furthermore, is almost contained in the φ component (orange curve). Note that the curves
for the energy from the r and the z components are enhanced by a factor of 10. In all cases we have Re = 104,
H/R = 2, α = 90◦ and time is denoted in terms of rotation periods.

3.2.2. Chaotic regime and transition
When further increasing the forcing parameter Po, the behaviour of the flow becomes
chaotic, but still results in a stationary state in the statistical sense. The time evolution
of the kinetic energy for various cases with Po ≥ 0.01 is shown in figure 6. Because of
the coupling of the individual inertial modes, it makes less sense to consider individual
m so that we show the kinetic energy of the directly forced flow (m = 1, figure 6a) in
comparison with the integrated energy of all higher non-axisymmetric modes with m > 1
(figure 6b). As in the previous cases, we see a strong peak at the beginning, followed
by a transient phase, which, depending on the precession ratio, lasts approximately ten to
thirty rotation periods. Afterwards, the system is in a quasi-stationary state without regular
periodic behaviour. We also see that the kinetic energy does not increase monotonically
with the strength of the force. For instance, in figure 6(a), the energy at Po = 0.075
is almost one order of magnitude larger than at the strongest forcing with Po = 0.2.
A particular case is Po = 0.1 for which it takes a longer time period to reach a quasi-stable
equilibrium which may indicate a bistable state, where the system needs some time to
reach the final state. We also see that, for this Po, the proportion of contributions with
m > 1 is higher than for other parameters (see red curve in figure 6b), which indicates
that the flow is more complex at Po = 0.1. Finally, figure 6(c) shows the proportion of the
axisymmetric contributions (red curve) in relation to the total kinetic energy (blue curve)

998 A30-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.602


A. Giesecke and others

(a) (b)

(c) (d )

0.05 0.10 0.15 0.20 0 0.05 0.10 0.15 0.20

0

0.005

0.010

N
o
n
ax

is
y
m

m
et

ri
c 

en
er

g
y
 (

m
 >

 1
)

0.015

0.020

0

0.5

1.0

K
in

et
ic

 e
n
er

g
y

N
o
n
ax

is
y
m

m
et

ri
c 

en
er

g
y1.5 Etot

Em=0

Em=2 Er,z
m=0

Em=3
Em=4
Em=5
Em=6

Em≥1

Em≥1
Em=1
Em≥2

0.30

0.25

0.20

0.15

0.10

0.05

0

0.005

0.010

P
o
lo

id
al

 a
x
is

y
m

m
et

ri
c 

en
er

g
y

0.015

0.020

0.05 0.10

Po Po
0.15 0.20 0.05 0.10 0.15 0.20

Figure 7. Time-averaged kinetic energy calculated in the co-rotating frame of reference. (a) Decomposition
of the total kinetic energy (blue) into axisymmetric contributions (red) and non-axisymmetric contributions
(green). (b) Decomposition of the non-axisymmetric contributions (green) into directly forced flow (m = 1,
orange) and the remainder (m ≥ 2, light blue). (c) Kinetic energy of individual Fourier modes beyond m = 1.
(d) Kinetic energy of the poloidal axisymmetric flow (ur, uz, double-roll mode). In all cases we have Re = 104,
H/R = 2, α = 90◦. The vertical dashed lines denote the transition regime as discussed in the text.

for this case, and it is obvious that almost the entire kinetic energy of the axisymmetric
contributions is contained in the azimuthal component (orange curve). Note that the
energetic contributions of the poloidal component (green and violet curves) are enhanced
by a factor of 10 in order to make these contributions a little clearer.

Due to the moderate fluctuations of the kinetic energy around a mean value, it makes
sense to consider the time-integrated values as a function of the forcing. Figure 7(a)
shows the total kinetic energy (blue curve), and its decomposition into an axisymmetric
part (red curve) and a non-axisymmetric part (green curve). For small and intermediate
Po, the contribution of the axisymmetric flow remains small, and the course of action
is determined by the directly driven non-axisymmetric flow. This only changes around
Po ≈ 0.075. From this value onwards, the dominant component is the axisymmetric
component. The abrupt increase around Po ≈ 0.094 occurs parallel to a drop in the kinetic
energy of the non-axisymmetric components whereby this drop is significantly smaller
than the increase in the axially symmetric energy. The sudden increase with a maximum
of roughly Ekin ≈ 1.5 at Po = 0.2 means that nearly all kinetic energy available from the
initial rotational motion has been transferred into a fluid flow with a fairly simple structure,
namely a zonal flow (in our scaled units Ωc = 1, R = 1, H = 2, the kinetic energy of
the initial solid body rotation is Ekin = ∫

u2/2 dV = πH
∫

Ωcr3 dr = π/2). This strong
zonal flow is oriented opposite to the direction of rotation of the cylinder and therefore
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Figure 8. (a) Time-averaged pattern of the poloidal axisymmetric flow components ur r̂ and uzẑ (vector
arrows). The coloured contour plots show the radial flow component ur. From upper left to lower right:
Po = 0.01, 0.075, 0.1, 0.2. (b) Axial profile of the axisymmetric part of uz for various Po taken at r = 0.9.

corresponds to a deceleration of the purely azimuthal flow at the beginning. This zonal
flow is the result of nonlinear interactions, for which nonlinear models list three different
sources, namely the nonlinear interaction of the forced mode with itself and with its
viscous modification and the nonlinear interactions in the end cap boundary layers (Gao
et al. 2021).

The composition of the non-axisymmetric flow is shown in more detail in figure 7(b),
which presents the division of the non-axisymmetric energy (green curve) into the
components with the Fourier component m = 1 (orange curve) and the remaining part
(with m > 1, light blue curve). After reaching the maximum shortly before Po ≈ 0.1 with
an amount of up to 15 % of the kinetic energy of the initially purely rotating flow, we see a
sharp drop due to the collapse of the Fourier component with m = 1. The most interesting
region is the regime 0.094 ≤ Po ≤ 0.105 that is indicated by the dashed vertical lines in all
plots of figure 7. Within this interval of Po we find a plateau-like behaviour for the m = 1
contributions and, at the same time, a secondary axisymmetric flow, which is characterized
by a regular large-scale pattern in the poloidal components ur and uz (figure 7d). In contrast
to the previous results at smaller Re presented in Pizzi et al. (2021a), here, the simulations
are sufficiently detailed in Po to illustrate the plateau-like behaviour of the forced mode
and the exact correspondence of plateau and occurrence of the double-roll mode. The
energy contribution of this double-roll structure is small compared with the directly driven
flow or with the total axisymmetric energy which confirms the initially made statement
about the dominance of a pure rotational motion (Em=0

tot ≈ Em=0
ϕ � Em=0

r,z ). The shape of
the double-roll mode with m = 0 and k = 2 is shown in figure 8(a) together with the
corresponding axial profiles of uz in figure 8(b). These curves show, on the one hand, the
variation of the strength of this double roll and a reversal of the direction of the flow for
Po > 0.125. This particular flow structure is interesting because of the appearance and
disappearance for a small range of Po, and because it bears a remarkable resemblance to
a large-scale flow structure that is known to be beneficial for dynamo action (Dudley &
James 1989).

The energy contributions of the higher non-axisymmetric modes are shown in
figure 7(c). It is particularly noticeable here that the m = 2 contributions increase more
strongly in comparison with even higher m modes, and this increase also begins before
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Figure 9. (a) Time-averaged values of the relation of energy of the non-axisymmetric contributions with m >

1 to the directly driven contributions with m = 1. (b) Time-averaged values of the turbulent energy in relation
to the energy of the axisymmetric flow showing the transition from a regime dominated by rotation to a regime
dominated by non-rotating turbulence (in the precession frame of reference).

the transition described above. Increasing Po, in the further course, the m = 1 component
continues to fall in several stages, until finally, at Po = 0.2, an almost equal distribution
between the energy of the m = 1 component and the contributions with m > 1 is achieved.
Note that the energies in figure 7 are only decomposed according to the azimuthal
symmetry, and therefore all turbulent components (each with the corresponding azimuthal
symmetry) are also included.

Figure 9(a) summarizes the changes in the flow state on the basis of the ratio of the
energy of higher Fourier modes (i.e. with m > 1) to the energy of the directly driven
component (m = 1) in a logarithmic representation of the dependence on Po. In that
representation we can clearly see the resonant triadic instability on the left side briefly
above Po ≈ 0.001 and the multi-step transition to the supercritical state on the right-hand
side characterized by an increasing contribution of the higher m modes, which occurs in
at least two different stages.

We have determined the degree of turbulence by integrating the quadratic deviations of
the flow from its (temporal) average

Etur = 1
2

∫
U2

rms dV = 1
2πHR2(t1 − t0)

∫ 2π

0
dϕ

∫ 1

0
r dr

∫ H

0
dz

∫ t1

t0
(u(r, t) − 〈u(r)〉)2 dt.

(3.1)

The result in relation to the energy of the axially symmetric flow in figure 9(b) shows no,
or only a moderate degree of, turbulence before the transition, i.e. in this region the flow is
dominated by rotation. Within the transition region, the energy of the turbulent fluctuations
increases sharply and the system transitions from a state dominated by rotation into a
state dominated by turbulence (note that the steep increase is also caused by the strong
deceleration of the rotational motion, as discussed in Pizzi, Giesecke & Stefani 2021b).

4. Nonlinear evolution of the directly forced flow

A weakly nonlinear theory for the amplitude of the directly driven mode was developed in
Meunier et al. (2008) and later extended to the case of the triadic instability (Lagrange
et al. 2011). Recently, Gao et al. (2021) presented an improved nonlinear model that

998 A30-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.602


The global flow state in a precessing cylinder

(a)

~Po
~Po2

~Po1/3

~Po2/3

100

10–1

10–2

10–3

10–4

10–5

Af A0

T
ri

ad
ic

 i
n
st

ab
il

it
y

T
ri

ad
ic

 i
n
st

ab
il

it
y

M
u
lt

ip
le

 i
n
er

ti
al

 m
o
d
es

ch
ao

ti
c 

fl
o
w

M
u
lt

ip
le

 i
n
er

ti
al

 m
o
d
es

ch
ao

ti
c 

fl
o
w

T
ra

n
si

ti
o
n
 r

eg
im

e

T
ra

n
si

ti
o
n
 r

eg
im

e

S
u
b
cr

it
ic

al

S
u
b
cr

it
ic

al

S
u
p
er

cr
it

ic
al

S
u
p
er

cr
it

ic
al

Po
10–110–2

10–2

10–1

10–310–4 10–110–210–310–4

Po

(b)

Linear model

(Liao & Zhang 2012)

Sim. Re = 104

Nonlin. model

(Gao et al. 2021)

Sim. Re = 104

Nonlin. model

(Gao et al. 2021)

Figure 10. Comparison of amplitudes from simulations (blue curves) and the nonlinear model of Gao et al.
(2021) (red curves) for fixed Re = 104. Panel (a) shows the directly forced mode with m = 1, k = 1. The orange
curve denotes the linear viscous solution of Liao & Zhang (2012), which behaves ∝Po. The green lines illustrate
the scaling ∝Po1/3 in the subcritical regime. Panel (b) shows the axisymmetric geostrophic mode with m = 0
and k = 0 (i.e. the zonal flow in the co-rotating frame of reference). The green lines illustrate the scaling in
Po below the transition to the supercritical regime. The vertical dashed lines in both plots indicate the onset
of the triadic instability, the transition to chaotic behaviour where no individual peaks for free inertial waves
are discernible in the spectrum anymore, and the transition region before the supercritical regime as already
marked in figures 7 and 9 (from left to right).

describes the generation of the axisymmetric circulation (zonal flow) and includes
nonlinear interactions of the inviscid mode with itself and its viscous correction as well as
the nonlinear interactions in the boundary layers. The results show a reasonable agreement
with flow structures at small-angle precession obtained from simulations (Albrecht et al.
2021) and experiments (Meunier et al. 2008). Interestingly, in this model the terms that
are specific to the cylinder geometry cancel out, leaving only contributions that are
independent of the geometry. This may possibly be an explanation for the similarity to
the behaviour in the precessing spheroid in large parts of the subcritical state, as described
by Horimoto et al. (2018) or Komoda & Goto (2019). For more complex geometries, e.g.
spherical shells or for parameter ranges in which the approximation of Gao et al. (2021) is
no longer relevant, this should not be the case.

In the following, we use our simulation results to explore the validity range of the
nonlinear model. The nonlinear model simplifies the problem by considering only the
axisymmetric geostrophic flow (m = 0, k = 0) and the directly forced mode (m = 1, k =
1), which finally leads to a coupled system of two ordinary differential equations for
the amplitudes, in the following denoted by A0 and Af . The system is solved using the
coefficients for the aspect ratio H/R = 2 given in Gao et al. (2021) (see their (4.23) and
table 1). In all cases, after a brief transient phase the solutions converge to a steady state.
The corresponding amplitudes are shown in figure 10 with the directly forced mode in (a)
and the axisymmetric geostrophic mode in (b) in comparison with the amplitudes derived
from the simulations (blue curves) obtained by projection on the eigenfunctions of inertial
waves (Pizzi et al. 2021b).

The numerical solutions basically exhibit three striking features, allowing for the
distinction of four different regimes, whereby not all corresponding features are reflected
in the nonlinear model. Initially, we see a linear evolution, where the directly driven
mode scales ∝Po. A slight deviation between the nonlinear model and numerical solutions
occurs with the onset of the triadic instability just above Po ≈ 0.001. Due to the coupling
with the free Kelvin modes, a slight dip occurs here in the simulations, which is not
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captured by the nonlinear model that neglects higher-order contributions. A second
transition occurs in the range of Po ≈ 0.006. Here, the amplitude scaling changes,
transitioning into a behaviour ∝Po1/3. The transition range is relatively broad, and the
behaviour is evident in both simulations and the nonlinear model. In the further course,
the amplitude of the simulated flow remains below the nonlinear model, which is easy to
understand, since the simulations also involve modes with higher m and k originating in
the directly driven mode. Subsequently, we refer to these three regimes, where simulations
and the nonlinear model essentially coincide (except for minor deviations caused by the
triadic instability), as the subcritical state. In these regimes we have A0 ∝ A2

f , for which,
in principle, three different interactions are responsible: the nonlinear self-interaction
of the directly driven mode, the nonlinear interaction of the inviscid forced mode and
the viscous correction and the nonlinear interactions in the boundary layers at the end
caps. However, numerical simulations with free-slip boundary conditions at z = ±H/2
(so that no boundary layers develop at the end caps) showed that there is nearly no
change regarding the transition and the occurrence of the double-roll mode (Pizzi 2023).
This suggests that the main contributions are caused by the first two interaction terms.
Interestingly, Af exhibits a slightly lower slope in the simulation data, while the behaviour
for A0 is reversed. We attribute this to the contribution of higher modes, which draw
energy from the directly forced mode, and ultimately, through an inverse cascade, provide
additional contributions to the zonal flow similar to the behaviour in the local box model
by Pizzi et al. (2022). Around a Poincaré number of Po ≈ 0.1, a multi-stage transition
follows, culminating in the supercritical state. However, the collapse of the directly driven
flow is not reflected by the nonlinear model so that its validity ceases in this regime.
Furthermore, the double-roll mode that is merely perceptible in the transition region is
not included in the nonlinear model, which only considers the axisymmetric azimuthal
flow component, whereas the double-roll mode is related to the poloidal components ur r̂
and uzẑ. Therefore, the transition and the further evolution in the supercritical region must
have a cause that is beyond the effects considered in Gao et al.’s model. In our very first
studies, we had proposed that the transition and the emergence of the double-roll mode
are associated with a centrifugal instability (Giesecke et al. 2018, 2019). However, recent
simulations indicate that this assessment is not entirely correct, as the violation of the
Rayleigh criterion necessary for the occurrence of a centrifugal instability only occurs
for Po � 0.1075 (Pizzi et al. 2021a), which is roughly 15 % beyond the value of Po at
which the collapse of the directly forced mode and the appearance of the double-roll mode
take place. In any case, a complete understanding would require the consideration of the
influence of the entire large-scale flow including the non-axisymmetric, i.e. the directly
forced, part.

Other possibilities for an instability mechanism could be the elliptical instability
(Kerswell 1993), enabled due to the tilt of the fluid rotation axis with respect to the rotation
axis of the cylinder (see figure 3), or an instability within turbulent boundary layers. The
occurrence of an elliptical instability could be supported by the evolution of the m = 2
mode, which, unlike the other contributions, exhibits a relatively steep increase in the
pre-transition region (see figure 7c). The occurrence of a boundary layer instability, on the
other hand, might be supported by the discovery of irregular turbulent bursts originating
in the corners of a precessing cylinder (Marques & Lopez 2015). Such an instability has
also been suspected in Pizzi et al. (2021b), but only at a significantly larger Reynolds
number than achievable in our simulations. This is also in line with the results of Buffett
(2021), who found that an instability for oscillating boundary layers (as generated by
precession) occurs at significantly higher Reynolds numbers compared with the case of
axisymmetric boundary layers in conventionally rotating flows. This must be mentioned
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with some restriction, because at the transition the nature of the boundary layers changes
from oscillating to axially symmetric (Pizzi et al. 2021b), so that further investigations
are required in order to disentangle the mutual relationship between boundary layers and
internal flow.

5. Experimental scaling for increasing rotation

Despite the rapid development of algorithms and advances in their implementation on high
performance computers in recent years and decades, it is still not possible to carry out
simulations of a precession-driven flow in our set-up with a Reynolds number much larger
than Re ∼ 104. In order to scale our models to more realistic rotation rates and thus larger
Reynolds numbers we resort to experimental investigations on a water test experiment
which has been in operation at HZDR for several years (Herault et al. 2015, 2019; Giesecke
et al. 2018; Kumar et al. 2023). The experiment consists of a Plexiglas cylinder with
height H = 0.326 m and radius R = 0.163 m so that the aspect ratio is Γ = H/R = 2
(figure 11a). The cylinder is held by a frame structure that ensures the stability and
tightness of the system by means of solid screw clamps that run parallel to the sidewalls.
The rotation of the container is driven by a chain through a motor with a maximum
power of 3600 W that is controlled by three power sources. The turntable is driven by
a second motor with a maximum power of 2200 W, which is controlled individually so
that the precession and the rotation frequency can be adjusted independently with the
rotation frequency in the range of 0 Hz < fc < 10 Hz and the precession frequency in
the range of 0 Hz < fp < 1 Hz. Thus, Reynolds numbers Re = ΩcR2/ν with an order of
magnitude up to 2 × 106 are achievable with distilled water with an assumed viscosity of
ν = 10−6 m2 s−1. Similar to the numerical models we fix the angle between precession
axis and rotation axis to α = 90◦ (other angles are discussed in Kumar et al. 2023). We
analyse the flow by means of velocity measurements using UDV, which provides spatially
and temporally well-resolved profiles of the axial velocity along an ultrasonic beam
parallel to the rotation axis (see lower right panel in figure 11a). Similar measurements
allowed us to identify axisymmetric inertial waves in a rotating liquid metal driven by a
Lorentz force that results from a rotating external magnetic field (Vogt, Räbiger & Eckert
2014). In the precession experiment, spatially resolved velocity profiles can be obtained
up to a Reynolds number of Re = 105. A more detailed description of the measurement
system can be found in Giesecke et al. (2019) and Kumar et al. (2023). Here, we show
results from new measurement campaigns that resolve the radial structure of the axial
velocity component as well as the behaviour of the critical Poincaré number for high
rotational frequencies.

At lower Reynolds number, such as Re = 104, it is possible to perform (nearly)
simultaneous measurements with six UDV probes with the help of a multiplexer circuit,
so that a coarsely resolved radial profile of the axial velocity can be measured. A
typical time series is shown in figure 11(b), which presents the axial velocity measured
simultaneously at the six probes mounted at the same azimuthal angle but at different
radii r = 0, 30, 60, 90, 120, 150 mm (from top to bottom). For the post-processing we
divide the measured time series into individual chunks, each covering exactly one rotation
period and the time average of the axial component is calculated by superimposing these
sections. Figure 12 shows the results in comparison with the time-averaged data from the
simulations. The colour-coded contours on the left and the central column of figure 12
denote the results from the simulations while the superimposed black contour lines show
the data from the measurements, with the individual colour gradations corresponding
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Figure 11. (a) Picture of the water experiment consisting of a transparent cylinder filled with water, and
fastening and safety brackets to fix the end caps. The bearing for the transmission of the drive for the rotation
can be seen on the right side of the device. The lower panels of (a) show the ultrasonic Doppler velocimetry
(UDV) probes mounted on one endcap and a sketch that illustrates the propagation of the ultrasonic beams when
performing a flow measurement with six radially mounted UDV probes. (b) Temporal evolution of the axial
flow component uz(z, t) as measured along the axis with six UDV probes mounted at r = 0, 30, 60, 90, 120
and 150 mm (from top to bottom) for a run at Re = 104 and Po = 0.05.

to the same values of the contour lines. For all three Poincaré numbers we see a good
agreement between simulation and experiment both in structure and amplitude. This is
additionally confirmed in detail by the radial profiles of uz shown in the right-hand column
of figure 12, which illustrate the increasing concentration of the flow close to the outer wall
for large Po.

To determine the amplitudes of the double-roll mode (and thus to evaluate its occurrence
or disappearance), we use the fact that the measurement with UDV is carried out in
the co-rotating system, and thus the non-axisymmetric inertial modes do not make
any contribution due to their periodicity in ϕ if a sufficiently long time averaging is
applied. The time average of uz therefore corresponds directly to the axially symmetrical
component provided that there is no pulsation of this contribution (which, as we know
from simulations, does not exist). The corresponding amplitudes, calculated as described
in Appendix B, are similar to those presented in Giesecke et al. (2018) and Giesecke et al.
(2019), which are reproduced in figure 13 for the cases Re = 104, 4 × 104 and 105 for the
two most interesting modes ˜̃ukm with (m, k) = (1, 1) and (m, k) = (0, 2). Qualitatively, the
curves show a similar shape as the kinetic energy in figure 7(b,d). We see an increase of
the forced mode up to a critical point at which the amplitude collapses and then remains
on an intermediate plateau for a small range before another, smaller collapse occurs. At the
same time, we see an interim appearance of the double-roll mode in the plateau regime.
Especially for the larger Reynolds numbers, the appearance of the double-roll structure is
sharply delineated from the remaining part of the parameter range and when comparing
the critical thresholds as indicated by the vertical dashed lines, we see that the regime
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Figure 12. (a,d,g,b,e,h) Structure of the time-averaged axial flow uz in the equatorial plane (a,d,g) and in a
meridional plane where the flow amplitude is maximum (b,e,h). The colour coded structures present the results
of the simulations and the solid black contour lines show the results from the experiment. The black contour
lines follow the same level scheme as the coloured structures. (c, f,i) Radial profile of the axial flow component
uz in the equatorial plane at the angle where the axial flow is maximum. The solid line shows the results from
the simulations and the stars show the results obtained from phase averaging of the UDV measurements. From
top to bottom: Po = 0.05, 0.1, 0.2, Re = 104.

of the plateau between the first and second drops of the directly driven mode correspond
exactly to the appearance and disappearance of the double-roll mode.

Figure 14 supplements these results and shows the scaling of the amplitudes in the
different regimes as a function of Re. The amplitudes of the directly forced mode,
taken within the three different regimes, are shown in figure 14(a), which compares
the amplitude of the directly forced mode taken at the maximum (i.e. at the critical
threshold), an average of the amplitudes obtained in the plateau regime and the average
of the amplitudes in the overcritical regime (i.e. after the second collapse). We see that all
three amplitudes share the same scaling behaviour, which is ∝Re0.9, which can clearly be
distinguished from a scaling linear in Re indicated by the black dotted curve. Saturation
by viscous damping in the bulk would be expected to result in a purely linear scaling ∝Re.
To confirm the deviation observed by us in a robust manner, measurements at significantly
larger Re are therefore still required.

Figure 14(b) shows the related scaling for the double-roll mode, where we restrict the
analysis to the respective maximum amplitude. It is striking that this amplitude follows a
linear scaling ∝Re, so that the relative weighting of the double-roll mode should become
more important as Re increases. Unfortunately, reliable measurements with UDV are not
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Figure 13. (a) Amplitudes of the directly forced mode with m = 1 and k = 1 vs forcing parameter Po for
various Reynolds numbers. The transitional regime is marked by the vertical dashed lines. (b) Same as (a), but
for the double-roll mode with m = 0 and k = 2 (data taken from Giesecke et al. 2018, 2019).
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Figure 14. (a) Scaling of the (measured) amplitudes (maximum, transition region and overcritical regime) for
the directly forced mode in dependence of Re. (b) Same as (a), but for the double-role mode.

possible above Re ∼ 105 due to the excessive flow velocity so that it cannot be ruled out
that a change in the scaling behaviour occurs for Re > 105. This applies in particular to
the double-roll mode, the occurrence of which is associated with exceeding the critical
Po. This threshold decreases with increasing Reynolds number, and we use the occurrence
and disappearance of the double-roll mode as a proxy to identify the transition of the flow
state. This feature can still be identified with the help of the UDV probes for Reynolds
numbers up to Re = 2 × 106 without relying on a spatially resolved measurement of
the axial profile. Figure 15 shows that the critical threshold for the occurrence of the
double-roll mode follows a scaling ∝Re−(1/5) for Re � 105. A similar scaling arises for
the second threshold that characterizes the disappearance of the double-roll mode. Above
a Reynolds number of approximately Re ≈ 105 we see a transition of the behaviour and the
critical thresholds follow an asymptotic regime with Poc → 0.065. There are two further
observations that are worth emphasizing. Firstly, the width of the transition area, i.e. the
regime between the emergence and disappearance of the double-roll mode, is only slightly
dependent on Re. The second interesting fact is the similarity of the regime with Re � 105
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Figure 15. State diagram showing the critical thresholds for appearance and disappearance of the double-roll
mode in dependence on the Reynolds number.

to the measurements in a spheroid with small ellipticity carried out by Horimoto et al.
(2018). These measurements reveal a bistable system in a small range of Po with the
possibility of a quiescent turbulent state and a state of ‘developed turbulence’. The authors
also observed that the range for the bistable state and thus the transition to a developed
turbulent state only weakly depends on Re but did not observe a particular scaling ∝Reβ

for small Re as we found for the cylinder. This suggests that, for the cylinder, the scaling
in the range Re � 105 may be caused by the Ekman layers at the end caps, for which
the extrapolation of simulation data indicates the possibility of the transition to turbulent
boundary layers at approximately Re ≈ 105 (Pizzi et al. 2021b).

6. Summary and conclusion

We have examined the fluid flow in a precessing cylinder using numerical simulations and
UDV measurements in a water experiment. We have limited our investigations to the case
with maximum precession angle, since in this case the volume force caused by precession
is also maximum. In contrast to earlier investigations performed at small nutation angles
that show multiple dynamical features (e.g. flow breakdowns or quasi-periodic bursts,
Manasseh 1992, 1994, 1996), in our study a unique characterization of the flow state is
possible using the Poincaré number Po.

The volume force caused by the precession directly drives an inertial mode whose
amplitude can be calculated from linear theory. In the present case, the configuration is
resonant, and the calculation of the amplitude must take into account viscosity in the
boundary layers (Gans 1970; Meunier et al. 2008; Liao & Zhang 2012). This directly
forced flow is unstable (Kerswell 1993) and becomes time dependent in terms of a triadic
resonance when a critical forcing is exceeded (Kerswell 1999). The emergence of a triadic
resonance and the transition from a laminar flow into a chaotic flow can be understood in
terms of a bifurcation of a rotating wave into a modulated rotating wave (Garcia et al.
2021). In the case of precession the symmetry of the system is already broken right
from the beginning due to the non-axisymmetric forcing, which differs for example from
the axisymmetric base state in the spherical Couette set-up that allows the occurrence

998 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.602


A. Giesecke and others

of an additional frequency because of the need for the breaking of the axisymmetric
symmetry before becoming chaotic (Garcia et al. 2019, 2021). Despite the onset of the
triadic instability we still see a rather regular behaviour when further increasing the forcing
with a monotonically increasing flow amplitude up to a first threshold, which initiates the
transition to the supercritical state. Before the transition the directly forced flow amplitude
scales proportional to the cube root of the forcing (∝Po1/3) and the kinetic energy reaches
more than one third of the energy of the initial flow prescribed by a rotation around the
axis of the cylinder with u = rΩcϕ̂.

There is no unified nonlinear model that describes both the triadic instability and the
evolution of the two main modes (forced mode and zonal flow). However, since the
energetic contribution of the free Kelvin modes and the resulting chaotic contribution
remain small over a large range of parameters, this is not relevant, at least until the
transition to the supercritical regime. Before this transition, a nonlinear model based
on viscous effects and two modes, the directly driven Kelvin mode and the geostrophic
axisymmetric circulation, is capable of describing the behaviour of the precession-driven
flow (Gao et al. 2021). We conclude that the modifications of the flow structure in the
subcritical regime are the results of the nonlinear interaction of the forced (inviscid) mode
with itself and its viscous correction and/or the corresponding interactions in the boundary
layers. However, since simulations with free-slip boundary conditions at the end caps show
a rather similar behaviour, we believe that the contributions within the Ekman layers are
less important (Pizzi 2023). Interestingly, Gao’s system of equations does not seem to
allow two solutions, as they occur in the Busse model for sufficiently large ellipticity.
The possibility of two solutions is also observed in simulations and experiments, and
it is known that the abrupt change between the two states is associated with hysteresis
(Herault et al. 2015). This transition takes place in two consecutive steps above a critical
amplitude of the directly forced flow. We show that the remarkable change seen in the
kinetic energy around Po ≈ 0.1 goes along with a significant modification of the structure
of the flow as well as with a decrease in the forced mode’s amplitude, the emergence
of the double-roll mode, a sudden jump of the orientation of the fluid rotation axis, an
increased level of turbulence and a sudden stop of the rotational motion of the bulk fluid,
none of which are represented in the known nonlinear models. Therefore, Gao’s nonlinear
model still seems incomplete, either because certain interactions have not been taken into
account, or because higher-order contributions are necessary. With regard to this issue, we
emphasize that the emergence of the double-roll mode is not affected by Greenspan’s
theorem (Greenspan 1969), which forbids nonlinear first-order interactions for axially
symmetric, geostrophic contributions on the long time scale with an order given by the
strength of the nonlinear terms. Apart from the triadic instability and the axisymmetric
geostrophic mode, the double-roll mode is the only clearly noticeable regular large-scale
flow pattern in the simulations with nutation angle α = 90◦ and at aspect ratio H/R = 2.

In other configurations, however, the spontaneous formation of large-scale vortices
has been observed in experiments of a precession-driven flow at a different aspect ratio
(Mouhali et al. 2012). In a spherical geometry, such vortices were associated with the
conical shear layer instability (CSI, Lin, Marti & Noir 2015), which is known to be
beneficial for dynamo action (Lin et al. 2016). In a sphere, the conical shear layers are
spawned in the boundary layers at critical latitudes, which do not exist in a cylindrical
geometry. In our simulations, there is a slight indication of the emergence of such vortices
around Po ≈ 0.03. However, these vortices remain weak and short lived (less than half a
rotation period). One could assume that the formation of the vortices is triggered by wave
beams originating in the corners of the cylinder, as described by Marques & Lopez (2015).
The corners at the end caps of the cylinder would thus play a similar role as the critical
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latitudes for the CSI. In fact, we can identify such wave beams in the form of vectored
fluctuations in the vicinity of the corners. The wave beams are clearly visible only in the
supercritical regime, while we see the formation of weak vortices in the laminar region
so that there is probably no connection between the two phenomena. The same applies to
the scaling of the critical value of Po as we observe it in the experiment. Interestingly,
this particular scaling is not found in the scaling of the amplitudes (in all regimes),
whose behaviour follows a rather simple law with respect to the rotation, although the
observation of the deviation of the forced mode from a scaling linear in Re might be
surprising. However, in our measurements the data range for determining the dependence
on Re is limited, as it only covers one order of magnitude, partly in a regime where the
critical Poincaré number for the transition is still decreasing. For more robust statements,
therefore, further measurements with larger Re are required, which cannot be carried out
with the currently installed sensors.

Beyond the transition regime the energy of the axisymmetric flow induced by precession
reaches values up to 80 %−90 % of a rigidly rotating fluid. This large increase is essentially
due to a circulation that is opposite to the rotation of the container. When transferring to
the precession frame of reference, this azimuthal flow corresponds to a braking of the
initial solid body rotation, giving the impression that one observes a stagnant fluid with
the container rapidly rotating around it. A significant fluid flow is observed only in the
vicinity of the sidewall, while being greatly weakened in the interior, which results in a
strong shear effect close to the sidewall that should be helpful for dynamo action according
to Landeau’s criterion (Landeau et al. 2022).

Finally, we emphasize that the axially symmetric component in the form of a twofold
roll as observed within this transition regime is comparable to the mean poloidal flow
in the von-Kármán-sodium dynamo experiment (Monchaux et al. 2007; Giesecke et al.
2012a). It is well known that this type of flow drives a dynamo at comparatively
low values of the magnetic Reynolds number (Dudley & James 1989; Ravelet et al.
2005; Giesecke, Stefani & Burguete 2012b), which might be of high interest with
respect to the precession dynamo experiment currently planned at Helmholtz-Zentrum
Dresden-Rossendorf. Indeed, kinematic simulations show that, in the range of the
transition, the possibility of achieving magnetic field self-excitation in the planned dynamo
experiment has an optimum (Giesecke et al. 2018, 2019; Kumar et al. 2023). So far, the
kinematic models have been based on the assumption of dynamo action in the planned
experiment being driven by large-scale flow. However, this does not need to be the only
possibility. Recent self-consistent simulations using the full set of magnetohydrodynamic
equations and a geometric set-up similar to the planned experiment showed small-scale
dynamo action with the magnetic energy saturating a rather low level (Giesecke, Wilbert
& Šimkanin 2024). In these models, the regular dynamo state is aperiodically interrupted
by strong magnetic bursts (increasing the magnetic energy by a factor of 3 to 5). The
related velocity field is also essentially small scale, and it might be that the randomly
excited inertial waves are responsible for the generation of magnetic energy similar to the
mechanism discussed by Moffatt (1970) and Soward (1975).

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.602.
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Appendix A. Radial structure of inertial modes

We distinguish four different classes of inertial waves according to the elementary
geometric properties, i.e. axisymmetry (m = 0) and geostrophy (k = 0). These classes
and the corresponding representation umkn are listed in the following, whereby our list
additionally contains the corresponding dispersion relations, which are required for the
calculation of the radial wavenumbers λmkn and the frequencies ωmkn. We use the indices
m, k and n, which are the azimuthal wavenumber, the axial wavenumber and the third
index, n, that counts the solutions for the parameter λ, which results from the dispersion
relation that provides a kind of a radial wavenumber.

(i) Axisymmetric geostrophic inertial modes (m = 0, k = 0)

ur
00n = 0

uϕ
00n = J1(λ00nr)

uz
00n = 0

J1(λ00n) = 0

ω00n = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (A1)

(ii) Axisymmetric non-geostrophic mode (m = 0, k /= 0)

ur
0kn = −i

ω0knλ0knΓ

4 − ω2
0kn

J1(λ0knr) sin
(

kπz
H

)

uϕ
0kn = − λ0knΓ

4 − ω2
0kn

J1(λ0knr) sin
(

kπz
H

)

uz
0kn = −i

kπ
ω0kn

J0(λ0knr) cos
(

kπz
H

)
J1(λ0kn) = 0

ω0kn = ±2
[

1 +
(
λ0knH

kπ

)]−(1/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A2)
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(iii) Non-axisymmetric geostrophic modes (m /= 0, k = 0)

ur
m0n = −i

mH
2r

Jm(λm0nr) eimϕ

uϕ
m0n = H

2

[
λm0nJm−1(λm0nr) − m

r
Jm(λm0nr)

]
eimϕ

uz
m0n = 0

Jm(λm0n) = 0

ωm0n = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A3)

(iv) Non-axisymmetric non-geostrophic modes (m /= 0, k /= 0)

ur
mkn = −i

4 − ω2
mkn

[
ωmknλmknJm−1(λmknr)

+ (2 − ωmkn)m
r

Jm(λmknr)
]

sin
(

(2k − 1)πz
H

)
eimϕ

uϕ
mkn = 1

4 − ω2
mkn

[
2λmknJm−1(λmknr)

− (2 − ωmkn)m
r

Jm(λmknr)
]

sin
(

(2k − 1)πz
H

)
eimϕ

uz
mkn = i

ωmkn

(2k − 1)π

H
Jm(λmknr) cos

(
(2k − 1)πz

H

)
eimϕ

0 = ωmknλmknJm−1(λmkn) + (2 − ωmkn)mJm(λmkn)

ωmkn = ±2

[
1 + λ2

mknH2

(2k − 1)2π2

]−(1/2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A4)

Appendix B. Calculation of inertial mode amplitudes from axial profiles measured
in the experiment

The measured velocity profiles are analysed quantitatively by the application of a reduced
projection method similar to the approach that is used for the numerical data in Pizzi et al.
(2021b). The basis for the procedure is the time series of the axial velocity component
uz(r = rs, z, t), where rs is one particular radius at which the UDV probes are mounted. In
a first step we apply a discrete sine transformation at each time step tn

ũk(rs, tn) = 1
Nz

Nz−1∑
j=0

uz(rs, zj, tn) sin
(

πzjk
H

)
, (B1)

where zj = jH/(Nz − 1) is the discrete and normalized axial coordinate. The
decomposition done in (B1) provides an axial mode ũk in dependence on the axial
wavenumber k. Up to now we have ignored the dependency on the azimuthal coordinate ϕ,
because ϕ enters the measurement analysis only implicitly, since the UDV probes cover the
measuring volume once during one revolution of the cylinder. Since there is a time offset
between the velocity profiles recorded at different angles during a single revolution, the
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Figure 16. (a) Original time series as measured by an UDV probe mounted at r = 0.9. (b) Time series
of the k-mode amplitude for k = 1 . . . 6 as obtained from the measurement run shown in (a). (c) Fourier
decomposition of the time series presented in (b). The individual peaks occur at multiples of the rotation
frequency of the container and represent the different azimuthal modes for m = 1, 2, 3, . . . . (d) Original
signal (black curve) in comparison with various reconstructed data curves using different numbers of axial
eigenmodes (red curves). The coloured curves show the individual eigenmodes up to k = 6 that have been used
to reconstruct the original signal. Here, Re = 104, Po = 0.075.

measured profiles cannot be interpreted as an instantaneous snapshot of the axial velocity
field, as is possible with the simulation data. However, in the precession frame of reference
the essential part of kinetic energy is contained in large-scale components in terms of
standing inertial waves so that, after applying a Fourier decomposition, we are able to
disentangle the mixed dependency on time and on the azimuthal coordinate, because we
know the frequency of the probe. Therefore, we calculate the Fourier spectrum in time for
each individual k-mode according to

˜̃ukω(rs) = 1
Nt

Nt−1∑
n=0

ũk(rs, tn) exp(−iωtn)

= 1
NzNt

Nz−1∑
j=0

Nt−1∑
n=0

uz(rs, zj, tn) sin
(

πzjk
H

)
exp(−iωtn). (B2)

The implementation of the individual steps is shown in figure 16 for the paradigmatic case
Re = 104 and Po = 0.075. Figure 16(a) shows a small section of the measurement series
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as recorded by a single UDV probe (the total duration covers approximately 100 rotation
periods). Figure 16(b) shows the decomposition into individual axial modes (from k = 1
to k = 6) according to (B1). The quasiperiodic behaviour and the dominance of the first
axial mode with k ∝ sin(πz/H) can be clearly recognized. Figure 16(c) shows the Fourier
spectrum for the six axial modes from (b) and illustrates that the main contributions come
from standing waves in the precession system, which appear in terms of peaks at integer
multiples of the rotation frequency of the container. This multiplier is equivalent to the
corresponding azimuthal wavenumber m and in the following we label the peaks of the
modes at integer multiples of the cylinder frequency with m, i.e. ˜̃ukω=1,2,3···=̂ ˜̃ukm=1,2,3···.
In order to prove that the characterization by means of the standing inertial modes provides
a reasonable representation for the fluid flow, we calculated the reconstructed signal from
the amplitudes of various numbers of k-modes. The result is shown in figure 16(d),
which presents a single snapshot of an axial profile (black curve) and the decomposition
into several axial k-modes according to (B1) with the blue curve denoting the dominant
contribution for the case k = 1. The red curve in turn presents the reconstructed axial
profile when using the first 20 axial eigenmodes and confirms that the decomposition in
terms of inertial eigenmodes provides a good representation for the velocity field.
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