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Abstract
The study of the sobriety of Scott spaces has got a relatively long history in domain theory. Lawson and
Hoffmann independently proved that the Scott space of every continuous directed complete poset (usually
called domain) is sober. Johnstone constructed the first directed complete poset whose Scott space is non-
sober. Soon after, Isbell gave a complete lattice with a non-sober Scott space. Based on Isbell’s example,
Xu, Xi, and Zhao showed that there is even a complete Heyting algebra whose Scott space is non-sober.
Achim Jung then asked whether every countable complete lattice has a sober Scott space. The main aim
of this paper is to answer Jung’s problem by constructing a countable complete lattice whose Scott space
is non-sober. This lattice is then modified to obtain a countable distributive complete lattice with a non-
sober Scott space. In addition, we prove that the topology of the product space �P × �Q coincides with
the Scott topology of the product poset P ×Q if the set Id(P) and Id(Q) of all incremental ideals of posets
P and Q are both countable. Based on this, it is deduced that a directed complete poset P has a sober Scott
space, if Id(P) is countable and �P is coherent and well filtered. In particular, every complete lattice L with
Id(L) countable has a sober Scott space.
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1. Introduction
Sobriety is one of the earliest studied major properties of T0 topological spaces. It has been used in
the characterization of spectra spaces of commutative rings (Hochster 1969). In recent years, this
property and some of its weaker forms have been extensively investigated from various different
perspectives. The Scott topology is the most important topology in domain theory which bridges a
strong link between topological and order structures. Lawson (1979) andHoffmann (1981) proved
independently that the Scott space of every domain (continuous directed complete poset) is sober.
At the early time, it was an open problem whether the Scott space of every directed complete
poset (dcpo, for short) is sober. Johnstone constructed the first counterexample to give a negative
answer (Johnstone 1981). Soon, Isbell (1982) came up with a complete lattice whose Scott space is
non-sober. However, Isbell’s complete lattice is neither distributive nor countable.

A poset P will be called sober if its Scott space �P is sober. In Jung (2018), Achim Jung posed
two problems. One of them is whether every distributive complete lattice is sober.

Using Isbell’s complete lattice, Xu, Xi, and Zhao gave a negative answer to this problem
(Xu et al. 2021).
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The second problem by Jung (also mentioned by Xu and Zhao in 2020) is the following one:

Problem 1.1. Is there a non-sober countable complete lattice?

In the current paper, we will give an answer to this problem. The main structure we are going
to use is the poset N<N of all words (or, nonempty finite sequences) in the set N of all positive
integers. In Section 2, we shall list some properties of N<N to be used. In Section 3, we construct a
countable complete distributive lattice whose Scott space is non-sober; thus, we give an answer to
Problem 1.1.

In Section 4, we prove some positive results on the sobriety of Scott spaces. First, we prove that
the topology of the product space �P × �Q coincides with the Scott topology on the product
poset P ×Q if the set Id(P) and Id(Q) of all incremental ideals of posets P and Q are both count-
able. Based on this result, we deduce that a directed complete poset P is sober if Id(P) is countable
and the space �P is coherent and well filtered. In particular, every complete lattice L with Id(L)
countable is sober.

2. Preliminaries
In this section, we recall some basic definitions and results to be used later. For more details on
them, we refer the reader to Gierz et al. (2003) and Goubault-Larrecq (2013).

Let P be a poset. A nonempty subsetD of P is directed if every two elements ofD have an upper
bound in D. If D is also a lower set (D= ↓D= {x ∈ P : x≤ d for some d ∈D}), then D is called an
ideal. A poset is called a directed complete poset (dcpo, for short) if its every directed subset has a
supremum. A complete lattice is a poset in which every subset has a supremum and an infimum.
A subset U of a poset P is Scott open if (i) it is an upper set (U = ↑U = {x ∈ P : u≤ x for some u ∈
U}) and (ii) for every directed subset D of P with supD existing and supD ∈U, it follows that
D∩U �= ∅. The complements of Scott open sets are called Scott closed sets. The collection of all
Scott open subsets of P forms a topology on P, called the Scott topology of P, and is denoted by
σ (P). The collection of all Scott closed subsets of P is denoted by �(P). The space (P, σ (P)) called
the Scott space of P is written as �P.

For two elements x, y in a poset P, x is way-below y, denoted by x	 y, if for any directed
subset D of P for which supD exists, y≤ supD implies D∩ ↑x �= ∅. A poset P is continuous if for
each x ∈ P, ↓↓x= {y ∈ L : y	 x} is directed and x= sup ↓↓x. A continuous dcpo is usually called a
domain.

An element x of P is compact if x	 x. The set of all compact elements of P is denoted by K(P).
A poset P is algebraic if for every x ∈ P, the set K(P)∩ ↓x is directed and x= sup (K(P)∩ ↓x).
For any compact element x ∈ P, ↑x ∈ σ (P). Every algebraic poset is continuous. If L is a complete
lattice such that K(L)= L (all elements are compact), then L is algebraic.

A subset K of a topological space X is compact if every open cover of K has a finite subcover.
A set K of a topological space is called saturated if it is the intersection of its open neighborhood
(K = ↑K in its specialization order). The saturation satA of a setA is the intersection of all its open
neighborhoods.

Definition 2.1. (Gierz et al. 2003) (1) A topological spaceX is sober if it is T0 and every irreducible
closed subset of X is the closure of a (unique) point.

(2) A T0 space X is well filtered if for each filter base C of compact saturated sets and each open
set U with

⋂ C ⊆U, there is a K ∈ C with K ⊆U.
(3) A space X is coherent if the intersection of any two compact saturated sets is again compact.
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Remark 2.2. (1) The Scott space of every continuous dcpo is sober.
(2) Every sober space is well filtered. A retraction of a sober space is sober.
(3) If X is well filtered and {Fi : i ∈ I} is a filtered family of compact saturated subsets of X, then⋂{Fi : i ∈ I} is a compact saturated set.

Lemma 2.3. Assume that L is a complete lattice such that K(L)= L. Let

L∗ = {↑F : F ⊆ L is finite}.
Then (L∗,⊆ ) is a distributive complete lattice.

Proof. Since L is a complete lattice with K(L)= L, L is an algebraic lattice. Thus, �L is sober;
hence, it is well filtered.

For any ↑F, ↑G ∈ L∗, it is easy to verify that in L∗,

sup{↑F, ↑G} = ↑(F ∪G), inf{↑F, ↑G} = ↑F ∧ ↑G= (↑F)∩ (↑G)= ↑{x∨ y : x ∈ F, y ∈G}.
Thus, L∗ is a lattice.
(1) L∗ is a distributive lattice.
For any two elements ↑F, ↑G in L∗, it is easy to see that inf{↑F, ↑G} = ↑F ∩ ↑G and

sup{↑F, ↑G} = ↑F ∪ ↑G. Hence, the finite sup (inf) in L∗ is the set union (intersection), which
means that L∗ is a sublattice of the distributive powerset lattice P(L); thus, L∗ is distributive.

(2) L∗ is a complete lattice
Since L∗ is a lattice and has a top element ↑0L, in order to prove L∗ is a complete lattice, it

remains to show that every filtered subset of L∗ has an infimum. Let D = {↑Fi : i ∈ I} be a filtered
subset of L∗. Then each ↑Fi is a compact saturated subset of �L. Hence, by Remarks 2.2(3), the
intersection A= ⋂{↑Fi : i ∈ I} is a compact saturated subset of �L. For each x ∈A, x is compact,
so ↑x ∈ σ (L).

Now A= ⋃{↑x : x ∈A} (note that A is an upper set). As A is compact, there is a finite subset
G⊆A, such that A= ⋃{↑y : y ∈G} = ↑G, which is in L∗. Clearly infD = ↑G.

It follows that (L∗,⊆ ) is a complete lattice.

An ideal I of a poset P is incremental if I is not a principal ideal (I �= ↓x for any x ∈ P). We use
Id(P) to denote the set of all incremental ideals of a poset P.

Proposition 2.4. (Gierz et al. 2003, Corollary II-1.12) If L is a dcpo and a sup semilattice such that
the sup operation is jointly Scott continuous, then �L is sober.

Let N be the set of all nonnegative integers. Then, N is a poset with the ordinary order ≤ of
numbers. Let N<N be the set of all nonempty finite words (or, finite strings) over N. The prefix
order “≤" on N<N is defined as follows:

For any x= a1a2 · · · an, y= b1b2 · · · bm in N<N,

x≤ y if and only if n≤m and ai = bi for all 1≤ i≤ n.

The poset N<N is countable and does not have infinite decreasing sequences. One can arrange
all the elements from N<N in a sequence such that larger elements appear later. Thus, we can
define a monotone injective function from N<N to N.

We shall make use of the following result, for its proof, see Remark 6.1.

Proposition 2.5. There is a monotone bijective function f :N<N →N.

Remark 2.6. Consider the set N. There exists a sequence {Ek}k∈N of disjoint infinite subsets of N.
For example, let E1 = {2m :m ∈N}. Assume that we have defined disjoint subsets Ek(k=

1, 2, · · · ,m) such that each Ei is an infinite subset ofN− ⋃{Ej : j≤ i− 1} andN− ⋃{Ej : j≤ i} is
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Figure 1. The basic gadget of P.

infinite. Then choose Em+1 to be an infinite subset of N− ⋃{Ei : i≤m} such that N− ⋃{Ei : i≤
m+ 1} is infinite.

By induction, we can have a sequence {Ek}k∈N of disjoint infinite subsets of N.
Since N×N is a countable set, there exists a bijection h :N×N→N. Using h and the above

remarks, we see that there is an injective function i :N×N→P(N) such that each i(m, n) is an
infinite set and i(m1, n1)∩ i(m2, n2)= ∅whenever (m1, n1) �= (m2, n2). In addition, by subtracting
{1, 2, · · · ,m} from i(m, n), we can guarantee that all numbers in i(m, n) are strictly greater thanm.

Now for each (m, n) ∈N×N, there is a monotone injection hm,n :N→ i(m, n). Let fm,n =
hm,n ◦ f . Then, fm,n is a monotone injective function from N<N into i(m, n).

3. A Countable Complete Distributive Lattice Whose Scott Space is Non-sober
We now construct a countable complete distributive lattice whose Scott space is non-sober.

Let L=N∪N<N ∪ {�} with the order≤ such that bothN<N andN are sub posets and T is the
top element.

The poset L can be depicted as Fig. 1.
Next, let P =N× L.
Let Ln = {(n, x) ∈ P : x ∈ L}. In this section, for s ∈N<N with length equaling 1 sometimes is

considered as a natural number s. We first define the relations <1,<2,<3 and <4 on P as follows:

• (n, x)<1 (m, y) if n=m and x< y holds in L;
• (n, x)<2 (m, y) if y= �, x ∈N<N and there exists k ∈Nwith k> n such thatm ∈ i(n, k) and
m= fn,k(x). (In other words, (n, x)<2 (fn,k(x),�) for all n< k).

• (n, x)<3 (m, y) if y= �, x ∈N and there exists d ∈N with d < n such that m ∈ i(d, n) and
m= fd,n(x). (In other words, (n, x)<3 (fd,n(x),�) for all d < n).

Here (n, x) ∈N×N, and in the definition of fd,n(x), x ∈N is taken as an element of N<N

with length equaling 1.
• (n, x)<4 (m, y) if y= �, x ∈N and there exists a, b ∈N, s ∈N with a< b such that fa,b(s)=
n and fa,b(s.x)=m. (In other words, (fa,b(s), x)<4 (fa,b(s.x),�) for all (a, b) ∈N×N with
a< b).

By the above definitions, it is clear that as subsets of P × P,<1,<2,<3 and<4 are disjoint. Here we
explain, in particular, why <3 and <4 are disjoint. In fact, suppose that ((fa,b(s), x), (fa,b(s.x),�))
is in <4. Let n= fa,b(s). Then by the definition of fa,b, n> b, hence, fa,b(s.x) �= fd,n(x) for any d ∈N
with d < n. Hence, ((fa,b(s), x), (fa,b(s.x),�)) is not in <3.

Example 3.1. The following are some concrete examples illustrating the strict orders <i (i=
1, 2, 3, 4).
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Figure 2. The strict order<3.

Figure 3. The strict order<3.

(1) (2, 3)<1 (2, 3 · 1).
(2) (3, 12 · 4)<2 (f3,k(12 · 4),�) for all k> 3.
(3) (3, 5)<3 (fd,3(5),�) for all d < 3. Here, the 5 in fd,3(5) is a member of N<N with length

equaling 1.
(4) (f2,3(2 · 6), 7)<4 (f2,3(2 · 6 · 7),�).

Now let ≤ be the partial order on P generated by <1 ∪ <2 ∪ <3 ∪ <4 (the smallest partial
order relation containing all <i (i= 1, 2, 3, 4)). Note that the partial order ≤ coincides with ≤1
∪(≤1 ;<2 )∪ (≤1 ;<3 )∪ (≤1 ;<4 ), where ≤1 is the reflexive closure of <1 and (R;S) denotes
the composition of two relations R and S, defined by x(R;S)y iff ∃z : xRzSy.

If n=m, then the strict order<1 is depicted as in Fig. 1. For n �=m, the strict orders<2,<3,<4
of P are depicted in the following figures, respectively.

When k> n, the red lines in Fig. 2 illustrate three specific cases: (n, 1)<2 (fn,k(1),�), (n, 2)<2
(fn,k(2),�) and (n, x)<2 (fn,k(x),�).

The red lines in Fig. 3 illustrate the cases: (n, 1)<3 (fd,n(1),�), (n, 2)<3 (fd,n(2),�), and
(n, x)<3 (fd,n(x),�).

The red lines in Fig. 4 illustrate the cases: (fa,b(1), 1)<4 (fa,b(1.1),�) and (fa,b(1), x)<4
(fa,b(1.x),�).

The red lines in Fig. 5 illustrate the cases: (fa,b(1), x)<4 (fa,b(1.x),�) and (fa,b(1.x), y)<4
(fa,b(1.x.y),�).

The red lines in Fig. 6 illustrate the cases: (b, y)<3 (fa,b(y),�); (fa,b(y), z)<4 (fa,b(y.z),�);
(fa,b(y.z), u)<4 (fa,b(y.z.u),�).

In Fig. 7, the red lines are the same as Fig. 6 and the blue lines add the cases of <2: (a, y)<2
(fa,b(y),�), (a, y.z)<2 (fa,b(y.z),�), and (a, y.z.u)<2 (fa,b(y.z.u),�).
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Figure 4. The strict order<4.

Figure 5. The strict order<4.

Figure 6. Assembling the strict orders<3 and<4.

Figure 7. Assembling the strict orders<2,<3 and<4.
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Figure 8. The proof of Lemma 3.2 (n<m).

Lemma 3.2. P is an irreducible subset of �P.

Proof. By the definition of irreducibility, it suffices to prove thatU ∩V �= ∅ for any two nonempty
Scott open sets U,V of P.

Since U and V are nonempty Scott open sets, there exist (n0,�) ∈U and (m0,�) ∈V .
If n0 =m0, then (n0,�) ∈U ∩V .
Next, assume that n0 �=m0. Without loss of generality, we just consider the case n0 <m0.
Since V is Scott open and

∨{(m0, k) : k ∈N} = (m0,�) ∈V , there exists a1 ∈N such that
(m0, a1) ∈V .

From the definition of <3, it follows that (m0, a1)<3 (fn0,m0 (a1),�). Whence, (fn0,m0 (a1),�) ∈
V . By the similar reason for the existence of a1, there is a2 ∈N such that (fn0,m0 (a1), a2) ∈V .

By the definition of <4, we have that (fn0,m0 (a1), a2)<4 (fn0,m0 (a1.a2),�). It follows that
(fn0,m0 (a1.a2),�) ∈V .

By induction on N, for any n ∈N, there exists (fn0,m0 (a1.a2. · · · .an),�) ∈V . Note that
{(n0, a1.a2. · · · .ak)) : k ∈N} is an increasing sequence in P and

∨
{(n0, a1.a2. · · · .ak)) : k ∈N} = (n0,�) ∈U.

Thus, there exists k ∈N such that (n0, a1. · · · .ak) ∈U. By the definition of <2, we have that
(n0, a1. · · · .ak)<2 (fn0,m0 (a1. · · · .ak),�) (see Fig. 8 for the process of the proof).

Hence, (fn0,m0 (a1. · · · .ak),�) ∈U, implying that (fn0,m0 (a1. · · · .ak),�) ∈U ∩V .

Lemma 3.3. Let M = {⋂x∈E ↓x : ∅ �= E⊆ P}. Then (M,⊆ ) is a bounded complete dcpo.

Proof. If {Ai : i ∈ I} ⊆M has an upper bound inM, where Ai = ⋂
x∈Ei ↓x (i ∈ I) with Ei ⊆ P, then

there is y0 ∈ P such that
⋃{Ai : i ∈ I} ⊆ ↓y0. Hence,

⋂{↓y : ⋃{Ai : i ∈ I} ⊆ ↓y} is the supremum
of {Ai : i ∈ I} inM. It follows thatM is bounded complete.

We now show thatM is a dcpo. Let B= {(n,m) ∈N×N : n<m}. In order to determine what
the intersections of two principal ideals of P are, we first list all types of principal ideals ↓x of P.

Type I : ↓(m0, s0)= {(m0, s) : s≤ s0} for somem0 ∈N, s0 ∈N<N (see Fig. 9 for Type I ideals).
Type II : ↓(m0, n0)= {(m0, n) : n≤ n0} for somem0, n0 ∈N (see Fig. 10 for Type II ideals).
Type III : ↓(n0,�)= Ln0 for some n0 ∈N\ ⋃

(n,m)∈B i(n,m) (see Fig. 11 for Type III ideals).
Type IV : ↓(fm0,n0 (s0),�)= Lfm0,n0 (s0) ∪ {(m0, s0)} ∪ {(n0, n) : n≤ s0} for some (m0, n0) ∈ B, s0 ∈

N<N with |s0| = 1 (see Fig. 12 for Type IV ideals).
Type V : ↓(fm0,n0 (s0),�)= Lfm0,n0 (s0) ∪ {(m0, s) : s≤ s0} ∪ {(fm0,n0 (s∗0), n) : n≤ n∗

0} for some
(m0, n0) ∈ B, s0 = s∗0.n∗

0 ∈N<N with s∗0 ∈N<N, n∗
0 ∈N (see Fig. 13 for Type V ideals).

The Types I, II, and III are easily understood.
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Figure 9. The Type I ideals.

Figure 10. The Type II ideals.

Figure 11. The Type III ideals.

Figure 12. The Type IV ideals.

For the Type IV principle ideal ↓(fm0,n0 (s0),�), clearly it contains the whole Lfm0,n0 (s0).
Also (m0, s0)<2 (fm0,n0 (s0),�), where (m0, s0) is taken as an element in N×N<N. Thus,
(m0, s0) ∈ ↓(fm0,n0 (s0),�). Note that this (m0, s0) is a minimal element of P. Next, (n0, s0)<3
(fm0,n0 (s0),�) where the s0 in (n0, s0) is a member of N, thus we have ↓(n0, s0)= {(n0, n) : n≤
s0} ⊆ ↓(fm0,n0 (s0),�).
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Figure 13. The Type V ideals.

Figure 14. The Type I∪ II1 sets.

Now consider the Type V principle ideal ↓(fm0,n0 (s0),�), where s0 ∈N<N. Trivially, it
contains the whole Lfm0,n0 (s0). Next, (m0, s0)<2 (fm0,n0 (s0),�), thus ↓(m0, s0)= {(m0, s) :
s≤ s0} ⊆ ↓(fm0,n0 (s0),�). Furthermore, if s0 = s∗0.n∗

0 with n∗
0 ∈N, then (fm0,n0 (s∗0), n∗

0)<4
(fm0,n0 (s∗0.n∗

0),�)= (fm0,n0 (s0),�), hence ↓(fm0,n0 (s∗0), n∗
0)= {(fm0,n0 (s∗0), n) : n≤ n∗

0} ⊆
↓(fm0,n0 (s0),�). And these are all the elements in ↓(fm0,n0 (s0),�).

These types of principle ideas are depicted as below (as the blue regions).
We now list all the subsets of P which are the intersections of two principal ideals in the

following table.

Type I Type II Type III Type IV Type V
Type I I/∅ ∅ I/∅ I/∅ I/∅
Type II II/∅ II/∅ II/∅ II/∅
Type III III/∅ I/II/∅ I/∅
Type IV I/II/IV/I∪II1/∅ I/II/I∪II1/I∪II2/∅
Type V I/II/V/I∪II2/∅

In the aforementioned table, Type I∪II1 sets are of the form {(m0, s0)} ∪ {(n0, n) : n≤ k0} for
some (m0, n0) ∈ B, s0 ∈N<N, k0 ∈N with |s0| = 1, k0 ≤ s0 (see Fig. 14 for Type I∪II1 ideals).

Type I∪II2 sets are of the form {(m0, s) | s≤ s0} ∪ {(fm0,n0 (s0), n) : n≤ k0} for some (m0, n0) ∈
B, s0 ∈N<N, k0 ∈N (see Fig. 15 for Type I∪II2 ideals).

The two new types of subsets are depicted in Fig. 14, as the blue regions.
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Figure 15. The Type I∪ II2 sets.

For the intersections with Type I, Type II, and Type III principle ideals, the results are easily
seen. We now explain the intersections of two Type IV principle ideas, one Type IV and one Type
V principle ideals and two Type V principle ideals.

Intersections of two Type IV principle ideals
The corresponding cell for intersections of two Type IV ideals is indicated as I/II/IV/I∪ II1,

∅, meaning that intersection can be a Type I ideal, a Type II ideal, a Type IV ideal, a Type I∪ II1
set, or the empty set.

Let I1 and I2 be two Type IV principle ideals, where I1 = ↓(fm1,n1 (s1),�)=
Lfm1,n1 (s1) ∪ {(m1, s1)} ∪ {(n1, n) : n≤ s1} for some (m1, n1) ∈ B, s1 ∈N<N with |s1| = 1, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s2)} ∪ {(n2, n) : n≤ s2} for some (m2, n2) ∈ B, s2 ∈N<N

with |s2| = 1.
We prove this by considering the following different cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1.
In this case, asm2 < n2 < fm2,n2 (s2)<m1 < n1 < fm1,n1 (s1), it follows that I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1.
Thenm2 < n2 < fm2,n2 (s2)=m1 < n1 < fm1,n1 , so {(m1, s1)} ⊆ I2 and
I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< n1.
Letm2 �=m1. Then I1 ∩ I2 = ∅.
Letm2 =m1.
If s1 �= s2, then I1 ∩ I2 = ∅. Otherwise, I1 ∩ I2 = {(m1, s1)} = {(m2, s2)}, which is a Type I
ideal.

(4) fm2,n2 (s2)= n1.
Then, asm2 < n2 < fm2,n2 (s2)= n1, we havem2 < n2 < n1 < fm1,n1 (s1).
Ifm2 �=m1, then I1 ∩ I2 = {(n1, n) : n≤ s1}, which is a Type II ideal.
If m2 =m1 and s1 = s2, then I1 ∩ I2 = {(m1, s1)} ∪ {(n1, n) : n≤ s1}, which is a Type I∪II1
set.
Ifm2 =m1 and s1 �= s2, then I1 ∩ I2 = {(n1, n) : n≤ s1}, which is a Type II ideal.

(5) n1 < fm2,n2 (s2)< fm1,n1 (s1).
Ifm1 �=m2, n1 �= n2, then I1 ∩ I2 = ∅.
Ifm1 =m2, n1 �= n2 and s1 �= s2.
Then I1 ∩ I2 = ∅.
Ifm1 =m2, n1 �= n2 and s1 = s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.
Now consider the casem1 =m2, n1 = n2.
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By fm2,n2 (s2)< fm1,n1 (s1), we have s1 �= s2. Hence, I1 ∩ I2 = {(n1, n) : n≤min{s1, s2}}.
For the casem1 �=m2, n1 = n2, we have I1 ∩ I2 = {(n1, n) : n≤min{s1, s2}}, which is a Type
II ideal.

(6) fm2,n2 (s2)= fm1,n1 (s1)
Then (m1, n1)= (m2, n2), s1 = s2 by the property of i and fm1,n1 , thus I1 ∩ I2 = I1, which is a
type IV ideal.

(7) fm1,n1 (s1)< fm2,n2 (s2)
By interchangingm1 andm2, n1 andm2 in the cases (1)–(5), we deduce again that I1 ∩ I2 is
of Type I/II/IV/I∪ II1/∅.

Intersections of one Type IV and one Type V principle ideals
Let I1 be a Type IV ideal and I2 a Type V ideal.
Specifically, I1 = ↓(fm1,n1 (s1),�)= Lfm1,n1 (s1) ∪ {(m1, s1)} ∪ {(n1, n) : n≤ s1} for some

(m1, n1) ∈ B, s1 ∈N<N with |s1| = 1, and I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s) : s≤
s2} ∪ {(fm2,n2 (s∗2), n) : n≤ n∗

2} for some (m2, n2) ∈ B, s2 = s∗2.n∗
2 ∈N<N with s∗2 ∈N<N, n∗

2 ∈N.
Note that in this case, s1 �= s2.
We prove this by considering the following cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1.
Thenm2 < n2 < fm2,n2 (s2)<m1 < n1 < fm1,n1 (s1) and
fm2,n2 (s∗2)< fm2,n2 (s2).
Hence, I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1.
Then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< n1
(3.1) m2 �=m1

I1 ∩ I2 = ∅.
(3.2) m2 =m1

If s1 � s2, then I1 ∩ I2 = ∅.
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(4) fm2,n2 (s2)= n1
(4.1) m2 �=m1

I1 ∩ I2 = {(n1, n) : n≤ s1}, which is a Type II ideal.
(4.2) m2 =m1

If s1 � s2, then we have the same result as in casem2 �=m1.
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)} ∪ {(n1, s) : s≤ s1}, which is a Type I∪II1 set.

(5) n1 < fm2,n2 (s2)< fm1,n1 (s1)
(5.1) m1 �=m2, n1 �= fm2,n2 (s∗2)

I1 ∩ I2 = ∅.
(5.2) m1 =m2, n1 �= fm2,n2 (s∗2)

If s1 � s2, I1 ∩ I2 = ∅.
If s1 ≤ s2, I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(5.3) m1 =m2, n1 = fm2,n2 (s∗2)
If s1 � s2, then I1 ∩ I2 = {(n1, n) : n≤min{s1, n∗

2}}, which is a Type II ideal. Otherwise
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)} ∪ {(n1, n) : n≤min{s1, n∗

2}}, which is a Type I∪ II1
set.

(5.4) m1 �=m2, n1 = fm2,n2 (s∗2)
I1 ∩ I2 = {(n1, n) : n≤min{s1, n∗

2}}, which is a Type II ideal.
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(6) fm2,n2 (s2)= fm1,n1 (s1)
Then (m1, n1)= (m2, n2), s1 = s2 by the property of i and fm1,n1 , which contradicts the
assumption that s1 �= s2. Thus, this case does not exist.

(7) fm2,n2 (s2)> fm1,n1 (s1)
(7.1) fm1,n1 (s1)<m2

Then I1 ∩ I2 = ∅.
(7.2) fm1,n1 (s1)=m2

Then I1 ∩ I2 = {(m2, s) : s≤ s2}, which is a Type I ideal.
(7.3) m2 < fm1,n1 (s1)< fm2,n2 (s∗2)

Ifm2 �=m1, I1 ∩ I2 = ∅.
Ifm2 =m1 and s1 � s2, then I1 ∩ I2 = ∅.
Ifm2 =m1 and s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(7.4) fm1,n1 (s1)= fm2,n2 (s∗2)
Then (m1, n1)= (m2, n2), s∗2 = s1 by the property of functions i and fm1,n1 . This implies
that I1 ∩ I2 = {(m1, s1)} ∪ {(fm1,n1 (s1), n) : n≤ n∗

2} which is a Type I∪ II2 set.
(7.5) fm2,n2 (s∗2)< fm1,n1 (s1)< fm2,n2 (s2)

(7.5.1) m1 �=m2, n1 �= fm2,n2 (s∗2), then I1 ∩ I2 = ∅.
(7.5.2) m1 =m2, n1 �= fm2,n2 (s∗2)

If s1 � s2, then I1 ∩ I2 = ∅.
If s1 ≤ s2, I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(7.5.3) m1 =m2, n1 = fm2,n2 (s∗2).
If s1 � s2, then I1 ∩ I2 = {(n1, n) : n≤min{s1, n∗

2}}, which is a Type II ideal.
If s1 ≤ s2, then I1 ∩ I2 = {(m2, s1)} ∪ {(fm2,n2 (s∗2), n) : n≤min{s1, n∗

2}}, which is a
Type I∪ II1 set.

(7.5.4) m1 �=m2, n1 = fm2,n2 (s∗2)
I1 ∩ I2 = {(n1, n) : n≤min{s1, n∗

2}}, which is a Type II ideal.

These cover all possible cases and we are done.

Intersections of two Type V principle ideals
Next, we show that the intersection of two Type V ideals has the form I/II/V/I∪II2/∅, that is,

either a Type I ideal, a Type II ideal, a Type V ideal, and a Type I∪ II2 set or the empty set.
Let I1, I2 be two Type V ideals, where

I1 = ↓(fm1,n1 (s1),�)= Lfm1,n1 (s1) ∪ {(m1, s) : s≤ s1} ∪ {(fm1,n1 (s∗1), n) : n≤ n∗
1} for some (m1, n1) ∈

B, s1 = s∗1.n∗
1 ∈N<N with s∗1 ∈N<N, n∗

1 ∈N, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s∗2), n) : n≤ n∗

2} for some (m2, n2) ∈
B, s2 = s∗2.n∗

2 ∈N<N with s∗2 ∈N<N, n∗
2 ∈N.

We prove for the case fm2,n2 (s2)≤ fm1,n1 (s1). The proof for the case fm1,n1 (s1)≤ fm2,n2 (s2) is
similar.

(1) fm2,n2 (s2)<m1
Then I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1
Then I1 ∩ I2 = {(m1, s) : s≤ s1}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< fm1,n1 (s∗1)
(3.1) m2 �=m1

Then I1 ∩ I2 = ∅.
(3.2) m2 =m1

If ↓s1 ∩ ↓s2 = ∅, then I1 ∩ I2 = ∅.
If ↓s1 ∩ ↓s2 = ∅, then I1 ∩ I2 = {(m1, s) : s≤ inf{s1, s2}, which is a Type I ideal.
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(4) fm2,n2 (s2)= fm1,n1 (s∗1)
Then (m1, n1)= (m2, n2), s∗1 = s2 by the property of i and fm1,n1 .
Note that s2 < s1 in this case. We have

I1 ∩ I2 = {(m2, s) : s≤ s2)} ∪ {(fm2,n2 (s2), n) : n≤ n∗
1}

which is a Type I∪ II2 set.
(5) fm1,n1 (s∗1)< fm2,n2 (s2)< fm1,n1 (s1)

(5.1) m1 �=m2, fm1,n1 (s∗1) �= fm2,n2 (s∗2)
Then I1 ∩ I2 = ∅.

(5.2) m1 =m2, fm1,n1 (s∗1) �= fm2,n2 (s∗2)
If ↓s1 ∩ ↓s2 = ∅, then I1 ∩ I2 = ∅.
If ↓s1 ∩ ↓s2 �= ∅, then I1 ∩ I2 = {(m1, s) : s≤ inf{s1, s2}}, which is a Type I ideal.

(5.3) m1 =m2, fm1,n1 (s∗1)= fm2,n2 (s∗2)
Then (m1, n1)= (m2, n2), s∗1 = s∗2 by the property of i and fm1,n1 . Thus, I1 ∩ I2 =
{(m1, s) : s≤ s∗1)} ∪ {(fm1,n1 (s∗1), n) : n≤min{n∗

1, n
∗
2}}, which is a Type I∪ II2 set.

(5.4) m1 �=m2, fm1,n1 (s∗1)= fm2,n2 (s∗2)
The second equality implies m1 =m2, contradicting the first inequality m1 �=m2.
Thus, this case does not exist.

(6) fm2,n2 (s2)= fm1,n1 (s1)
Then (m1, n1)= (m2, n2), s1 = s2 by the property of i and fm1,n1 . This reveals that I1 ∩ I2 =
I1, which is a type V ideal.

This covers all possible cases, and we have confirmed that the intersections of two Type V ideals
can be a Type I ideal, a Type II ideal, a Type V ideal, Type I∪ II2 set, or the empty set.

Next, we consider the intersections of Type I∪II1 (Type I∪II2, resp.) sets with Type I∪II1, I∪II2
sets, Type I, Type II, Type III, Type IV, and Type V ideals.

The results are shown in the following table.

Type I Type II Type III Type IV Type V Type I∪II1 Type I∪II2
Type I∪II1 I/∅ II/∅ I/II/∅ I/II/I∪II1/∅ I/II/I∪II1/∅ I/II/I∪II1/∅ I/II/I∪II1/∅
Type I∪II2 I/∅ II/∅ I/II/∅ I/II/I∪II1/∅ I/II/I∪II2/∅ I/II/I∪II2/∅

We now explain the aforementioned table.

We only consider the following nontrivial cases.

Intersections of a Type IV ideal and a Type I∪II1 set
Let I1 = {(m1, s1)} ∪ {(n1, n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N, k1 ∈N with |s1| = 1,

k1 ≤ s1, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s2)} ∪ {(n2, n) : n≤ s2} for some (m2, n2) ∈ B, s2 ∈N<N

with |s2| = 1.

Then I1 is a Type I∪II1 set and I2 is a type IV ideal.
We prove this by considering the following cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1
Then I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1
Then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.
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(3) m1 < fm2,n2 (s2)< n1
(3.1) m2 �=m1

Then I1 ∩ I2 = ∅.
(3.2) m2 =m1

If s2 �= s1, then I1 ∩ I2 = ∅.
If s2 = s1, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(4) fm2,n2 (s2)= n1
(4.1) m2 �=m1

Then I1 ∩ I2 = {(n1, n) : n≤ k1}, which is a Type II ideal.
(4.2) m2 =m1

If s2 �= s1, then we have the same result as in casem2 �=m1.
If s2 = s1, then I1 ∩ I2 = I1, which is a Type I∪II1 set.

(5) fm2,n2 (s2)> n1
Ifm2 �=m1, n2 �= n1, then I1 ∩ I2 = ∅.
Ifm2 �=m1, n2 = n1, then I1 ∩ I2 = {(n2, n) : n≤min{k1, s2}}, which is a Type II ideal.
Ifm2 =m1, n2 �= n1, and s2 �= s1, then I1 ∩ I2 = ∅.
Ifm2 =m1, n2 �= n1, and s2 = s1, then I1 ∩ I2 = {(m2, s2)}, which is a Type I ideal.
If m2 =m1, n2 = n1, and s2 �= s1, then I1 ∩ I2 = {(n2, n) : n≤min{k1, s2}}, which is a Type
II ideal.
If m2 =m1, n2 = n1, and s2 = s1, then I1 ∩ I2 = {(m2, s2)} ∪ {(n2, n) : n≤min{k1, s2}},
which is a Type I∪II1 set.

These cover all possible cases and we are done.

Intersections of a Type V ideal and a Type I∪II1 set
Let I1 = {(m1, s1)} ∪ {(n1, n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N, k1 ∈N with |s1| = 1,

k1 ≤ s1, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s∗2), n) : n≤ n∗

2} for some (m2, n2) ∈
B, s2 = s∗2.n∗

2 ∈N<N with s∗2 ∈N<N, n∗
2 ∈N.

Then I1 is a Type I∪II1 set and I2 is a type V ideal.
Note that in this case, s1 �= s2 because |s1| = 1 and |s2| > 1.
We prove this by considering the following cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1
Then I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1
Then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< n1
(3.1) m2 �=m1

Then I1 ∩ I2 = ∅.
(3.2) m2 =m1

If s1 � s2, then I1 ∩ I2 = ∅.
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.

(4) fm2,n2 (s2)= n1
(4.1) m2 �=m1

Then I1 ∩ I2 = {(n1, n) : n≤ k1}, which is a Type II ideal.
(4.2) m2 =m1

If s1 � s2, then we have the same result as in casem2 �=m1.
If s1 ≤ s2, then I1 ∩ I2 = I1, which is a Type I∪II1 set.
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(5) fm2,n2 (s2)> n1
(5.1) m2 �=m1

If fm2,n2 (s∗2) �= n1, then I1 ∩ I2 = ∅.
If fm2,n2 (s∗2)= n1, then I1 ∩ I2 = {(fm2,n2 (s∗2), n) : n≤min{k1, n∗

2}}, which is a Type II
ideal.

(5.2) m2 =m1
If fm2,n2 (s∗2) �= n1 and s1 � s2, then I1 ∩ I2 = ∅.
If fm2,n2 (s∗2) �= n1 and s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.
fm2,n2 (s∗2)= n1 and s1 � s2, then I1 ∩ I2 = {(fm2,n2 (s∗2), n) : n≤min{k1, n∗

2}}, which is a
Type II ideal.
If fm2,n2 (s∗2)= n1 and s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)} ∪ {(fm2,n2 (s∗2), n) : n≤
min{k1, n∗

2}}, which is a Type I∪II1 set.
These cover all possible cases and we are done.

Intersections of two Type I∪II1 sets
Let I1 = {(m1, s1)} ∪ {(n1, n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N, k1 ∈N with |s1| = 1,

k1 ≤ s1, and
I2 = {(m2, s2)} ∪ {(n2, n) : n≤ k2} for some (m2, n2) ∈ B, s2 ∈N<N, k2 ∈N with |s2| = 1, k2 ≤ s2.

Then I1, I2 are both Type I∪II1 sets.
We prove this by considering the following cases.

(1) m2 �=m1, n2 �= n1
Then I1 ∩ I2 = ∅.

(2) m2 �=m1, n2 = n1
Then I1 ∩ I2 = {(n2, n) : n≤min{k1, k2}}, which is a Type II ideal.

(3) m2 =m1, n2 �= n1, and s2 �= s1
Then I1 ∩ I2 = ∅.

(4) m2 =m1, n2 �= n1, and s2 = s1
Then I1 ∩ I2 = {(m2, s2)}, which is a Type I ideal.

(5) m2 =m1, n2 = n1, and s2 �= s1
then I1 ∩ I2 = {(n2, n) : n≤min{k1, k2}}, which is a Type II ideal.

(6) m2 =m1, n2 = n1, and s2 = s1
then I1 ∩ I2 = {(m2, s2)} ∪ {(n2, n) : n≤min{k1, k2}}, which is a Type I∪II1 set.
These cover all possible cases and we are done.

Intersections of a Type I∪II1 set and a I∪II2 set
Let I1 = {(m1, s1)} ∪ {(n1, n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N, k1 ∈N with |s1| = 1,

k1 ≤ s1, and
I2 = {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s2), n) : n≤ k2} for some (m2, n2) ∈ B, s2 ∈N<N, k2 ∈N.

Then I1 is a Type I∪II1 set and I2 is a Type I∪II2 set.
We prove this by considering the following cases.

(1) m2 �=m1
If fm2,n2 (s2) �= n1, then I1 ∩ I2 = ∅.
If fm2,n2 (s2)= n1, then I1 ∩ I2 = {(fm2,n2 (s2), n) : n≤min{k1, k2}}, which is a Type II ideal.

(2) m2 =m1
(2.1) fm2,n2 (s2) �= n1

If s1 � s2, then I1 ∩ I2 = ∅.
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)}, which is a Type I ideal.
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(2.2) fm2,n2 (s2)= n1
If s1 � s2, then I1 ∩ I2 = {(fm2,n2 (s2), n) : n≤min{k1, k2}}, which is a Type II ideal.
If s1 ≤ s2, then I1 ∩ I2 = {(m1, s1)} ∪ {(n1, n) : n≤min{k1, k2}}, which is a Type I∪II1 set.

These cover all possible cases and we are done.

Intersections of a Type IV ideal and a Type I∪II2 set
Let I1 = {(m1, s) : s≤ s1)} ∪ {(fm1,n1 (s1), n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N with k1 ∈

N, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s2)} ∪ {(n2, n) : n≤ s2} for some (m2, n2) ∈ B, s2 ∈N<N

with |s2| = 1.

Then I1 is a Type I∪II2 set and I2 is a Type IV ideal.
We prove this by considering the following cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1
Then I1 ∩ I2 = ∅.

(2) fm2,n2 (s2)=m1
Then I1 ∩ I2 = {(m1, s) : s≤ s1}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< fm1,n1 (s1)
(3.1) m2 �=m1

Then I1 ∩ I2 = ∅.
(3.2) m2 =m1

If s2 � s1, then I1 ∩ I2 = ∅.
If s2 ≤ s1, then I1 ∩ I2 = {(m2, s2)}, which is a Type I ideal.

(4) fm2,n2 (s2)= fm1,n1 (s1)
Then (m2, n2)= (m1, n1), s1 = s2 by the property of i and fm1,n1 .
So I1 ∩ I2 = I1, which is a Type I∪II2 set.

(5) fm2,n2 (s2)> fm1,n1 (s1)
(5.1) m2 �=m1

If n2 �= fm1,n1 (s1), then I1 ∩ I2 = ∅.
If n2 = fm1,n1 (s1), then I1 ∩ I2 = {(n2, n) : n≤min{k1, s2}}, which is a Type II ideal.

(5.2) m2 =m1
If n2 �= fm1,n1 (s1) and s2 � s1, then I1 ∩ I2 = ∅.
If n2 �= fm1,n1 (s1) and s2 ≤ s1, then I1 ∩ I2 = {(m2, s2)}, which is a Type I ideal.
If n2 = fm1,n1 (s1) and s2 � s1, then I1 ∩ I2 = {(n2, n) : n≤min{k1, s2}}, which is a Type
II ideal.
If n2 = fm1,n1 (s1), and s2 ≤ s1, then I1 ∩ I2 = {(m2, s2)} ∪ {(n2, n) : n≤min{k1, s2}},
which is a Type I∪II1 set.
These cover all possible cases and we are done.

Intersections of a Type V ideal and a Type I∪II2 set
Let I1 = {(m1, s) : s≤ s1)} ∪ {(fm1,n1 (s1), n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N with k1 ∈

N, and
I2 = ↓(fm2,n2 (s2),�)= Lfm2,n2 (s2) ∪ {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s∗2), n) : n≤ n∗

2} for some (m2, n2) ∈
B, s2 = s∗2.n∗

2 ∈N<N with s∗2 ∈N<N, n∗
2 ∈N.

Then I1 is a Type I∪II2 set and I2 is a Type V ideal.
We prove this by considering the following cases for fm2,n2 (s2).

(1) fm2,n2 (s2)<m1
Then I1 ∩ I2 = ∅.
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(2) fm2,n2 (s2)=m1
Then I1 ∩ I2 = {(m1, s) : s≤ s1}, which is a Type I ideal.

(3) m1 < fm2,n2 (s2)< fm1,n1 (s1)
(3.1) m2 �=m1

Then I1 ∩ I2 = ∅.
(3.2) m2 =m1

If ↓s1 ∩ ↓s2 = ∅, then I1 ∩ I2 = ∅.
If ↓s1 ∩ ↓s2 �= ∅, then I1 ∩ I2 = {(m1, s) : s≤ inf{s1, s2}}, which is a Type I ideal.

(4) fm2,n2 (s2)= fm1,n1 (s1)
Then (m2, n2)= (m1, n1), s1 = s2 by the property of i and fm1,n1 . Thus I1 ∩ I2 = I1, which is
a Type I∪II2 set.

(5) fm2,n2 (s2)> fm1,n1 (s1)
(5.1) m2 �=m1

If fm2,n2 (s∗2) �= fm1,n1 (s1), then I1 ∩ I2 = ∅.
If fm2,n2 (s∗2)= fm1,n1 (s1), then (m2, n2)= (m1, n1), s∗2 = s1 by the property of i and
fm1,n1 , which contradictsm2 �=m1. Thus, this case does not occur.

(5.2) m2 =m1
If fm2,n2 (s∗2) �= fm1,n1 (s1) and ↓s1 ∩ ↓s2 = ∅, then I1 ∩ I2 = ∅.
If fm2,n2 (s∗2) �= fm1,n1 (s1) and ↓s1 ∩ ↓s2 �= ∅, then I1 ∩ I2 = {(m1, s) : s≤ inf{s1, s2}},
which is a Type I ideal.
If fm2,n2 (s∗2)= fm1,n1 (s1), then (m2, n2)= (m1, n1), s∗2 = s1.
It follows that I1 ∩ I2 = {(m1, s) : s≤ s∗2} ∪ {(fm2,n2 (s∗2), n) : n≤min{k1, n∗

2}}, which is a
Type I∪II2 set.

These cover all possible cases and we are done.

Intersections of two Type I∪II2 sets
Let I1 = {(m1, s) : s≤ s1} ∪ {(fm1,n1 (s1), n) : n≤ k1} for some (m1, n1) ∈ B, s1 ∈N<N with k1 ∈

N, and
I2 = {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s2), n) : n≤ k2} for some (m2, n2) ∈ B, s2 ∈N<N with k2 ∈N.

Then I1, I2 are both Type I∪II2 sets. We prove this by considering the following cases.

(1) m2 �=m1, fm2,n2 (s2) �= fm1,n1 (s1)
Then I1 ∩ I2 = ∅.

(2) m2 �=m1, fm2,n2 (s2)= fm1,n1 (s1)
Then (m2, n2)= (m1, n1), s2 = s1, which contradicts the assumption that m2 �=m1. Hence,
this case does not occur.

(3) m2 =m1, fm2,n2 (s2) �= fm1,n1 (s1), and ↓s2 ∩ ↓s1 = ∅
Then I1 ∩ I2 = ∅.

(4) m2 =m1, fm2,n2 (s2) �= fm1,n1 (s1), and ↓s2 ∩ ↓s1 �= ∅
Then I1 ∩ I2 = {(m2, s) : s≤min{s1, s2}}, which is a Type I ideal.

(5) m2 =m1, fm2,n2 (s2)= fm1,n1 (s1), then (m2, n2)= (m1, n1), s2 = s1.
It follows that I1 ∩ I2 = {(m2, s) : s≤ s2} ∪ {(fm2,n2 (s2), n) : n≤min{k1, k2}}, which is a Type
I∪II2 set.

These cover all possible cases and we are done.
It follows that the intersection of finite number of principle ideals of P is either a principle ideal,

or a Type I∪II1 set, or a Type I∪II2 set, or the empty set.
Let

� = {all principle ideals of P} ∪ {all Type I∪ II1 sets of P} ∪ {all Type I∪ II2 sets of P} ∪ {∅}.
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By the above arguments, we deduce that � is closed under finite non-nullary intersections. In
addition, since all elements of � are principal ideals or finite subsets of P, and P has no infinite
decreasing chains, we have that � does not contain an infinite decreasing chain.

For any nonempty E⊆ P,
⋂

{↓x : x ∈ E} =
⋂

{
⋂

{↓x : x ∈ F} : F is a finite subset of E}.
Each

⋂{↓x : x ∈ F} is a member of � , so {⋂{↓x : x ∈ F} : F is a finite subset of E} is a filter of
members of � . Since � does not have infinite decreasing chains, this family must have a smallest
member, which equals

⋂{↓x : x ∈ E} and is in � . Therefore,M = � .
We now show that every directed subset ofM has a supremum inM.
Let D = {Ii : i ∈ I} be a directed subset of M. If D has a largest member, then its supremum

exists and equals the largest member. Now we assume that D does not have a largest member.
Then D contains an infinite chain. Since Type III ideals, Type IV ideals and Type V ideals are
maximal elements ofM, we deduce that none of the Ii is a Type III ideal, Type IV ideal, and Type
V ideal.

We consider the following two remaining cases.
Case 1: All members of {Ii : i ∈ I} are Type I ideals or Type II ideals.
Then, as a Type I ideal and a Type II ideal are not comparable, it follows that either all Ii are

Type I ideals or they are all Type II ideals. Thus, supi∈I Ii exists because P is a dcpo.
Case 2: There exists i0 ∈ I such that Ii0 is a Type I∪ II1 set or a Type I∪ II2 set.
Then all members of {Ii : Ii ≥ Ii0} are either Type I∪ II1 sets or Type I∪ II2 sets. Note that there

exist no infinite increasing chains consisting of Type I∪ II1 sets. Hence, there exists i1 such that
D1 = {Ii : Ii ≥ Ii1} consists of only Type I∪ II2 sets. In order to prove supD exists, it is enough to
prove supD1 exists.

Let D1 = {Ij : j ∈ J}, where J is a subset of I.
For each j ∈ J, let Ij = {(mj, s) : s≤ sj} ∪ {(fmj,nj(sj), n) : n≤ kj} for some (mj, nj) ∈ B, sj ∈

N<N, kj ∈N.
Then fmi,ni(si)= fmj,nj(sj) for all i, j ∈ J, which implies that (mi, ni)= (mj, nj) and si = sj. Let

mj =m0, nj = n0 and sj = s0 (j ∈ J). Then, Ij = {(m0, s) : s≤ s0} ∪ {(fm0,n0 (s0), n) : n≤ kj}. Since D
does not have a largest member,D1 has no a largest member either. It follows that the set {kj : j ∈ J}
does not have a largest element.

We claim that supD1 = ↓(fm0,n0 (s0),�).
Clearly, ↓(fm0,n0 (s0),�) is an upper bound of D1. For any upper bound I of D1 in M,

we have that
⋃{{(fm0,n0 (s0), n) : n≤ kj} : j ∈ J} ⊆ I. Note that I is a Scott closed set of P, and⋃{{(fm0,n0 (s0), n) : n≤ kj} : j ∈ J} is a directed subset of P. Therefore, sup

⋃{{(fm0,n0 (s0), n) : n≤
kj} : j ∈ J} = (fm0,n0 (s0),�) ∈ I.

All the above together show that supD = supD1 = ↓(fm0,n0 (s0),�). Thus,M is a dcpo.

Remark 3.4. From the structure ofM, it is easy to see that the dcpoM does not contain an infinite
decreasing chain. Thus, in the dual posetMop ofM, every element is compact.

Theorem 3.5. M is a countable bounded complete dcpo whose Scott space �M is not sober.

Proof. Because every element of M is a finite intersection of principal downsets of P, and P is
countable,M is countable. By Lemma 3.3, it remains to verify that �M is not sober.

Define the mapping g : P →M by g(x)= ↓x for all x ∈ P. By the last part of the proof of Lemma
3.3, we see easily that g is Scott continuous. By Lemma 3.2, P is irreducible; thus, g(P) is irreducible.
Clearly, the closure of g(P) equals M, so M is irreducible (with respect to the Scott topology). As
M does not have a top element, it is not the closure of a singleton set. It follows that �M is not
sober.
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Let M̂ =M ∪ {T} be the poset obtained by adding a top element T toM. Then M̂ is a countable
non-sober complete lattice.

Corollary 3.6. There exists a countable non-sober complete lattice.

Note that the non-sober complete lattice M̂ constructed above is not distributive. Thus, it
remains to know whether there is a distributive countable non-sober complete lattice.

By applying the Lemma 2.3, we give a negative answer to the above problem.

Theorem 3.7. Let F = {↓F : F ⊆fin M̂}. Then, (F ,⊆ ) is a countable non-sober distributive com-
plete lattice.

Proof. First, every element in the dual M̂op of the complete lattice M̂ is compact. Now apply
Lemma 2.3 to M̂op, we deduce that F = {↓F : F ⊆fin M̂} is a distributive complete lattice. It is
countable because M̂ is countable.

Define g : M̂ →F by g(x)= ↓x and f :F → M̂ by f (A)= supA for any A ∈F . Clearly, both f
and g are monotone. In addition, for any x ∈ M̂ and ↓F ∈F , we have

f (↓F)≤ x iff
∨

F ≤ x iff ↓F ⊂ ↓x= g(x).

Hence, f is the left adjoint of g. Then f preserves all suprema, in particular the suprema of directed
subsets. Hence, it is Scott continuous. Also by the structure of M̂ and F , we easily see that g also
preserves the suprema of directed subsets; hence, it is also Scott continuous. Note that f ◦ g = idM̂ .
It thus follows that �M̂ is a retraction of �F . Since �M̂ is non-sober, thus �F is non-sober.

4. A Sufficient Condition for Complete Lattices to be Sober
In this section, we prove some positive results on the sobriety of Scott spaces of dcpos. One
immediate corollary is that every complete lattice L with Id(L) countable has a sober Scott space.

From the above section, we know that a countable complete latticemay not be sober in the Scott
topology. In this section, we show that the Scott space of a complete lattice with Id(P) countable
is sober.

The following lemma is critical for our later discussions.

Lemma 4.1. Let P,Q be two posets. If |Id(P)|, |Id(Q)| are both countable, then �(P ×Q)= �P ×
�Q.

Proof. Obviously, σ (P)× σ (Q)⊆ σ (P ×Q). It remains to prove that σ (P ×Q)⊆ σ (P)× σ (Q).
Let U be a nonempty Scott open set and (a1, b1) ∈U. We denote Id(P) and Id(Q) by {IPn | n ∈N}
and {IQn | n ∈N}, respectively.

For n= 1, A1 = {a1}, B1 = {b1}.
For n= 2, we define A2 and B2 below:
If sup IP1 ∈ ↑A1, then ( sup IP1 , b1) ∈U. It follows that there exists dP1 ∈ IP1 such that (dP1 , b1) ∈U

by the Scott openness of U. Let A2 = {dP1 } in this case, and A2 = ∅ otherwise. Note that (A1 ∪
A2)× B1 ⊆U.

If sup IQ1 ∈ ↑B1, we have (A1 ∪A2)× {sup IQ1 } ⊆U. For each a ∈A1 ∪A2, we can choose a
da form IQ1 satisfying (a, da) ∈U by the Scott openness of U. Since A1 ∪A2 is finite and IQ1 is
directed, there exists dQ1 ∈ IQ1 such that (A1 ∪A2)× {dQ1 } ⊆U. Let B2 = {dQ1 } in this case, and
B2 = ∅ otherwise. We conclude that (A1 ∪A2)× (B1 ∪ B2)⊆U.

For n= 3, we first consider the two index sets:
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E1 =
{
i ∈ {1} | sup IPi /∈ ↑A1 and sup IPi ∈ ↑A2

}
∪

{
i ∈ {2} | sup IPi ∈ ↑(A1 ∪A2)

}
and

F1 =
{
i ∈ {1} | sup IQi /∈ ↑B1 and sup IQi ∈ ↑B2

}
∪

{
i ∈ {2} | sup IQi ∈ ↑(B1 ∪ B2)

}
.

However, if sup IP1 /∈ ↑A1 and sup IQ1 /∈ ↑B1, then A2 = ∅ and B2 = ∅ from the above step. In
this way,

{
i ∈ {1} | sup IPi /∈ ↑A1 and sup IPi ∈ ↑A2

}
and

{
i ∈ {1} | sup IQi /∈ ↑B1 and sup IQi ∈ ↑B2

}

must be empty.
Next, we define A3 and B3 in the similar way as before.
If E1 �= ∅, then E1 = {2}. We have {sup IP2 } × (B1 ∪ B2)⊆U. Through the similar discussion

process, we can deduce that there exists dP2 ∈ IP2 such that {dP2 } × (B1 ∪ B2)⊆U because B1 ∪ B2
is finite and IP2 is directed. Let A3 = {dP2 } in this case, and A3 = ∅ otherwise. Note that (A1 ∪A2 ∪
A3)× (B1 ∪ B2)⊆U.

If F1 �= ∅, then F1 = {2}. Thus, (A1 ∪A2 ∪A3)× {sup IQ2 } ⊆U. Note that A1 ∪A2 ∪A3 is a
finite set. It follows that there exists dQ2 ∈ IQ2 such that (A1 ∪A2 ∪A3)× {dQ2 } ⊆U. Let B3 = {dQ2 }
in this case, and B3 = ∅ otherwise. We conclude that (A1 ∪A2 ∪A3)× (B1 ∪ B2 ∪ B3)⊆U.

For n= 4, we also consider the two index sets:

E2 =
{
i ∈ {1, 2} | sup IPi /∈

i⋃
k=1

↑Ak and sup IPi ∈
3⋃

k=i+1

↑Ak
}

∪
{
i ∈ {3} | sup IPi ∈

3⋃
k=1

↑Ak
}
,

F2 =
{
i ∈ {1, 2} | sup IQi /∈

i⋃
k=1

↑Bk and sup IQi ∈
3⋃

k=i+1

↑Bk
}

∪
{
i ∈ {3} | sup IQi ∈

3⋃
k=1

↑Bk
}
.

Next, we define A4 and B4 in the following:
If E2 �= ∅, then i ∈ {1, 2} implies sup IPi ∈ ⋃3

k=i+1 ↑Ak ⊆ ⋃3
k=1 ↑Ak, and i= 3 implies sup IPi ∈⋃3

k=1 ↑Ak. Thus, sup IPi ∈ ⋃3
k=1 ↑Ak for all i ∈ E2. So for each i ∈ E2, {sup IPi } × (B1 ∪ B2 ∪ B3)⊆

U implies that there exists dPi ∈ IPi such that {dPi } × (B1 ∪ B2 ∪ B3)⊆U because B1 ∪ B2 ∪ B3 is
finite and IPi is directed. Let A4 = {dPi | i ∈ E2} in this case, and A4 = ∅ otherwise. Note that

( 4⋃
k=1

↑Ak
)

×
( 3⋃
k=1

↑Bk
)

⊆U.

If F2 �= ∅, then i ∈ {1, 2} implies sup IQi ∈ ⋃3
k=i+1 ↑Bk ⊆ ⋃3

k=1 ↑Bk, and i= 3 implies sup IQi ∈⋃3
k=1 ↑Bk. Thus, sup IQi ∈ ⋃3

k=1 ↑Bk for all i ∈ F2. So for each i ∈ F2, (
⋃4

k=1 Ak)× {sup IQi } ⊆U
implies that there exists dQi ∈ IQi such that (

⋃4
k=1 Ak)× {dQi } ⊆U since

⋃4
k=1 Ak is a finite set and

IQi is directed. Let B4 = {dQi | i ∈ F2} in this case, and B4 = ∅ otherwise. We conclude that

( 4⋃
k=1

Ak
)

×
( 4⋃
k=1

Bk
)

⊆U.

For n≥ 4, we assume that

( n−1⋃
k=1

Ak
)

×
( n−1⋃

k=1

Bk
)

⊆U.

Then, we define An and Bn inductively.

https://doi.org/10.1017/S0960129523000269 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000269


Mathematical Structures in Computer Science 829

We first consider the following two index sets:

En−2 =
{
i ∈ {1, . . . , n− 2} | sup IPi /∈

i⋃
k=1

↑Ak and sup IPi ∈
n−1⋃
k=i+1

↑Ak
}

∪
{
i ∈ {n− 1} | sup IPi ∈

n−1⋃
k=1

↑Ak
}
,

Fn−2 =
{
i ∈ {1, . . . , n− 2} | sup IQi /∈

i⋃
k=1

↑Bk and sup IQi ∈
n−1⋃
k=i+1

↑Bk
}

∪
{
i ∈ {n− 1} | sup IQi ∈

n−1⋃
k=1

↑Bk
}
.

Note that
{
i ∈ {1, . . . , n− 2} | sup IPi /∈ ⋃i

k=1 ↑Ak and sup IPi ∈ ⋃n−1
k=i+1 ↑Ak

}
and

{
i ∈

{1, . . . , n− 2} | sup IQi /∈ ⋃i
k=1 ↑Bk and sup IQi ∈ ⋃n−1

k=i+1 ↑Bk
}
may not be empty.

If En−2 �= ∅, similarly, we can deduce {sup IPi } × ( ⋃n−1
k=1 Bk

) ⊆U for any i ∈ En−2. Note that⋃n−1
k=1 Bk is a finite set and each IPi is directed. Thus, there exists dPi ∈ IPi such that {dPi } ×( ⋃n−1
k=1 Bk

) ⊆U for any i ∈ En−2. Let An = {dPi |i ∈ En−2} in this case, and An = ∅ otherwise. It
follows that

( n⋃
k=1

Ak
)

×
( n−1⋃

k=1

Bk
)

⊆U.

If Fn−2 �= ∅, then ( ⋃n
k=1 Ak

) × {sup IQi } ⊆U for any i ∈ Fn−2. Note that
⋃n

k=1 Ak is a finite
set. This means that there exists dQi ∈ IQi such that

( ⋃n
k=1 Ak

) × {dQi } ⊆U for any i ∈ Fn−2. Let
Bn = {dQi | i ∈ Fn−2} in this case, and Bn = ∅ otherwise. We conclude that

( n⋃
k=1

Ak
)

×
( n⋃
k=1

Bk
)

⊆U.

Let A= ⋃
n∈N An and B= ⋃

n∈N Bn. It is easy to see that (a1, b1) ∈A1 × B1 ⊆ ↑A× ↑B⊆U. It
suffices to prove that ↑A, ↑B are both Scott open.

Let D be a directed subset of P with supD ∈ ↑A. If supD ∈D, then D∩ ↑A �= ∅. If supD /∈D,
i.e., D contains no maximal element, then ↓D ∈ Id(P). Thus, there exists n0 ∈N such that ↓D=
IPn0 .

Therefore, supD ∈ ↑A can imply that sup IPn0 ∈ ↑A. Let n1 = inf{n ∈N | sup IPn0 ∈ ↑An}. Then
sup IPn0 ∈ ↑An1 . Now we need to distinguish between the following two cases for n0, n1.

Case 1, n0 < n1. If n0 = 1, n1 = 2, then sup IP1 /∈ ↑A1 impliesA2 = ∅, which contradicts the con-
dition sup IP1 ∈ ↑A2. So n1 � 3. The fact that sup IPn0 /∈ ⋃n0

k=1 ↑Ak and sup IPn0 ∈ ⋃n1
k=n0+1 ↑Ak can

imply n0 ∈ En1−1. This means that IPn0 ∩An1+1 �= ∅. Hence, D∩ ↑A �= ∅.
Case 2, n0 ≥ n1. If n0 = n1 = 1, then sup IP1 ∈ ↑A1 implies IP1 ∩A2 �= ∅. If n0 � 2, then sup IPn0 ∈

↑An1 ⊆ ⋃n0
k=1 ↑Ak, which implies n0 ∈ En0−1. It follows that IPn0 ∩An0+1 �= ∅. Therefore, D∩

↑A �= ∅.
Hence, ↑A is Scott open, and ↑B is Scott open by the similar proof.

Theorem 4.2. Let L be a dcpo with Id(L) countable. If �L is coherent and well filtered, then �L is
sober.
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Proof. Let A be an irreducible closed subset of �L. It suffices to prove that A is directed, which
means that ↑x ∩ ↑y ∩A �= ∅ for any x, y ∈A.

Write B= {(a, b) ∈ L× L | ↑a∩ ↑b⊆ L\A}. We claim that B is Scott open in L× L. Obviously,
B is an upper set. Let (xi, yi)i∈I be a directed subset of L× L with supi∈I (xi, yi) ∈ B. Then
( supi∈I xi, supi∈I yi) ∈ B, which is equivalent to saying that ↑ supi∈I xi ∩ ↑ supi∈I yi ⊆ L\A. It fol-
lows that

⋂
i∈I (↑xi ∩ ↑yi)⊆ L\A. Since �L is coherent and well filtered, we can find some index

i ∈ I such that ↑xi ∩ ↑yi ⊆ L\A. This implies that (xi, yi) ∈ B. Thus, B is Scott open.
It is worth noting that Id(L) is countable. �(L× L)= �L× �L from Lemma 4.1. For the sake

of contradiction, we assume that there are x, y ∈A such that↑x ∩ ↑y ∩A= ∅. The fact that (x, y) ∈
B⊆ σ (L× L) implies that we can find Ux,Uy ∈ σ (L) such that (x, y) ∈Ux ×Uy ⊆ B. Note that x ∈
Ux ∩A and y ∈Uy ∩A. By the irreducibility ofA, we haveA∩Ux ∩Uy �= ∅. Pick a ∈A∩Ux ∩Uy.
Then (a, a) ∈Ux ×Uy ⊆ B, that is, a ∈ ↑a∩ ↑a⊆ L\A. It contradicts the assumption that a ∈A.
Hence, A is directed and supA ∈A. So A= ↓ supA.

Corollary 4.3. Let L be a complete lattice. If Id(L) is countable, then �L is sober.

Proof. From Jia et al. (2016) and Xi and Lawson (2017), we deduce that �L is well filtered and
coherent. The result is evident by Theorem 4.2.

5. Conclusions
In this paper, we constructed a countable complete lattice whose Scott space is non-sober, thus
answering a problem posed by Achim Jung. Based on this complete lattice, we further obtained a
countable distributive complete lattice whose Scott space is not sober.

The countable complete lattice constructed here is not a frame (or complete Heyting algebra).
Thus, the following problem is still open.

Problem. Is there a countable frame whose Scott space is non-sober?
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Appendix
Remark 6.1. There exists a monotone bijection f :N<N →N.

In fact, consider the set of prime numbers P= {p1, p2, · · · pn, · · · }, where pi < pi+1 for all i≥ 1.
For any element a= n1.n2. · · · .nk ∈N<N, we set f (a)= pn11 · pn22 · · · pnkk . Then f is monotone and
injective. Notice that image of f is orderly isomorphic to N.

The above explanation was suggested by one of the referees.
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