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NORM CONVERGENCE OF 7
GLENN R. LUECKE

Introduction. Throughout this paper X will denote a complex Banach
space and all operators 7" will be assumed to be continuous linear transforma-
tions from X into X. If T"is an operator then ¢(1°), r (1), and R(1") will denote
the spectrum of 7', the spectral radius of 7', and range of 7', respectively. This
paper contains necessary and sufficient conditions for the (norm) convergence
of {77} when T is an operator on X. The results of this paper generalize results
of Yosida and Kakutani [10] and of M. Lin [7]. Recall that 7" is quasi-compact
if there exists a compact operator K and a positive integer n such that
||T" — K|| < 1. In [10, Theorem 4, p. 200] Yoshida and Kakutani have proved:

TueorEM 1. (Yosida and Kakutani). If 1" 1s quasi-compact and if there exists
a constant C such thal ||T"|| < Cforalln = 1,2,.. . thena(T) N {z:|3] = 1} =
(N, ... N, @ finite set, where each \; is an eigenvalue of finite multiplicity.
Furthermore, there exists compact operators K, ..., K, and a quasi-compact
operator S such that

"= > MNK;+ S n=12...
i=1
and
M
1+ ¢)"

for some € > 0.

IS

Let S be a topological space and let C(S) denote all bounded continuous
scalar-valued functions on S with the sup norm. The following theorem is
similar to Theorem 1 and is found in Dunford and Schwartz [1, Theorem VIII.
8.6].

THEOREM 2. If T is a positive quasi-compact operator in C(S) such that 1"/n
converges to zero weakly, then the sume conclusions found in Theorem 1 are valid.

M. Lin {7, p. 337] has shown the following.

TaEOREM 3. (M. Lin) If 1" is an operator on X such thal
the following are equivalent:

(1) T — I has closed range,

(2) T — I has closed range and X = ker (I' — 1) ® R(1T' — I), and

(3) the sequence {N=1 \_1 T} (norm) converges.

T*/n|| — 0 then
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Necessary and sufficient conditions for 7™ to converge. It has already
been shown by J. J. Koliba [5, Theorem 2.5] that 7™ converges if and only if
sup |o(T) ~ {1}] < 1and lisapoleof (T — N ) 'oforder = 1. If o(T) = {1}
take sup |o(T") ~ {1}| = 0.

Koliha |5, Theorem 3.2] has shown that if (1) sup, [|T"|| < o0, 2) T — 1T
has closed range, (3) 7" — I has finite descent, and if (4) N € ¢(7") ~ {1} im-
plies |A| < 1, then 7™ converges. Using a result of M. Lin the following im-
provement is true.

TrEOREM 4. If (1) ||T"/n|| — 0, (2) T — I has closed range, und (3) N € o(T)
~ {1} implies |\| < 1, then T" converges.

Proof. Since ||T"/n|| — 0 and T" — I has closed range, X = ker (I' — I) @
R(T — I) (see [7, p. 337]). Since ker (T" — I) and R(7 — I) are invariant
under 7 we may write 7' =1 ®@ 4. Since 7" — [ is invertible on R(1" — I),
and since 1 # X\ € o(7") implies |\ < 1, 4 — N is invertible for all |\ = 1
so that 7(4) < 1. r(4) < 1 implies 4” >0 so that 7" =1 @ A" —>1® 0
and the proof is complete.

THEOREM 5. If (1) X =ker (' —=1)® M, T'(M) C M, (2) T"— I has
closed range, and (3) N € o(T") ~ {1} tmplies |\| < 1, then T converges.

Notice that in Theorem 5 the first hypothesis is weaker than the first hypoth-
esis (||T"/n|| — 0) of Theorem 4. This is true since ||7"/n|| -0 and 7" — T
has closed range implies X = ker (1" — I) ® R(1" — I) |7, p. 337], but the
converse is false (for example take 7" = 2I). Notice that for Theorem 5 there
are no a priort bounds on ||77]| but that it follows from Theorem 5 that
sup, ||7™|| is finite. Also notice that the third hypothesis of Theorem 5 allows 1
to be an accumulation point of ¢(7').

Recall that the approximate point spectrum of an operator 4, o, (A4), is the set
of all X € ¢(A4) such that there exists ||x,|| = 1 such that |[(4 — N)x,|| — 0.
In (2, Problem 63] a proof is given that for any (bounded) operator 4 on a
Hilbert space that do(4) is a subset of o,(4). By appropriately modifying the
proof given in [2, Problem 63] we have the following lemma for operators on a
Banach space.

LEMMA. dd(4) C o,(4).

Proof. Let N € da(A). Without loss of generality assume N = 0. Since
0 € da(A), there exists invertible 4, — A. Suppose, to the contrary, that
0 ¢ 0.(A4). Then there exists e > 0 such that ||4x|| = €||x|| for all x. Therefore
A is one-to-one and has closed range. Since 4 is not invertible, the closed set
R(A) is not dense in the Banach space X. Thus there exists y € X and § > 0
so that ||y — Ax|| = & for all x € X. Define x, = 4,7'y/||4,~'y||. Then
leal] = 1, || 4%, — Ax,|| = ||4, — A|| =0, and

HAnxn - Axn“ = Hy/HAn-‘y]I - Axn“ = Hy - A(xn//HAn—‘y||)H/|‘An_1y|l
2 8/|[4.7yll.
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Therefore ||4,~1y|| — 4. Hence
1Azl = |4, — Ax|| + |4l £ 1140 = All + [Iy[1/114.7"5]] = 0.

But this contradicts ||Ax|| = ¢||x|| for all x and the proof of the lemma is
complete.

Proof of Theorem 5. Since X = ker (T —I) @ M, T(M)C M, T =1@® 4
so that 7" = I @ A". Therefore, to show 7" converges it suffices to show
A" — 0.

If 1 ¢ o(4), then since X € o(4) ~ {1} implies |\| < 1 (this is true for 4
since it is true for 7°), 7(4) < 1. Therefore, since ||4"|'" = r(4) < 1, 4" — 0.

Next suppose 1 € ¢(4). Then since do(4) C o,(A4), 1 € 0,(4). Thus there
exists ||x,|| = 1 such that ||[(4 — I)x,|| — 0. Since 7" — I has closed range,
A — I has closed range. By construction 4 — I is one-to-one. Thus 4 — I is
one-to-one and has closed range so there exists § > 0 such that ||(4 — x| =
8||x|| for all x. But this contradicts ||(4 — I)x,|| — 0. Therefore 1 ¢ ¢(4) and
the proof of Theorem 5 is complete.

CoroOLLARY 1. 7" — 0 2f and only if r (1) < 1.

CoROLLARY 2. If (1) N € o(T) ~ {1} implies |\| < 1, (2) T — I has closed
range, and (3) 1™ — Q weakly, then 1™ — Q (in norm).

Proof. Since Q* = Q=1TQ =0T, X = N® M where N and M are in-
variant under 7', N = R(Q), and M = ker Q. It follows that ker (1" — I) =
R(Q) so that X = ker (1" = I)@® M, T'(M) C M. Thus the corollary follows
from Theorem 5.

Another variation of Theorem 5 is

TaEOREM 6. If (1) ||T"(T — D)||—0, (2) T" — I has closed range and (3) X =
ker (" — 1) @ M, T'(M) C M, then 1™ converges.

Proof. As in the proof of Theorem 5 write " = I @ A. It follows that 4 — I
is one-to-one and has closed range. Hence there exists 6 > 0 such that
[1(A — I)x|| = é&||x|| for all x € M. Since T"(T"— 1) — 0, A*(4 — I) — 0. Now
1474 = Dxl| = 14 — DA™]| 2 8[| 4] so that 8]|4"] < [|4"(4 — D]
for all x. Hence §[|4"|| = ||A"(A — I)|| — 0 which implies A" — 0 and the
proof is complete.

(2) sup |o(T) ~ {1}] < 1, 3) T — I has closed range, (4) X = ker (I" — I)
® R(T — 1), and (5)

TuEOREM 7. If T — Q then (1) (I" — zI)~! has a pole of order = 1 at z= 1,

0=—- (I — Iy s

271 J 1=

Sfor some ¢ > 0 sufficiently small.
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Proof. (1) and (2) have been proved by J. J. Koliha [5, Theorem 2.5]. Since
1" — Q implies ||7"/n|| — 0 and ||[N=1 .22 7" — Q|| — 0, we may apply a
result of M. Lin (see Theorem 3) to conclude that (3) and (4) are true. To
prove (5), choose € > 0 so that {z: |z — 1| < ¢} N o(T) C {1} and define

E=— L f (T — 2I) 'ds.
lz—1|=e¢

271

Then TE = ET = E = E? [8, p. 421]. By (1) (z — 1)(I" — 2I)~!' is analytic
in a neighborhood of z = 1 so that

TE—E = (I' = E = — - (@ — 1)(T" — 2I)"ds = 0.

211 1=

Thus TE = E. By (2) thereexists 0 < p < 1so thata(7") ~ {1} C {z:|3| < p}.

Then
[—E=—3- f (T — 2I) "z
2Tl o zl=p
so that
1 ,
"I — E =H———, (T —2I)"d
[7T( )| 5.7 ,z,=pz( zl)"dz

< P sup (T —2D)7Y| —o0.
lz|=p

Therefore 1™ = T"E + 1"(I — E) = E 4+ 1"(I — E) — E and the proof is
complete.

We conclude this paper with three examples:

Let X = R?and 7" = [(1) }:' Then ¢(T) = {1} and T — I has closed

range. Suppose X = ker (I" — I) ® M, T(M) € M. One checks that ker
(I — I) = span {[(1):'} and hence M # {0}. Let x € M, x £ 0. Since

T (M) € M and since M has dimension one, 7x = \x for some \. Since ¢(7")
= {1}, N =1and Tx = «x, i.e. x € ker (I' — I), a contradiction. Therefore
hypothesis (1) cannot be omitted from Theorem 5. If we let S = — 17" then
r(S) = 1and S — Iisinvertible but ||S*/n|| +» 0. This shows that in Theorem
3 r(T') = 1 cannot replace ||7"/n|l — 0. By letting X = I, and 7 = diag
0, 1/2, 2/3, 3/4, 4/5, ...) one easily sees that hypotheses (2) and (3) of
Theorem 5 cannot be deleted.

This next example shows that Theorem 5 is false if we omit hypothesis (2),
i.e. T — I has closed range. Let X = [,. Let x1, xo, . . . be the canonical ortho-
normal basis for Iy and define Ax, = a,x,41 where a, | 0, @, > 0 for all n. Then
from [2, Problem 80] ¢(4) = {0}, 0,(4) = 0, and A does not have closed range.
Let T'= I + A so that o(T") = {1}, T — I does not have closed range, and
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since ker (T'— I) = ker 4 = {0}, X = ker (I' — I) ® X and hypothesis (1)
is satisfied trivially. One computes that -
TV — X5 = Uplpg1 « o o Qpgne180n T 1 Upllg1 « o o Q2K pnet
+ N plygr oo o Apgp—3Xggn—2 + PN + N dpyya.
Hence [[(T" — Dxy]| = na,. If we let ap = 1/k for B = 1, 2, ... then

[|(T" — Ix,]| =2 1 for all n. Suppose {1™} converged (in norm). Then by
Theorem 7, T" — E where

_ L f P
B=—ys) @D
1}, E = I. Thus, if {7} converged then 7™ — I. But

Since (1) = |
| = 1forall#n, ||x,]| = 1. Hence { 7"} does not converge.

(1" = I)x,
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