
J. Appl. Prob. 48, 597–610 (2011)
Printed in England

© Applied Probability Trust 2011

RUSSO’S FORMULA, UNIQUENESS OF THE INFINITE
CLUSTER, AND CONTINUOUS DIFFERENTIABILITY
OF FREE ENERGY FOR CONTINUUM PERCOLATION

JIANPING JIANG,∗

SANGUO ZHANG ∗∗ ∗∗∗ and

TIANDE GUO,∗∗ ∗∗∗∗ Graduate University of Chinese Academy of Sciences

Abstract

A new formula for continuum percolation on the Euclidean space R
d (d ≥ 2), which

is analogous to Russo’s formula for bond or site percolation, is proved. Using this
formula, we prove the equivalence between uniqueness of the infinite cluster and
continuous differentiability of the mean number of clusters per Poisson point (or free
energy). This yields a new proof for uniqueness of the infinite cluster since the
continuous differentiability of free energy has been proved by Bezuidenhout, Grimmett
and Löffler (1998); a consequence of this new proof gives the continuity of connectivity
functions.
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1. Introduction

Russo’s formula first appeared in [7] and was rediscovered by Russo in [13] for site perco-
lation. This formula proved to be very useful in studying properties of bond or site percolation
(see, for example, [5, Section 2.4] and [6, Section 4.7]). In [15], Zuev derived an analogous
formula for Poisson random fields. It is easy to apply the formula in [15] to the probability of
an event in continuum percolation. With the idea from [15], we derive Russo’s formula for the
expectation of a random variable in continuum percolation. The extension of the formula from
the probability of an event to the expectation of a random variable in continuum percolation is
not straightforward since the number of sites in a bounded domain is not bounded in continuum
percolation.

Aizenman et al. [1] presented results dealing with three related issues in bond or site
percolation theory: (a) uniqueness of the infinite cluster, (b) continuity of the connectivity
functions, and (c) continuous differentiability of the mean number of clusters per site. They
proved the equivalence between (a) and (c), established (c), and then proved (b) by (a).
In continuum percolation, (a) was proved by Meester and Roy [8] and (c) was proved by
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Bezuidenhout et al. [2]. In this paper we prove results analogous to those in [1] (except for (c))
for continuum percolation.

Next, we introduce the setup for our main results. The set of real numbers is denoted by R,
and the set of natural numbers {1, 2, . . .} is denoted by N. Given a point set X ⊂ R

d , we denote
by G(X, 1) the undirected graph with vertex set X and undirected edges connecting all point
pairs {x, y} with ‖x − y‖ ≤ 1. In this paper we restrict attention to the case where ‖ · ‖ is the
Euclidean norm (l2 norm), but usually its generalizations to other norms are straightforward.
Also, we use the same norm to define the diameter of subsets of R

d , that is, for A ⊆ R
d , we set

diam(A) := sup {‖x − y‖: x ∈ A, y ∈ A},
where ‘:=’ denotes a definition but ‘=’ can also denote a definition when the context is clear.
The Lebesgue measure in R

d is denoted by �(·). For any finite or countable subset A of R
d ,

we write |A| for the cardinality (number of elements) of A.
Let � denote the set of all countable subsets of R

d . We call an element of w ∈ � a
configuration, and, abusing the terminology slightly, we call points of w ∈ � Poisson points.
For any nonnegative measurable function g on R

d , we let Pg denote the probability measure
on � associated with the nonhomogeneous Poisson point process with intensity g; we write
Eg for the corresponding expectation. In the special case of a homogeneous Poisson process
g ≡ λ, we write Pλ and Eλ. We write Hλ for a homogeneous Poisson process of intensity λ

on R
d , i.e. Pλ-distributed random elements of �. A component (or cluster) of a graph G is a

maximal connected subgraph of G. Continuum percolation can loosely be characterized as the
study of large clusters of the infinite random graph G(Hλ, 1). Equivalently, one may study the
connected components of the union of balls of radius 1

2 with centers in Hλ (see [10, Chapter 10]
for more details).

Let Hλ,0 denote the point process {0} ∪ Hλ, where 0 is the origin in R
d . For k ∈ N,

let pk(λ) denote the probability that the component of G(Hλ,0; 1) containing the origin is of
order k (here order means the number of Poisson points in this component). The percolation
probability p∞(λ) is the probability that 0 lies in an infinite component of the graph G(Hλ,0; 1),
and is defined by

p∞(λ) = 1 −
∞∑

k=1

pk(λ).

The critical intensity λc is defined by

λc = inf{λ > 0 : p∞(λ) > 0}.
The value of λc depends on the dimension d . The fundamental result of continuum percolation
says that 0 < λc < ∞, provided that d ≥ 2; see [5, Theorem 12.35] or [9, Theorem 3.3].

For x, y ∈ R
d , we say that x and y are connected through Hλ and write x ↔ y through

Hλ if there exists a sequence of Poisson points u1, u2, . . . , um of Hλ such that ‖x − u1‖ ≤ 1,

‖ui − ui+1‖ ≤ 1, i = 1, 2, . . . , m − 1, and ‖um − y‖ ≤ 1. For A, B ⊂ R
d , we say that

A and B are connected through Hλ and write A ↔ B through Hλ if there exist x ∈ A

and y ∈ B such that x ↔ y through Hλ (we write A � B if no such x and y exist).
The (two-point) connectivity function τ(x, y) is the probability that x and y are connected
through Hλ. Similarly, for x1, . . . , xn ∈ R

d , the n-point connectivity function, τ(x1, . . . , xn),
is the probability of the event that x1, . . . , xn are connected through Hλ (that is, xi ↔ xj

through Hλ for any i, j ∈ {1, 2, . . . , n}).
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For x ∈ R
d , if there is a Poisson point of Hλ at x, we say that x is occupied (otherwise, we

say that x is vacant). We denote the cluster containing the Poisson point x by C(x).
The statements of our main results for continuum percolation are as follows.

Theorem 1.1. Let X be a nonnegative measurable function of Hλ ∩� for some bounded Borel
set � ⊆ R

d . Suppose that, for any nonhomogeneous Poisson process with intensity function
g(x) that satisfies 0 < g(x) ≤ λ0 (for some fixed λ0 ∈ R and any x ∈ �), any m ≥ 1, and any
nonempty � ⊆ �, we have

lim sup
m→∞

m

√
Eg(X | Bm(�))

m! = 0, (1.1)

where Bm(�) denotes the event that � contains exactly m Poisson points, m = 0, 1, . . . . Then,
for any homogeneous Poisson process Hλ with intensity λ ∈ (0, λ0), we have

dEλX

dλ
= 1

λ
Eλ Y, with Y (w) =

∑
x∈w∩�

[X(w) − X(wx)] for w ∈ �,

where wx denotes w \ {x}, i.e. wx is w with x deleted.

Remark 1.1. If (1.1) is replaced by

lim sup
m→∞

m

√
Eg(X | Bm(�))

m! ≤ M for some fixed M ∈ (0, ∞),

then Theorem 1.1 holds with λ0 replaced by 1/M�(�) by a similar argument.

Remark 1.2. The conditions which lead to Theorem 1.1 may seem a little complicated, but for
most random variables which play important roles in continuum percolation, these conditions
are satisfied. For example, they are satisfied for the number of Poisson points in � and the
number of clusters in �. (See Section 3 for a strict definition of the number of clusters.)

Let C(0, Hλ,0) be the cluster of 0 in the graph G(Hλ,0, 1) (note that a Poisson point is
inserted at the origin). A key quantity in our analysis is

f ≡ f (λ) := Eλ(|C(0, Hλ,0)|−1) =
∞∑

k=1

1

k
pk(λ). (1.2)

Note that one can also define f in terms of the Palm measure (for more details, see pages 39
and 117 of [14]). The function f represents the mean number of clusters per Poisson point (or
free energy in statistical mechanics).

Theorem 1.2. In the continuum percolation model G(Hλ, 1), the following two statements are
equivalent.

(a) For λ in (0, ∞), either there is no infinite cluster with probability 1 or there is exactly
one infinite cluster with probability 1.

(b) f is a continuously differentiable function of λ on (0, ∞).

Remark 1.3. Since the continuous differentiability of f has been proved in Theorem (3.6)
of [2], Theorem 1.2 gives a new proof for uniqueness of the infinite cluster. (See, e.g. [8] for a
traditional proof.)
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Theorem 1.3. If the infinite cluster is unique then, for any fixed n and fixed x1, . . . , xn,
τ(x1, . . . , xn) depends continuously on λ.

We denote by N0(x) the number of distinct clusters to which the Poisson neighbors of x

(i.e. Poisson points in the unit-radius ball with center x) belong, after x is set to be vacant. We
define N+(x) similarly except that at most one infinite cluster is counted, i.e.

N+(x) = N0(x) − [N#(x) − 1]I (N#(x) ≥ 1),

where N#(x) is the number of distinct infinite clusters to which the Poisson neighbors of x

belong, after x is set to be vacant, and I (·) denotes the indicator function. Let θ be the volume
(Lebesgue measure) of the unit ball.

Theorem 1.4. Let f be defined by (1.2). Then λf + θλ2/2 is a convex function of λ, and so
λf + θλ2/2 has one-sided derivatives for all λ in (0, ∞). They are given by

d(λf + θλ2/2)

dλ
(λ − 0) = 1 + λθ − Eλ N0(0), (1.3)

d(λf + θλ2/2)

dλ
(λ + 0) = 1 + λθ − Eλ N+(0). (1.4)

Thus, the derivative of λf + θλ2/2 exists at some λ in (0, ∞) if and only if, for that value of λ,

Eλ([N#(0) − 1]I (N#(0) ≥ 1)) = 0. (1.5)

Remark 1.4. The basic continuum percolation model readily lends itself to generalizations,
such as balls of random radius. Our results about Russo’s formula and the continuity of
connectivity functions still hold for a random radius by the same arguments.

2. The proof of Russo’s formula

In this section we prove Theorem 1.1 and present a corollary of it. An important step in the
proof of Theorem 1.1 is the following lemma which will be used several times in this paper.

Lemma 2.1. Let X be a measurable function of Hλ ∩ � for some bounded Borel set � ⊆ R
d ,

and, for some fixed λ0 > 0,

lim sup
m→∞

m

√
Eλ0(|X| | Bm(�))

m! = 0,

where Bm(�) denotes the event that � contains exactly m Poisson points, m = 0, 1, . . . . Then
Eλ X is an infinitely differentiable function of λ on (0, ∞).

Proof. By conditioning on Bm(�) we obtain

Eλ X =
∞∑

m=0

Eλ(X | Bm(�)) Pλ(Bm(�))

=
∞∑

m=0

Eλ(X | Bm(�))
1

m! (λ�(�))me−λ�(�)

= e−λ�(�)
∞∑

m=0

Eλ(X | Bm(�))
1

m! (λ�(�))m. (2.1)
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Note that the conditional expectations Eλ(X | Bm(�)) do not depend on λ since the number
of Poisson points in the set � is fixed. Moreover,

lim sup
m→∞

m

√ |Eλ(X | Bm(�))|
m! = lim sup

m→∞
m

√ |Eλ0(X | Bm(�))|
m!

≤ lim sup
m→∞

m

√
Eλ0(|X| | Bm(�))

m!
= 0. (2.2)

Viewing the sum in (2.1) as a power series in λ, by (2.2) and the root test for power series
(see, e.g. Theorem 3.39 of [12]), the radius of convergence for this series is +∞. By the
differentiability theorem for power series (see Theorem 8.1 and its corollary in [12]), Eλ X is
an infinitely differentiable function of λ.

Proof of Theorem 1.1. By Lemma 2.1, Eλ X is an infinitely differentiable function of λ on
(0, ∞). We follow the basic setup in the proof of Theorem 2.2 of [15]. Since � is a bounded
Borel subset of R

d , there exists a sequence Dn of partitions of the set � into disjoint Borel
subsets �n,1, �n,2, . . . , �n,kn such that the diameter of the partitions

d(Dn) := max
i=1,...,kn

diam(�n,i)

tends to 0 as n → ∞. Then, by the continuity of the Lebesgue measure we have

max
i=1,...,kn

�(�n,i) → 0 as n → ∞. (2.3)

Consider the following family of functions gn on �:

gn(x) =
kn∑

i=1

λiI�n,i
(x) for x ∈ �.

Here λ1, λ2, . . . , λkn are positive parameters less than or equal to λ0 and

I�n,i
(x) =

{
1 if x ∈ �n,i,

0 otherwise.

We denote by Pλ̄, where λ̄ = (λ1, λ2, . . . , λkn), the probability measure associated with the
nonhomogeneous Poisson process on � with intensity function gn. Obviously, Pλ̄ coincides
with Pλ if λ1 = λ2 = · · · = λkn = λ.

Fix n for the moment, sufficiently large so that λi�(�i) < 1
2 for all i (which we may do

by (2.3)), where, to ease notation, we have omitted the index n, which we do for the rest of this
proof. Denote by Bm(�i) the event that �i contains exactly m Poisson points, m = 0, 1, . . . .
Similarly to the proof of Lemma 2.1, we have

∂ Eλ̄ X

∂λi

= ∂

∂λi

∞∑
m=0

Eλ̄(X | Bm(�i)) Pλ̄(Bm(�i))

= ∂

∂λi

∞∑
m=0

Eλ̄(X | Bm(�i))
1

m! (λi�(�i))
me−λi�(�i)

= ∂

∂λi

[
e−λi�(�i)

∞∑
m=0

Eλ̄(X | Bm(�i))
1

m! (λi�(�i))
m

]
. (2.4)
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Note that the conditional expectations Eλ̄(X | Bm(�i)) do not depend on λi and

lim sup
m→∞

m

√ |Eλ̄(X | Bm(�i))|
m! = lim sup

m→∞
m

√
Eλ̄(X | Bm(�i))

m! = 0

by the conditions in the theorem. Thus, if we view the sum in (2.4) as a power series in λi

then, for λi ∈ (0, ∞), by the differentiability theorem for power series (see Theorem 8.1 and
its corollary in [12]), (2.4) equals

−�(�i) Eλ̄(X | B0(�i))e
−λi�(�i)

+
∞∑

m=1

[
Eλ̄(X | Bm(�i))(mλm−1

i (�(�i))
m − λm

i (�(�i))
m+1)

1

m!e−λi�(�i)

]
. (2.5)

Furthermore, (1.1) implies that there exists an M ∈ R
+ such that

Eλ̄(X | Bm(�i))

m! ≤ M

for any m ≥ 1. Recalling that we pick n large enough such that λi�(�i) < 1
2 for all i, we have

(note that X ≥ 0)∣∣∣∣
∞∑

m=2

Eλ̄(X | Bm(�i))mλm−1
i (�(�i))

m 1

m!e−λi�(�i)

∣∣∣∣
= e−λi�(�i)λi(�(�i))

2
∞∑

m=0

Eλ̄(X | Bm+2(�i))(λi�(�i))
m 1

(m + 1)!

≤ e−λi�(�i)λi(�(�i))
2

∞∑
m=0

M(m + 2)(λi�(�i))
m

= e−λi�(�i)λi(�(�i))
2M

2 − λi�(�i)

(1 − λi�(�i))2

≤ 8Mλ0(�(�i))
2, (2.6)

where we have used the fact that λi ≤ λ0 for all i in the last inequality.
Similarly, we can prove that∣∣∣∣

∞∑
m=1

Eλ̄(X | Bm(�i))(λ
m
i (�(�i))

m+1)
1

m!e−λi�(�i)

∣∣∣∣ ≤ 2Mλ0(�(�i))
2. (2.7)

Therefore, (2.4), (2.5), (2.6), and (2.7) give

∂ Eλ̄ X

∂λi

= 1

λi

Eλ̄(XI(B1(�i))) − Eλ̄(XI(B0(�i)))�(�i) + Ci(�(�i))
2, (2.8)

where |Ci | ≤ 10Mλ0.
Next, we define a random variable X[i] as X[i](w) = X(w[i]), where w[i] = w \ �i . Since

X[i] is independent of whether or not Poisson points exist in �i , we have

Eλ̄(X[i] | B1(�i)) = Eλ̄(X[i] | B0(�i)) = Eλ̄ X[i].
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Thus,

Eλ̄(X[i] | B1(�i)) Pλ̄(B1(�i)) = λi�(�i) Eλ̄(X[i] | B0(�i)) Pλ̄(B0(�i)),

and, thus,
1

λi

Eλ̄(X[i]I (B1(�i))) = Eλ̄(X[i]I (B0(�i)))�(�i). (2.9)

Noting that X = X − X[i] + X[i] and Eλ̄((X − X[i])I (B0(�i))) = 0, and substituting (2.9)
into (2.8), we deduce that

∂ Eλ̄ X

∂λi

= 1

λi

Eλ̄((X − X[i])I (B1(�i))) + Ci(�(�i))
2. (2.10)

Set
Yi(w) =

∑
x∈w∩�i

[X(w) − X(wx)],

with the convention that an empty sum is 0. Recalling the definition of Y in Theorem 1.1, we
obtain

Eλ Y =
kn∑

i=1

Eλ Yi . (2.11)

If we pick n large enough such that λ�(�i) < 1
2 for all i (which we may do since λ < λ0),

then, for some |C̄i | ≤ 8Mλ2
0, we have

Eλ Yi =
∞∑

m=0

Eλ(Yi | Bm(�i)) Pλ(Bm(�i))

= Eλ(YiI (B0(�i))) + Eλ(YiI (B1(�i)))

+
∞∑

m=2

Eλ(Yi | Bm(�i)) Pλ(Bm(�i))

= Eλ(YiI (B1(�i))) + C̄i(�(�i))
2 (2.12)

= Eλ((X − X[i])I (B1(�i))) + C̄i(�(�i))
2, (2.13)

where (2.12) follows because Eλ(YiI (B0(�i))) = 0 by the definition of Yi and the same
reasoning as in (2.6) (note that |Eλ(Yi | Bm(�i))| ≤ m Eλ(X | Bm(�i)) by the nonnegativity
of X).

Substituting (2.13) into (2.11) and taking limits on both sides of (2.11) yields

Eλ Y = lim
n→∞

kn∑
i=1

[Eλ((X − X[i])I (B1(�i))) + C̄i(�(�i))
2]. (2.14)

Moreover, by (2.3) we have

kn∑
i=1

(�(�i))
2 ≤ max

i=1,...,kn

�(�i)

kn∑
i=1

�(�i) = �(�) max
i=1,...,kn

�(�i) → 0 as n → ∞.
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Thus,

lim
n→∞

kn∑
i=1

Ci(�(�i))
2 = 0 = lim

n→∞

kn∑
i=1

C̄i(�(�i))
2, (2.15)

since |Ci | ≤ 10Mλ0 and |C̄i | ≤ 8Mλ2
0.

Finally, if λ1 = λ2 = · · · = λkn = λ then Pλ and Eλ respectively coincide with Pλ̄ and Eλ̄.
By the chain rule,

dEλX

dλ
= dEλ̄X

dλ

∣∣∣∣
λ̄=(λ,λ,...,λ)

=
kn∑

i=1

∂ Eλ̄ X

∂λi

∣∣∣∣
λ̄=(λ,λ,...,λ)

=
kn∑

i=1

[
1

λi

Eλ̄((X − X[i])I (B1(�i)))
∣∣
λ̄=(λ,...,λ)

+ Ci(�(�i))
2
]

(2.16)

= 1

λ
Eλ Y, (2.17)

where (2.16) follows from (2.10), and (2.17) follows from taking limits on both sides of (2.16),
(2.14), and (2.15).

In the rest of this section, we will give a corollary of Theorem 1.1. This corollary gives the
formula for the derivative of the probability of a certain kind of event. In fact, one can also get
this formula as a special case of Theorem 2.1 of [15]; see also Lemma 1 of [4].

For two configurations w1, w2 ∈ �, we define a partial ordering ‘�’ by w1 � w2 if
and only if w1 ⊆ w2. An event A ∈ F is said to be increasing if, for every w1 � w2,
I (A)(w1) ≤ I (A)(w2). (Recall that I (A) is the indicator function of the event A.)

A point x ∈ R is called (+)pivotal for an event A in configuration w if x ∈ w and w ∈ A,
but wx �∈ A. Denote by N(A) the random variable such that N(A)(w) equals the number of
(+)pivotal Poisson points for (A, w).

Corollary 2.1. Suppose that A is an increasing event and that I (A) is a measurable function
of Hλ ∩ � for some bounded Borel set � ⊆ R

d . Then

d

dλ
Pλ(A) = Eλ N(A). (2.18)

Proof. Let X = I (A) in Theorem 1.1. Then X satisfies all the conditions of Theorem 1.1.
So we obtain

d

dλ
Eλ(I (A)) = Eλ Y, Y (w) =

∑
x∈w∩�

[I (A)(w) − I (A)(wx)].

Therefore, (2.18) follows since Y = N(A).

3. The connectivity functions and the mean number of clusters per Poisson point

In this section we will prove Theorems 1.3 and 1.4.
For any Bk := [−k/2, k/2]d , where k ∈ N ∪ {0}, we define clusters according to two

different boundary conditions: free and wired. The free or 0-cluster of a Poisson point x,
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Russo’s formula and uniqueness of the infinite cluster 605

denoted by C0(x, Bk), is the cluster of x obtained when all points outside of Bk are set to
be vacant (i.e. there is no Poisson point outside of Bk). The wired or +-cluster of a Poisson
point x, denoted by C+(x, Bk), is the cluster obtained when all points outside Bk are set to be
occupied (i.e. y is a Poisson point for any y /∈ Bk). Note that if x is not a Poisson point then
both C0(x, Bk) and C+(x, Bk) are empty.

The above definitions have the following properties.

(P1) For x in Bk , C0(x, Bk) and C+(x, Bk) depend only on the number of Poisson points and
their positions in Bk .

(P2) For x in Bk , C0(x, Bk) is always finite, while C+(x, Bk) is infinite exactly when both x

is a Poisson point and x ↔ Bc
k (the complement of Bk).

(P3) Two Poisson points in Bk are in the same 0-cluster if they are connected within Bk ,
whereas they are in the same +-cluster if they are either connected in Bk or both are
connected to Bc

k .

(P4) For a given point x ∈ Bk , C0(x, Bk) is an increasing function of k, while C+(x, Bk) is
decreasing in k.

In the following we will use an asterisk to denote either 0 or +. Let M0(Bk) and M+(Bk)

denote the number of finite clusters after all points in Bc
k are set to be vacant or, respectively,

occupied. Then, we have

M∗(Bk)(w) =
∑

x∈w∩Bk

|C∗(x, Bk)|−1 for w ∈ �.

Define

f ∗
Bk

:= λ−1�(Bk)
−1 Eλ M∗(Bk).

We have the following lemma.

Lemma 3.1. For either choice of boundary conditions, we have

lim
k→∞ f ∗

B2k
= f = Eλ(|C(0, Hλ,0)|−1).

Remark 3.1. Note that we restrict the limit to a subsequence of N (i.e. {2k}, k ∈ N) in order to
obtain the monotone property (see (3.1) below). We will use this method again in (3.9) below.

Proof of Lemma 3.1. By Palm theory (see, e.g. Theorem 1.6 of [10]),

f ∗
Bk

= λ−1�(Bk)
−1 Eλ M∗(Bk) = Eλ |C∗(Uk, Uk ∪ Hλ, Bk)|−1,

where Uk is a uniformly distributed random variable on Bk independent of Hλ, and

|C∗(Uk, Uk ∪ Hλ, Bk)|−1 = 1

�(Bk)

∫
Bk

|C∗(x, {x} ∪ Hλ, Bk)|−1 dx,

where C∗(x, {x}∪Hλ, Bk) is C∗(x, Bk) after a Poisson point is inserted at x, that is, C∗(x, {x}∪
Hλ, Bk)(w) = C∗(x, Bk)(w ∪ {x}) for w ∈ �.
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We partition B2k+1 into 2d boxes B1
2k , B

2
2k , . . . , B

2d

2k such that each Bi
2k is a translation of

B2k (we do not need to consider the boundary since the Lebesgue measure of the boundary is
0). Then we have

Eλ |C0(U2k+1 , U2k+1 ∪ Hλ, B2k+1)|−1

= 1

�(B2k+1)
Eλ

∫
B2k+1

|C0(x, {x} ∪ Hλ, B2k+1)|−1 dx

= 1

�(B2k+1)

2d∑
i=1

Eλ

∫
Bi

2k

|C0(x, {x} ∪ Hλ, B2k+1)|−1 dx

≤ 1

�(B2k+1)

2d∑
i=1

Eλ

∫
Bi

2k

|C0(x, {x} ∪ Hλ, B
i
2k )|−1 dx

= �(B2k )

�(B2k+1)

2d∑
i=1

Eλ |C0(U2k , U2k ∪ Hλ, B2k )|−1

= Eλ |C0(U2k , U2k ∪ Hλ, B2k )|−1 (3.1)

for any k ∈ N (the inequality follows by (P4) for the ∗-cluster). Therefore, Eλ |C0(U2k , U2k ∪
Hλ, B2k )|−1 decreases to Eλ |C0(U∞, U∞ ∪ Hλ, R

d)|−1 ≡ f as k → ∞.
Finally, Eλ |C+(U2k , U2k ∪ Hλ, B2k )|−1 ↑ Eλ |C+(U∞, U∞ ∪ Hλ, R

d)|−1 ≡ f as k →
∞ by a similar argument.

We will now turn to the derivatives of f ∗
Bk

. For x ∈ Bk , we define N0(x, Bk) and N+(x, Bk)

to be the number of distinct (finite or infinite) clusters obtained after setting x to be vacant
and setting all points in Bc

k to be vacant or, respectively, occupied, which contain a nearest
Poisson neighbor to x. Note that if N∗(x, Bk) = 0 then changing x from vacant to occupied
increases M∗(Bk) by 1, but if N∗(x, Bk) ≥ 1, then such a change in x decreases M∗(Bk) by
N∗(x, Bk) − 1.

With the definition above and according to the definition of N∗(x) given before Theorem 1.4,
we have

N∗(x) = lim
k→∞ N∗(x, Bk).

Next, we deduce the formula for (d/dλ)(λf ∗
Bk

+ θλ2/2) by Russo’s formula in Section 1.

Lemma 3.2. For any k ∈ N and either choice of boundary conditions, λf ∗
Bk

+ θλ2/2 is a
convex function of λ on (0, ∞) with

d

dλ

(
λf ∗

Bk
+ θ

2
λ2

)
= λ−1�(Bk)

−1 Eλ Y + θλ,

where
Y (w) =

∑
x∈w∩Bk

[1 − N∗(x, Bk)] for w ∈ �.

Proof. By Theorem 1.1,

d

dλ
f ∗

Bk
= d

dλ
[λ−1�(Bk)

−1 Eλ M∗(Bk)]
= −λ−2�(Bk)

−1 Eλ M∗(Bk) + λ−2�(Bk)
−1 Eλ Y, (3.2)
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where

Y (w) =
∑

x∈w, x∈Bk

[M∗(Bk)(w) − M∗(Bk)(wx)]

=
∑

x∈w, x∈Bk

[I (N∗(x, Bk) = 0) + (1 − N∗(x, Bk))I (N∗(x, Bk) ≥ 1)]

=
∑

x∈w, x∈Bk

[1 − N∗(x, Bk)]. (3.3)

Thus, by (3.2) we obtain

d

dλ

(
λf ∗

Bk
+ θ

2
λ2

)
= f ∗

Bk
+ λ

d

dλ
f ∗

Bk
+ θλ = λ−1�(Bk)

−1 Eλ Y + θλ. (3.4)

Next, we prove that λf ∗
Bk

+ θλ2/2 is a convex function of λ. For x ∈ Bk , let us define
NPo(x) to be the number of Poisson neighbors of x. Let

Nk(Uk, Uk ∪ Hλ, Bk) := 1

�(Bk)

∫
Bk

Nk(x, {x} ∪ Hλ, Bk) dx, (3.5)

where Uk is a uniformly distributed random variable on Bk independent of Hλ and Nk(x, {x}∪
Hλ, Bk) = NPo(x). Then, by Fubini’s theorem (see page 407 of [3]) we have

Eλ Nk(Uk, Uk ∪ Hλ, Bk) = λθ (3.6)

for any k ∈ N.
By (3.4), (3.3), Palm theory, (3.6), and Fubini’s theorem, we obtain

d

dλ

(
λf ∗

Bk
+ θ

2
λ2

)
= λ−1�(Bk)

−1 Eλ Y + θλ

= Eλ(1 − N∗(Uk, Uk ∪ Hλ, Bk)) + Eλ Nk(Uk, Uk ∪ Hλ, Bk)

= 1 + Eλ(Nk(Uk, Uk ∪ Hλ, Bk) − N∗(Uk, Uk ∪ Hλ, Bk)) (3.7)

= 1 + Eλ

(
1

�(Bk)

∫
Bk

[Nk(x, {x} ∪ Hλ, Bk) − N∗(x, {x} ∪ Hλ, Bk)] dx

)

= 1 + 1

�(Bk)

∫
Bk

Eλ(Nk(x, {x} ∪ Hλ, Bk) − N∗(x, {x} ∪ Hλ, Bk)) dx, (3.8)

where N∗(Uk, Uk ∪Hλ, Bk) is defined similarly to (3.5) and N∗(x, {x}∪Hλ, Bk) is N∗(x, Bk)

after a Poisson point is inserted at x. Since Nk(x, {x}∪Hλ, Bk)−N∗(x, {x}∪Hλ, Bk) cannot
decrease when a point is changed from vacant to occupied,

Eλ(Nk(x, {x} ∪ Hλ, Bk) − N∗(x, {x} ∪ Hλ, Bk))

is increasing in λ by a coupling argument (see page 28 of [9]). Therefore, (3.8) is increasing in
λ, and, thus, λf ∗

Bk
+ θλ2/2 is a convex function of λ.

Theorem 1.4 is now a consequence of the previous two lemmas.
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Proof of Theorem 1.4. By Lemma 3.1 and Lemma 3.2, λf + θλ2/2 is the limit of convex
functions λf 0

B2k
+ θλ2/2 (as k → ∞). Furthermore, by (3.7) and (3.6),

d

dλ

(
λf 0

B2k
+ θ

2
λ2

)
= 1 + λθ − Eλ(N

0(U2k , U2k ∪ Hλ, B2k )).

By the same argument used for Lemma 3.1, we can prove that

Eλ(N
0(U2k , U2k ∪ Hλ, B2k )) ↓ Eλ(N

0(U∞, U∞ ∪ Hλ, R
d)) ≡ Eλ N0(0). (3.9)

By Fubini’s theorem,

Eλ(N
0(U2k , U2k ∪ Hλ, B2k )) = Eλ

(
1

�(B2k )

∫
B2k

N0(x, {x} ∪ Hλ, B2k ) dx

)

= 1

�(B2k )

∫
B2k

Eλ(N
0(x, {x} ∪ Hλ, B2k )) dx.

Since Eλ(N
0(x, {x} ∪ Hλ, B2k )) is continuous in λ by Lemma 2.1, Eλ(N

0(U2k ,U2k ∪ Hλ,B2k ))

is a continuous function of λ. Moreover, by (3.6),

λθ − Eλ N0(0) = Eλ(N∞(0, {0} ∪ Hλ, R
d) − N0(0, {0} ∪ Hλ, R

d))

is increasing in λ (see the reason below (3.8)). Thus, 1 + λθ − Eλ N0(0) is the increasing limit
of continuous functions; therefore, it is lower semicontinuous. On the other hand, 1 + λθ −
Eλ N0(0) is nondecreasing in λ, and, thus, it is left continuous.

It follows, as in the proof of Proposition 1.4 of [1], that λf + θλ2/2 is convex with its left
derivative given by (1.3). The analogous argument with 0 substituted by + and left by right
yields (1.4).

From (1.3) and (1.4), we obtain the identity

d(λf + θλ2/2)

dλ
(λ + 0) − d(λf + θλ2/2)

dλ
(λ − 0) = Eλ([N#(0) − 1]I (N#(0) ≥ 1)).

This completes the proof.

Finally, we will deal with the continuity of connectivity functions. For x1, . . . , xn ∈ R
d , we

define

τ ∗
Bk

(x1, x2, . . . , xn) := Pλ(x1, x2, . . . , xn are connected through the same ∗-cluster of Bk),

τ+(x1, x2, . . . , xn) := Pλ(x1, x2, . . . , xn are connected through the same cluster or

C(x1), . . . , C(xn) are all infinite),

and τ 0 denotes the ordinary connectivity function τ .

Lemma 3.3. For either choice of boundary conditions and any fixed n,

τ ∗
Bk

(x1, x2, . . . , xn) → τ ∗(x1, x2, . . . , xn) as k → ∞.

Here τ(x1, x2, . . . , xn) is a left continuous function of λ while τ+(x1, x2, . . . , xn) is right
continuous.
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Proof. We follow the proof of Lemma 2.3 of [1]. For fixed x, C0(x, Bk) is increasing in k

while C+(x, Bk) is decreasing in k and C0(x, Bk) ⊆ C+(x, Bk). Furthermore, if C(x) is finite
then C(x) = C∗(x, Bk) for sufficiently large k. If C(x) is infinite then C0(x, Bk) → C(x),
while C+(x, Bk) → {y : |C(y)| = ∞} as k → ∞. It follows that, for fixed x1, x2, . . . , xn,

τ 0
Bk

(x1, x2, . . . , xn) ↑ τ 0(x1, x2, . . . , xn) as k ↑ ∞,

τ+
Bk

(x1, x2, . . . , xn) ↓ τ+(x1, x2, . . . , xn) as k ↑ ∞. (3.10)

Note that (3.10) holds for large enough k such that Bk contains x1, x2, . . . , xn.
Moreover, by Lemma 2.1, τ ∗

Bk
(x1, x2, . . . , xn) is a continuously differentiable function

of λ. Thus, τ 0(x1, x2, . . . , xn) is the increasing limit of continuous functions; therefore,
τ 0(x1, x2, . . . , xn) is lower semicontinuous. On the other hand, τ 0(x1, x2, . . . , xn) is non-
decreasing in λ, and, thus, τ 0(x1, x2, . . . , xn) is continuous from the left.

Similar arguments are valid for the right continuity of τ+(x1, x2, . . . , xn).

Proof of Theorem 1.3. The uniqueness of the infinite cluster implies that

τ(x1, . . . , xn) = τ+(x1, . . . , xn).

Furthermore, by Lemma 3.3, τ(x1, . . . , xn) is a left continuous function of λ and τ+(x1, . . . , xn)

is right continuous. These facts yield the required result.

4. Proof of Theorem 1.2

In this section we explain the few extra arguments needed to obtain Theorem 1.2 from the
results of the last two sections.

Proof of Theorem 1.2. Part (a) implies part (b). If the infinite cluster is unique then, by
Theorem 1.4, λf +θλ2/2 is convex and differentiable. Thus, by Corollary 25.5.1 of [11], λf +
θλ2/2 is continuously differentiable on (0, ∞). Therefore, f is a continuously differentiable
function of λ on (0, ∞).

Part (b) implies part (a). We follow the arguments in the proof of Proposition 5.3 of [1].
Since f is differentiable, λf + θλ2/2 is differentiable. Then Theorem 1.4 implies that (1.5) is
always true and, thus, that

Pλ((N
#(0)) ≥ 2) = 0. (4.1)

To prove the implication (b) ⇒ (a), it suffices to assume that more than one infinite cluster
occurs with nonzero probability and derive a contradiction to (4.1). Under this assumption,
Pλ(G(Bk)) is positive for some large k, where G(Bk) is the event that at least two distinct infinite
clusters occur and intersect Bk . It is easy to construct a mapping 	 on configuration w in G(Bk).
The mapping 	 only changes the occupation status of points in Bk and 	(Bk) is contained in
the event that N#(0) ≥ 2. However, Pλ(	(Bk)) > 0 implies that Pλ((N

#(0)) ≥ 2) > 0, which
contradicts (4.1).
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