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Abstract

We present a Markov chain on the n-dimensional hypercube {0, 1}n which satisfies

t(n)
mix(ε) = n[1 + o(1)]. This Markov chain alternates between random and deterministic

moves, and we prove that the chain has a cutoff with a window of size at most O(n0.5+δ),
where δ > 0. The deterministic moves correspond to a linear shift register.

Keywords: Markov chains; fast mixing; cutoff; hypercube

2020 Mathematics Subject Classification: Primary 60J10
Secondary 94A55

1. Introduction

Developing Markov chain Monte Carlo (MCMC) algorithms with fast mixing times remains
a problem of practical importance. We would like to make computationally tractable mod-
ifications to existing chains which decrease the time required to obtain near equilibrium
samples.

The mixing time of an ergodic finite Markov chain (Xt) with stationary distribution π is
defined as tmix(ε) = min

{
t ≥ 0 : maxx ‖Px(Xt ∈ ·) − π‖TV < ε

}
, and we write tmix = tmix(1/4).

A theoretical algorithm for chains with uniform stationary distribution was analyzed by
Chatterjee and Diaconis [7]. They proposed chains that alternate between random steps made
according to a probability transition matrix and deterministic steps defined by a bijection f on
the state space. Supposing the state space has size n, the transition matrix satisfies a one-step
reversibility condition, and f obeys an expansion condition, they proved that tmix = O(log n).
However, they noted that finding an explicit bijection f satisfying the expansion condition can
be difficult even for simple state spaces like Zn.

In this paper we analyze a Markov chain on the hypercube {0, 1}n of the form P� for an
explicit�, where P corresponds to the usual lazy random walk on {0, 1}n. This chain may be of
independent interest, as the deterministic transformation f on the state space is a ‘shift register’
operator. Such shift registers have many applications in cryptography, pseudo-random number
generation, coding, and other fields. See, for example, [13] for background on shift registers.

The lazy random walk on {0, 1}n makes transitions as follows. When the current state is
x, a coordinate from i ∈ {1, 2, . . . , n} is generated uniformly at random, and an independent
random bit R is added (mod 2) to the bit xi at coordinate i. The new state obtained is thus

x �→ x′ = (x1, . . . , xi ⊕ R, . . . , xn). (1)
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We denote the transition matrix of this chain by P. For a chain with transition proba-
bilities Q on S and stationary distribution π , let d(t) = dn(t) = maxx∈S ‖Qt(x, ·) − π‖TV. A
sequence of chains indexed by n has a cutoff if, for tn := t(n)

mix, there exists a window
sequence {wn} with wn = o(tn) such that limα→∞ lim supn→∞ dn(tn + αwn) = 0, limα→−∞
lim infn→∞ dn(tn + αwn) = 0. For background on mixing times, cutoff, and related material,
see, for example, [16].

It is well known that, for the lazy random walk on {0, 1}n, tmix(ε) = 1
2 n log n[1 + o(1)] with

a cutoff. (See [10], where precise information on the total variation distance is calculated. The
difference of a factor of 2 above comes from the laziness in our version.)

A natural deterministic ‘mixing’ transformation on {0, 1}n is the ‘linear shift register’,
which takes the xor sum of the bits in the current word x = (x1, . . . , xn) and appends it to
the right-hand side, dropping the left-most bit:

x �→ f (x) = (
x2, . . . , xn−1,⊕n

i=1xi
)
. (2)

Let � denote the permutation matrix corresponding to this transformation, so that

�i,j =
{

1 if j = f (i),

0 otherwise.

The chain studied in the following has the transition matrix Q1 = P�, whose dynamics are
simply described by combining the stochastic operation (1) with the deterministic f in (2):
x �→ x′ �→ f (x′).

Let log stand for the natural logarithm. The main result here is the following.

Theorem 1. For the chain Q1,

(i) For n ≥ 5, dn(n + 1) ≤ 2/n.

(ii) For any 1
2 <α < 1, if tn = n − nα , dn(tn) ≥ ‖Qtn

1 (0, ·) − π‖TV ≥ 1 − o(1).

Thus, the sequence of chains has a cutoff at time n with a window of at most size n1/2+δ for
any δ > 0.

Remark 1. If the transformation f obeys the expansion condition of [7], then the results therein
yield a mixing time of order n. We were unable to directly verify that f does obey this condition.
Moreover, the result in Theorem 1 establishes the stronger cutoff property.

Remark 2. Obviously a simple way to exactly randomize n bits in exactly n steps is to simply
randomize in sequence, say from left to right, each bit. This is called a systematic scan, and
avoids the extra factor of log n needed for random updates to touch a sufficient number of
bits. (A ‘coupon-collector’ argument shows that to touch all but O(

√
n) bits using random

updates, enough to achieve small total-variation distance from uniform, order n log n steps
are required.) Thus, clearly our interest in analyzing this chain is not for direct simulation of
n independent bits! Rather, we are motivated both by the potential for explicit deterministic
moves to speed up Markov chains, and also by this particular chain which randomizes the
well-known shift-register dynamical system.

This paper is organised as follows. In Section 2 we review some related results. The upper
bound in Theorem 1 is proved in Section 3, and the lower bound is established in Section 4. In
Section 5, a chain is analyzed that is similar to the chain of Theorem 1, but always updates the
same location.
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2. Related previous work

2.1. Markov chains on a hypercube

Previous work on combining deterministic transformation with random moves on a hyper-
cube is described in [9], which studied the walk {Xt} described by Xt+1 = AXt + εt+1, where
A is an n × n lower triangular matrix and εt are independent and identically distributed (i.i.d.)
vectors having the following distribution: the variable εt = 0 with probability θ = 1

2 , while
εt = e1 with probability 1 − θ . Here, 0 is a vector of zeros, and e1 is a vector with a one in the
first coordinate and zeros elsewhere. Fourier analysis is used to show that O(n log n) steps
are necessary and sufficient for mixing, and they prove a sharp result in both directions.
This line of work is a specific case of a random walk on a finite group G described as
Xt+1 = A(Xt)εt+1, where A is an automorphism of G and ε1, ε2, . . . are i.i.d. with some distri-
bution μ on G. In the case of [9], G =Zn

2 and the automorphism A is a matrix. By comparison,
the chain studied here mixes in only n(1 + o(1)) steps.

Another relevant (random) chain on {0, 1}n was analyzed in [17]. A subset of S size p from
Zn

2 is chosen uniformly at random, and the graph G with vertex set Zn
2 is formed which contains

an edge between vertices if and only if their difference is in S; [17] considered the random walk
on the random graph G. It was shown that if p = cn, where c> 1 is a constant, then the mixing
time is linear in n with high probability (over the choice of S) as n → ∞. This Markov chain
depends on the random environment to produce the speedup.

Finally, another example of cutoff for a Markov chain on a hypercube was [2]. This random
walk moves by picking an ordered pair (i, j) of distinct coordinates uniformly at random and
adding the bit at location i to the bit at location j, modulo 2; it was proved that this Markov
chain has cutoff at time 3

2 n log n with a window of size n, so the mixing time is the same order
as that of the ordinary random walk.

2.2. Related approaches to speeding up mixing

The results of [7] were refined in [3], proving further that, under mild assumptions on P,
a ‘typical’ f yields a mixing time of order log n with a cutoff. In particular, if a permutation
matrix � is selected uniformly at random, then the (random) chain Q = P� has a cutoff at
(log n)/h with high probability (with respect to the selection of �). Here, h is the entropy rate
of P, and n is the size of the state space. Like the chain in [17], the random environment is
critical to the analysis. However, in specific applications we would like to know an explicit
deterministic permutation � that mixes in O(log n) and does not require storage of the matrix
�, particularly when the state space increases exponentially with n.

A method for speeding up mixing called lifting was introduced in [11]. The idea behind this
technique is to create ‘long cycles’ and introduce non-reversibility. For example, for a simple
random walk on the n-path the mixing time of the lifting is O(n), whereas the mixing time on
the path is 	(n2). Thus, this method can provide a speedup of the square root of the mixing
time of the original chain. An explicit lower bound on the mixing time of the lifted chain in
terms of the original chain was given in [8]. The chain we study here has a similar flavor in
that the transformation f creates non-reversibility and long cycles.

Another related speedup technique is hit and run, which introduces non-local moves in a
chosen direction (see the survey in [1]). A recent application of a top-to-random shuffle is
[5], where it is shown that a speedup in mixing by a constant factor can be obtained for the
L2 and sup-norm; [15] used this method to sample from high-dimensional and multi-modal
posterior distributions in Bayesian models, and compared that with Gibbs and Hamiltonian
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Monte Carlo algorithms. In the physics literature, non-reversible chains are constructed from
reversible chains without augmenting the state space (in contrast to lifting) by introducing
vorticity, which is similar in spirit to the long cycles generated by lifting; see, for example, [4],
which analyzes a non-reversible version of Metropolis–Hastings.

As mentioned above, there are other obvious methods to obtain a fast uniform sample from
{0, 1}n, in particular systematic scan, which generates an exact sample in precisely n steps! See
[12] for a comparison of systematic and random scans on different finite groups.

3. Upper bound of Theorem 1

The proof is based on Fourier analysis on Zn
2. Let A be a matrix defined as

A :=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎦
n×n

. (3)

Let {εi} be i.i.d. random vectors with the distribution

εi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 with probability 1/2,

e1 with probability 1/2n,
...

en with probability 1/2n,

(4)

where ei = (0, . . . , 1︸︷︷︸
ith place

, . . . , 0).

The random walk Xt with transition matrix Q1 and X0 = x can be described as Xt = A(Xt−1 ⊕
εt). (The matrix arithmetic here is all modulo 2.) Induction shows that

Xt =
(

t∑
j=1

At−j+1εj

)
⊕ Atx, (5)

where again the matrix multiplication and vector sums are over the field Z2.

Lemma 1. The matrix A in (3) satisfies An+1 = In×n.

Proof. Note that

Ae1 = en,

A2e1 = A(Ae1) = en + en−1,

A3e1 = A(A2e1) = en−1 + en−2,

...

Ane1 = e2 + e1.

This implies that An+1e1 = A(Ane1) = A(e2 + e1) = e1. The reader can check similarly that
An+1ej = ej for 2 ≤ j ≤ n. �
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For x, y ∈Zn
2, the Fourier transform of Qt

1(x, ·) at y is defined as

Q̂t
1(x, y) :=

∑
z∈Zn

2

(−1)y·zQt
1(x, z) =E

[
(−1)y·Xt

]
= (−1)y·Atx

t∏
j=1

E
[
(−1)y·At−j+1εj

]
. (6)

The product x · y is the inner product
∑n

i=1 xiyi. The second equality follows from plugging (5)
into the first equality and observing that the εj are independent. The following lemma bounds
the total variation distance; this is proved in [9, Lemma 2.3].

Lemma 2. ‖Qt
1(x, ·) − π‖2

TV ≤ 1
4

∑
y =0

(
Q̂t

1(x, y)
)2

.

We will need the following lemma to prove Theorem 1(i).

Lemma 3. Let

h(n, k) =
(

n

k

)(
1 − k

n

)2n−2k( k

n

)2k

.

If 2 ≤ k ≤ n − 2 and n> 5, then h(n, k) ≤ 1/n2 and h(n, n − 1) ≤ 1/n.

Proof. We first prove this for 2 ≤ k ≤ n − 2. For x, y ∈Z+, define

K(x, y) := log

(x + 1)


(y + 1)
(x − y + 1)
+ (2x − 2y) log

(
1 − y

x

)
+ 2y log

(
y

x

)
+ 2 log(x),

where 
 is the gamma function. We prove that, if 2 ≤ y ≤ x − 2 and x> 5, then K(x, y)< 0.
Since K(n, k) = log(h(n, k)n2), this establishes the lemma.

Let

ψ(x) := d log 
(x)

dx
.

Then

∂2K

∂y2
= −ψ ′(y + 1) −ψ ′(x − y + 1) + 2

x − y
+ 2

y

>− 1

y + 1
− 1

(y + 1)2
− 1

(x − y + 1)
− 1

(x − y + 1)2
+ 2

y
+ 2

x − y

> 0. (7)

The first inequality follows from [14, Lemma 1], which states that ψ ′(x)< 1/x + 1/x2 for all
x> 0.

The second inequality follows since 2/y − (y + 1)−1 − (y + 1)−2 > 0, and we can apply this
again, substituting x − y for y. Thus, K(x, ·) is a convex function for all x. Also,

K(x, 2) = K(x, x − 2) = log

(
x(x − 1)

2

)
+ 2(x − 2) log

(
1 − 2

x

)
+ 4 log

(
2

x

)
+ 2 log x

= log

(
8x(x − 1)

x2

)
+ 2(x − 2) log

(
1 − 2

x

)
< log(8) − 4(x − 2)

x
< 0, (8)
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for x> 5. The first inequality follows from log(1 − u)<−u. Equations (8) and (7) prove this
lemma for 2 ≤ k ≤ n − 2. Finally, h(n, n − 1) ≤ 1/n if and only if nh(n, n − 1) ≤ 1, which is
true because one can verify that d

dn nh(n, n − 1)< 0 for n ≥ 5 and that nh(n, n − 1)< 1 for
n = 5. �

Proof of Theorem 1(i). Let y = (y1, y2, . . . , yn) ∈Z2
n. First,

̂Qn+1
1 (x, y) = (−1)y·An+1x

n+1∏
j=1

E
[
(−1)y·An−j+2εj

]= (−1)y·Ix
n+1∏
j=1

E
[
(−1)y·An−j+2εj

]
,

which follows from (6) and Lemma 1. Note that the first factor in this product is( 1
2 + (1/2n)

[
(−1)y1 + (−1)y2 + (−1)y3 + · · · + (−1)yn

])
, which follows from (4) and

Lemma 1. We can similarly find the other factors in the product, which gives

̂Qn+1
1 (x, y) = (−1)x·y

×
(

1

2
+ 1

2n

[
(−1)y1 + (−1)y2 + (−1)y3 + · · · + (−1)yn

])
×
(

1

2
+ 1

2n

[
(−1)y1 + (−1)y1+y2 + (−1)y1+y3 + · · · + (−1)y1+yn

])
×
(

1

2
+ 1

2n

[
(−1)y2 + (−1)y2+y1 + (−1)y2+y3 + · · · + (−1)y2+yn

])
...

×
(

1

2
+ 1

2n

[
(−1)yn + (−1)yn+y1 + (−1)yn+y2 + · · · + (−1)yn+yn−1

])
.

Observe that ̂Qn+1
1 (x, y) = 0 for all y ∈Zn

2 such that W(y) ∈ {1, n}, where W(y) is the Hamming
weight of y ∈Zn

2. If W(y) = 1, then one of the factors displayed on the third through sixth lines
above is zero. If W(y) = n, then the factor on the second line is zero. If we fix a 2 ≤ j ≤ n − 1

and look at all y ∈Zn
2 with W(y) = j, then

[̂Qn+1
1 (x, y)

]2 is the same for all such y, since the
expression above is invariant over permutation of coordinates, once the first factor is squared.

If y = (1, 1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0) where 2 ≤ k ≤ n − 1, then

̂Qn+1
1 (x, y) = (−1)

(∑k
i=1 xi

)(
1 − k

n

)n−k+1(k − 1

n

)k

.

This holds because factors 3 through (k + 2) are equal to (k − 1)/n, and all factors except the
first and second are equal to (n − k)/n. To see this, note that factor 2 is equal to

1

2
+ 1

2n

[
(−1 − 1 − · · · − 1︸ ︷︷ ︸

k negative ones

) + (1 + 1 + · · · + 1︸ ︷︷ ︸
n − k positive ones

)

]
= 1

2
+ 1

2n
[−k + (n − k)] = n − k

n
;
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factors 3 through (k + 2) are equal to

1

2
+ 1

2n

[
−1 + (1 + 1 + · · · + 1︸ ︷︷ ︸

k − 1 positive ones

) + (−1 − 1 − · · · − 1︸ ︷︷ ︸
n − k negative ones

)

]

= 1

2
+ 1

2n
[−1 + k − 1 − (n − k)] = k − 1

n
;

and factors (k + 3) through (n + 2) are equal to

1

2
+ 1

2n

[
1 + (−1 − 1 − · · · − 1︸ ︷︷ ︸

k negative ones

) + (1 + 1 + · · · + 1︸ ︷︷ ︸
n − k − 1 positive ones

)

]

= 1

2
+ 1

2n
[1 − k + n − k − 1] = n − k

n
.

Thus,

∑
y =0

(
̂Qn+1

1 (x, y)
)2 =

n−1∑
k=2

(
n

k

)(
1 − k

n

)2n−2k+2(k − 1

n

)2k

≤
n−1∑
k=2

(
n

k

)(
1 − k

n

)2n−2k( k

n

)2k

. (9)

We finally analyze the terms in the sum of (9). Note that(
n

k

)(
1 − k

n

)2n−2k( k

n

)2k

≤ 1

n2

for 2 ≤ k ≤ n − 2 and n> 5, and h(n, n − 1) ≤ 1/n by Lemma 3. Thus,

n−1∑
k=2

(
n

k

)(
1 − k

n

)2n−2k( k

n

)2k

≤ n − 3

n2
+ 1

n
≤ 2

n
. (10)

Lemma 2, with (9) and the bound in (10), establishes the upper bound in Theorem 1. �

4. Lower bound of Theorem 1

Let {Ut} be the sequence of coordinates used to update the chain, and let {Rt} be the
sequence of random bits used to update. Thus, at time t, coordinate Ut is updated using bit Rt.
Both sequences are i.i.d. Let Ft be the σ -algebra generated by (U1, . . . ,Ut) and (R1, . . . , Rt).
Let Xt = (

X(1)
t , . . . , X(n)

t
)

be the chain with transition matrix Q at time t. The proof is based on

the distinguishing statistic Wt =∑n
i=1 X(i)

t , the Hamming weight at time t.

First, observe that P
(
X(n)

t+1 = 1 |Ft
)= 1

2 , because if the state at time t is x = (x1, x2, . . . , xn),

then Rt+1 is added at a uniformly chosen coordinate of x, and X(n)
t+1 =∑n

i=1 xi ⊕ Rt+1 ∈ {0, 1}
with probability 1

2 each, conditioned on Ft. We now describe a recursive relation for Wt, the
Hamming weight of Xt:

Wt+1 =
n∑

j=2

(
X(j)

t · 1(Ut+1 =j) + (
X(j)

t ⊕ Rt+1
) · 1(Ut+1=j)

)+ 1(
X(n)

t+1=1
). (11)
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The first terms in (11) follow from the fact that, for 1 ≤ j ≤ n − 1,

X(j)
t+1 =

⎧⎨⎩X(j+1)
t if Ut+1 = j,

X(j+1)
t ⊕ Rt+1 if Ut+1 = j.

Taking conditional expectation in (11), we get

E[Wt+1 |Ft] =
n∑

j=2

(
X(j)

t

(
n − 1

n

)
+ 1

2

[
1 − X(j)

t + X(j)
t
]1

n

)
+ 1

2

=
(

1 − 1

n

) n∑
j=2

X(j)
t +

(
n − 1

2n

)
+ 1

2

=
(

1 − 1

n

) n∑
j=1

X(j)
t −

(
1 − 1

n

)
X(1)

t +
(

2n − 1

2n

)

=
(

1 − 1

n

)
Wt −

(
1 − 1

n

)
X(1)

t + 2n − 1

2n
.

Let μt := E(Wt). Taking total expectation in the previous expression, we get

μt+1 =
(

1 − 1

n

)
μt −

(
1 − 1

n

)
P
(
X(1)

t = 1
)+ 2n − 1

2n
. (12)

We now estimate the probability in (12). Since X0 = 0, for t ≤ n,

P
(
X(1)

t = 1
)=

[
1 −

(
1 − 1

n

)t]1

2
. (13)

To obtain (13), follow the bit at coordinate 1 at time t backwards in time: at time t − 1 it was at
coordinate 2, at time t − 2 it was at coordinate 3, etc. At time t it is at 0 unless it was updated at
least once along this progression to the left, and the last time that it was updated, it was updated
to a 1. The probability it was never updated along its trajectory is (1 − (1/n))t, as we require
that coordinates 2, 3, . . . , t, t + 1 at times t, t − 1, . . . , 2, 1 respectively have not been chosen
for updates. The probability is thus [1 − (1 − (1/n))t] that at least one of these coordinates is
chosen; the factor of 1

2 appears because we need the last update to be to 1. Each update is
independent of the chosen coordinate and the previous updates.

We now look at a recursive relation for μt,

μt+1 = C1μt − C1

2

[
1 − Ct

1

]+ C2, (14)

where (14) is obtained by plugging (13) into (12), and the constants are

C1 :=
(

1 − 1

n

)
, C2 :=

(
2n − 1

2n

)
.

Note that μ0 = 0. The following lemma obtains a solution of (14).
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Lemma 4. The solution of the recursive relation (14) is

μt =
(

t − n

2

)
· Ct

1 + n

2
.

Proof. Clearly μ0 = 0, and the reader can check that μt obeys the recursion. �

Note that we can write Wt = gt(R1, R2, . . . , Rt,U1,U2, . . . ,Ut) for some function gt, and
that the variables R1, . . . , Rt,U1, . . . ,Ut are independent. The following lemma is used in
proving that Wt has variance of order n.

Lemma 5. For 1 ≤ i ≤ t and 1 ≤ t ≤ n,

max
r1,...,rt
u1,...,ut

∣∣gt(r1, . . . , ri, . . . , rt, u1, . . . , ut) − gt(r1, . . . , ri ⊕ 1, . . . , rt, u1, . . . ut)
∣∣≤ 2.

Proof. Any sequence of coordinates {us}t
s=1 in {1, . . . , n} and bits {rs}t

s=1 in {0, 1} deter-
mine inductively a sequence {xs}t

s=0 in {0, 1}n, by updating at time s the configuration xs

by adding the bit rs at coordinate us followed by an application of the transformation f .
We call a sequence of pairs {(us, rs)}t

s=1 a driving sequence, and the resulting walk in
the hypercube {xs}t

s=0 the configuration sequence. We write gt = gt(r1, . . . , rt, u1, . . . , ut),
g′

t = gt(r′
1, . . . , r′

t, u′
1, . . . , u′

t).
Consider a specific driving sequence of locations and update bits, {(rs, us)}t

s=1, and a second
such driving sequence {(r′

s, u′
s)}t

s=1, which together satisfy

• u′
s = us for 1 ≤ s ≤ t,

• r′
s = rs for 1 ≤ s ≤ t and s = s0,

• r′
s0

= rs0 ⊕ 1.

Thus, the two driving sequences agree everywhere except for at time s0, where the update
bits differ. We want to show that |gt − g′

t| ≤ 2 for any t ≤ n.
Let {xs}1≤s≤t and {ys}1≤s≤t be the two configuration sequences in {0, 1}n obtained, respec-

tively, from the two driving sequences. We will show inductively that the Hamming distance
ds := ds(xs, ys) := ∑n

j=1

∣∣x(j)
s − y(j)

s
∣∣ satisfies ds ≤ 2 for s ≤ t, and hence the maximum weight

difference |gt − g′
t| is bounded by 2.

Clearly xs = ys for s< s0, since the two driving sequences agree prior to time s0, whence
ds = 0 for s< s0.

We now consider ds0 . Let �= us0 = u′
s0

be the coordinate updated in both xs0 and ys0 ,

and as before let x′
s0−1 = (

x(1)
s0−1, . . . , x(�)

s0−1 ⊕ rs0 , . . . , x(n)
s0−1

)
, y′

s0−1 = (
y(1)

s0−1, . . . , y(�)
s0−1 ⊕

r′
s0
, . . . , y(n)

s0−1

)
. Since rs0 = r′

s0
but xs0−1 = ys0−1, the configurations x′

s0−1 and y′
s0−1 have

different parities. Recalling that xs0 = f (x′
s0−1) and ys0 = f (y′

s0−1), we consequently have that

x(n)
s0 = y(n)

s0 . Since xs0 and ys0 agree at all other coordinates except at �− 1, we have ds0 ≤ I{� =
1} + 1 ≤ 2.

Next, suppose that ds = 1 for some time s ≥ s0, so that for some � ∈ {1, . . . , n} we have
x(j)

s = y(j)
s for j = � and x(�)

s = y(�)
s . Since rs+1 = r′

s+1 and us+1 = u′
s+1, after adding the same

update bit at the same coordinate in the configurations xs and ys, but before applying f , the
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resulting configurations will still have a single disagreement at �. Thus, after applying f to
obtain the configurations at time s + 1, we have x(n)

s+1 = y(n)
s+1, but

ds+1 =
n−1∑
j=1

∣∣x(j)
s+1 − y(j)

s+1

∣∣+ ∣∣x(n)
s+1 − y(n)

s+1

∣∣= n∑
j=2

∣∣x(j)
s − y(j)

s

∣∣+ 1 ≤ ds + 1 ≤ 2.

(If �= 1, then ds+1 = 1.) Thus, ds+1 ≤ 2.
Finally, consider the case that ds = 2 for s ≥ s0. Again, us+1 = u′

s+1 and rs+1 = r′
s+1. After

updating xs and ys with the same bit at the same coordinate, but before applying f , the two
configurations still differ at exactly these two coordinates. Thus, x(n)

s+1 = y(n)
s+1, and

ds+1 =
n−1∑
j=1

∣∣x(j)
s+1 − y(j)

s+1

∣∣+ 0 =
n−1∑
j=2

∣∣x(j)
s − y(j)

s

∣∣≤ ds ≤ 2.

(Again, the sum is 1 if one of the two disagreements at time s is at coordinate 1.)
We now have that ds ≤ 2 for all s ≤ t: for s ≤ s0, we have ds = 0, and ds0 = 1; for s ≥ s0, if

ds ≤ 2 then ds+1 ≤ 2. It then follows in particular that dt ≤ 2 and that |gt − g′
t| ≤ 2. �

Lemma 6.

max
r1,...,rt

u1,...,ut,u′
i

∣∣gt(r1, . . . , rt, u1, . . . , ui, . . . , ut) − gt(r1, . . . , rt, u1, . . . , u′
i, . . . , ut)

∣∣≤ 2.

Proof. Again, if two trajectories differ only in the coordinate selected at time i, then the
weight at time t can differ by at most 2. Fix the time 1 ≤ t ≤ n, and consider the dynamics of
the number of coordinates at which the two trajectories differ at time k< t.

The two trajectories agree with each other until time i because the same random bits and
locations are used to define these trajectories. At time i, we add the same random bit ri to
update both trajectories, but use coordinate ui for the first trajectory and coordinate u′

i in the
second trajectory. If ri = 0, then clearly the two trajectories continue to agree at time k ≥ i.

Now suppose that ri = 1. Let b1, b2 be the bits at coordinates ui, u′
i in the first trajectory

at time i − 1, and b3, b4 be the bits at coordinates ui, u′
i in the second trajectory at time i − 1.

Note that since the trajectories are identical for times less than i, b1 = b3 and b2 = b4. For all
values of (b1, b2, b3, b4) satisfying b1 = b3 and b2 = b4, there are two disagreements between
the trajectories at coordinates ui − 1, u′

i − 1 at time i. (If ui − 1< 0 or u′
i − 1< 0, then there is

a single disagreement). The appended bit agrees, since (b1 ⊕ 1) ⊕ b2 = b1 ⊕ (b2 ⊕ 1) = b3 ⊕
(b4 ⊕ 1). This takes care of what happens at time i when the single disagreement between
update coordinates occurs: at time i the Hamming distance is bounded by 2.

Now we consider an induction on the Hamming distance, showing that at all times the
Hamming distance is bounded by two.

Case A. Suppose that the trajectories differ at two coordinates, say �1, �2 at time k> i. Since
the two trajectories only differ in the updated coordinate at time i with i< k, the chosen update
coordinate and the chosen update bit are the same for both trajectories at time k. Let b1, b2
be the bits at coordinates �1, �2 in the first trajectory at time k, and b3, b4 the bits at coordi-
nates �1, �2 in the second trajectory at time k. Necessarily, b1 = b3 and b2 = b4. There are two
subcases to consider.
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First, (b1, b2, b3, b4) = (0, 1, 1, 0) or (b1, b2, b3, b4) = (1, 0, 0, 1). If uk /∈ {�1, �2}, then the
trajectories continue to have the same two disagreements at these coordinates shifted by one
at time k + 1, since the updated coordinate and the update bit is the same for both trajectories.
Also, the new bit which is appended agrees, since b1 ⊕ b2 = 1 = b3 ⊕ b4, and all other bits
in the mod 2 sum agree. So the Hamming distance remains bounded by two, allowing the
possibility that the Hamming distance decreases if �1 ∧ �2 = 1.

Supposing that uk ∈ {�1, �2}, without loss of generality, assume that uk = �1. These dis-
agreements propagate to time k + 1, allowing for the possibility of one being eliminated if
it occurs at coordinate 1. For rk = 0, the appended bit will agree since (b1 ⊕ 0) ⊕ b2 = 1 =
(b3 ⊕ 0) ⊕ b4 and all other bits in the mod 2 sum agree. For rk = 1, the appended bit will still
agree since (b1 ⊕ 1) ⊕ b2 = 1 = (b3 ⊕ 1) ⊕ b4. This means that at time k + 1 the Hamming
distance is bounded by 2.

The second subcase has (b1, b2, b3, b4) = (1, 1, 0, 0) or (b1, b2, b3, b4) = (0, 0, 1, 1). If
uk /∈ {�1, �2}, then the trajectories continue to have the same two disagreements (unless one
of the disagreements is at coordinate 1), the appended bit agrees (since 1 ⊕ 1 = 0 ⊕ 0), and the
Hamming distance remains bounded by 2.

Suppose that uk = �1. If rk = 0, then the two disagreements persist (or one is eliminated
because it occurred at coordinate 1) and the appended bit agrees. If rk = 1, then the two
disagreements persist, and again the appended bit agrees, because now 0 ⊕ 1 = 1 ⊕ 0.

Therefore, the Hamming distance remains bounded by 2 at time k + 1.

Case B. Suppose that the trajectories differ at one coordinate, say �, at time k> i. Again, there
are two subcases to consider.

First, uk = �. The disagreement persists unless uk = 1, and the appended bit now disagrees.
Thus the Hamming distance is bounded by 2 at time k + 1.

Second, uk = �. The disagreement persists at uk (unless uk = 1), and the appended bit now
disagrees. Again, the Hamming distance is bounded by 2 at time k + 1.

Thus, by induction, the Hamming distance between the two trajectories remains always
bounded by 2. As a consequence, the difference in the Hamming weight remains never more
than 2. �

Lemma 7. If W0 = 0, then Var(Wt) ≤ 4t.

Proof. We use the following consequence of the Efron–Stein inequality. Suppose that
g : X n →R has the property that, for constants c1, . . . , cn > 0, supx1,...,xn,x′

i
|g(x1, . . . , xn) −

g(x1, . . . , xi−1, x′
i, xi+1, . . . , xn)| ≤ ci, and if X1, . . . , Xn are independent variables, and Z =

g(X1, . . . , Xn) is square-integrable, then Var(Z) ≤ 4−1 ∑
i c2

i . (See, for example, [6, Corollary
3.2].)

This inequality, together with Lemmas 5 and 6, show that Var(Wt) ≤ 1
2

∑2t
i=1 22 = 4t ≤ 4n

for t ≤ n. �

Proof of Theorem 1(ii). Plugging t = n − nα into Lemma 4, where 1
2 <α < 1, we get

E(Wt) =μt = n

2
−
(

1 − 1

n

)n−nα nα

2
≤ n

2
− 1

2e
nα . (15)

For any real-valued function h on S and probability μ on S, write Eμ(h) := ∑
x∈S h(x)μ(x).

Similarly, Varμ(h) is the variance of h with respect toμ. As stated earlier, W(x) is the Hamming
weight of x ∈ S. The distribution of the random variable W under the stationary distribution
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π (uniform on {0, 1}n) is binomial with parameters n and 1/2, whence Eπ (W) = n/2 and
Varπ (W) = n/4.

Let c> 0 be a constant, and Ac := (n/2 − c
√

n,∞). Chebyshev’s inequality yields π{W ∈
Ac} ≥ 1 − 1/4c2. Thus, we can pick c so that this is at least 1 − η for any η > 0.

Fix 1
2 <α < 1. For tn = n − nα , by (15), P0(Wtn ∈ Ac) = P0(Wtn > n/2 − c

√
n) ≤ P0

(
Wtn −

E(Wtn ) ≥ nα/2e − c
√

n
)
. Since

nα

2e
− cn1/2 = n1/2

(
nα−1/2

2e
− c

)
︸ ︷︷ ︸

δn(c)

,

we again have, by Chebyshev’s inequality,

P0(Wtn ∈ Ac) ≤ Var(Wtn)

nδn(c)2
≤ 4tn

nδn(c)2
≤ 4

δn(c)2
.

The last inequality follows from Lemma 7, since tn ≤ n.
Finally,

∥∥Qtn
1 (0, ·) − π

∥∥
TV ≥ |π (W ∈ Ac) − P0(Wtn ∈ Ac)| ≥ 1 − 1/4c2 − 4/δn(c)2. We can

take, for example, cn = log n so that δn(cn) → ∞, in which case the bound above is
1 − o(1). �

5. A related chain

We now consider a Markov chain Q2 on {0, 1}2m related to the the chain Q1. One step of the
Q2 chain again consists of combining a stochastic move with f . Instead of updating a random
coordinate, now the coordinate is always the ‘middle’ coordinate. Thus, when at x, first we have
the random move x �→ x′ = (x1, x2, . . . , xm ⊕ R, xm+1, . . . , x2m), where R is a an independent
random bit. Afterwards, again the transformation f is applied to yield the new state f (x′).

Theorem 2. For all x,
∥∥Q(n)

2 (x, ·) − π
∥∥

TV = 0 for all n = 2m where m ≥ 1.

Remark 3. Note that if the transformation is a circular shift instead of f , then this would be
equivalent to systematic scan, which trivially yields an exact uniform sample in exactly n = 2m
steps. Thus, this chain can be viewed as a small perturbation of systematic scan which is
Markovian and still yields an exact sample in n = 2m steps.

Proof. We denote by (R1, R2, . . . ) the sequence of bits used to update the chain. To demon-
strate how the walk evolves with time by means of an example, Table 1 shows the coordinates
of Yt at different t for 2m = 6, when starting from 0.

Let n = 2m be an even integer, and let Z1, Z2, . . . , Zm be the random variables occupying
the n coordinates at time t = n. The following relationships hold for any starting state x =
(x1, x2, . . . , xn):

Z1 = R1 ⊕ Rm+2 ⊕
2m⊕
i=1

xi,

Z2 = R2 ⊕ Rm+3 ⊕ x1,

...

Zm−1 = Rm−1 ⊕ R2m ⊕ xm−2,
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TABLE 1. Evolution of coordinates with time for 2m = 6.

Coordinate 1 2 3 4 5 6

t = 0 0 0 0 0 0 0
t = 1 0 R1 0 0 0 R1
t = 2 R1 R2 0 0 R1 R2
t = 3 R2 R3 0 R1 R2 R3
t = 4 R3 R4 R1 R2 R3 R1 ⊕ R4
t = 5 R4 R1 ⊕ R5 R2 R3 R1 ⊕ R4 R2 ⊕ R5
t = 6 R1 ⊕ R5 R2 ⊕ R6 R3 R1 ⊕ R4 R2 ⊕ R5 R3 ⊕ R6

Zm = Rn ⊕ xm−1,

Zm+1 = R1 ⊕ Rm+1 ⊕ xm,

Zm+2 = R2 ⊕ Rm+2 ⊕ xm+1,

...

Z2n = Rn ⊕ R2n ⊕ x2n−1.

This is because at t = 1 the random variable at coordinate n is R1 +⊕n
i=1 xi. At time t = m + 1,

this random variable moves to coordinate m because of successive shift register operations.
Because the coordinate updated at any time along this chain is m, we have that at time
t = m + 2, the random variable at coordinate m − 1 is R1 + Rm+2 ⊕⊕n

i=1 xi. Again, because
of successive shift register operations, the random variable R1 + Rn+2 ⊕⊕n

i=1 xi moves to
coordinate 1 at time n. The random variables at other coordinates can be worked out simi-
larly. Thus, the above system of equations can be written in matrix form as Z = BR + �x, where
Z = (Z1, . . . , Zn)�, R = (R1, . . . , Zn)�, and

Bn×n =
[

Im×m Cm×m

Im×m Im×m

]
, Cm×m =

[
0(m−1)×1 I(m−1)×(m−1)

01×1 01×(m−1)

]
, �x =

⎡⎢⎢⎢⎢⎣
⊕n

i=1xi

x1

...

xn−1

⎤⎥⎥⎥⎥⎦ .

Note that det(B) = det(I) × det(I − II−1C) = det(I − C) = 1 = 0. The last equality follows
since det(I − C) = 1 because I − C is an upper triangular matrix with ones along the main diag-
onal. Hence, B is an invertible matrix and, if z ∈ {0, 1}n, P(Z = z) = P

(
R = B−1(z − �x)

)= 1/2n,
where the last equality follows from the fact that R is uniform over S = {0, 1}n. Thus, the state
along the Q2 chain at t = 2m = n is uniform over S, and

∥∥Q(n)
2 (0, ·) − π

∥∥
TV = 0, n even. �

6. Conclusion and open questions

We have shown that the ‘shift-register’ transformation speeds up the mixing of the walk on
the hypercube for which the stationary distribution is uniform. The shift-register transformation
is a good candidate for a deterministic mixing function, as shift registers were used for early
pseudo-random number generation.
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One of our original motivations for analyzing this chain was in part that the uniform dis-
tribution corresponds to the infinite-temperature Ising measure. Indeed, of great interest are
chains on product spaces having non-uniform stationary distributions, such as Gibbs measures.
Finding deterministic transformations which speed up mixing for non-uniform distributions
remains a challenging and intriguing open problem.
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