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Abstract

We present an abstract framework for the axiomatic study of diagram algebras. Algebras that fit this
framework possess analogues of both the Murphy and seminormal bases of the Hecke algebras of the
symmetric groups. We show that the transition matrix between these bases is dominance unitriangular.
We construct analogues of the skew Specht modules in this setting. This allows us to propose a natural
tableaux theoretic framework in which to study the infamous Kronecker problem.
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1. Introduction

The purpose of this article is to develop an Okounkov–Vershik-style framework in
which to study towers of diagram algebras (Ar)r>0 over an integral domain, R, and its
field of fractions, F. The diagram algebras that fit into our framework include group
algebras of the symmetric groups and their Hecke algebras, the Brauer and Birman–
Murakami–Wenzl (BMW) algebras, walled Brauer algebras and Jones–Temperley–
Lieb algebras, as well as centralizer algebras for the general linear, orthogonal and
symplectic groups acting on tensor spaces.

Following [4], we observe that algebras fitting into our framework possess
analogues of both the Murphy and seminormal bases of the Hecke algebras of
the symmetric groups. We prove that the transition matrix between these bases is
dominance unitriangular. In cases where the algebras have Jucys–Murphy elements,
we prove that these elements act diagonally on the seminormal basis and triangularly
with respect to dominance order on the Murphy basis. For the Hecke algebras
of symmetric groups, this provides a new and very simple proof of dominance
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triangularity of the Jucys–Murphy elements (see [14, Theorem 4.6], [11, Theorem 3.32
and Proposition 3.35]). For other diagram algebras such as the Brauer algebras, walled
Brauer algebras, BMW algebras or partition algebras, dominance triangularity is a new
result. Dominance triangularity is an extremely useful structural result that has already
found two distinct applications, which we highlight below.

There is a deeper structure of the Murphy cellular bases of diagram algebras which
underlies dominance triangularity. Elements of the Murphy basis can be written using
an ordered product of certain ‘branching factors’. There exist both ‘down’ and ‘up’
branching factors and a compatibility relation between them. Using this compatibility
relation, one obtains a certain factorizability property of the Murphy basis elements.
The compatibility and factorizability properties lead to our dominance triangularity
results, but also to strong results about restrictions of cell modules, the construction
of skew cell modules and, in [3], to a construction of a cellular basis for quotients
of diagram algebras. The compatibility and factorizability properties were already
observed in [4], but they are first exploited systematically in this paper and in [3].

The results of this paper play a crucial role in [3], where we construct new integral
Murphy-type cellular bases of the Brauer algebras which decompose into bases for the
kernels and images of these algebras acting on tensor space. This construction thus
provides simultaneously an integral cellular basis of the centralizer algebra, and a new
version of the second fundamental theorem of invariant theory. All of these results are
compatible with reduction from Z to an arbitrary field (characteristic two is excluded
in the orthogonal case).

Given two fixed points λ and ν in the sth and rth levels of the branching graph,
we provide an explicit construction of an associated skew cell module ∆r−s(ν \ λ). We
show that these skew cell modules possess integral bases indexed by skew tableaux
(paths between the two fixed vertices in the graph) exactly as in the classical case of
the symmetric group.

In the case of the partition algebra, these skew modules provide a new setting
in which to study the infamous Kronecker problem. In an upcoming paper [1],
the first two authors and Maud De Visscher use these skew modules to provide
a uniform combinatorial interpretation for one of the largest sets of Kronecker
coefficients considered to date (the Littlewood–Richardson coefficients and the
Kronecker coefficients labelled by two two-line partitions are covered as important
examples).

2. Diagram algebras

For the remainder of the paper, we shall let R be an integral domain with field of
fractions F. In this section, we shall define diagram algebras and recall the construction
of their Murphy bases, following [4]. We first recall the definition of a cellular algebra,
as in [9].
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2.1. Cellular algebras.

Definition 2.1. Let R be an integral domain. A cellular algebra is a tuple (A, ∗, Â,
Q,Std(·),A ), where:

(1) A is a unital R-algebra and ∗ : A→ A is an algebra involution, that is, an R-linear
anti-automorphism of A such that (x∗)∗ = x for x ∈ A;

(2) (Â,Q) is a finite partially ordered set and, for each λ ∈ Â, Std(λ) is a finite
indexing set;

(3) the set A = {cλst | λ ∈ Â and s, t ∈ Std(λ)} is an R-basis for A.

Let ABλ denote the R-module with basis {cµst | µ B λ and s, t ∈ Std(µ)}.

(4) The following two conditions hold for the basis A .

(a) Given λ ∈ Â, t ∈ Std(λ) and a ∈ A, there exist coefficients r(a; t, v) ∈ R, for
v ∈ Std(λ), such that, for all s ∈ Std(λ),

cλsta ≡
∑

v∈Std(λ)

r(a; t, v)cλsv mod ABλ. (2.1)

(b) If λ ∈ Â and s, t ∈ Std(λ), then (cλst)
∗ ≡ (cλts) mod ABλ.

The tuple (A, ∗, Â,Q,Std(·),A ) is a cell datum for A. The basis A is called a cellular
basis of A.

If A is a cellular algebra over R, and R→ S is a homomorphism of integral domains,
then the specialization AS = A ⊗R S is a cellular algebra over S , with cellular basis

A S = {cλst ⊗ 1S | λ ∈ Â, and s, t ∈ Std(λ)}.

In particular, AF is a cellular algebra. Since the map a 7→ a ⊗ 1F is injective, we regard
A as contained in AF and we identify a ∈ A with a ⊗ 1F ∈ AF.

An order ideal Γ ⊂ Â is a subset with the property that if λ ∈ Γ and µ Q λ, then
µ ∈ Γ. It follows from the axioms of a cellular algebra that, for any order ideal Γ in Â,

AΓ = Span{cλst | λ ∈ Γ, s, t ∈ Std(λ)}

is an involution-invariant two-sided ideal of A. In particular ABλ and

AQλ = Span{cµst | µ ∈ Â, s, t ∈ Std(µ) and µ Q λ}

are involution-invariant two-sided ideals.

Definition 2.2. Let A be a cellular algebra over R and let λ ∈ Â. The cell module ∆(λ)
is the right A-module defined as follows. As an R-module, ∆(λ) is free with basis
indexed by Std(λ), say, {cλt | t ∈ Std(λ)}. The right A-action is given by

cλt a =
∑
v∈Âλ

r(a; t, v)cλv ,

where the coefficients r(a; t, v) are those of Equation (2.1).
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Thus, for any s ∈ Âλ,

Span{cλst + ABλ | t ∈ Std(λ)} ⊆ AQλ/ABλ

is a model for the cell module ∆(λ). When we need to emphasize the algebra or the
ground ring, we may write ∆A(λ) or ∆R(λ). Note that ∆F(λ) = ∆(λ) ⊗R F is the cell
module for AF corresponding to λ.

If A is an R-algebra with involution ∗, then ∗ induces functors M → M∗

interchanging left and right A-modules, and taking A–A bimodules to A–A bimodules.
We identify M∗∗ M via x∗∗ 7→ x and, for modules AM and NA, have (M ⊗R N)∗ � N∗ ⊗R

M∗, as A–A bimodules, with the isomorphism determined by (m ⊗ n)∗ 7→ n∗ ⊗ m∗. For
a right A-module MA, using both of these isomorphisms, we identify (M∗ ⊗ M)∗ with
M∗ ⊗ M∗∗ = M∗ ⊗ M, via (x∗ ⊗ y)∗ 7→ y∗ ⊗ x. Now we apply these observations with
A a cellular algebra and ∆(λ) a cell module. The assignment

αλ : cλst + ABλ 7→ (cλs)∗ ⊗ (cλt )

determines an A–A bimodule isomorphism from AQλ/ABλ to (∆(λ))∗ ⊗R ∆(λ).
Moreover, ∗ ◦ αλ = αλ ◦ ∗, which reflects the cellular algebra axiom (cλst)

∗ ≡

cλts mod ABλ.
A certain bilinear form on the cell modules plays an essential role in the theory of

cellular algebras. Let A be a cellular algebra over R and let λ ∈ Â. The cell module ∆(λ)
can be regarded as an A/ABλ module. For x, y, z ∈ ∆(λ), it follows from the definition
of the cell module and the map αλ that xα−1

λ (y∗ ⊗ z) ∈ Rz. Define 〈x, y〉 by

xα−1
λ (y∗ ⊗ z) = 〈x, y〉z. (2.2)

Then 〈x, y〉 is R-linear in each variable and 〈xa, y〉 = 〈x, ya∗〉 for x, y ∈ ∆(λ) and a ∈ A.
Note that

cλstc
λ
uv = 〈cλt , c

λ
u〉c

λ
sv,

which is the customary definition of the bilinear form.

Definition 2.3 [5]. A cellular algebra A is said to be cyclic cellular if every cell module
is cyclic as an A-module.

If A is cyclic cellular, λ ∈ Â and δ(λ) is a generator of the cell module ∆(λ), let mλ

be a lift in AQλ of α−1
λ (δ(λ)∗ ⊗ δ(λ)).

Lemma 2.4. The element mλ has the following properties.

(1) mλ ≡ m∗λ mod ABλ.
(2) AQλ = AmλA + ABλ.
(3) (mλA + ABλ)/ABλ � ∆(λ), as right A-modules.

Proof. Lemma 2.5 in [5]. �

In examples of interest to us, we can always choose mλ to satisfy m∗λ = mλ (and,
moreover, mλ is given explicitly).
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2.2. Sequences of diagram algebras. Here and in the remainder of the paper, we
will consider an increasing sequence (Ar)r>0 of cellular algebras over an integral
domain R with field of fractions F. We assume that all the inclusions are unital and
that the involutions are consistent; that is, the involution on Ar+1, restricted to Ar,
agrees with the involution on Ar. We will establish a list of assumptions (D1)–(D6).
For convenience, we call an increasing sequence of cellular algebras satisfying these
assumptions a sequence of diagram algebras.

Let (Âr,Q) denote the partially ordered set in the cell datum for Ar. For λ ∈ Âr, let
∆r(λ) denote the corresponding cell module. If S is an integral domain with a unital
homomorphism R→ S , write AS

r = Ar ⊗R S and ∆S
r (λ) for ∆r(λ) ⊗R S . In particular,

write AFr = Ar ⊗R F and ∆Fr (λ) for ∆r(λ) ⊗R F.

Definition 2.5. Let A be a cellular algebra over R. If M is a right A-module, a cell
filtration of M is a filtration by right A-modules

{0} = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M,

such that Mi/Mi−1 � ∆(λ(i)) for some λ(i) ∈ Â. We say that the filtration is order
preserving if λ(i) B λ(i+1) in Â for all i > 1.

Definition 2.6 [6, 7]. Let (Ar)r>0 be an increasing sequence of cellular algebras over
an integral domain R.

(1) The tower (Ar)r>0 is restriction-coherent if, for each r > 0 and each µ ∈ Âr+1, the
restricted module ResAr+1

Ar
(∆r+1(µ)) has an order-preserving cell filtration.

(2) A tower (Ar)r>0 is induction-coherent if, for each r > 0 and each λ ∈ Âr, the
induced module IndAr+1

Ar
(∆r(λ)) has an order-preserving cell filtration.

(3) The tower (Ar)r>0 is coherent if it is both restriction- and induction-coherent.

Remark 2.7. We have changed the terminology from [4, 6, 7], as the weaker notion of
coherence, in which the order-preserving requirement is omitted, plays no role here.

We now list the first of our assumptions for a sequence of diagram algebras.

(D1) A0 = R.
(D2) the algebras Ar are cyclic cellular for all r > 0.

For all k and for all λ ∈ Âk, fix once and for all a bimodule isomorphism αλ :
AQλ

k /ABλk → (∆k(λ))∗ ⊗R ∆k(λ), a generator δk(λ) of the cyclic Ak-module ∆k(λ) and
an element mλ ∈ AQλ

k satisfying αλ(mλ + ABλk ) = (δk(λ))∗ ⊗ δk(λ). Recall the properties
of mλ from Lemma 2.4. We require the following mild assumption on the elements mλ.

(D3) mλ = m∗λ.

Our list of assumptions continues as follows.

(D4) AFr is split semisimple for all r > 0.
(D5) The sequence of algebras (Ar)r>0 is restriction-coherent.

https://doi.org/10.1017/S1446788717000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000179


18 C. Bowman, J. Enyang and F. Goodman [6]

As discussed in [4, Section 3], under the assumptions (D1)–(D5) above, there exists
a well-defined multiplicity-free branching diagram Â associated with the sequence
(Ar)r>0. The branching diagram is an infinite, graded, directed graph with vertices Âr

at level k and edges determined as follows. For λ ∈ Âr−1 and µ ∈ Âr, there is an edge
λ→ µ in Â if and only if ∆r−1(λ) appears as a subquotient of an order-preserving cell
filtration of ResAr

Ar−1
(∆r(µ)). Note that Â0 is a singleton; we denote its unique element

by ∅. We can choose ∆0(∅) = R, δ0(∅) = 1 and m∅ = 1.

Definition 2.8. Given ν ∈ Âr, we define a standard tableau of shape ν to be a directed
path t on the branching diagram Â from ∅ ∈ Â0 to ν, given by

t = (∅ = t(0)→ t(1)→ t(2)→ · · · → t(r − 1)→ t(r) = ν).

We let Stdr(ν) denote the set of all such paths and let Stdr =
⋃
ν∈Âr

Stdr(ν).

It is shown in [4, Section 3] that there exist certain ‘branching factors’ dλ→µ ∈ Ar

associated to each edge λ→ µ in Â, related to the cell filtration of ResAr
Ar−1

(∆r(µ)).
Given a path t ∈ Stdr(ν),

∅ = t(0)→ t(1)→ t(2)→ · · · → t(r − 1)→ t(r) = ν,

define dt = dt(r−1)→t(r)dt(r−2)→t(r−1) · · · dt(0)→t(1).
We say that two cellular bases of an algebra A with involution are equivalent if they

determine the same two-sided ideals AQλ and isomorphic cell modules.

Theorem 2.9 [4, Section 3]. Let (Ar)r>0 be a sequence of algebras satisfying
assumptions (D1)–(D5).

(1) Let λ ∈ Âr. The set {mλdt + ABλr | t ∈ Stdr(λ)} is a basis of the cell module ∆r(λ).
(2) The set {d∗smλdt | λ ∈ Âr, s, t ∈ Stdr(λ)} is a cellular basis of Ar, equivalent to the

original cellular basis.
(3) For a fixed λ ∈ Âr, we let µ(1) B µ(2) B · · · B µ(s) be a listing of the µ ∈ Âr−1 such

that µ→ λ. Let

M j = SpanR{mλdt + ABλr | t ∈ Stdr(λ), t(k − 1) Q µ( j)}.

Then
(0) ⊂ M1 ⊂ · · · ⊂ Ms = ∆r(λ)

is a filtration of ∆r(λ) by Ar−1 submodules, and M j/M j−1 � ∆r−1(µ j).

Notation 2.10. We write mλ
st = d∗smλdt. Also write mt = mλdt + ABλr ∈ ∆r(λ). We refer

to the cellular basis {mλ
st | λ ∈ Âr and s, t ∈ Stdr(λ)} as the Murphy cellular basis of Ar

and {mλ
t | t ∈ Stdr(λ)} as the Murphy basis of the cell module ∆k(λ).

We will now continue with our list of assumed properties of the sequence of algebra
(Ar)r>0 with one final axiom.
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(D6) There exist ‘u-branching factors’ uµ→λ ∈ AR
r+1 such that

mλdµ→λ = (uµ→λ)∗mµ. (2.3)

Example 2.11. It is shown in [4] that the Hecke algebras of type A, the symmetric
group algebras, the Brauer algebras, the Birman–Wenzl–Murakami algebras, the
partition algebras and the Jones–Temperley–Lieb algebras all are examples of
sequences of algebras satisfying properties (D1)–(D6). For the Hecke algebras, the
cellular basis of Theorem 2.9 agrees with the Murphy basis from [15], up to a
normalization. In each case, the ground ring R can be taken to be the generic ground
ring for the class of algebras. For example, for the Hecke algebras, this is Z[q, q−1],
and for the Brauer algebras it is Z[δ], where q and δ are indeterminants.

Let Gn be either the general linear group GLn, the orthogonal group On or the
symplectic group Sp2n, and let V denote its natural module. The centralizer algebra
EndGn (V⊗r) is a quotient of the symmetric group Sr, the Brauer algebra Br(n) or the
Brauer algebra Br(−2n), respectively. In each case, the ground ring R can be taken to
be Z. It is shown in [3] that the algebras EndG(V⊗r) all satisfy axioms (D1)–(D6).

Definition 2.12. Given 0 6 s 6 r and λ ∈ Âs, ν ∈ Âr, we define a skew standard tableau
of shape ν \ λ and degree r − s to be a directed path t on the branching diagram Â from
λ to ν, given by

t = (λ = t(s)→ t(s + 1)→ t(s + 2)→ · · · → t(r − 1)→ t(r) = ν).

We let Stds,r(ν \ λ) denote the set of all such paths with given λ and ν. Given 0 6 s 6 r,
we set Stds,r =

⋃
λ∈Âs,ν∈Âr

Stds,r(ν \ λ).

Given two paths s ∈ Stdq,s(µ \ λ) and t ∈ Stds,r(ν \ µ) such that the final point of s is
the initial point of t, define s ◦ t to be the obvious path obtained by concatenation.

Remark 2.13. Given a path t ∈ Stds,r(ν \ λ) of the form

λ = t(s)→ t(s + 1)→ t(s + 2)→ · · · → t(r − 1)→ t(r) = ν,

define
dt = dt(r−1)→t(r)dt(r−2)→t(r−1) · · · dt(s)→t(s+1)

and
ut = ut(s)→t(s+1) · · · ut(r−2)→t(r−1)ut(r−1)→t(r).

Then it follows from the compatibility relation (2.3) and induction on r − s that

u∗t mλ = mνdt. (2.4)

Because m∅ can be chosen to be 1, this gives, in particular, for t ∈ Stdr(ν),

u∗t = mνdt. (2.5)

Therefore the cellular basis {mν
st} can also be written in the apparently asymmetric

form
mν

st = d∗smνdt = d∗su∗t .
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Using the symmetry of the cellular basis (mν
st)
∗ = mν

ts (which follows from the
assumption (D3)), we also get

mν
st = usdt.

Using (2.5), the basis {mν
t | t ∈ Stdr(ν)} of the cell module ∆r(ν) is given by

mν
t = u∗t + ABνr .

Now, for any 0 6 q 6 s 6 r, let t[q,s] denote the truncated path

t(q)→ t(q + 1)→ t(q + 2)→ · · · → t(s − 1)→ t(s).

The representative u∗t of mt has the remarkable property that, for any 0 6 s 6 r,

u∗t = u∗t[s,r]
u∗t[0,s]

, (2.6)

and
u∗t[0,s]

= mt(s)dt[0,s] ∈ mt(s)As ⊆ AQt(s)
s .

The compatibility relations (2.4), together with the factorizability (2.6) of
representatives u∗t of the Murphy basis, play a crucial role in this paper. They lead
directly to our dominance triangularity results, which, in turn, lead to strong results
about restriction of cell modules and allow the construction of skew cell modules.
In our view, these are the distinguishing properties of the Murphy bases of diagram
algebras and, even in the original context of the Hecke algebras [15], these properties
provide new insight.

3. Seminormal basis and dominance triangularity

3.1. Gelfand–Zeitlin idempotents. Consider an increasing sequence of algebras
(Ar)r>0 satisfying assumptions (D1)–(D6) of Section 2.2. Let us recall the following
notion pertaining to the tower (AFr )r>0. The terminology is from Okounkov and
Vershik [16, 17].

Definition 3.1. The Gelfand–Zeitlin subalgebra Gr of AFr is the subalgebra generated
by the centers of AF0 , A

F
1 , . . . , A

F
r .

The Gelfand–Zeitlin subalgebra is a maximal abelian subalgebra of AFr and contains
a canonical family of idempotents indexed by paths on the branching diagram Â. For
each s, let {zλs | λ ∈ Âs} denote the set of minimal central idempotents in AFs . For
r > 1 and t a path on Â of length r, let Ft =

∏r
s=1 zt(s)

s . The elements Ft for t ∈ Stdr

are mutually orthogonal minimal idempotents whose sum is the identity; moreover,∑
t∈Stdr(λ) Ft = zλr . If s ∈ Stds and t ∈ Stdr with s 6 r, then FsFt = δs,t[0,s] Ft. Evidently,

the set {Ft | t ∈ Stds, 0 6 s 6 r} generates Gr. Let us call this set of idempotents the
family of Gelfand–Zeitlin idempotents for (AFr )r>0.

https://doi.org/10.1017/S1446788717000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000179


[9] Diagram algebras, dominance triangularity and skew cell modules 21

3.2. Seminormal bases. Let {mλ
st | λ ∈ Âr and s, t ∈ Stdr(λ)} be the Murphy cellular

basis of Ar constructed in Section 2.2, and, for λ ∈ Âr, let {mλ
t | t ∈ Stdr(λ)} be the

Murphy basis of the cell module ∆r(λ). For t ∈ Stdr, let Ft be the corresponding
Gelfand–Zeitlin idempotent in AFr .

Definition 3.2 (Seminormal bases). Let r > 0 and λ ∈ Âr. For s, t ∈ Stdr(λ), define
f λt = mλ

t Ft ∈ ∆Fr (λ) and Fλ
st = Fsmλ

stFt ∈ AFr .

We now define two partial orders on the set of paths Stds,r in the branching graph.

Definition 3.3 (Dominance order). For s, t ∈ Stds,r, define s Q t if s( j) Q t( j) for all
0 6 j 6 r. We write s B t if s , t and s Q t.

This is evidently a partial order, which we call the dominance order on paths. In
particular, the dominance order is defined on Stdr and on Stdr(λ) for λ ∈ Âr.

Definition 3.4 (Reverse lexicographic order). For s, t ∈ Stds,r, define s < t if s = t or if
s( j) B t( j) for the last index j such that s( j) , t( j). We write s � t if s , t and s < t.

This is also a partial order on paths (and is defined on Stdr and on Stdr(λ) for λ ∈ Âr).
Evidently, s B t implies s � t.

Theorem 3.5 (Dominance triangularity). Fix λ ∈ Âr. For all t ∈ Stdr(λ), there exist
coefficients rs, r′s ∈ F such that

mλ
t = f λt +

∑
s∈Stdr(λ)

sBt

rs f λs f λt = mλ
t +

∑
s∈Stdr(λ)

sBt

r′smλ
s .

In particular, { f λt | t ∈ Stdr(λ)} is a basis of ∆Fr (λ).

Proof. The element
∑
µQλ zµs acts as the identity on the ideal AQλ

s . For λ ∈ Âr and
t ∈ Stdr(λ), u∗t has the property that u∗t[0,s]

∈ AQt(s)
s for all 0 6 s 6 r, and u∗t = u∗t[s,r]

u∗t[0,s]
.

Therefore
u∗t = u∗t

∑
µ(s)Qt(s)

zµ(s)
s .

Applying this at each 0 6 s 6 r gives

u∗t = u∗t
∏

16s6r

∑
µ(s)Qt(s)

zµ(s)
s = u∗t

∑
(µ(1),µ(2),...,µ(r))

∏
16s6r

zµ(s)
s ,

where the sum is over all sequences (µ(1), µ(2), . . . , µ(r)) such that µ(s) ∈ Âs and
µ(s) Q t(s) for all 0 6 s 6 r. If such a sequence is not an element of Stdr, that is, it
is not a path on Â, then the product

∏
16s6r zµ(s)

s is zero. On the other hand, if

s = (µ(1)→ µ(2)→ · · · → µ(r))
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is an element of Stdr, then
∏

16s6r zµ(s)
s = Fs. Thus

u∗t = u∗t
∑

s∈Stdr
sQt

Fs = u∗t Ft +
∑

s∈Stdr(λ)
sBt

u∗t Fs + y,

where y ∈ (AFr )Bλ. Passing to the cell module ∆Fr (λ),

mλ
t = f λt +

∑
s∈Stdr(λ)

sBt

mλ
t Fs.

But the range of Fs acting on the simple module ∆Fr (λ) is of dimension one, spanned
by f λs , so this gives

mλ
t = f λt +

∑
s∈Stdr(λ)

sBt

rs f λs ,

for appropriate rs ∈ F. This shows that the tuple [mλ
t ]t∈Stdr(λ) is related to the tuple

[ f λt ]t∈Stdr(λ) by an (invertible) matrix which is unitriangular with respect to dominance
order of paths. Hence { f λt | t ∈ Stdr(λ)} is a basis of ∆Fr (λ) and the inverse change of
basis matrix is also unitriangular. �

Corollary 3.6. For r > 0:

(1) { f λt | t ∈ Stdr(λ)} is a basis of ∆Fr (λ) for all λ ∈ Âr; and
(2) {Fλ

st | λ ∈ Âr and s, t ∈ Âr} is a cellular basis of AFr .

Proof. The first statement was verified in the proof of Theorem 3.5. The second
statement follows from [7, Lemma 2.3], since Fλ

st is a lift of α−1
λ ( f λs ⊗F f λt ). �

We note that the cell module ∆Fr (λ) embeds in the algebra AFr as a right ideal.

Lemma 3.7. Let r > 0 and let λ ∈ Âr.

(1) SpanF{u
∗
t Ft | t ∈ Stdr(λ)} is a right ideal of AFr and f λt 7→ u∗t Ft determines an

isomorphism of ∆Fr (λ) onto this right ideal.
(2) Likewise, for any fixed s ∈ Stdr(λ),

∆Fr (λ) � SpanF{m
λ
stFt | t ∈ Stdr(λ)} � SpanF{F

λ
st | t ∈ Stdr(λ)},

with isomorphisms determined by f λt 7→ mλ
stFt, respectively, f λt 7→ Fλ

st.

Proof. Recall that δλ is a generator of the cell module ∆Fr (λ) and mλ is a lift in (AFr )Qλ

of α−1
λ ((δλ)∗ ⊗F δλ). For any fixed x ∈ AFr such that δλx , 0,

f λt 7→ α−1
λ (x∗(δλ)∗ ⊗F f λt ) = x∗mλdtFt + (AFr )Bλ

determines an isomorphism of ∆Fk (λ) onto a submodule of (AFr )Qλ/(AFr )Bλ. Therefore,
for b ∈ AFr , if f λt b =

∑
s βs f λs , then

x∗mλdtFtb =
∑

s

βsx∗mλdsFs + y,
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where y ∈ (AFr )Bλ. Now for all s ∈ Stdr(λ), Fszλk = Fs, but yzλk = 0. Thus multiplying
by zλk on the right gives

x∗mλdtFtb =
∑

s

βsx∗mλdsFs,

which shows that SpanF{x
∗mλdtFt | t ∈ Stdr(λ)} is a right ideal and ft 7→ x∗mλdtFt

determines an isomorphism of ∆Fk (λ) onto this right ideal. Taking x = 1 yields
statement (1), and taking x = ds, respectively, x = dsFs, gives the isomorphisms in
part (2). �

Lemma 3.8. Let r > 0, λ, µ ∈ Âr, s, t ∈ Stdr(λ) and u, v ∈ Stdr(µ).

(1) f λt Fµ
uv = δλ,µ〈 f λt , f λu 〉 f

λ
v .

(2) Fλ
stF

µ
uv = δλ,µ〈 f λt , f λu 〉F

λ
sv.

(3) 〈 f λt , f λu 〉 , 0 if and only if t = u.

(4) 〈 f λt , f λt 〉
−1Fλ

tt = Ft.

(5) The set of elements Eλ
st = 〈 f λs , f λs 〉

−1Fλ
st for λ ∈ Âr and s, t ∈ Stdr(λ) is a complete

family of matrix units with

Eλ
stE

µ
uv = δλ,µδt,uEλ

sv and Eλ
stE

λ
ts = Eλ

ss = Fs.

Proof. If λ , µ, then f λt Fµ
uv = f λt FtFuFµ

uv = 0 and, similarly, Fλ
stF

µ
uv = 0. We have

f λt Fλ
uv = 〈 f λt , f λu 〉 f

λ
v by the definition of the bilinear form (2.2), since Fλ

uv is a lift of
α−1
λ (( f λu )∗ ⊗ f λv ). This proves part (1) and part (2) follows from Lemma 3.7 part (2). If

t , u, then
〈 f λt , f λu 〉 = 〈 f λt Ft, f λu Fu〉 = 〈 f λt FtFu, f λu 〉 = 0.

Suppose that 〈 f λt , f λt 〉 = 0 for some t ∈ Stdr(λ). Then it follows from part (2) and the
orthogonality of the elements f λu , which was just established, that f λt Fµ

uv = 0 for all µ
and all u, v ∈ Stdr(µ). But, by Corollary 3.6, the identity element of AFr is in the span of
the set of Fµ

uv, so it follows that f λt = 0, which is a contradiction. This proves part (3).
By part (2), Gt = 〈 f λt , f λt 〉

−1Fλ
tt is an idempotent such that GtFt = Gt. Since Ft is a

minimal idempotent, it follows that Gt = Ft, which proves part (4). Part (5) follows
from parts (2), (3) and (4). �

3.3. Restriction of the seminormal representations. For 0 6 s < r, write AFr ∩
(AFs )′ for the set of x ∈ AFr that commute pointwise with AFs .

Proposition 3.9. Let 1 6 s < r. Let ν ∈ Âr and t ∈ Stdr(ν). Write λ = t(s), t1 = t[0,s] ∈

Stds(λ) and t2 = t[s,r] ∈ Stds,r(ν \ λ).

(1) Let x ∈ AFs and suppose that f λt1 x =
∑

s∈Stds(λ) αs f λs . Then

f νt x =
∑

s∈Stds(λ)

αs f νs◦t2 .
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(2) In particular, for µ ∈ Âs and u, v ∈ Stds(µ),

f νt Fµ
uv = δµ,λδt1,u〈 f

λ
t1 , f λt1 〉 f

ν
v◦t2 .

(3) For x ∈ AFr ∩ (AFs )′, f νt x =
∑

s rs f νt1◦s, where the sum is over s ∈ Stds,r(ν \ λ) and
the coefficients depend only on x and t2 and are independent of t1.

Proof. We can embed the cell module ∆Fr (ν) in AFr , identifying f νt with u∗t Ft, using
Lemma 3.7. We can write Ft = Ft1 Ft2 , where Ft2 ∈ AFr ∩ (AFs )′. Thus

f νt x = u∗t Ftx = u∗t2 Ft2 u∗t1 Ft1 x.

Applying Lemma 3.7 part (1) to ∆Fs (λ) we find that this equals

u∗t2 Ft2

∑
s

αsu∗sFs =
∑

s

αsu∗t2 u∗sFsFt2 =
∑

s

αsu∗s◦t2 Fs◦t2 =
∑

s

αs f νs◦t2 .

This proves part (1) and part (2) is an immediate consequence. We now consider
part (3). Given x ∈ AFr ∩ (AFs )′, we let f νt x =

∑
u∈Stdr(ν) ru f νu . Since x commutes with AFs ,

f νt x = f νt Ft1 x = f νt xFt1 =
∑

u

ru f νu Ft1 ,

which shows that ru = 0 unless u[0,s] = t1. Thus, we can rewrite this as ftx =
∑

s rs ft1◦s,
where now the sum is over s ∈ Stds,r(ν \ λ). It remains to show that the coefficients are
independent of t1. If v ∈ Stds(λ), then

f νv◦t2 x = f νt1◦t2 Eλ
t1vx = f νt Eλ

t1vx = f νt xEλ
t1v =
∑

s

rs f νt1◦sE
λ
t1v =
∑

s

rs f νv◦s,

where we have applied part (2). �

3.4. Dominance triangularity and restriction rules for the Murphy basis. For
0 6 s < r, we now show that the Murphy basis is compatible with restriction to the
subalgebra As ⊆ Ar, and also to the subalgebra Ar ∩ A′s. This is a first step towards
constructing skew cell modules in the next section.

Lemma 3.10. Let 1 6 s < r, ν ∈ Âr, λ ∈ Âs and t ∈ Stds,r(ν \ λ). Suppose that y ∈
mλAs ∩ ABλs . Then there exist coefficients rz ∈ R such that

u∗t y ≡
∑

z∈Stdr(ν)
z[s,r]Bt
z(s)Bλ

rzu∗z mod ABνr .

Proof. Recall that the element
∑
λ(s)Bλ zλ(s)

s acts as the identity on the ideal ABλs and that
y ∈ ABλs . By the assumption that y ∈ mλAs and t(s) = λ,

u∗t[s, j]
y ∈ mt( j)A j ⊆ AQt( j)

j
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for each j with s < j 6 r. In fact, if y = mλx, then u∗t[s, j]
y = u∗t[s, j]

mλx = mt( j)dt[s, j] x,

using (2.4). It follows that u∗t y = u∗t y(
∑
λ( j)Qt( j) zλ( j)

j ). Finally, for j < s, we can write

1 =
∑
λ( j)∈Â j

zλ( j)
j . Arguing as in the proof of Theorem 3.5,

u∗t y =
∑

z∈Stdr
z[s,r]Bt
z(s)Bλ

u∗t yFz ≡
∑

z∈Stdr(ν)
z[s,r]Bt
z(s)Bλ

u∗t yFz mod (AFr )Bν.

Now, because the range of Fz on the cell module ∆Fr (ν) is F{ fz} = F{u∗zFz}, we have
u∗t yFz = αzu∗zFz for some αz ∈ F. Thus

u∗t y ≡
∑

z∈Stdr(ν)
z[s,r]Bt
z(s)Bλ

αzu∗zFz mod (AFr )Bν.

By dominance triangularity (Theorem 3.5),

u∗t y =
∑

z∈Stdr(ν)
z[s,r]Bt,
z(s)Bλ

rzu∗z + y′,

with coefficients rz ∈ F, and with y′ ∈ (AFr )Bν. But, since u∗t y ∈ AR
r , we have that rz ∈ R

and y′ ∈ ABνr . �

The following proposition is an immediate consequence of the lemma.

Proposition 3.11. Let 1 6 s < r, ν ∈ Âr, λ ∈ Âs and t ∈ Stds,r(ν \ λ). Let x ∈ mλAs and
write

x =
∑

s∈Stds(λ)

αsu∗s + y,

with y ∈ ABλs . Then there exist coefficients rz ∈ R, such that

u∗t x ≡
∑

s∈Stds(λ)

αsu∗t u∗s +
∑

z∈Stdr(ν)
z[s,r]Bt,
z(s)Bλ

rzu∗z mod ABνr .

The following corollary is a restriction rule for the Murphy-type basis of a tower of
diagram algebras.

Corollary 3.12. Let r > 1, ν ∈ Âr and t ∈ Stdr(ν). Let 1 6 s < r and write λ = t(s). Let
a ∈ As and suppose that

u∗t[0,s]
a ≡

∑
s∈Stds(λ)

rsu∗s mod ABλs .

Then there exist coefficients rz ∈ R such that

u∗t a ≡
∑

s∈Stds(λ)

rsu∗t[s,r]
u∗s +

∑
z∈Stdr(ν)
z[s,r]Bt,
z(s)Bλ

rzu∗z mod ABνr .
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Proof. Apply the previous proposition with x = u∗t[0,s]
a. �

Remark 3.13. Corollary 3.12 is an improvement of the restriction rule for ‘path bases’
obtained in [7, Proposition 2.18].

We now consider restriction to Ar ∩ A′s ⊆ Ar.

Proposition 3.14. Let 0 6 s < r, ν ∈ Âr and t ∈ Stdr(ν). Write λ = t(s). Let x ∈ Ar ∩ A′s.
Then there exist coefficients rw ∈ R such that

u∗t x ≡
∑

w∈Stdr(ν)
w[0,s]Qt[0,s]

rwu∗w mod ABνr .

Proof. Using Theorem 3.5, write mν
t = f νt +

∑
uBt αu f νu , with coefficients αu ∈ F, so

that mν
t x = f νt x +

∑
uBt αu f νu x. Now applying Proposition 3.9 part (3), we see that mν

t x
is an F-linear combination of seminormal basis elements f νv with v[0,s] Q t[0,s]. Using
Theorem 3.5 again, each such f νv is an F-linear combination of Murphy basis elements
mν

w, with w Q v, and thus w[0,s] Q v[0,s] Q t[0,s]. Therefore

u∗t x =
∑

w∈Stdr(ν)
w[0,s]Qt[0,s]

rwu∗w + y,

with coefficients rw ∈ F and with y ∈ ABνr ⊗R F. Since u∗t x ∈ AR
r , the coefficients are

necessarily in R and y ∈ ABνr . �

4. Jucys–Murphy elements

We recall the definition and first properties of families of Jucys–Murphy elements
for diagram algebras. The action of Jucys–Murphy elements on cell modules for
diagram algebras was first considered systematically in Goodman and Graber [7],
motivated by work of Mathas [12]. In this section, we use Theorem 3.5 to strengthen
the results of [7] by replacing the reverse lexicographic order on tableaux with the
dominance order on tableaux.

The treatment of Jucys–Murphy and the seminormal basis in [7] proceeds as
follows. From the definition of Jucys–Murphy elements (Definitions 4.1 and 4.3),
one concludes that the Jucys–Murphy elements act triangularly with respect to
reverse lexicographic order on the Murphy basis. Therefore, Jucys–Murphy elements
in the sense of [7] are also Jucys–Murphy elements in the sense of Mathas
[12, Definition 2.4]. When the ground ring is a field F and Mathas’ separation
condition [12, Definition 2.8] is satisfied—which is true for standard examples of
diagram algebras over the field of fractions of the generic ground ring—then, by
[12, Corollary 2.9], the algebras AFr are split semisimple. Moreover, following
[12, Section 3], one can define a family of orthogonal idempotents F′t labelled
by t ∈ Stdr, using interpolation formulas for the Jucys–Murphy elements. By [7,
Proposition 3.11], the idempotents F′t coincide with the Gelfand–Zeitlin idempotents

https://doi.org/10.1017/S1446788717000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000179


[15] Diagram algebras, dominance triangularity and skew cell modules 27

Ft for the tower (AFr )r>0. Finally, one defines the seminormal bases as in Definition 3.2.
Since the Ft are polynomials in the Jucys–Murphy elements, it follows that the
transition matrix between the Murphy basis and the seminormal basis is unitriangular
with respect to reverse lexicographic order.

Here we reverse the logic. We consider a tower of diagram algebras, that is,
a tower (Ar)r>0 satisfying (D1)–(D6). Then we already have the Gelfand–Zeitlin
idempotents at our disposal and can define the seminormal bases as in Definition 3.2.
Moreover, the transition matrix between the Murphy basis and the seminormal basis
is dominance unitriangular by Theorem 3.5. In cases where Jucys–Murphy elements
in the sense of Definitions 4.1 and 4.3 exist, we will show that they act diagonally
on the seminormal basis. It then follows from Theorem 3.5 that the Jucys–Murphy
elements act triangularly on the Murphy basis with respect to dominance order.
Assuming Mathas’ separation condition holds—as it does in standard examples—
one can then take up the theory in [12, Section 3], defining orthogonal idempotents
by interpolation formulas using the Jucys–Murphy elements, and these must coincide
with the Gelfand–Zeitlin idempotents by [7, Proposition 3.11].

For the rest of this section, assume that (Ar)r>0 is a tower of diagram algebras over
an integral domain R with field of fractions F, satisfying (D1)–(D6).

Definition 4.1. We say that a family of elements {Lr | r > 1}, is an additive family of
Jucys–Murphy elements if the following conditions hold.

(1) For all r > 1, Lr ∈ Ar, Lr is invariant under the involution of Ar, and Lr commutes
with Ar−1. In particular, LiL j = L jLi for all 1 6 i 6 j 6 r.

(2) For all r > 1 and λ ∈ Âr, there exists d(λ) ∈ R such that L1 + · · · + Lr acts as the
scalar d(λ) on the cell module ∆R

r (λ). For λ ∈ Â0, we let d(λ) = 0.

Example 4.2. The group algebras of symmetric groups, Temperley–Lieb, Brauer,
walled Brauer and partition algebras all possess additive families of Jucys–Murphy
elements.

Definition 4.3. We say that a family of elements {Lr | r > 1}, is a multiplicative family
of Jucys–Murphy elements if the following conditions hold.

(1) For all r > 1, Lr is an invertible element of Ar, Lr is invariant under the involution
∗ and Lr commutes with Ar−1. In particular, LiL j = L jLi for all 1 6 i 6 j 6 r.

(2) For all r > 1 and λ ∈ Âr, there exists d(λ) ∈ R such that L1 · · · Lr acts as the scalar
d(λ) on the cell module ∆R

r (λ). For λ ∈ Â0, we let d(λ) = 1.

Example 4.4. The Hecke algebras of finite type A and the Birman–Murakami–Wenzl
algebra possess a multiplicative family of Jucys–Murphy elements.

Proposition 4.5. Assume that the tower (Ar)r>0 has additive or multiplicative Jucys–
Murphy elements Li. Then the Jucys–Murphy elements act diagonally on the
seminormal bases. More precisely, there exist scalars κµ→λ ∈ R associated to edges
µ→ λ in Â such that, for all r, λ ∈ Âr, t ∈ Stdr(λ) and i 6 r,

f λt Li = κt(i−1)→t(i) f λt .
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Proof. We consider the case of additive Jucys–Murphy elements. The proof for
multiplicative Jucys–Murphy elements is nearly identical. Let κµ→λ = d(λ) − d(µ),
where d(·) is as in Definition 4.1. For i > 1 and µ ∈ Âi, the sum L1 + · · · + Li

acts as the scalar d(µ) on ∆i(µ). It follows from the restriction rule for the
seminormal representations (Proposition 3.9) that, for all r > i, λ ∈ Âr and t ∈ Stdr(λ),
f λt (L1 + · · · + Li) = d(t(i)) f λt . Hence f λt Li = (d(t(i) − d(t(i − 1))) f λt . �

Notation 4.6. We will also write κt(i) for κt(i−1)→t(i).

Theorem 4.7. Assume that the tower (Ar)r>0 has additive or multiplicative Jucys–
Murphy elements Li. Then the Jucys–Murphy elements act triangularly with respect
to dominance order on the Murphy basis of the cell modules, that is, for r > 1, λ ∈ Âr

and t ∈ Stdr(λ),
mλ

t Li = κt(i)mλ
t +
∑
sBt

rsmλ
s , (4.1)

where the coefficients are in R.

Proof. Using Proposition 4.5 and Theorem 3.5, one obtains (4.1) with coefficients in
F. But, since Li ∈ AR

r , the coefficients are necessarily in R. �

The dominance triangularity results Theorems 3.5 and 4.7 apply to the following
examples.

(1) The symmetric group algebras and the Hecke algebras of finite type A. This
example is discussed at length in Section 5 below.

For the remaining examples, dominance triangularity of the Jucys–Murphy
elements, and of the transition matrix from a path basis or a Murphy-type basis to
the seminormal basis, are new results.

(2) The towers of Temperley–Lieb algebras, partition algebras, Brauer algebras and
Birman–Murakami–Wenzl algebras [4].

(3) The towers of centralizer algebras on tensor space discussed in Example 2.11, [3].

5. Application to the Hecke algebras of the symmetric groups

The arguments of Sections 3 and 4, applied to the Hecke algebras of the symmetric
groups, result in some modest simplifications of the theory of these algebras, as
presented, for example, in [11].

Let S be an integral domain and q ∈ S a unit. The Hecke algebra Hr(S ; q) is
the unital S -algebra with generators T1, . . . , Tr−1 satisfying the braid relations and
the quadratic relation (Ti − q)(Ti + 1) = 0. For any S , the specialization Hr(S ; 1) is
isomorphic to SSr. The generic ground ring for the Hecke algebras is the Laurent
polynomial ring R = Z[q, q−1], where q is an indeterminant. Let F denote Q(q), the
field of fractions of R.

We will write Hr(q) for Hr(R; q). The algebra Hr(q) has an R-basis {Tw | w ∈ Sr},
defined as follows. If w = si1 si2 · · · sil is a reduced expression for w in the usual
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generators of Sr, then Tw = Ti1 Ti2 · · · Til , independent of the reduced expression.
Define T ∗w = Tw−1 ; then ∗ is an algebra involution on Hr(q).

Let Ŝr denote the set of Young diagrams or partitions of size r. Dominance order
Q on Ŝr is determined by λ Q µ if

∑ j
i=1 λi >

∑ j
i=1 µi for all 1 6 j 6 r. Young’s graph

or lattice, Ŝ, is the branching diagram with vertices Ŝr on level r and a directed edge
λ→ µ if µ is obtained from λ by adding one box. We can identify standard tableaux
of shape λ with directed paths on Ŝ from ∅ to λ. For λ ∈ Ŝr, denote the set of standard
tableaux of shape λ by Stdr(λ).

Let λ be a Young diagram and let α = (i, j) be a box in λ. The content of α is
c(α) = j − i. If t ∈ Stdr(ν) and k 6 r, define ct(k) = c(α), where α = t(k) \ t(k − 1).
When t is regarded as an array with the boxes of the Young diagram ν filled with the
numbers from one to r, ct(k) is the content of the box containing the entry k.

For λ a partition of r, let xλ =
∑

w∈Sλ Tw. Let tλ be the row reading tableaux of shape
λ. For any λ-tableau t, there is a unique w(t) ∈ Sr with t = tλw(t). For λ a partition of
r and s, t ∈ Stdr(λ), let

xλst = (Tw(s))∗xλTw(t).

Theorem 5.1 (The Murphy basis, [15]). The set X = {xλst | λ ∈ Ŝr and s, t ∈ Stdr(λ)} is
a cellular basis of Hr(R; q), with respect to the involution ∗ and the partially ordered
set (Ŝr,Q).

We let xλt denote the basis element of the cell module ∆r(λ) corresponding to
t ∈ Stdr(λ), xλt = xλTw(t) + HBλr . If 1 6 a 6 i, define

Ta,i = TaTa+1 · · · Ti−1,

and Ti,a = T ∗a,i. If λ ` i − 1 and µ ` i, with µ = λ ∪ {( j, µ j)}, let a =
∑ j

k=1 µk. Define

dλ→µ = Ta,i and uλ→µ = Ti,a

λ j∑
k=0

Ta,a−k.

Given a path t ∈ Stdr(ν),

∅ = t(0)→ t(1)→ t(2)→ · · · → t(r − 1)→ t(r) = ν,

define
dt = dt(r−1)→t(r)dt(r−2)→t(r−1) · · · dt(0)→t(1).

Proposition 5.2 [4].

(1) For t ∈ Stdr(ν), dt = Tw(t).
(2) For λ→ µ in Ŝ, xµdλ→µ = u∗λ→µxλ.

Thus the Murphy cellular basis is recovered from the ordered products of
branching factors: xλst = (ds)∗xλdt. Moreover, Remark 2.13 regarding factorization of
representatives of the Murphy basis of cell modules applies to the Hecke algebra. We
want to stress that Proposition 5.2 is established by computation and does not rely on
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the connection, established in [4], between the branching factors dλ→µ and uλ→µ and
cell filtrations of restricted and induced cell modules.

Next, we recall the Jucys–Murphy elements for the Hecke algebras (see [11,
Section 3.3 and Exercise 6, page 49]). The Jucys–Murphy elements in Hn(q) are
defined by

L1 = 1 and Lk = q1−kTk−1 · · · T1T1 · · · Tk−1 for k > 1.

Proposition 5.3.

(1) L1L2 · · · Lr is in the center of Hr(q).
(2) The elements Lk are multiplicative Jucys–Murphy elements in the sense of

Definition 4.3.

See [11, Section 3.3] for the proof. Again, the proof is computational and does not
depend on deeper results on the Hecke algebras. We will now list several properties
of the Hecke algebras and afterwards sketch two logical routes through this material,
both using the ideas of Sections 3 and 4.

(H1) The Hecke algebras Hr(F, q) are split semisimple.
(H2) The branching diagram for the sequence (Hr(F, q))r>0 of split semisimple

algebras is Young’s lattice.
(H3) The sequence of Hecke algebras over R is restriction-coherent, with ∆R

r−1(λ)
appearing as a subquotient of ResHr(q)

Hr−1(q)(∆
R
r (µ)) if and only if λ ⊂ µ.

(H4) More precisely, statement (3) of Theorem 2.9 holds.

Since the sequence (Hr(F, q))r>0 is a multiplicity free sequence of split semisimple
algebras over F, one can define Gelfand–Zeitlin idempotents as in Section 3.1 and
seminormal bases as in Definition 3.2 using the Gelfand–Zeitlin idempotents and the
Murphy basis.

(H5) The set { f λt | t ∈ Stdr(λ)} is a basis of ∆Fr (λ) and the transition matrix between
this basis and the Murphy basis is dominance unitriangular.

(H6) The Jucys–Murphy elements act diagonally on the seminormal basis, f λt Lk =

qct(k) f λt .
(H7) The Jucys–Murphy elements act triangularly on the Murphy basis,

xλt Lk = qct(k)xλt +
∑
sBt

rsxλs .

We now sketch two logical paths through statements (H1)–(H7). Of course, there
are many logical arrangements of this material, and these are just two possibilities.

First path. One can first establish that the Hecke algebras Hr(F,q) are split semisimple.
One easy way to do this is as follows. Let 〈·, ·〉 denote the bilinear form on each cell
module arising from the Murphy basis. Let φλ be the determinant of the Gram matrix
[〈mλ

s ,m
λ
t 〉]s,t. Then φλ ∈ R = Z[q, q−1]. Since the specialization of the Hecke algebra

at q = 1 is the symmetric group algebra over Q, which is semisimple, it follows that
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φλ(1) , 0 and hence φλ , 0. Now it follows from the general theory of cellular algebras
that Hr(F, q) is split semisimple (see [11, Corollary 2.21]).

The next step, which is more substantial, is to show that (H3) holds. This is proved
in [8] or [13]. This implies that (H2) holds as well, using [6, Lemma 2.2], which is
elementary.

Taking into account Proposition 5.2, we now have verified axioms (D1) through
(D6) for the Hecke algebras, as well as statements (1) and (2) of Theorem 2.9. A
subtle point here is that we have not verified and do not need to verify at this point
that the d-branching coefficients actually arise from the cell filtrations of restricted cell
modules, that is, that statement (3) of Theorem 2.9 holds.

We are now entitled to plug into the arguments of Sections 3 and 4, which give
us the conclusions (H5) through (H7), but without revealing that the eigenvalues
of the Jucys–Murphy elements are qct(k). This additional information must come
from an additional analysis, for example, by extending the analysis of Okounkov and
Vershik [16] to the Hecke algebras. Moreover, we obtain (H4) from Corollary 3.12.

Second path. The second path follows the analysis in [11, Ch. 3] and its abstraction
in [12]. Start with [11, Theorem 3.32], which proves (H7). This implies that the Jucys–
Murphy elements Lk are Jucys–Murphy elements in the sense of [12] and, moreover,
satisfy the ‘separating condition’ of [12, Section 3] over F. One can therefore
define idempotents Ft, indexed by standard tableaux using interpolation formulas
involving the Jucys–Murphy elements as in [11, Section 3.3] or [12, Section 3], and
the seminormal basis of the cell modules by f λt = xλt Ft. From the general theory in
[12, Section 3], one obtains (H5) and (H6). Moreover, the separating condition also
implies (H1). The restriction rule (H2) results from actually computing the seminormal
representations as in [11, Theorem 3.36]. We are now left with the task of verifying
(H3) and (H4).

Note that we have (D1)–(D4) as well as (D6) at our disposal in addition to
statements (1) and (2) of Theorem 2.9. Moreover, by [7, Proposition 3.11], the
idempotents Ft obtained from the Jucys–Murphy elements have to coincide with the
Gelfand–Zeitlin idempotents. This is all we need to follow through the arguments of
Section 3, and we end up with Corollary 3.12, which implies (H3) and (H4).

Remark 5.4. The net result of this discussion is that if one uses the result from the
literature on the restriction-coherence of the tower of Hecke algebras, one can avoid
some of the work involved with showing dominance triangularity of the Jucys–Murphy
elements; on the other hand, if one uses the results on dominance triangularity, one
can avoid some of the work involved in proving restriction-coherence (which was only
recently proved in [8, 13]).

6. Skew cell modules for diagram algebras

In this section, we construct skew cell modules for diagram algebras and provide
integral bases of these modules indexed by skew tableaux. We begin by constructing
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skew cell modules for Ar ∩ A′s when 0 6 s 6 r, and afterwards we introduce a final
axiom which allows us to view these modules as Ar−s modules.

Let 0 6 s < r, ν ∈ Âr and λ ∈ Âs. Let tλ ∈ Stds(λ) be maximal in Stds(λ) with respect
to the dominance order on paths. Define

∆(ν;Bλ) = SpanR{m
ν
t | t ∈ Stdr(ν) and t(s) B λ}

and
∆(ν; tλ) = SpanR{m

ν
tλ◦t | t ∈ Stdr−s(ν \ λ)},

which are both R-submodules of ∆R
r (ν).

Lemma 6.1. ∆(ν;Bλ) and ∆(ν; tλ) + ∆(ν;Bλ) are Ar ∩ A′s submodules of ∆R
r (ν).

Proof. This follows from Proposition 3.14 and maximality of tλ. �

Let ∆(ν \ λ) denote the Ar ∩ A′s module

∆(ν \ λ) = (∆(ν; tλ) + ∆(ν;Bλ))/∆(ν;Bλ).

Lemma 6.2.

(1) ∆(ν \ λ) is, up to isomorphism, independent of the choice of the maximal element
tλ.

(2) ∆(ν; tλ)Ftλ ⊆ ∆Fr (ν) is an Ar ∩ A′s submodule, and ∆(ν \ λ) � ∆(ν; tλ)Ftλ .
(3) For any choice of s ∈ Stds(λ),

∆F(ν \ λ) := ∆(ν \ λ) ⊗R F � ∆Fr (ν)Fs

as AFr ∩ (AFs )′-modules.

Proof. The first statement in part (2) follows from Lemma 6.1 because ∆(ν;Bλ)Ftλ = 0.
Now there is an Ar ∩ A′s module homomorphism m 7→ mFtλ from ∆(ν; tλ) + ∆(ν;Bλ) to
∆(ν; tλ)Ftλ with kernel ∆(ν;Bλ), which gives the isomorphism in part (2). If t1 and t2
are two maximal elements in Stds(λ), then right multiplication by Eλ

t1t2
is an Ar ∩ A′s-

module isomorphism from ∆(ν; t1)Ft1 to ∆(ν; t2)Ft2 , which proves part (1).
For part (3), using Theorem 3.5 and Proposition 3.9 part (3), first note that given any

s, s̄ ∈ Stds(λ), we have that ∆Fr (ν)Fs � ∆Fr (ν)Fs̄ as R-modules, with the isomorphism
realized by right multiplication by Eλ

ss̄. This map preserves the AFr ∩ (AFs )′-module
structure, since AFr ∩ (AFs )′ commutes with Eλ

ss̄. In particular, we can set s = tλ without
loss of generality. Now, it follows from Theorem 3.5 that

∆F(ν;Bλ) := ∆(ν;Bλ) ⊗R F = SpanF{ f
ν
t | t ∈ Stdr(ν) and t(s) B λ}

and

∆(ν; tλ) ⊗R F + ∆F(ν;Bλ) = SpanF{ f
ν
tλ◦t | t ∈ Stdr−s(ν \ λ)} + ∆F(ν;Bλ).

Arguing as for part (2),

∆F(ν \ λ) � SpanF{ f
ν
tλ◦t | t ∈ Stdr−s(ν \ λ)}Ftλ .

Now one easily verifies that SpanF{ f
ν
tλ◦t | t ∈ Stdr−s(ν \ λ)}Ftλ = ∆Fr (ν)Ftλ . �
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Now we introduce one final axiom for towers of diagram algebras, which allows us
to regard ∆(ν \ λ) as an Ar−s-module.

(D7) There is a an automorphism, fr, of order two of each Ar such that, for each s
with 0 6 s 6 r, fr(Ar−s) commutes with As ⊂ Ar.

Using this final axiom, we can define a homomorphism ϕr,s : As ⊗R Ar−s → Ar by

ϕr,s(a ⊗ b) = a fr( fr−s(b)),

where both As and Ar−s are regarded as subalgebras of Ar via the usual embeddings.
We can restrict any Ar-module to As ⊗R Ar−s, by composing with ϕr,s.

Remark 6.3. Condition (D7) is satisfied by the group algebras of symmetric groups,
the Hecke algebras, and the Brauer, BMW, partition and Temperley–Lieb algebras.
For each of these examples, the involution fr is given by flipping a diagram or tangle
through its vertical axis (whereas ∗ is given by flipping a diagram through its horizontal
axis). Also, in each of these genuine diagram or tangle algebras, one can define a
tensor product operation, that is, a homomorphism from As ⊗R Ar−s to Ar, which, on
the level of diagrams or tangles, is just placing diagrams side by side. Taking fr to
be the flip through a vertical axis, the homomorphism ϕr,s defined above agrees with
the homomorphism determined by placing diagrams side by side. Note that fr ◦ fr−s

is the shift operation on Ar−s determined on the level of diagrams by adding s vertical
strands to the left of a diagram in Ar−s.

Denote by ∆r−s(ν \ λ) the Ar ∩ A′s module ∆(ν \ λ), when regarded as an Ar−s-
module by composing with the homomorphism fr ◦ fr−s : Ar−s → Ar ∩ A′s.

Definition 6.4. Let (Ar)r>0 denote a tower of algebras satisfying conditions (D1)–(D7).
Given λ ∈ Âs and ν ∈ Âr, the Ar−s-module ∆R

r−s(ν \ λ) described above is called the skew
cell module associated to λ and ν.

Remark 6.5. The definition of skew cell modules generalizes the definition of skew
Specht modules for the tower of symmetric group algebras (ZSr)r>0. The skew Specht
module S ν\λ for a skew shape ν \ λ is defined as the span of polytabloids of shape ν \ λ
(see [10, Section 4] for the definition of polytabloids and [19] for the definition of skew
Specht modules). Let us regard S ν\λ as an S{s+1,...,r}-module, where |λ| = s and |ν| = r.
Let tλ be the column reading standard tableau of shape λ, so tλ is the unique maximal
tableau in column dominance order Qcol on standard tableaux of shape λ. Consider
the following subsets of the Specht module S ν,

S (ν;Bcolλ) = SpanZ{et | t ∈ Stdr(ν) and t(s) Bcol λ}

and
S (ν; tλ) = SpanZ{etλ◦s | s ∈ Stdr−s(ν \ λ)},

where et denotes a polytabloid. Using the Garnir relations [10], one can verify that
S (ν;Bcolλ) and S (ν; tλ) + S (ν;Bcolλ) are S{s+1,...,r} submodules of S ν, and the quotient
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of these modules is isomorphic to the skew cell module S ν\λ. A more general statement
is proved in [19, Theorem 3.1]. Modulo the identification of cell modules of Sr with
classical Specht modules—which involves both transpose of diagrams and twisting by
the automorphism si 7→ −si; see [15, Section 5]—this shows that the classical skew
Specht modules agree with the skew cell modules defined here.

Proposition 6.6. Given λ ∈ Âs, ν ∈ Âr and an AFr−s-module M,

HomAFs⊗AFr−s
(∆Fs (λ) ⊗F M,ResAFr

AFs⊗AFr−s
(∆Fr (ν)) � HomAFr−s

(M,∆Fr−s(ν \ λ)).

Proof. Identify ∆Fr−s(ν \ λ) with ∆Fr (ν)Ftλ , using Lemma 6.2 part (3). For ϕ ∈

HomAFs⊗AFr−s
(∆Fs (λ) ⊗F M,ResAFr

AFs⊗AFr−s
(∆Fr (ν)), define ϕ by

ϕ(m) = ϕ( f λtλ ⊗ m) = ϕ( f λtλ Ftλ ⊗ m) = ϕ( f λtλ ⊗ m)Ftλ .

It follows that ϕ ∈ HomAFr−s
(M,∆Fr−s(ν \ λ)). We have to check that the map ϕ 7→ ϕ

is an isomorphism. For injectivity, suppose that ϕ = 0. Then, for all m ∈ M and all
x ∈ AFs , ϕ( f λtλ x ⊗ m) = ϕ(m)x = 0. Hence ϕ = 0, since f λtλ AFs = ∆Fs (λ). For surjectivity,
let ψ ∈ HomAFr−s

(M,∆Fr (ν)Ftλ). Define ϕ by ϕ( f λtλ x ⊗m) = ψ(m)x = ψ(m)Ftλ x for x ∈ AFs .
Then ϕ is well defined because f λtλ x = 0⇔ Ftλ x = 0. Now one can easily check that ϕ
is an AFs ⊗ AFr−s-homomorphism and that ϕ = ψ. �

Finally, let (Ar)r>0 denote a tower of algebras satisfying (D1)–(D7). Let λ ∈ Âs,
ν ∈ Âr, µ ∈ Âr−s and define associated multiplicities

Aν
λ,µ = dimFHomAFr−s

(mµAFr−s,∆
F
r−s(ν \ λ)), (6.1)

aνλ,µ = dimFHomAFr−s
(∆Fr−s(µ),∆Fr−s(ν \ λ)). (6.2)

We recall that mµAr−s/(mµAr−s ∩ ABµr−s) is isomorphic to the cell module ∆r−s(µ) and
therefore aνλ,µ 6 Aν

λ,µ, by definition.

Remark 6.7. Consider the tower of the group algebras of symmetric groups (Sr)r>0.
Recall that a partition µ is defined to be a finite weakly decreasing sequence of
nonnegative integers. We define the degree of the partition µ to be the sum, |µ|, over
all nonzero terms in this sequence. Recall that Ŝr−s is the set of partitions of degree
r − s (see [4]). Given µ a partition of r − s, the module mµS

F
r−s is isomorphic to the

so-called Young permutation module, that is, the module obtained by induction from
the subgroup Sµ which stabilizes the set {1, . . . , µ1} × {µ1 + 1, . . . , µ1 + µ2} × · · · ⊆

{1, . . . , r − s}. Therefore, the coefficients defined in (6.1) and (6.2) above are the skew-
Kostka and Littlewood–Richardson coefficients, respectively [20, pages 311 and 338].

6.1. The stable Kronecker coefficients. Given λ = (λ1, λ2, . . . , λ`) a partition and
n ∈ N sufficiently large, we set

λ[n] = (n − |λ|, λ1, λ2, . . . , λ`).
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Given n ∈ N, we recall that Sn denotes the symmetric group on n letters. The tower
of algebras (ZSn)n>0 satisfy conditions (D1)–(D7). Given r ∈ 1

2N, we let P2r(n)
denote the partition algebra on r strands with parameter n ∈ N. The tower of algebras
(Pr(n))r>0 satisfy conditions (D1)–(D7). The representation theories of the symmetric
groups and partition algebras are intimately related via a generalization of classical
Schur–Weyl duality. Through this duality, we obtain the following theorem.

Theorem 6.8. Let λ be a partition of degree s, let µ be a partition of degree r − s and
let ν be a partition of degree less than or equal to r.

HomQSn (∆QSn (λ[n]) ⊗ ∆QSn (µ[n]),∆QSn (ν[n]))
� HomPQr−s(n)(∆PQr−s(n)(µ),∆PQr−s(n)(ν \ λ)),

for n sufficiently large (n > 2r will suffice).

Proof. This follows immediately from Proposition 6.6 and [2, Corollary 3.4]. �

Given λ ` r − s, µ ` s and ν ` r and n > 2r, we are interested in the multiplicities

Pν
λ,µ = dimQHomPQr−s(n)(mµPQr−s(n),∆Qr−s(ν \ λ)),

pνλ,µ = dimQHomPQr−s(n)(∆
Q
r−s(µ),∆Qr−s(ν \ λ))

for a cell quasi-idempotent mµ ∈ PQr−s(n). By Theorem 6.8 and [2], the coefficients
pνλ,µ are equal to the stable Kronecker coefficients. These coefficients have been
described as ‘perhaps the most challenging, deep and mysterious objects in algebraic
combinatorics’ [18]. On the other hand, the coefficients Pν

λ,µ do not seem to have
been studied anywhere in the literature. Motivated by the classical case, we ask the
following questions.

• Can one interpret the coefficients Pν
λ,µ and pνλ,µ in terms of the combinatorics of

skew tableaux for the partition algebra?
• Do there exist natural generalizations of the semistandard and lattice permutation

conditions in this setting?
• Do the coefficients Pν

λ,µ provide a first step towards understanding the stable
Kronecker coefficients pνλ,µ?

The first two authors shall address these questions in an upcoming series of papers with
Maud De Visscher. In particular, we use the above interpretation to provide a positive
combinatorial description of the stable Kronecker coefficients labelled by an infinite
family of triples of partitions (including the Littlewood–Richardson coefficients and
Kronecker coefficients indexed by two two-row partitions as important examples).
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