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Abstract
The interaction between stellar winds and the partially ionized local interstellar medium (LISM) is quite common in astrophysics. However,
the main difficulty in describing the neutral components lies in the fact that the mean free path of an interstellar atom, l, can be comparable
to the characteristic size of an astrosphere, L (i.e. the Knudsen number, which is equal to l/L, is approximately equal to 1, as in the case
of the heliosphere). In such cases, a single-fluid approximation becomes invalid, and a kinetic description must be used for the neutral
component. In this study, we consider a general astrosphere and use a kinetic-gas dynamics model to investigate how the global structure
of the astrosphere depends on the Knudsen number. We present numerical results covering an extremely wide range of Knudsen numbers
(from 0.0001 to 100). Additionally, we explore the applicability of single-fluid approaches for modelling astrospheres of various sizes. We
have excluded the influence of interstellar and stellar magnetic fields in our model to make parametric study of the kinetic effects feasible.
The main conclusion of this work is that, for large astrospheres (with a distance to the bow shock greater than 600 AU) a heated rarefied
plasma layer forms in the outer shock layer near the astropause. The formation of this layer is linked to localized heating of the plasma by
atoms (specifically, ENAs) that undergo charge exchange again behind the astropause. This process significantly alters the flow structure in
the outer shock layer and the location of the bow shock, and it cannot be described by a single-fluid model. Additionally, this paper discusses
how atoms weaken the bow shocks at near-heliospheric conditions.
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1. Introduction

The problem of the interaction between the solar wind and the
interstellar medium has been of particular interest since 1970s.
This interest was mainly sparked by experiments on scattered
Lyman-alpha radiation in near-solar space, which confirmed the
penetration of hydrogen atom fluxes from the local interstellar
medium (LISM) into the hypersonic solar wind (see, for exam-
ple, Bertaux & Blamont 1971; Thomas & Krassa 1971). During the
same period, spacecraft such as Voyager-1, Voyager-2, Pioneer-10,
and Pioneer-11 were launched, providing a significant amount of
experimental data on the parameters of the solar wind not only in
the Earth orbit but also in the distant heliosphere.With an increase
in the quantity and quality of experimental data due to an increas-
ing number of space missions, there is a growing demand for
theoretical models. Suchmodels are necessary for a general under-
standing of the physics of the processes, for predicting various
phenomena that may not yet be discovered, and for determining
parameters that cannot be measured directly.

The first model of supersonic flow around the solar wind was
proposed by Baranov, Krasnobaev, & Kulikovskii (1970), assum-
ing a gas-dynamic description of plasma as a completely ionized
medium and not taking into account the influence of neutral
atoms from the interstellar medium. Later studies showed that
neutral atoms have a significant impact on plasma due to resonant
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charge exchange (see Wallis 1975), resulting in an exchange of
momentum and energy between neutral and charged components.
Numerical simulations confirmed this effect (Baranov, Lebedev,
& Ruderman 1979; Baranov, Ermakov, & Lebedev 1982; Baranov
& Ruderman 1979), but they assumed a simplified gas-dynamic
description of the neutral component. The mean free path of a
hydrogen atom is comparable to the size of the heliosphere, so the
neutral component must be described kinetically with the solution
of the integro-differential Boltzmann equation for the distribu-
tion function. Baranov, Lebedev, & Malama (1991) proposed a
self-consistent model with the solution of the kinetic equation for
hydrogen atoms and gas-dynamic equations for the solar wind,
ensuring consistency by the method of global iterations. However,
only the first step of the iterative algorithm was carried out in
this work. A completely self-consistent solution was obtained later
(Baranov & Malama 1993).

Recently, there has been a lot of interest in the astrospheres
of other stars. A wide range of observational data (for example,
Kobulnicky et al. 2016) makes it possible to determine the posi-
tion of the discontinuity surfaces (primarily the astropause) and
their distance from the parent star, which can be used in numer-
ical models by solving the inverse problem and finding unknown
parameters of the star or surrounding medium.

In this work, we conduct a parametric study of astrosphere
structure varying the Knudsen number, Kn∞. Kn∞ is the ratio of
the mean free path of hydrogen atoms (in the undisturbed inter-
stellar medium) and the characteristic size of the astrosphere. The
mean free path of hydrogen atoms is determined by particle inter-
actions and depends on the speed of the atom and the properties of
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Figure 1. Schematic picture of the interaction of stellar wind with a partially ionized supersonic flow for (A) small and (B) large astrospheres.

the local medium, to a greater extent on the proton number den-
sity, to a lesser extent on proton speed and temperature. The size of
the astrosphere is determined by stellar wind velocity and the rate
of the star mass loss and the parameters of the interstellar medium.
Obviously, the lower the Knudsen number, the more efficient the
process of charge exchange. In this work, we show that in some
cases the charge exchange is capable of reducing the distance from
star to the astropause by approximately 50% compared with one
without taking into account atoms (purely gas-dynamic case).

In addition to practical interest, this work allows us to eval-
uate the limits of the applicability of the single-fluid approach.
The single-fluid approach considered in this study is the limit-
ing case of either infinitely large mean free paths, corresponding
to pure gas dynamics, or infinitely small mean free paths, which
can be described as an effective gas, as discussed in Section 2.3.
As it turns out, the limits of the single-fluid approach applicabil-
ity are quite narrow. Besides the differences in the positions of
the main discontinuities, the single-fluid approach gives an incor-
rect description of the structure of the outer astroshethes for large
astrospheres. Fig. 1 schematically demonstrates this effect. Panel
(A) illustrates the structure of an outer shock layer for a small
astrospheres (with a distance to the bow shock of less than 600
AU). In this case, the effect of charge exchange causes the maxi-
mum of the plasma density to be shifted away from the astropause
due to weak local heating, slightly. Note that in the purely gas-
dynamic case (without the influence of atoms), as in the case of
the single-fluid approach, this maximum is located strictly at the
astropause. In the case of a large astrosphere (>600 AU, panel B),
heating of the outer shock layer by ENAs leads to the formation
of a heated rarefied layer (HRL) of plasma behind the astropause,
and the maximum number density in the outer astrosheath occurs
near the bow shock (see details in Subsection 3.3).

An alternative approach to describe partly ionized plasma flow
that has been applied for the heliosphere is multi-fluid modelling
(see, e.g., Pauls, Zank, &Williams 1995; McNutt, Lyon, & Godrich
1998; Wang & Belcher 1998; Fahr 2000; Florinski et al. 2004; Bera,
Fraternale, & Pogorelov 2024, and others). In this approach neu-
tral component is considered as a mixture of several ideal gases.
Therefore, the Euler equations for these gases are solved together
with MHD equations for the plasma component. The multi-fluid
approach is some-time considered as an ‘intermediate’ approach

between single-fluid hydrodynamic models and kinetic models.
The main argumentation to use the multi-fluid models is their
small computational costs as compared with kinetic approach.
Also, for some set of model parameters the multi-fluid approaches
produce the plasma and atoms distributions are quite close to
those obtained in the kinetic models (see, Alexashov & Izmodenov
2005; Heerikhuisen, Florinski, & Zank 2006; Alouani-Bibi et al.
2011). Nevertheless, the multi-fluid approach has no any theoret-
ical justification and there are examples (see Baranov, Izmodenov,
&Malama 1998; Alexashov & Izmodenov 2005; Müller et al. 2008)
when using multi-fluid approaches produce physically unrea-
sonable results. In this work, we will not consider multi-fluid
approaches and will focus on the kinetic description of hydrogen
dynamics. Additionally, we consider the two limiting cases, which
are discussed in Section 2.3.

In paper Korolkov & Izmodenov (2024), we investigated the
effect of charge exchange on the structure of a single astrospheric
shock layer as simply as possible. We considered hydrogen to
be constant in the layer and the tangential discontinuity (the
astropause) to be planar. These limitations allowed us to conduct
research within a fairly narrow range of Knudsen numbers, study-
ing the influence of atoms on the shock layer. However, these
limitations do not allow us to quantify accurately the size of either
the inner or outer shock layers in the astrosphere. Despite these
limitations, we discovered and explained the effect of formation
of a HRL of plasma even using this simple model. This work
continues the previous study by modelling global astrospheres
within a wide range of Knudsen numbers (between 10−4 and 102)
while considering the dynamics of hydrogen consistently with the
plasma, allowing us to estimate the size of both the shock layers
and explore the structure of astrospheres.

We restrict this study to purely unmagnetized models, neglect-
ing any effects of interstellar or stellar magnetic fields. This allows
us to reduce the parameter space of the problem and make fea-
sible to attain the main goal of our work that is to quantify
kinetic effects on the spatial extent and large-scale properties of
the astrosphere. In addition, the magnetic fields of stars and their
surrounding environments are largely unknown, and their esti-
mates are wide-ranging. However, it is well-established that mag-
netic fields can significantly affect the structure of astrospheres,
changing their shape qualitatively (for example, see tube-like
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astrospheres in Opher et al. 2015; Korolkov & Izmodenov 2021).
For the heliosphere, the influence of magnetic fields on the large-
scale structures is significant and leads to several effects, such
as asymmetry of the TS and the heliopause, the deviation of
interstellar hydrogen atom inflow, magnetic reconnection, and
others. These effects have been studied in several papers, including
those by Izmodenov, Alexashov, & Myasnikov (2005), Pogorelov
et al. (2009a), Alouani-Bibi et al. (2011), Izmodenov & Alexashov
(2015). Additionally, there is a series of papers by Pogorelov, Zank,
& Ogino (2004, 2006), Pogorelov et al. (2009b, 2013, 2017) that
have also explored this topic.

The work structure is as follows: in Section 2, we describe the
model, and numerical approach, and also formulate the problem
in dimensionless form, Section 3 presents the results and discus-
sions, Section 4 summarizes the results and discusses plans for
future work, Appendix A offers additional distributions of hydro-
gen atoms for a more complete description of the obtained results,
Appendix B presents a two-dimensional picture of the flow and
position of the discontinuity surfaces.

2. Model

In this work, it is assumed that the interstellar medium consists of
two components: an ionized component and a neutral component
consisting of hydrogen atoms. The ionized component is consid-
ered to be a mixture of protons and electrons with the assumption
of quasi-neutrality and the equation of state: pp = 2npkTp. The
motion of such a mixture is described by a system of Euler equa-
tions for a monoatomic non-thermal-conducting perfect gas with
constant heat capacities (γ = 5/3):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρp

∂t
+ div(ρpVp)= 0,

∂(ρpVp)
∂t

+ div(ρpVpVp + ppÎ)=Q2,

∂Ep

∂t
+ div((Ep + pp)Vp)=Q3,

(1)

where Ep = pp
γ−1 + ρpV2

p
2 – is the energy density; ρp, pp, Vp – the

plasma density, pressure, and velocity, respectively.
The interaction of the neutral component with the plasma is

taken into account in the right parts of the equations of motion
and energy. For the interstellar hydrogen, we assume kinetic
description. The Boltzmann kinetic equation for the velocity dis-
tribution function fH of hydrogen atoms is solved:

∂fH
∂t

+VH · ∂fH
∂r

+ F
mH

· ∂fH
∂VH

=

= −fH np
∫

u σHP
ex (u) fp(Vp) dVp + (2)

+ fp(VH) np
∫

|V∗
H −VH|σHP

ex (|V∗
H −VH|)fH(V∗

H)dV∗
H,

here and further u=VH −Vp, u= |u|.Vp, VH – individual veloc-
ities of protons and hydrogen, respectively. F – the total force
of gravity and radiation pressure of the star. σHP

ex (u)= (2.2835 ·
10−7 − 1.062 · 10−8ln(u))2 - (cm2) the charge exchange cross sec-
tion (u is in cm/s, see Lindsay & Stebbings 2005).

Here and below, for simplicity, it is assumed that the influ-
ence of the force F on the global flow pattern is insignificant.

This means that hydrogen atoms fly along rectilinear trajectories
between charge exchanges with protons. In fact, in the case of
the heliosphere, the deviation of trajectories from straight lines
is significant only at distances close to the star (several astro-
nomical units, see Izmodenov & Alexashov 2015), which can be
neglected in the global problem (with a characteristic scale of
several hundred astronomical units).

The velocity distribution function of plasma protons fp is
assumed to be locally Maxwellian:

fp(Vp)= (
√

πcp)−3exp

(
− (Vp −Up)2

c2p

)
, (3)

cp =
√
2kBTp

mp
,

where Up, Tp – mass velocity and plasma temperature, respec-
tively; kB – is the Boltzmann’s constant.

The expressions for the sources of momentum and energy in
plasma (see System 1) can be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q2 = nH · ρp · ∫∫ u · σHP
ex (u) · u · fH(VH)

·fp(Vp)dVHdVp,

Q3 = nH · ρp · ∫∫ u · σHP
ex (u) · V

2
H −V2

p

2
· fH(VH)

·fp(Vp)dVHdVp.

(4)

In this work, the influence of the interstellar magnetic field is
neglected to make the parametric study feasible.

2.0.1 Boundary conditions

Let’s describe the boundary conditions for both plasma and neu-
tral component. We connect the origin of the coordinate system
with the star and the X-axis is chosen toward the incoming flow
of the interstellar medium. The star is considered to be the hyper-
sonic source flow of the fully ionized hydrogen plasma (the Mach
number M � 1) with a given mass lose rate Ṁ� = 4πρV0R2 and
the terminal velocity V0. The interstellar medium is considered as
a parallel flow of similar plasma with density ρp,∞, velocity V∞,
and pressure pp,∞.

The kinetic equation for the neutral component (atomic
hydrogen) is hyperbolic. Therefore, the velocity distribution
function should be set at the boundaries only for incoming
characteristics. We suppose that the velocity distribution function
of Maxwellian:

fH,∞(VH)= (
√

πc∞)−3exp
(

− (VH −V∞)2

c2∞

)
, (5)

c∞ =
√
2kBT∞
mp

,

where T∞, V∞ – temperature and velocity of the unperturbed
LISM (here it is assumed that the temperature and velocity of
hydrogen at infinity are, respectively, equal to the temperature and
velocity of the plasma). The hydrogen number density is nH,∞.

2.1 Dimensionless formulation of the problem

The formulated above problem depends on seven independent
parameters: Ṁ�, V0, ρp,∞, c∞, V∞, nH,∞, σHP

ex,∞ = σHP
ex (c∞).
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The latter parameter is the charge exchange cross-section
corresponding to the thermal velocity c∞. The value of this
parameter is known from the expression for the cross-section
given above (see Section 2).

We can reformulate the problem in dimensionless form by
reducing the number of parameters to four. Let us relate all dis-

tances to L=
√
0.78 · Ṁ�V0

4πρp,∞c2∞
, all velocities to the thermal velocity

c∞, the plasma density to ρp,∞, the atom number density to nH,∞.
The constant 0.78 in the definition of L is a numerical result used
for convenience, as in this case, the dimensionless distance to the
bow shock in the purely gas-dynamic case (for Mach number is
1.97) is approximately equal to 1 (L∼ LBS).

This choice of characteristic length is based on the analogy
with the analytically derived distance to the discontinuity sur-
face in the thin layer approximation when the interstellar medium
Mach number is much greater than 1, as described in the works
of Baranov, Krasnobaev, & Kulikovskii (1970) and Baranov &

Krasnobaev (1971): L0 =
√

Ṁ�V0

4πρp,∞V2∞
. However, it is well known

now that the shock layer is not thin, for the value of 1.97 of Mach
number (for the heliosphere), so this formula does not provide an
exact distance for any of the discontinuity surfaces.

The System 1 in dimensionless form is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ̂p

∂ t̂
+ div(ρ̂pV̂p)= 0,

∂(ρ̂pV̂p)
∂ t̂

+ div(ρ̂pV̂pV̂p + p̂pÎ)= η

Kn∞
· Q̂2,

∂Êp

∂ t̂
+ div((Êp + p̂p)V̂p)= η

Kn∞
· Q̂3,

(6)

Kinetic Equation (2) (F= 0) is as follows:

∂ f̂H
∂ t̂

+ V̂H · ∂ f̂H
∂ r̂

=

= − f̂H
Kn∞

∫
|V̂H − V̂p|σ̂HP

ex (|V̂H − V̂p|)f̂p(r̂, V̂p)dV̂p + (7)

+ f̂p(r̂, V̂H)
Kn∞

∫
|V̂∗

H − V̂H|σ̂HP
ex (|V̂∗

H − V̂H|)f̂H(r̂, V̂∗
H)dV̂

∗
H

Dimensionless boundary conditions will now be written as
follows:

V̂0 = χ , ˆ̇M� = 4π/χ , ρ̂p,∞ = 1, ĉ∞ = 1,

V̂∞ =M∞
√

γ , n̂H,∞ = η.
The dimensionless charge exchange cross section is:

σ̂ex(Û)=
(
1− â2 · ln(Û)

)2
, (8)

â2 = 1.062 · 10−8√
σHP
ex (c∞)

.

As a result, four dimensionless parameters of the problem are
obtained:

χ , η, M∞, Kn∞.

Descriptions of these parameters are following:

(1) χ = V0

C∞
is the ratio of the terminal velocity of the star to

the thermal velocity of the incoming flow. This parame-
ter appeared in the dimensionless formulation of the inner
boundary condition. This parameter does not affect the
geometric pattern of the flow in a purely gas-dynamic
case (see, for example, Korolkov, Izmodenov, &Alexashov
2020). However, decreasing this parameter leads to an
increase in plasma number density inside the astrosphere
and an effective increase in the charge exchange frequency,
which strongly affects the distribution of hydrogen atoms,
and hence the global structure as a whole.

(2) η = nH,∞
np,∞

is the ratio of hydrogen number density to pro-

ton number density in the incoming flow. This parameter
linearly affects the magnitude of momentum and energy
sources (see System 6), but the Equation (7) does not
depend on this parameter.

(3) M∞ is the Mach number of the incoming flow. It deter-
mines the velocity of the interstellar medium and, con-
sequently, astropause position and shape. In Korolkov,
Izmodenov, & Alexashov (2020), the dependence on this
parameter in a purely gas-dynamic case has been studied.
The influence on the structure of the astrosphere in the
presence of neutral atoms has not yet been investigated.

(4) Kn∞ = lex,∞
L

is the Knudsen number, the ratio of the
mean free path of an atom to the characteristic size of the
problem. The mean free path is calculated as follows:

lex,∞ = 1
np,∞ σHP

ex (c∞)
. (9)

From System 6 and Equation (7), it is obvious that the
lower the Knudsen number, the greater the right part
sources magnitude, and the more significant the influence
of the charge exchange on the flow.

To perform a complete parametric study is unfeasible because
even a single calculation is time-consuming. This work focuses
on the dependence of the solution on the Knudsen number.
Physically, variation of this dimensional parameter (with simul-
taneous keeping of all other parameters) means variation in the
mass loss of the star Ṁ� (by changing the number density of the
stellar wind).

A fairly wide range of values of Kn∞ from 10−4 to 102 is pre-
sented in this paper. The other three parameters are fixed and
their values are chosen to be close to those of the heliosphere:
χ = 36.2, η = 3, M∞ = 1.97. For heliospheric parameters, the
Kn∞ = 0.43 (np,∞ = 0.073 cm−3, V∞ = 26.4 × 105 cm/s, T∞ =
6500 K, np,E = 7.3 cm−3, VE = 375 × 105 cm/s), L= 319 AU.

2.2 Numerical approach

This subsection briefly describes the numerical methods to solve
the problem. Our approach consists of two fundamentally differ-
ent parts that are solved sequentially within the framework of the
global iterations. The first part involves the numerical solution of
the system of Equations (1), assuming that the momentum and
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Figure 2. Dimensionless distance from the star to the discontinuity surface on the X-axis (upwind) for various values of the Knudsen number. The internal shock wave (TS) is
marked in red, the astropause (AP) – in blue, and the external shock wave (BS) – in black. Horizontal dotted lines show the positions of the surfaces for the gas-dynamic solution.

energy sources on the right-hand sides of the equations can be
calculated by using the numerical solution of the kinetic equa-
tion obtained in the second part (for the first iteration the sources
are assumed to be zero). Then, using the plasma distributions
obtained in the first part, the kinetic Equation (2) is solved by the
Monte Carlo method, and newmomentum and energy sources are
obtained. The iterative process is repeated until the plasma and
atom distribution are fully established. Some details of the Monte
Carlo method can be found in Sobol (1973), and the Moscow
model algorithm can be found in Malama (1991).

To solve the System 1, the finite volume method was chosen,
described in detail in Godunov (1976). The system is solved by
the time-relaxation method. The Riemann problem at the bound-
aries of numerical cells is solved using both the approximate
HLLC solver (see Miyoshi & Kusano 2005) and the exact solver by
Godunov (1976). The minmod limiter (see Hirsch 1990, Formula
21.3.23a) is used to obtained linear interpolation of the gas param-
eters within a cell. The source terms (Q2, Q3) are calculated in
Monte Carlo code for Kn∞ > 0.05. For Kn∞ <= 0.05, the Monte
Carlo method may provide insufficient statistics for the sources,
so we calculate the average values of the number density, velocity,
and temperature of atoms in the computational cells by the Monte
Carlo method and then, employ the formulas for the source terms
obtained in the McNutt, Lyon, & Godrich (1998).

All calculations have been performed using a two-dimensional
computational grid that captures the main discontinuity sur-
faces: the termination shock (TS), the tangential discontinuity (i.e.
astropause, AP), and the bow shock (BS). The grid consists of
approximately 15 000 cells and its head region resembles a sphere.
An example of such a grid is shown in Figure 2, A of Izmodenov &
Alexashov (2015). In the inner shock layer between the TS and
AP, the number of cells along the radial direction is 30, while
in the outer shock layer and the super-sonic stellar wind region,
it is 40. In the interstellar medium, it is 35, with a finer reso-
lution towards BS. The number of cells in the angular direction

(from 0 to π) is 100. Additional test calculations were also per-
formed on a finer (2 times in each direction) grid to validate the
results.

The kinetic Equation (2) was solved also using the same grid.
However, since atoms move in three-dimensional space, the cells
for them are formed by rotating of two-dimensional cells around
the axis of symmetry. In this way, the kinetic sources were aver-
aged over azimuthal direction. The spatial extent of the grid in
dimensionless variables is 5.5 in the upwind direction, 4 in the
downwind direction, and 5.5 in the perpendicular direction. It
should be noted that the statistic of the Monte Carlo method lin-
early depends on the volume of the cells, so it is necessary to find
a balance in the grid resolution between gas dynamics and the
kinetic equation.

At the inlet boundaries, so-called rigid boundary conditions
are chosen for the plasma parameters, i.e. all parameters (density,
speed, and pressure) are fixed. So-called soft boundary condi-
tions were used at outlet boundaries (i.e. the derivatives of all
parameters are assumed to be zero). It has been verified in numer-
ical tests that the boundary conditions do not impose additional
disturbances on the flow.

2.3 Limiting solutions

It is quite natural to expect that the problem formulated above
has two limiting cases: Kn∞ → ∞ and Kn∞ → 0. In these cases,
the solution to the problem becomes simpler. In the case where
Kn∞ → ∞, atoms do not charge exchange with the charged com-
ponent. The sources of momentum (Q2) and energy (Q3) for the
plasma become zero (see System 6). As a result, we obtain a simple
gas dynamic solution for protons. We call this case the plasma gas
dynamic limit.

In the case of Kn∞ → 0, the mean-free path l is much
much smaller than the characteristic size L, so in any small
volume, the plasma and neutrals exchange their momenta and
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energy very effectively. Therefore, both velocities and temper-
atures of the components are identical in the entire helio-
sphere. In this case so-called effective gas approximation may be
employed. In this approximation a solve system of Equations (6)
for the mixture of plasma and atoms with the following bound-
ary conditions: ρ∞ = ρp,∞ + ρH,∞ (ρH =mp · nH), p∞ = (2np,∞ +
nH,∞)kBT∞. The parameters for the stellar wind do not change.
We call this case the effective gas limit. In the final solution, the
ratio of plasma and atom number densities is maintained, so it is
easy to separate protons from hydrogen: ρp = ρ · ρp,∞/ρ∞.

2.4 Local Knudsen number

Along with the Knudsen number Kn∞ defined in Subsection 2.1,
we can introduce local Knudsen numbers (or the local mean free
paths of an atom):

Kn= lex
L
, lex = VH

νex
,

νex = np
∫

u · σHP
ex (u) · fp(r,Vp)dVp, (10)

where νex is the charge-exchange rate, VH is the hydrogen atom
velocity. The local Knudsen number depends on the velocity of
the considered atom and on the local properties of the plasma.
Note that the dependence of the charge exchange rate on the local
plasma number density is linear.

Let us consider the local Knudsen number in the heliosphere
(or similar astrosphere) for an interstellar neutral atom moving
with the speed of the interstellar medium. In the undisturbed
LISM the local Knudsen number is equal to Kn∞. Due to heat-
ing and increased plasma number density in the outer shock layer
after passing through the BS, the mean free path of the interstel-
lar atom decreases by approximately four times. When the atom
enters the inner shock layer, the local Knudsen number imme-
diately increases by approximately ten times due to low plasma
number density. It then enters the region of the supersonic stellar
wind, the mean free path increases approximately two times, since
the plasma density in front of the TS is smaller than behind it. As
the atom approaches the star, solar wind number density increases
proportionally to the square of the distance to the star, reaching
high values. The mean free path at 1 AU decreases by 10 000 times
compared to the distant heliosphere. In fact, the atoms do not
reach such close distances but charge exchange earlier, forming an
atom-free zone.

It is worthwhile to note that the local mean free paths (and,
therefore, local Knudsen numbers) for newly created secondary
neutrals can be significantly different from those described above,
because of their different velocities. For example, the mean free
path of an atom of a third population (born in the outer shock
layer, see Section 3.2 for more information about populations) can
be five times shorter in the inner shock layer than for interstellar
atoms in this region. On the other hand, atoms of the first pop-
ulation (supersonic neutral wind) have eight times greater mean
free paths for the inner shock layer compared to interstellar atoms
in this region. These considerations highlight the complexity of
the problem and the importance of the kinetic description for tak-
ing into account all populations of atoms and their influence on a
particular flow region.

3. Results and discussion

3.1 Plasma parameters

In this section, we present results obtained in the frame of our
model. Fig. 2 is a kind of general summary of all results. It presents
the dimensionless distances from star to the three discontinuity
surfaces (TS, AP, and BS) along the X-axis (the upwind direction)
for various values of the Knudsen number. The dots represent the
results of the calculations. The value of Kn∞ ≈ 0.43 corresponds
to the case of the heliosphere. It is marked by the vertical green
line.

Horizontal dash and dash-dot lines correspond to the plasma
gas-dynamic and effective gas limits, respectively. Based on our
results, we were able to numerically determine the positions of the
discontinuity surfaces in the pure gas-dynamic case forM∞ = 1.97
and derive the following formula:

LS = k ·
√
0.78 · Ṁ�V0

4πρp,∞c2∞
, (11)

where k= 0.42, 0.56, 0.98 for LS = LTS, LAP, and LBS, respectively.
In principle, it is expected that the positions of the surfaces will
tend to these limits for large and small values of the Knudsen num-
bers. As seen in Fig. 2, the numerical solution reaches the upper
limit at Kn∞ = 102. This shows that for larger values of Knudsen
numbers, the influence of charge exchange becomes negligible and
the plasma gas dynamic limit can be used.

For the small values of the Knudsen number (Kn∞ ≤ 0.2), the
positions of the TS and AP approach those obtained in the effec-
tive gas limit. However, the position of the BS does not follow
this trend. Even for extremely small values of the Knudsen num-
ber (Kn∞ ∼ 10−4) the numerical solution does not converge to the
effective gas limit, due to the formation of a specific flow struc-
ture in the outer shock layer. We call this structure the HRL and
describe it in detail in Subsection 3.3. Additionally, the flow pat-
tern at extremely low values of Knudsen numbers is discussed in
Appendix A.

Note, that our model cannot accurately describe the solution
for values of Kn∞ < 10−4. The Monte Carlo method has com-
putational limitations and cannot handle mean free paths near
zero.

The dimensionless distances to the shocks and the astropause
increase monotonically with increasing Knudsen numbers. The
exception is the bow shock distance within the range of 10−1 ≤
Kn∞ ≤ 0.43, which is marked by a gray ellipse in Fig. 2. It is inter-
esting to note that for these values of Knudsen, the intensity of
the velocity and density jumps at the shock is extremely low. This
indicates that there is weakening of the bow shock, which will be
discussed further in Subsection 3.4.

Fig. 3 presents the plasma number density (panel A), pressure
(panel B), velocity magnitude (panel C), and temperature (panel
D) along the X-axis (upwind) for various values of the Knudsen
number. The black curve corresponds to the plasma-gas limit. For
this limit, the positions of TS, AP, and BS are marked in the fig-
ure (see panel A). For the plasma-gas limit, the maxima of the
number densities (panel A, black curve) are at the astropause for
both outer (i.e. between BS and AP) and inner (between TS and
AP) shock layers. However, as the Knudsen number decreases, the
maximum moves in the outer shock layer towards the bow shock.

https://doi.org/10.1017/pasa.2024.44 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.44


Publications of the Astronomical Society of Australia 7

0 0.2 0.4 0.6 0.8 1

0.01
2

5

0.1
2

5

1
2

0 0.2 0.4 0.6 0.8 1

2

5
0.1
2

5
1
2

5
10
2

5

0 0.2 0.4 0.6 0.8 1
0.1

2

5

1

2

5

10

2

0 0.2 0.4 0.6 0.8 1

5

1
2

5

10
2

5

100
2

gas dynamics

Plasma parameters

N
u

m
b

er
 d

en
si

ty

V
el

oc
it

y 
m

ag
n

it
u

d
e

P
re

ss
u

re

Te
m

p
er

at
u

re

TS

AP

BS

(a) (c)

(b) (d)

Figure 3. Dimensionless distributions of number density (A), pressure (B), velocity magnitude (C), and temperature (D) on the X-axis (upwind) for various values of the Knudsen
number.

For Kn∞ = 0.1 (orange curve) and below, the number density
decreases towards the astropause in almost the entire shock layer,
reaching its minimum at the astropause. We called this effect the
HRL of plasma. We observed HRL in the range of Knudson num-
bers: 10−4 ≤Kn∞ ≤ 0.1 (the rangemarked in yellow in Fig. 2). The
physical reasons for HRL are discussed in detail in Subsection 3.3
(also see schematic diagram in Fig. 1, B). The ratio of maxi-
mum and minimum number density in the outer shock layer
is quite strong, approximately 3.8 for Kn∞ = 0.01 (panel A, red
curve). On the contrary, in the inner shock layer, the number
density increases towards the astropause more strongly for smaller
Knudsen numbers.

Similar to density, the pressure has a maximum at the
astropause in plasma-gas limit (see Fig. 3, B, black curve). The
astropause is not visible in the pressure profile, since the pressures
from both sides are equal. It is located at X ≈ 0.56. In the outer
shock layer, the pressure maximum remains at the astropause for
all Knudsen numbers. In the inner shock layer, the maximum
pressure moves out of the astropause and approaches the TS at
Kn∞ ≤ 0.2 (green, orange, and red curves). It is worth noting that
for Kn∞ = 0.01 the pressure increases with the distance in the
supersonic stellar wind region starting at distances ≈ 0.05 (red
curve, panel B).

The velocity profiles (Fig. 3, C) demonstrate the decelera-
tion of the supersonic stellar wind before the TS. This effect

has long been known for the solar wind in the literature (see,
e.g., Izmodenov & Baranov 2006, Figure 4.3). The reason for
the deceleration is an effective loss of momentum as a result of
charge exchange. Interestingly, the greatest deceleration occurs at
Kn∞ ∼ 0.1− 0.2 (orange and green curves, panel C). At smaller
values of Kn∞ = 0.01, the atoms influence the plasma velocity only
in the immediate vicinity of the TS, causing weaker deceleration.

The temperature profiles (Fig. 3, D) are consistent with the den-
sity and pressure and with the equation of state of the plasma (pp =
2npkBTp). In a supersonic stellar wind, temperature increases
strongly towards the TS. This increase is due to charge exchange,
as (in our approach) newly injected protons (called pickup pro-
tons) have large thermal velocities in the stellar wind rest frame.
This effect is well-known for the heliosphere (see, e.g., Gazis
et al. 1994; Lazarus et al. 1995). The lower the Knudsen number,
the stronger the heating effect. It is also interesting to note the
peculiarity at Kn∞ = 0.01 (panel D, red curve) that the plasma
begins to heat up further from the star than at, for example,
with Kn∞ = 0.1 (panel E, orange curve). Nevertheless, the tem-
peratures near the terminal shock is almost the same. This is
because for small Knudsen numbers coupling between protons
and atoms is stronger and atoms do not penetrate closer to the
star. As a result, the atom-free zone appears (see details of the
atomic distribution in Subsection 3.2). It is worthwhile to note
that the strong increase in the temperature of the solar wind
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Figure 4. Number density of each population of hydrogen atoms for different values of the Knudson number on the X-axis (upwind). Values are dimensionless for hydrogen
concentration in LISM.

appeared in the so-called one-fluid approach with all charge
components (electrons, original solar protons, and pick-up pro-
tons) being treated as a single fluid. For the heliosphere, how-
ever, the pick-up protons do not completely assimilate, so their
temperature differs from that of the solar winds protons (see,
for example, Malama, Izmodenov, & Chalov 2006; Korolkov &
Izmodenov 2022).

In the outer shock layer, the temperature increases towards
the astropause. This occurs more intensely at lower Knudsen
numbers. The plasma in the outer astrosheath is heated by the
action of ENA, which causes the appearance HRL of plasma (see
Subsection 3.3).

3.2 Atom parameters

In this section, we present the distributions of atom number den-
sities in astrospheres. To better understand the charge exchange
process, we divide all atoms into four populations according to
Izmodenov (2000). Population 4 represents interstellar hydrogen
or atoms born in the supersonic interstellar medium. Population 3
is atoms born in the outer astrosheath. Population 2 is atoms born

in the inner astrosheath (ENA). Population 1 is atoms born in the
supersonic stellar wind (aka neutral stellar wind).

Fig. 4 shows the distributions of the number density of each
Population (1–4) of atoms for different values of the Knudsen
number on the X-axis (upwind). First of all, let us pay attention
to the distribution of atoms in the heliosphere case (Kn∞ = 0.43,
yellow curves). In this case, the bow shock is located at the distance
X ≈ 0.65. The number density of Population 4 (panel D) remains
almost constant over a large distance (X > 0.9), and increases
slightly before the bow shock in the region 0.65≤ X ≤ 0.9. This
slight increase in number density in a small region, whose length
is on the order of the atom mean free path, is primarily due to
the atoms of Population 3 that fly outward from the outer shock
layer. Strictly speaking, ENAs also penetrate this region, but, as will
be shown below, their number density is extremely low at these
distances, so their contribution to the number density increase
is negligible, what cannot be said about their contribution to the
source of momentum and energy for the plasma, due to their high
energies. Gruntman (1982) assessed the effect of ENA on plasma
in the supersonic interstellar medium and showed the possibility
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of shockless transition (we discuss this in Subsection 3.4). Note
that the increase in Population 4’s number density can be con-
sidered as a precursor for the hydrogen wall. We will discuss this
next.

After passing through the bow shock, the fourth population
begins to effectively decrease in the outer shock layer (0.35≤ X ≤
0.65, panel D, yellow curve) due to charge exchange. As a result,
atoms of Population 3 are born in this region (panel C). These
atoms form the hydrogen wall, predicted by Baranov, Lebedev, &
Malama (1991) and detected in the direction of α Cen (Linsky &
Wood 1996) on the Hubble Space Telescope.

After crossing the astropause the atoms of Populations 3 and 4
enter the inner shock layer (0.23≤ X ≤ 0.35). In this case, atoms
of Population 2 are originated (Fig. 4, B). We also note that charge
exchange in the outer shock layer occurs more efficiently than in
the inner one (this can be seen, for example, from the slope of the
yellow curve in panel D). It means that the local Knudsen number
(see Subsection 2.4) in the outer shock layer is significantly higher
than one in the inner layer. This is due to the low number density
of plasma in the inner astrosheath.

Atoms of Population 1 are born in the supersonic solar wind
(X ≤ 0.23, panel A). Their maximum number density in the helio-
spheric case is achieved at a distance X ≈ 0.03. With decreasing
distance to the star, the plasma number density increases as the
square of the distance (np ∼ 1/r2), as a result of which the mean
free path of atoms similarly decreases. This leads to the fact that
at a certain distance from the star, all atoms undergo charge
exchange, and newborn atoms (neutral solar wind) spread out
from the star. Thus, near the star, there is a region without atoms,
which we call the atom-free zone.

Now, we will explore how the distribution of the populations
depends on the Knudsen number. Firstly, the number density of
atoms in Population 4 (panel D) inside the astrosphere becomes
smaller as the Knudsen number decreases. Their number density
also decreases in the outer astrosheath. However, the increase in
number density before the bow shock (a precursor to the hydro-
gen wall, X ≈ 0.62) becomes significantly larger. For example, for
Kn∞ = 0.01, the increase in density is more than 20% of the inter-
stellar value. The width of this region becomes narrower, which
is quite expected since the width is on the order of the mean free
path of an atom, which decreases with decreasing Knudsen num-
ber. Note that for the case of Kn∞ = 0.01, almost all of Population
4 undergoes charge exchange after passing through the bow shock.

The height of the hydrogen wall (panel C) increases with
decreasing Knudsen number, which was predicted by the pre-
cursor of the hydrogen wall. The number density of atoms from
3rd population that penetrated the astrosphere (at X < 0.35) also
decreases. The number density of atoms of Population 2 (panel
B) becomes larger in the inner astrosheath. In the supersonic stel-
lar wind for Kn∞ ≥ 0.1, the atom number density of Population
2 also increases with decreasing Knudsen number. However, at
Kn∞ = 0.01 (panel B, black curve) there are quite a few of them
in this area, which is explained by more efficient charge exchange,
and the atoms do not approach the star as closely. This indicates
an expansion of the atom-free zone.

The dependence of Population 1 number density (panel A)
with Knudsen number is essentially nonlinear. At first, with a
decrease in the Knudsen number, the number density increases
(0.8≤Kn∞ ≤ 24), since the number of charge exchange events
increases. Then it begins to decrease because the most of
atoms do not reach the supersonic stellar wind, experiencing

charge exchange in the inner astrosheath (and atom free-zone
expands).

It should be noted that we were unable to reach a limit solution
(the effective gas limit). In Appendix A, the solution for Kn∞ =
10−4 is discussed in detail. This is the lowest value of the Knudsen
number that we have managed to achieve.

3.3 Heated rarefied layer (HRL) in the outer astrosheath

In this subsection, we discuss the effect of the displacement of the
maximum of the number density in the outer shock layer away
from the astropause towards the bow shock with, as the Knudsen
number decreases (see Fig. 3, A, red curve, and diagram of the
effect in Fig. 1, B).

The plasma flow in the outer shock layer undergoes changes
due to the momentum and energy source terms within the System
of Equations (6). Since four populations of atomic hydrogen are
involved in the interaction with plasma, and the populations have
different properties, understanding the roles of each population
becomes a complex task. We conducted specific research within
the framework of a toy model (Korolkov & Izmodenov 2024)
and explored the impact of various sources of momentum and
energy upon the flow structure in a separate shock layer. The study
allowed us to determine that heating of the shock layer leads to the
displacement of the maximum plasma number density towards
the shock wave. Conversely, cooling increases the number den-
sity near the astropause. Momentum sources directly influence the
pressure distribution and the width of the shock layer, with almost
no effect on the number density.

Applying the study mentioned above to our problem, we con-
clude that, for Kn∞ ≤ 0.1, the main effect is connected to hot
atoms of the Population 2 described above (ENAs). Atoms of this
population penetrate the outer shock layer and charge exchange
with protons, providing a strong heat source. The greatest heating
occurs at the astropause, leading to the redistribution of plasma
density profiles and the formation of a HRL of plasma in the outer
astrosheath.

For larger Knudsen numbers, this effect does not completely
disappear but is localized in a small layer near the astropause
(see, for example, Fig. 3, A, Kn∞ = 0.8, blue curve, slight decrease
in number density near the astropause at X ≈ 0.36). Such a
slight decrease in density is observed by Voyagers (see Figure 36,
Richardson et al. 2022), and It is called the PlasmaDepletion Layer
(PDL). Although the physical nature of the PDL is still unknown,
we believe that the ENAs are partially responsible. This means that
the PDL is (or is part of) a special case of the HRL described in this
subsection.

Strong plasma density depletion towards the astropause has
been obtained for Kn∞ � 0.15. These small Knudsen numbers cor-
respond to astrospheres that are approximately 3 times larger than
heliosphere. Therefore, our modelling predicts a HRL in the outer
astrosheaths for stars with large astrospheres. If the other model
parameters are similar to those in heliospheric, the mass loss rate
of the star should be at least 9 times greater than solar one. In
this scenario, the HRL would be very pronounced and could be
observed.

Note that discussed in this subsection HRL of plasma has
not a one-dimensional nature. Displacement of the maximum of
the number density in the outer shock layer occurs throughout
the entire layer, even far from the axis of symmetry. Fig. B1 in
Appendix B demonstrates this conclusion.
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3.4 Weakening of the bow shock

In this subsection, we explore the nonlinear behavior of the bow
shock with the Knudsen number within a range of 0.1–0.43 (Fig. 2,
highlighted in gray ellipse). The shock wave distance for this range
is greater than the distance for Kn∞ = 0.8, although in all other
ranges of the Knudsen number, it decreases monotonically with
decreasing Kn∞.

Fig. 5 shows the number density distributions in the vicin-
ity of the bow shock for various values of the Knudsen number
in the range: [0.05–0.8]. The positions of the shock waves are
additionally marked with vertical dotted lines. The compression
ratio (the ratio of number densities downstream and upstream
the shock wave) is marked with colored inscriptions for each
wave. The intensity of bow shock is rather weak. For Kn∞ = 0.2
compression ratio is equal to 1.08 and this corresponds to themin-
imum value that we found. It becomes even possible to speculate
on a shockless transition. For values Kn∞ = 0.1 and 0.43 the inten-
sity is slightly higher, but still weak, so the position of the shock
wave is further from the star. For Knudsen numbers outside this
range, the intensity of shock waves increases again (see Fig. 3). The
weakening of the bow shock is the reason for the slight movement
of the shock wave further from the star in the Kn∞ range from 0.1
to 0.43. Zank et al. (2013) showed the necessary condition for a
shockless transition:

Q3 = γ

γ − 1
V ·Q2. (12)

It is also fulfilled in our case, however, for other Knudsen numbers
(for example, Kn∞ = 3) the expression (Q3 − γ /(γ − 1) V ·Q2)
also changes the sign at the shock wave, although the shock wave
is still present. Therefore, this condition is only necessary, but not
sufficient. So far, it is only clear that the intensity of the wave
decreases due to the influence of populations 1–3, which penetrate
back into the interstellar medium and affect the incoming flow

(this is so-called the Gruntman 1982 effect). Note that for the solar
value of Kn∞ = 0.43 the bow shock is also strongly weakened.
Fig. B1 in Appendix B demonstrates this conclusion.

4. Summary

We have carried out a parametric study of the interaction of the
stellar wind with the partly ionized interstellar medium, taking
into account the charge exchange of protons on interstellar hydro-
gen atoms. The simulation was carried out in a wide range of
Knudsen number parameters (10−4–102). Briefly, the results of the
work can be summarized as follows:

(1) Without considering the influence of atoms (Kn∞ →
∞, plasma-gas limit), the distances from the star to the
discontinuity surfaces for M∞ = 1.97 (γ = 5/3) can be
calculated using Equation (11). However, the lower the
Knudsen number the more effective the charge exchange
process, that leads to a decrease in the distances to discon-
tinuity surfaces. Fig. 2 shows the value of the coefficient
k (dimensionless distance) for various Knudsen numbers.
It can be concluded that the maximal decreases of dis-
tances of the bow shock, astropause, and the TS compared
to the plasma-gas limit are ≈ 36%, ≈ 47%, and ≈ 52%,
respectively. Additionally, for astrospheres with Kn∞ ≥
100, the influence of the charge exchange process can be
neglected.

(2) For Knudsen numbers Kn∞ ≤ 0.1, intense localized heat-
ing occurs outside the astropause, due to heat flow from
the interior of the AP, provided by charge exchange-
created neutrals (ENAs) that flow across the AP and then
charge exchange again. This causes the formation of the
HRL of plasma in the outer shock layer (see Fig. 1, B). We
predict this phenomenon in stars with astrospheres three
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or more times larger than the heliosphere. In addition, the
HRL cannot be described in terms of single-fluid models,
therefore it is ultimately necessary to employ a kinetic-
gasdynamic approach for Knudsen number in the range
of 10−4 <Kn∞ < 102 (for smaller values of the Knudson
number, these conclusions probably also remain valid). In
addition to the kinetic approaches, multi-fluid approaches
can also be used (see the discussion of approaches in
Section 1). However, the possibility of describing a HRL
in this case has not yet been studied.

(3) For the Knudsen number in the range of 0.1–0.5 (includ-
ing the heliospheric value ≈ 0.43), we detect a weakening
of the bow shock intensity. In this case, the position of
weak shock wave is slightly greater (≈ 6%) than at Kn∞ =
0.8.

Further research may be devoted to parametric studies of the
influence of charge exchange on the structure of astrospheres by
varying χ , M∞, and the number density of interstellar hydro-
gen, as well as estimation of astrospheric parameters based on
the visible positions of discontinuity surfaces and/or analysis of
absorption profile of radiation from various stars.

Acknowledgement. The research is carried out using the equipment of the
shared research facilities of HPC Resources of the Higher School of Economics
(Kostenetskiy, Chulkevich, & Kozyrev 2021).

Data availability statement. The data underlying this article will be shared
on reasonable request to the corresponding author.

Competing interests. None.

References

Alexashov, D., & Izmodenov, V. 2005, AAP, 439, 1171. https://doi.org/10.
1051/0004-6361:20052821

Alouani-Bibi, F., Opher, M., Alexashov, D., Izmode-nov, V., & Toth, G. 2011,
APJ, 734, 45. https://doi.org/10.1088/0004-637X/734/1/45. arXiv: 1103.3202
[astro-ph.SR]

Baranov, V. B., Ermakov, M. K., & Lebedev, M. G. 1982, Akademiia Nauk SSSR
Izvestiia Mekhanika Zhidkosti i Gaza, 122

Baranov, V. B., Izmodenov, V. V., & Malama, Y. G. 1998, JGR, 103, 9575.
https://doi.org/10.1029/97JA03662

Baranov, V. B., & Krasnobaev, K. V. 1971, CR, 9, 568
Baranov, V. B., Krasnobaev, K. V., & Kulikovskii, A. G. 1970, Akademiia Nauk

SSSR Doklady, 194, 41
Baranov, V. B., Lebedev, M. G., & Malama, IU. G. 1991, APJ, 375, 347.

https://doi.org/10.1086/170194
Baranov, V. B., Lebedev, M. G., & Ruderman, M. S. 1979, APSS, 66, 441.

https://doi.org/10.1007/BF00650016
Baranov, V. B., & Malama, YU. G. 1993, JGR, 98, 15157. https://doi.org/10.

1029/93JA01171
Baranov, V. B., & Ruderman, M. S. 1979, Pisma v Astronomicheskii Zhurnal,

5, 615
Bera, R. K., Fraternale, F., & Pogorelov, N. V. 2024, JPhCS, 2742, 012010. IOP.

https://doi.org/10.1088/1742-6596/2742/1/012010
Bertaux, J. L., & Blamont, J. E. 1971, AAP, 11, 200
Fahr, H. J. 2000, APSS, 274, 35. https://doi.org/10.1023/A:1026571202117
Florinski, V., Pogorelov, N. V., Zank, G. P., Wood, B. E., & Cox, D. P. 2004,

APJ, 604, 700. https://doi.org/10.1086/382017
Gazis, P. R., Barnes, A., Mihalov, J. D., & Lazarus, A. J. 1994, JGR, 99, 6561.

https://doi.org/10.1029/93JA03144
Godunov, S. K. 1976, Nauka. https://books.google.ru/books?id=HnQZAAA

AIAAJ

Gruntman, M. A. 1982, SvAL, 8, 24
Heerikhuisen, J., Florinski, V., & Zank, G. P. 2006, JGR (Space Physics), 111,

A06110. https://doi.org/10.1029/2006JA011604
Hirsch, C. 1990, Numerical Computation of Internal and External Flows, vol.

2, Computational Methods for Inviscid and Viscous Flows
Izmodenov, V., Alexashov, D., & Myasnikov, A. 2005, AAP, 437, L35.

https://doi.org/10.1051/0004-6361:200500132
Izmodenov, V. V. 2000, APSS, 274, 55. https://doi.org/10.1023/A:

1026579418955
Izmodenov, V. V., & Alexashov, D. B. 2015, ApJS, 220, 32. https://doi.org/10.

1088/0067-0049/220/2/32
Izmodenov, V. V., & Baranov, V. B. 2006, ISSI SRS, 5, 67
Kobulnicky, H. A., et al. 2016, ApJS, 227. https://doi.org/10.3847/0067-

0049/227/2/18
Korolkov, S. D., & Izmodenov, V. V. 2021, MNRAS, 504, 4589. https://doi.

org/10.1093/mnras/stab1071
Korolkov, S. D., & Izmodenov, V. V. 2022, AAP, 667, L5. https://doi.

org/10.1051/0004-6361/202244523. arXiv: 2210.15032 [astro-ph.SR].
Korolkov, S. D., & Izmodenov, V. V. 2024, MNRAS, 528, 2812. https://doi.

org/10.1093/mnras/stae187. arXiv: 2401.07537 [astro-ph.SR].
Korolkov, S. D., Izmodenov, V. V., & Alexashov, D. B. 2020, JPhCS, 1640,

012012. https://doi.org/10.1088/1742-6596/1640/1/012012
Kostenetskiy, P. S., Chulkevich, R. A., & Kozyrev, V. I. 2021, JPhCS, 1740,

012050. https://doi.org/10.1088/1742-6596/1740/1/012050
Lazarus, A. J., Belcher, J. W., Paularena, K. I., Richardson, J. D., & Steinberg, J.

T. 1995, ASR 16, 77. https://doi.org/10.1016/0273-1177(95)00317-8
Lindsay, B. G., & Stebbings, R. F. 2005, JGR (Space Physics), 110, A12213.

https://doi.org/10.1029/2005JA011298
Linsky, J. L., &Wood, B. E. 1996, APJ, 463, 254. https://doi.org/10.1086/177238
Malama, Y. G., Izmodenov, V. V., & Chalov, S. V. 2006, AAP, 445,

693. https://doi.org/10.1051/0004-6361:20053646. arXiv: astro-ph/0509329
[astro-ph].

Malama, YU. G. 1991, APSS, 176, 21. https://doi.org/10.1007/BF00643074
McNutt, R. L., Lyon, J., & Godrich, C. C. 1998, JGR, 103. https://doi.

org/10.1029/97JA02143
Miyoshi, T., & Kusano, K. 2005, JCPh, 208, 315. https://doi.org/10.1016/

j.jcp.2005.02.017
Müller, H.-R., Florinski, V., Heerikhuisen, J., Izmodenov, V. V.,

Scherer, K., Alexashov, D., & Fahr, H.-J. 2008, AAP, 491, 43.
https://doi.org/10.1051/0004-6361:20078708. arXiv: 0804.0125 [astro-ph]

Opher, M., Drake, J. F., Zieger, B., Zieger, M., & Gombosi, T. I. 2015, ApJL,
800, L28. https://doi.org/10.1088/2041-8205/800/2/L28

Pauls, H. L., Zank, G. P., & Williams, L. L. 1995, JGR, 100, 21595.
https://doi.org/10.1029/95JA02023

Pogorelov, N. V., Borovikov, S. N., Zank, G. P., & Ogino, T. 2009, APJ, 696,
1478. https://doi.org/10.1088/0004-637X/696/2/1478

Pogorelov, N. V., Heerikhuisen, J., Roytershteyn, V., Burlaga,
L. F., Gurnett, D. A., & Kurth, W. S. 2017, APJ, 845, 9.
https://doi.org/10.3847/1538-4357/aa7d4f arXiv:1706.09637 [astro-ph.SR].

Pogorelov, N. V., Heerikhuisen, J., Zank, G. P., Mitchell, J. J., & Cairns, I. H.
2009, ASR, 44, 1337. https://doi.org/10.1016/j.asr.2009.07.019

Pogorelov, N. V., Suess, S. T., Borovikov, S. N., Ebert, R. W., McComas, D. J.,
& Zank, G. P. 2013, APJ, 772, 2. https://doi.org/10.1088/0004-637X/772/1/2

Pogorelov, N. V., Zank, G. P., & Ogino, T. 2004, APJ, 614, 1007.
https://doi.org/10.1086/423798

Pogorelov, N. V., Zank, G. P., & Ogino, T. 2006, APJ, 644, 1299.
https://doi.org/10.1086/503703

Richardson, J. D., Burlaga, L. F., Elliott, H., Kurth, W. S., Liu, Y. D., & von
Steiger, R. 2022, SSR, 218, 35. https://doi.org/10.1007/s11214-022-00899-y

Sobol, I. M. 1973, Nauka. https://books.google.ru/books?id=qWIVAQAAIAAJ
Thomas, G. E., & Krassa, R. F. 1971, AAP, 11, 218
Wallis, M. K. 1975, Natur, 254, 202
Wang, C., & Belcher, J. W. 1998, JGR, 103, 247. https://doi.org/10.1029/

97JA02773
Zank, G. P., Heerikhuisen, J., Wood, B. E., Pogorelov, N. V., Zirnstein, E.,

& McComas, D. J. 2013, APJ, 763, 20. https://doi.org/10.1088/0004-637X/
763/1/20

https://doi.org/10.1017/pasa.2024.44 Published online by Cambridge University Press

https://doi.org/10.1051/0004-6361:20052821
https://doi.org/10.1088/0004-637X/734/1/45
https://doi.org/10.1029/97JA03662
https://doi.org/10.1086/170194
https://doi.org/10.1007/BF00650016
https://doi.org/10.1029/93JA01171
https://doi.org/10.1029/93JA01171
https://doi.org/10.1088/1742-6596/2742/1/012010
https://doi.org/10.1023/A:1026571202117
https://doi.org/10.1086/382017
https://doi.org/10.1029/93JA03144
https://books.google.ru/books?id$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}HnQZAAAAIAAJ
https://books.google.ru/books?id$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}HnQZAAAAIAAJ
https://doi.org/10.1029/2006JA011604
https://doi.org/10.1051/0004-6361:200500132
https://doi.org/10.1023/A:1026579418955
https://doi.org/10.1023/A:1026579418955
https://doi.org/10.1088/0067-0049/220/2/32
https://doi.org/10.1088/0067-0049/220/2/32
https://doi.org/10.3847/0067-0049/227/2/18
https://doi.org/10.3847/0067-0049/227/2/18
https://doi.org/10.1093/mnras/stab1071
https://doi.org/10.1093/mnras/stab1071
https://doi.org/10.1051/0004-6361/202244523
https://doi.org/10.1051/0004-6361/202244523
https://doi.org/10.1093/mnras/stae187
https://doi.org/10.1093/mnras/stae187
https://doi.org/10.1088/1742-6596/1640/1/012012
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1016/0273-1177(95)00317-8
https://doi.org/10.1029/2005JA011298
https://doi.org/10.1086/177238
https://doi.org/10.1051/0004-6361:20053646
https://doi.org/10.1007/BF00643074
https://doi.org/10.1029/97JA02143
https://doi.org/10.1029/97JA02143
https://doi.org/10.1016/j.jcp.2005.02.017
https://doi.org/10.1016/j.jcp.2005.02.017
https://doi.org/10.1051/0004-6361:20078708
https://doi.org/10.1088/2041-8205/800/2/L28
https://doi.org/10.1029/95JA02023
https://doi.org/10.1088/0004-637X/696/2/1478
https://doi.org/10.3847/1538-4357/aa7d4f
https://doi.org/10.1016/j.asr.2009.07.019
https://doi.org/10.1088/0004-637X/772/1/2
https://doi.org/10.1086/423798
https://doi.org/10.1086/503703
https://doi.org/10.1007/s11214-022-00899-y
https://books.google.ru/books?id$=$\gdef  \ignorespaces {$=$}\gdef no{no}\gdef yes{yes}qWIVAQAAIAAJ
https://doi.org/10.1029/97JA02773
https://doi.org/10.1029/97JA02773
https://doi.org/10.1088/0004-637X/763/1/20
https://doi.org/10.1088/0004-637X/763/1/20
https://doi.org/10.1017/pasa.2024.44


12 S. Korolkov and V. Izmodenov

Appendix A. How far is the effective gas limit?

In this Appendix, we discuss the results of simulations with
Kn∞ ≤ 0.2, including the lowest Knudsen numbers that we were
able to achieve (Kn∞ = 10−4). It is also discussed how close we are
to the effective gas limit.

Fig. A1 shows the distributions of the number density of
Population 1–4 for different values of the Knudsen number at the
X-axis (upwind) in the range of values: 10−4 ≤Kn∞ ≤ 0.2. Some
values of the Knudsen number repeat Fig. 4. They are presented
here just to compare.

The solution for Kn∞ = 10−4 (Fig. A1, red curve) is of greatest
interest. In this case, there are no atoms of Population 1 (panel A,
red curve). Moreover, the mean free path is so small that atoms
of Population 2 are observed only in a narrow layer near the
astropause (panel B, red curve, X ≈ 0.3). This layer consists of
atoms that are born as a result of the charge exchange of atoms of
Population 3, which flew into the inner shock layer from the region
located in proximity to the astropause in the outer astrosheath (in

the vicinity of the stagnation point). Atoms of Population 3 (panel
C) have parameters that are close to those of the plasma (the mean
velocity and temperature are the same, and the number density is
three times higher, since η = 3 for the selected parameters). For
distributions of Population 4 (panel D, red curve), a thin layer of
increased number density is observed near the bow shock (this is
a precursor of the hydrogen wall, see Subsection 3.2).

Although visually it seems (Fig. A1, panel B, red curve) that
there are almost no atoms of Population 2 in the outer shock
layer, the sources (Q2, Q3) in the System 6 have a factor of
1/Kn∞, and therefore remain significant. This influence consists
of heating the external heliosheath, and this heating is greater the
closer the region is to the astropause. This heating is responsible
for the formation of a HRL of plasma in the outer astrosheath
(see Subsection 3.3). Thus, we assume that in the range 10−6 <

Kn∞ < 102 it is necessary to solve the Boltzmann kinetic
equation to correctly describe the dynamics of hydrogen in
astrospheres.
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Figure A1. Number density of each population of hydrogen atoms for different values of the Knudsen number on the X-axis (upwind). Values are dimensionless for hydrogen
concentration in LISM.
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Figure B1. The streamlines and isolines of density (first column), pressure (second column), and theMach number (third column) for different values of the Knudsen number. The
density outflow to the bowshock is clearly visible for Kn= 0.01. Density and pressure are dimensionless to the values in LISM.

Appendix B. 2D plasma flow

This Appendix provides 2D contour plots of the results from the
simulations discussed in the main text.

Fig. B1 presents 2D flow patterns, number density (1), pres-
sure (2), and Mach number (3) for different values of the Knudsen
number. The color scale is specifically chosen to be the same
for all panels. All panels have the same spatial range, making it
easier to compare the astrospheric sizes. The color bars are uni-
form, which may slightly reduce the level of detail, but it does
make it easier to compare and determine the magnitude of flow

parameters. Additionally, the positions of the surfaces and stream-
lines are marked. The HRL of plasma (see Subsection 3.3) in the
outer astrosheath is clearly visible at Kn∞ ≤ 0.1 (1-D and 1-E,
0.3≤ X ≤ 0.65).

The weakening of the bow shock (see Subsection 3.4) is
clearly visible on the Mach number isolines for the heliospheric
case (Kn∞ = 0.43, 3C). Here we can also determine the area of
influence of atoms of populations 1-3 on the supersonic interstel-
lar flow. It extends to values X ≈ 1.
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