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Two-dimensional compressible flows in radial equilibrium are investigated in the ideal
dilute-gas regime and the non-ideal single-phase regime close to the liquid—vapour
saturation curve and the critical point. Radial equilibrium flows along constant-curvature
streamlines are considered. All properties are therefore independent of the tangential
streamwise coordinate. A differential relation for the Mach number dependency on
the radius is derived for both ideal and non-ideal conditions. For ideal flows, the
differential relation is integrated analytically. Assuming a constant specific heat ratio y,
the Mach number is a monotonically decreasing function of the radius of curvature for
ideal flows, with y being the only fluid-dependent parameter. In non-ideal conditions,
the Mach number profile also depends on the total thermodynamic conditions of the
fluid. For high molecular complexity fluids, such as toluene or hexamethyldisiloxane, a
non-monotone Mach number profile is admissible in single-phase supersonic conditions.
For Bethe—Zel’ dovich—Thompson fluids, non-monotone behaviour is observed in subsonic
conditions. Numerical simulations of subsonic and supersonic turning flows are carried
out using the streamline curvature method and the computational fluid dynamics software
SU2, respectively, both confirming the flow evolution from uniform flow conditions to the
radial equilibrium profile predicted by the theory.
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1. Introduction

Flows near the liquid—vapour saturation curve, the critical point, and in the supercritical
regime depart significantly from the gas dynamics typical of dilute-gas thermodynamic
states. Quantitative differences, referred to as non-ideal thermodynamic effects, are
observed due to the departure from the well-known ideal-gas thermodynamics. Non-ideal
thermodynamic effects are heralded by the compressibility factor Z = Pv/RT, with P

F Email address for correspondence: alberto.guardone @polimi.it

© The Author(s), 2023. Published by Cambridge University Press 975 A43-1

L))

Check for
updates


mailto:alberto.guardone@polimi.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.892&domain=pdf
https://doi.org/10.1017/jfm.2023.892

https://doi.org/10.1017/jfm.2023.892 Published online by Cambridge University Press

P. Gajoni and A. Guardone

pressure, v specific volume, R gas constant and 7 temperature, being different from unity.
For ideal gases, Pv = RT, hence Z = 1. Possibly, qualitative differences with respect to
ideal gas dynamics, termed non-ideal gasdynamic effects, are observed, depending on the
value of the so-called fundamental derivative of gas dynamics I” introduced by Thompson

(1971):
v [9%P c ( dc
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In this expression, s is the specific entropy per unit mass, and ¢ = /(dP/dp); is the speed
of sound, with p = 1/v the density. Different gasdynamic regimes can be defined based on
the value of I" (Colonna & Guardone 2006). Flows developing through thermodynamic
states featuring I" > 1 exhibit the textbook gasdynamics of ideal gases. By contrast, if
the flow evolution encompasses states with I" < 1, then possibly qualitatively different
non-ideal gasdynamic effects are observed. The most unconventional phenomena include,
for I' < 1, the Mach number decrease in expanding steady supersonic flows in, for
instance, nozzles and around rarefactive ramps (see e.g. Cramer & Best 1991; Cramer
& Crickenberger 1992; Romei et al. 2020) and the increase of the Mach number across
oblique shock waves (see Vimercati, Gori & Guardone 2018). Expansion shock waves and
split waves are admissible in the non-classical regime (see e.g. Thompson & Lambrakis
1973; Menikoff & Plohr 1989), where I" < 0. State-of-the-art thermodynamic models (see
Colonna et al. 2009; Thol et al. 2016, 2017) predict values of I" < 1 in the vapour-phase
region close to saturation for fluids with high molecular complexity, i.e. so-called high
molecular complexity fluids such as toluene (see Thompson 1971). Fluids with an even
higher molecular complexity are expected to allow for I” < 0 states in the vapour phase,
and are referred to as Bethe—Zel’dovich-Thompson (BZT) fluids (Bethe 1942; Zel’dovich
1946; Thompson 1971). Unfortunately, no experimental evidence of the occurrence of
I' < 0 is available yet (see Fergason, Guardone & Argrow 2003; Mathijssen et al. 2015).

The present study investigates the two-dimensional compressible fluid dynamics of
adiabatic isentropic flows in radial equilibrium in both ideal and non-ideal conditions,
including non-classical cases. The flow evolves from uniform, parallel flow conditions.
With reference to figure 1, in two-dimensional compressible flows in radial equilibrium,
all quantities are independent of the angular coordinate 6. In particular, streamlines have a
constant curvature for each value of the radial coordinate r. In the present approximation,
the effect of viscosity and thermal conductivity is not accounted for in order to focus
on isentropic non-ideal gasdynamic effects; see § 3.3 for the limitations of the present
study. Under these assumptions, the only admissible non-ideal gasdynamic effects are the
non-monotone behaviour of the Mach number and the speed of sound along isentropic
expansions and compressions. The occurrence of non-ideal thermodynamic effects implies
that the flow evolution depends on stagnation conditions.

Planar compressible flows in radial equilibrium, examined in the present work, can
illustrate local features of steady flows along curved streamlines. Compressible flows
in curved ducts and channels are found in diverse industrial applications. Several
studies presented simulations and experimental observations of the flow evolution within
curved and S-shaped ducts for ideal gases (see e.g. Vakili er al. 1983; Harloff er al.
1993; Crowe & Martin 2015; Sun & Ma 2022). In many applications, however, the
thermodynamic operating conditions require accounting for complex thermodynamic
models, and entail the possibility of observing thermodynamic and gasdynamic non-ideal
effects. For example, in turbomachinery applications, turbines in organic Rankine cycle
engines operate partially in the non-ideal regime (see e.g. Talluri & Lombardi 2017;
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Romei et al. 2020). Also, compressors of supercritical CO, (sCO2) power plants operate
with the fluid in highly non-ideal thermodynamic conditions (Angelino 1968; Toni et al.
2022). The quantification of non-ideal effects due to curvature, albeit within the present
very simplified setting, can help us to understand how non-ideality affects the flow
occurring in curved turbine vanes. To the authors’ knowledge, no contributions exposing
and quantifying non-ideal gasdynamic effects for flows due to streamline curvature
are available in the open literature, possibly due to the complexity of the whole flow
field within the turbomachinery. Additional applications where flow curvature plays an
important role include heat exchangers of sCO, power plants (White et al. 2021) and
coolers of supercritical heat pumps, curved channels of safety relief valves (Dossena et al.
2013), nozzles for rapid expansion of supercritical solutions (Debenedetti et al. 1993)
and wind tunnel turning vanes operating in non-ideal conditions (Anders, Anderson &
Murthy 1999). A clear understanding and quantification of the possible consequences of
non-ideality in flows subjected to curvature is therefore crucial due to the large number of
applications found in industry, and could be important for improving the design procedures
of such devices.

In the present study, a simple two-dimensional flow in the radial-tangential plane is
considered to isolate and quantify the occurrence of non-ideal gasdynamic effects in
the radial direction, separately from viscosity, three-dimensional effects and geometrical
complexity. The fluid motion occurs along curved streamlines with constant radial
coordinate. The present effort complements the work of Romei et al. (2020) addressing
non-ideal effects in the streamwise direction for a two-dimensional turbine cascade
configuration, due to curvature and area variation.

Note that the term radial equilibrium is used here with a different meaning with
respect to its more common usage in the context of turbomachinery (Smith 1966). Radial
equilibrium theory in turbomachinery describes the variation of thermodynamic quantities
and flow velocity in an axial stator-to-rotor or interstage gap, as a result of the fluid
rotation about the axis of the machine. The main flow is in the axial direction, and it
is depicted in the axial-radial or meridional plane. To underline the difference between
the present two-dimensional results, where the main flow direction is the tangential
one, and the well-established three-dimensional radial equilibrium approximation used
in turbomachinery, where the main flow direction is the axial one, we will refer explicitly
in the following to the present findings as planar radial equilibrium theory.

The present work is organised as follows. Section 2 moves from the governing equations
to derive a differential relation linking the Mach number to the radius of curvature for
two-dimensional flows in radial equilibrium in both ideal and non-ideal conditions. The
relation, called the planar radial equilibrium equation, is integrated analytically for ideal
flows. Section 3 describes the main results for both ideal and non-ideal two-dimensional
flows in radial equilibrium, specifying the limitations of the presented analysis due to the
simplifications considered in the flow. Section 4 provides computational results about the
evolution of simple flows towards the planar radial equilibrium condition identified in § 3.
Finally, concluding remarks are reported in § 5.

2. Compressible two-dimensional flows in radial equilibrium

The two-dimensional, steady, compressible flow of a single-phase mono-component fluid
is investigated under the boundary layer assumptions of negligible heat transfer and
viscous effects in the core flow. All fluid particles are assumed to originate from the same
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Figure 1. Radial equilibrium flow in two spatial dimensions. Streamlines are shown as thick circular arcs: r is
the radial coordinate, 6 is the angular coordinate. Locally, the velocity is expressed as the sum of a tangential
component uy and a radial component u,.. The latter is zero in radial equilibrium conditions.

total thermodynamic state. Hence both the specific total enthalpy /4, and entropy s per unit
mass are constant everywhere in the flow field: #, = const. = h; and s = const. = 5.
Introducing the radial equilibrium hypothesis 9/00 =0 in the continuity and
momentum equations of the compressible Euler equations in polar coordinates leads to
the well-known definition of the pressure gradient established due to the curvature,
2 2
d_Pzp”_f?:p”_, 2.1)
dr r r
where, with reference to figure 1, r is the radial coordinate, and up = u is the tangential
flow velocity. By introducing the speed of sound ¢ and the Mach number M = u/c, an
equivalent expression for the density gradient is obtained:

dp ap\ dP 1 dP M?
d_:(_>_:_2_:p_. (22)

r oP) dr  c¢* dr r
Specifying a suitable thermodynamic model finally yields the analytical expression for the
Mach number variation along the radius.

According to the state principle (Callen 1985), the equilibrium thermodynamic state
can be computed from two independent thermodynamic variables. Given that the total
enthalpy and the entropy are constant, the thermodynamic state is determined fully here
by specifying one thermodynamic variable only or the velocity module, regardless of
the thermodynamic conditions. On the contrary, a single value of the Mach number can
correspond to more than one thermodynamic state if I” < 1.

The Mach number variation with the radius is therefore computed as

dM dMdp M ( 1 ) M M

e 1— T — — ) p— = (1 — MM? —1]. 2.3
Rl el P r[( ) ] (2.3)

MZ

This equation is now written in non-dimensional form by defining a dimensionless radial
coordinate 7 = r/r;, where r; is the internal radius of the channel. The final expression

reads
dm

i
It is clear from the above differential relation that for values I" > 1, the derivative dM /dr
is always negative, and a monotone evolution of the Mach number in the radial direction
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is found. For thermodynamic conditions featuring I" < 1, by contrast, the term dM/dr
possibly goes to zero and becomes positive, for sufficiently large values of M, yielding
local minimum and maximum points in the Mach number profile.

Integrating (2.4) from the internal radius r; (¥ = 1) to the external radius r, (¥ = r./r;)
delivers the function M (7). It is remarkable that integrating the planar radial equilibrium
equation in dimensionless form as a function of 7 delivers the same solution for all possible
values of the internal radius of curvature.

Substituting the non-dimensional Mach number derivative introduced by Cramer & Best
(1991),

p dM 1
J=——=1-T1——, (2.5)
M dp M?
into (2.4) yields
M M3
———— (2.6)
dr r

which is referred to in the following as the planar radial equilibrium equation. From (2.6),
in thermodynamic conditions featuring negative values of J — which is always the case
in ideal flows — the Mach number decreases towards the external radius. By contrast, M
increases towards 7, if J > 0.

Starting from (2.4), a simpler expression, valid in the dilute-gas regime, can be obtained.
For an ideal polytropic gas, i.e. a dilute gas with constant specific heat ratio y, the
fundamental derivative of gas dynamics reduces to the constant value I = (y + 1)/2 > 1.
Thus the planar radial equilibrium equation for an ideal gas reads

M —1
dM —T(1+y2 Mz)’ 2.7)

T

where y is the only fluid-dependent parameter. The above equation (2.7) can be integrated
analytically (see Appendix A), yielding

- M;
M(r) = , (2.8)

y—1. 5)- y—1. 5,
[

where M; is the Mach number at the internal radius 7; = 1, chosen as the initial condition
for the integration. By varying M;, all possible planar radial equilibrium solutions are
computed for a selected fluid. Note that the M = M(7) relation depends not on the
parameters /; and 5, but only on y, a typical property of ideal polytropic gas dynamics
(Thompson 1988).

Analytical integration of (2.4) is unfortunately not possible in non-ideal conditions since
I' is no longer a constant, and instead it depends on the thermodynamic state via complex
thermodynamic models (Colonna et al. 2009). The Runge—Kutta Dormand—Prince
(RKDP) method (Dormand & Prince 1980) is used here for the integration of (2.2). The
RKDP method is an explicit, single-step method belonging to the Runge—Kutta family
of ordinary differential equation solvers, which delivers fourth-order-accurate solutions
through six function evaluations. Equation (2.2) is written as a differential relation for the
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density as a function of the non-dimensional radius 7 as

do M?

PP
The density is preferred here as the dependent variable for the integration since in
non-ideal conditions, depending on the sign of J, the Mach number profile can be
non-monotone with the radius (see (2.6)), whereas the density always increases towards
the external radius. Equation (2.9) is an ordinary differential equation since, from the
constancy of the total enthalpy 4, = h; and of the entropy s = 5, the Mach number is a
function of the density, namely,

u 2 —h(p,5))

M=-= — = M(p). (2.10)
¢ c(p, $)

(2.9)

In the present work, the enthalpy /(p, 5) and the speed of sound c(p, 5) are computed from
the REFPROP library (Lemmon et al. 2018), implementing multi-parameter Helmholtz
equations of state (Span 2000). In particular, the software FluidProp, which is a
general-purpose interface to different thermodynamic libraries (see Colonna, van der Stelt
& Guardone 2012), is employed to access the REFPROP thermodynamic model.

The initial condition for the density at the internal radius p; is computed from M; =
M (p;). Suitable values of M; are selected out of the J > 0 thermodynamic region, so that
the density p; is uniquely defined. Then integration of (2.9) proceeds for increasing values
of the radius to obtain p (7). The Mach number profile M (7) is finally recovered from
(2.10).

3. Two-dimensional radial equilibrium flows in ideal and non-ideal conditions

The planar radial equilibrium profiles are now computed for ideal and non-ideal conditions
using (2.8) and (2.9), respectively. Suitable fluids and thermodynamic states are selected to
expose the solution’s dependence on molecular complexity and the thermodynamic state.

3.1. Ideal gas with constant specific heats

Figure 2 shows the solutions for a radial equilibrium flow with external radius r, =
5 r;. Diatomic nitrogen N», carbon dioxide CO; and siloxane MM are compared in the
dilute-gas regime, where the ideal polytropic gas approximation is applicable. These gases
are each characterised by different values of the polytropic exponent, namely y = 1.4 for
No, ¥y = 1.29 for COy, and y = 1.026 for MM. Four values of M; = 0.5,1,1.5,2 are
considered. In all cases, the Mach number reduces monotonically towards the external
radius.

The interpretation of these results is straightforward. Compared to a parallel uniform
flow, the flow accelerates more where the radius of curvature is smaller, and vice versa.
Larger velocities result in lower pressure, temperature and speed of sound, leading to
larger values of the Mach number. Figure 2 exposes the influence of the fluid molecular
complexity on the flow expansion. For an ideal polytropic gas, I" decreases with increasing
molecular complexity, hence J increases, thus reducing the absolute value of the Mach
number variation with density. By (2.4), the Mach number decrease is much faster at
lower values of 7 and larger values of M, namely, in the inner part of the channel and
at supersonic conditions. For lower Mach number flows, the y dependence is negligible as
a consequence of the lower compressibility of the flow.
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Figure 2. Mach number distribution along 7 = r/r; for an ideal fluid flow with constant specific heats in
planar radial equilibrium. Comparison among N2, CO, and MM, with different values of M;.

3.2. Non-ideal compressible flows

Compressible flows in planar radial equilibrium are now investigated in non-ideal
conditions. Three different fluids are considered: carbon dioxide and siloxane fluids
MM (hexamethyldisiloxane, CgHigOSip) and D6 (dodecamethylcyclohexasiloxane,
C1oH3606Sig). These fluids are representative of low molecular complexity (LMC),
high molecular complexity (HMC) and Bethe—Zel’dovich-Thompson (BZT) fluids,
respectively.

The LMC fluids such as carbon dioxide are characterised by I” > 1 everywhere in the
single-phase region. Therefore, a quantitative departure from the ideal-gas results due
to non-ideal thermodynamic effects is expected. Non-ideal gasdynamic effects are not
possible for I" > 1; therefore, the same qualitative gasdynamic behaviour observed for
ideal gases is expected.

Figure 3 reports the total conditions and the flow evolution (red curves) in the
P/P.—v/v. plane. To expose the dependence of stagnation conditions — a signature feature
of non-ideal flows — diverse stagnation states are considered. In particular, computations
are carried out for two values of the total pressure, namely ideal conditions P; = 0.5P,
and non-ideal conditions P; = 2P,, with P, the critical pressure, and four values of the
reduced total temperature 7;/T., with T, the critical temperature.

Figure 4 shows the radial equilibrium Mach number profiles for CO,. The Mach
number at the internal radius is set to M; = 0.5 to prevent the fluid from entering the
two-phase region during expansion. The ideal-gas solution is also superimposed for a
direct comparison. With low total pressure, i.e. P, = 0.5P, all the Mach number profiles
collapse towards the ideal-gas solution, even for thermodynamic states very close to
the critical temperature. Considering instead P; = 2P., the curves deviate more from
the ideal one, particularly for low values of T;/T,, which lead to thermodynamic states
closer to the critical point and the liquid—vapour saturation curve. As expected, only
non-ideal thermodynamic effects are observed, and the ideal-gas-like gasdynamics is
retrieved qualitatively, with the Mach number monotonically decreasing with the radius.
The non-ideal dependence on the total or stagnation conditions is exposed, and the
Mach number profiles differ significantly from those resulting from different stagnation
conditions.

Instead, non-ideal gasdynamic effects resulting in a qualitatively different flow evolution
are obtained for the HMC fluid siloxane MM. The thermodynamic model predicts the
existence of a thermodynamic region featuring I” < 1. A supersonic Mach number at the
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Figure 3. Thermodynamic diagram for CO, showing the total initial conditions ([J, o) and the flow state
evolution along the radius (red solid lines): (@) total thermodynamic states in ideal conditions (L], P;/P. = 0.5)
for figure 4(a); (b) non-ideal total conditions (o, P;/P. = 2) for figure 4(b). Isolines of I" (black solid lines)
and isentropes (black dotted lines) are also shown.
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Figure 4. Mach number distribution along 7 = r/r;, for a flow of CO; in planar radial equilibrium, with
reduced total pressure (a) P;/P. = 0.5 and (b) P;/P. = 2. Each solid line corresponds to a different value
of the reduced total temperature 7, /7., while dotted lines are obtained from the CO, ideal-gas model.

internal radius (M; = 1.75) is imposed to observe non-ideal gasdynamic effects that are
admissible only in supersonic conditions for HMC fluids. The total conditions considered
in the computations and the corresponding flow evolution are shown in the P/P.—v /v,
diagrams in figures 5(a) for the ideal regime and 5(b) for the non-ideal regime.

The Mach number along the radius is shown in figure 6(a) for stagnation conditions in
the ideal regime, together with the ideal-gas solution. The latter is found by computing the
polytropic exponent y;4.,; in the ideal-gas limit at the critical temperature as

. ¢p(Te, P)
Yideal = lim 2= -

) 3.1
P—0 cy(Te, P) ©-D

where ¢, and ¢, are the constant-pressure and constant-volume specific heats, respectively.
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Figure 5. Thermodynamic diagram for MM showing the total initial conditions ([J, o) and the flow state
evolution along the radius (red solid lines): (@) total conditions in ideal conditions (L), P;/P. = 0.5) for
figure 6(a); (b) non-ideal total conditions (o, P;/P. = 2) for figure 7(a). Isolines of I" (black solid lines) and
isentropes (black dotted lines) are also shown.
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Figure 6. Flow of MM in planar radial equilibrium in ideal conditions, with total pressure P,/P. = 0.5.
(a) Mach number distribution along 7 = r/r;. Each solid line corresponds to a different value of the total
temperature 7;, while dotted lines are obtained from the MM ideal-gas model. (b) The M—p diagram for ideal
conditions P;/P. = 0.5 and T;/T. = 0.92. The vapour—liquid equilibrium curve (thick black line), the J = 0
curve (thin black line), the flow state (red solid line) and selected isentropes (black dotted lines) are shown.

All the fluid states feature values of the fundamental derivative of gas dynamics lower
than 1; cf. figure 5(a). However, the flow evolves in the J < 0 region (see figure 6(b)
for case P;/P, = 0.5 and T;/T, = 0.92), therefore there are no gasdynamic effects due
to the flow non-ideality. Due to non-ideal thermodynamic effects, the Mach number
profile deviates only quantitatively from the ideal model, with more relevant differences
approaching the saturation curve. Indeed, with reference to figure 4(a) for CO,, non-ideal
thermodynamic effects are more evident for higher molecular complexity fluid at the same
reduced conditions (Colonna & Guardone 20006).
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Figure 7. Flow of MM in planar radial equilibrium in non-ideal conditions, with total pressure P;/P. = 2.
(a) Mach number distribution along 7 = r/r;. Each solid line corresponds to a different value of the total
temperature 7;, while dotted lines are obtained from the ideal-gas model of MM. (b) The M—p diagram for
non-ideal conditions P,/P. =2 and T;/T. = 1.05. The vapour-liquid equilibrium curve (thick black line),
the J = 0 curve (thin black line) and selected isentropes (black dotted lines) are shown. The flow states (red
solid line) cross the J > 0 region in supersonic conditions, and both non-ideal thermodynamic and gasdynamic
effects are observed; a non-ideal non-monotone Mach profile is observed in supersonic conditions.

Non-monotonic Mach number profiles are observed if the total pressure P; = 2P, is
considered; see figure 7. In this case, states featuring lower values of I" are reached,
leading to positive values of J (see (2.5)) in supersonic conditions and low total
temperatures 7;. At larger T;, the stagnation conditions are located further away from the
non-ideal region (see figure 5b), and the planar radial equilibrium profile qualitatively
approaches the ideal one.

Finally, siloxane fluid D6 is considered, a BZT fluid according to state-of-the-art
thermodynamic models (Colonna et al. 2009). For BZT fluids, the theory allows
non-monotone Mach variation with the radius in subsonic and supersonic conditions. This
is admissible due to thermodynamic states featuring negative values of I", which leads
to possibly positive values of J also for M < 1 (see (2.5)). A thermodynamic diagram
displaying the Mach number evolution as a function of the density along several isentropes
is reported in figure 8(b). A small region presenting values of J > 0 in subsonic conditions
is indeed found. An exemplary planar radial equilibrium condition featuring P;/P. =
1.1171 and 7;/T, = 1.0094 is chosen to compute the Mach number profile presented in
figure 8(a), which clearly shows the non-monotone Mach variation with the radius typical
of non-classical behaviour of BZT fluids.

3.3. Model limitations

The results discussed in the present work about compressible flows in planar radial
equilibrium rely on relatively strong hypotheses. Two-dimensional flows with negligible
viscous and heat conductivity effects are considered, similarly to what is done in
three-dimensional radial equilibrium theory for turbomachinery (Smith 1966). In this
section, a brief evaluation of the contribution of viscosity and three-dimensionality is
presented based on numerical and experimental results available in the literature.
Accounting for viscosity results in modifying the flow profile close to the walls, where a
viscous boundary layer develops (see e.g. Wu & Wolfenstein 1950). If the flow curvature is
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Figure 8. Non-classical flow of D6 in planar radial equilibrium in non-ideal conditions with P,/P. = 1.1171
and 7;/T, = 1.0094. (a) Mach number distribution along the non-dimensional radius 7 = r/r;. (b) The M—p
diagram. The vapour—liquid equilibrium curve (thick black line), the / = 0 curve (thin black line), the I" = 0
curve (dash-dotted line) and selected isentropes (black dotted lines) are shown. The flow states (red solid line)
cross the J > 0 region in subsonic conditions, and both non-ideal thermodynamic and gasdynamic effects are
observed; a non-classical non-monotone Mach profile is observed in subsonic conditions.

large enough, then the boundary layer possibly separates, completely modifying the flow
profile in the channel (see e.g. Wellborn, Reichert & Okiishi 1992; Debiasi et al. 2008; Ng
et al. 2011).

In addition, when three-dimensional curved ducts are considered, significant secondary
transverse flows arise, leading to a more complex flow evolution, which must be studied
through more sophisticated numerical models and are out of the scope of this work.
Extensive results about secondary flows due to curvature can be found, for instance, in
Taylor, Whitelaw & Yianneskis (1982), Vakili ef al. (1983), Falcon (1984) and Harloff
etal. (1993).

Boundary layer stability is strongly influenced by non-ideal conditions. Non-ideal
thermodynamic effects enhance boundary layer stability in adiabatic flows of supercritical
and subcritical molecularly complex fluids, due to the large value of the specific heat and
hence the reduced growth of the boundary layer due to friction heating (Gloerfelt et al.
2020). Close to the liquid—vapour critical point or across the Widom line, instabilities are
observed due to the large gradients of thermodynamic and transport properties (Ren, Fu
& Pecnik 2019; Ren & Kloker 2022).

4. Evolution towards planar radial equilibrium

The evolution from a uniform parallel flow towards the planar radial equilibrium solution
is now examined. A simple two-dimensional circular channel is considered, with an
additional straight section of length L at the inlet, where a uniform flow is imposed.
The domain is shown in figure 9. The curve can eventually be extended up to 180°.
The flow curves downwards and possibly evolves towards a planar radial equilibrium
condition. Sun & Ma (2022) considered a similar domain to study curved ducts for
aero-engine applications. Different simulation approaches are considered here, depending
on the subsonic or supersonic flow regime, as presented in the following subsections.
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Figure 9. Computational domain for analysing the flow evolution towards planar radial equilibrium.
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Figure 10. Mach number evolution along (@) the internal wall and () the external wall of the domain shown
in figure 9, for increasing values of the external radius 7., and decreasing values of the Mach number at the inlet
M. 7o = 1.5, M;, = 0.76; v, = 2, M, = 0.63; 7, = 3, M, = 0.49; 7, = 5, M;, = 0.35. The fluid considered
is N, modelled as an ideal polytropic gas.

4.1. Subsonic flows

The simulations of subsonic flows are performed exploiting the streamline curvature
method, in which the Euler equations are solved iteratively over a dynamic computational
mesh, which at convergence is aligned with the streamlines. The number of streamlines
is 100, which is sufficient to assume grid independence (see Zocca, Gajoni & Guardone
2023). The streamline curvature method is coupled to state-of-the-art equations of state
through the thermodynamic library FluidProp (Colonna et al. 2012) to simulate non-ideal
flow conditions. In particular, the REFPROP library (Lemmon et al. 2018) implementing
the Span (2000) multi-parameter Helmholtz equation is considered, as done for the
theoretical results of § 3.

Numerical results in figure 10 confirm the flow evolution towards planar radial
equilibrium. In the inner part of the channel, the flow expands and accelerates, whereas
it is compressed and decelerates in the outer part. The Mach number evolution along the
walls is presented for molecular nitrogen N, modelled as an ideal polytropic gas, for
increasing values of the external radius 7.. The Mach number at the inlet of the channel
for each case in figure 10 is selected to reach sonic flow at the internal wall at equilibrium,
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Figure 11. Mach number distribution along 7 = r/r; for a flow of CO; in planar radial equilibrium with total
pressure P;/P. = 2. Comparison between theoretical results and the Mach profiles obtained at the outlet of
the domain (6 = 180°) shown in figure 9 from the streamline curvature method. Each profile corresponds to a
different value of the total temperature 7; /7.

i.e. the condition presented in figure 2 for M; = 1. Not surprisingly, the value of 6 at which
equilibrium is attained depends strongly on the external radius 7.. Increasing the width of
the channel results in the equilibrium profile being reached at a larger 6. The angle 6 at
which the equilibrium is established depends weakly on the Mach number imposed at the
inlet (not shown in the figure; see Gajoni 2022).

Planar radial equilibrium profiles from figure 4(b) for carbon dioxide at P; = 2P, are
now considered. To replicate the same flow conditions using the streamline curvature
method, the mass flow rate corresponding to each profile in figure 4(b) is computed by
integrating the mass flux function j = p(M; hy, 5) u(M; hy,’5) along the radius. A uniform
flow with the same mass flow rate and total conditions is then imposed at the inlet of the
channel, and it evolves towards planar radial equilibrium. Mach number profiles computed
from the streamline curvature method are recovered at the outlet of the channel in figure 11,
and compare fairly well with theoretical results.

To examine further the dependence of the flow evolution on total conditions, the
Mach number evolution along the walls is presented in figure 12 for siloxane MM. Total
conditions are the same as those considered for figure 7(a), and the value of the inlet
Mach number is set to Mj;, = 0.3. Due to the high molecular complexity of the fluid, for
varying total states, a difference in the angular distance at which equilibrium is reached
can be noticed. In particular, for decreasing values of the total temperature, equilibrium is
reached at a larger 6.

Finally, the subsonic non-classical case is considered. The streamline curvature method
is applied to siloxane D6 with the same total conditions as chosen for figure 8, namely
P;/P. = 1.1171 and T;/T, = 1.0094. The Mach number at the inlet is set to M;, = 0.75,
and both the Mach number profile at the outlet of the channel and the evolution along the
walls are presented in figure 13. The typical non-monotone evolution of the Mach number
is observable in the planar radial equilibrium profile for values M < 1. A similar non-ideal
gasdynamic effect, with non-monotone Mach profile, is observed along the internal wall
of the channel for increasing values of 6 (blue line in figure 135) where the flow expands
due to curvature. In both cases, the fluid states cross the J > 0 thermodynamic region.
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Figure 12. Mach number evolution along (a) the internal wall and () the external wall of the domain shown in
figure 9 with 7, = 3, for siloxane MM with reduced total pressure P;/P. = 2 and varying values of the reduced
total temperature 7;/7,.. The Mach number at the inlet is set to M;, = 0.3 for all conditions.
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Figure 13. Streamline curvature method solution for a flow of siloxane fluid D6 with M;, = 0.75 and reduced
total conditions P;/P. = 1.1171 and T;/T, = 1.0094: (a) planar equilibrium profile obtained at the outlet;
(b) Mach number evolution along the internal and external walls, compared to the equilibrium values.

4.2. Supersonic flows

In this subsection, supersonic flows are considered in the constant-section curved duct
shown in figure 9. Starting from subsonic conditions at the inlet, the flow acceleration due
to curvature yields supersonic conditions in the inner part of the channel. At the end of the
curved portion of the duct, the increase in pressure along the internal wall results in the
formation of a normal shock wave. The reader is referred to Sun & Ma (2022) for a detailed
description of the shock formation mechanism. Due to the presence of a shock wave, the
streamline curvature method, which relies on the isentropic hypothesis, is replaced by the
finite-volume open-source software SU2 (Economon et al. 2016).

The domain considered is the same as used to simulate subsonic flows, with an
additional straight section at the end of the curve (cf. figure 14a), to simplify the imposition
of boundary conditions at the outlet (Vitale et al. 2015). Total pressure and temperature
are set as the boundary conditions at the inlet. Slip boundary conditions are set along
the solid walls. At the outlet, a static pressure equal to half of the inlet total pressure

975 A43-14


https://doi.org/10.1017/jfm.2023.892

https://doi.org/10.1017/jfm.2023.892 Published online by Cambridge University Press

Ideal and non-ideal compressible flows in radial equilibrium

(@)
1.7
1.6
1.5
1.4
1.3
12 §
=}
LS
1.0
- 09
0.8
0.7
0.6
(®)
1.8 - - T 1.8 T T - - -
o CFD
1.6 I8 Radial equilibrium theory 161 1
14+ 1.4+
M12 1.2+
1.0+ 1.0¢ —— Internal wall
—— External wall
0.8 0.8 ¢ ----Equilibrium values |
0.6 . . . . 0.6 - - - - -
1.0 1.2 1.4 1.6 1.8 2.0 0 45 90 135 180
rir, 0 (deg.)

Figure 14. Supersonic Mach number evolution of N in ideal conditions throughout the curved channel, with
Mach number at the inlet M;, = 0.77: (a) Mach number contours; (b) comparison between the radial profile
from CFD at & = 115° and the theoretical planar radial equilibrium solution; (¢) Mach evolution along the
walls, compared with the equilibrium values.

value is set so that the flow transitions from subsonic to supersonic conditions. For further
details on the problem set-up, the reader is referred to Sun & Ma (2022). The methodology
and numerical tools employed in the present work are based on reference computational
fluid dynamics (CFD) simulations of non-ideal flows performed by Gori et al. (2020).
The simulations are carried out for an inviscid flow over a structured computational mesh
made of around 70 000 elements (120 elements in the radial direction, and 600 elements
in the tangential direction). The grid size was selected after a grid convergence study (not
reported here; see Gajoni 2022).

The flow is isentropic upstream of the shock under the hypothesis of negligible heat
transfer and viscous effects. Therefore, the evolution from a uniform parallel flow towards
a planar radial equilibrium condition can be compared against the theoretical results in § 2.

Figure 14 shows the Mach number evolution for molecular nitrogen N> in ideal
conditions. The subsonic uniform flow imposed at the inlet of the domain accelerates
along the internal wall, reaching supersonic conditions. A normal shock wave is visible
at the end of the curve in the inner part of the channel, where the flow is compressed
due to the change in curvature. Along the external wall, a compression is found at the
beginning of the curved duct (see figure 14¢). Then the flow evolves towards the planar
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Figure 15. Supersonic Mach number evolution of MM in non-ideal conditions throughout the curved channel
with Mach number at the inlet M;, = 0.5: () Mach contours and J = 0 line (white); (b) comparison between
the radial profile from CFD at § = 175° and the theoretical planar radial equilibrium solution; (¢) Mach
evolution along the walls, compared with the equilibrium values. Reduced total conditions at the inlet are
P;/P.=2.08and T;/T. = 1.05.

radial equilibrium condition predicted by the theory. Figure 14(b) shows, in fact, a perfect
agreement between the analytical result and the CFD simulations at 6 = 115°.

Non-ideal gasdynamic effects are now examined by simulating the supersonic flow
evolution of siloxane MM, presented in figure 15. Thermodynamics is modelled through
the improved Peng—Robinson—Stryjek—Vera equation of state in the polytropic form (see
Van der Stelt, Nannan & Colonna 2012), which is implemented directly in SU2. Also in
this case, the flow acceleration in the inner part of the channel results in a shock wave
at the end of the curve. The Mach number evolution exhibits the expected non-monotone
behaviour both in the radial direction (figure 15b) and in the expansion along the internal
wall (blue line in figure 15¢). The flow in the channel never fully reaches planar radial
equilibrium conditions, which are attained only close to the shock wave. Figure 15(b)
compares the planar radial equilibrium profile from theory and CFD at 6 = 175°, showing
a fairly good match between theory and simulations.

The numerical simulations confirm the flow evolution towards the planar radial
equilibrium profile predicted by theory in the supersonic case. It is remarkable that,
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similarly to what was observed for subsonic flows, the achievement of a fully developed
planar radial equilibrium condition is not guaranteed but instead depends on several
parameters, such as the channel width and, for non-ideal flows, the fluid molecular
complexity and stagnation conditions.

5. Conclusions

A relation for the Mach number dependency on the radius of curvature was presented for
compressible flows in planar radial equilibrium. The ordinary differential equation was
derived for a fluid governed by an arbitrary equation of state.

In the case of an ideal gas with constant specific heats, the equation was integrated
analytically. A monotonically decreasing profile of the Mach number with the radius was
found, and the dependence of the Mach profile on the molecular complexity of the fluids
was discussed.

For thermodynamic states close to the liquid—vapour saturation curve and the critical
point, the fluid gasdynamics departs from the ideal-gas solutions. Low molecular
complexity fluid flows are qualitatively similar to those of ideal gases, and only quantitative
differences are possible, termed non-ideal thermodynamic effects. In particular, the flow
evolution along the radius shows a non-ideal dependence on total conditions, a well-known
non-ideal thermodynamic effect. High molecular complexity fluids were shown to exhibit
a non-monotone evolution of the Mach number with the radius in supersonic conditions, a
non-ideal gasdynamic effect. For BZT fluids, non-monotone Mach number profiles were
observed also in the subsonic regime.

The evolution of a uniform parallel flow towards planar radial equilibrium was studied
by means of the streamline curvature method for subsonic flows, which also confirmed the
prediction of the theory. Starting from a uniform parallel flow, the flow evolution towards
planar radial equilibrium in a constant-curvature channel was characterised by increasing
the ratio of the outer radius to the inner one in ideal flows, and by considering different
stagnation conditions for non-ideal flows.

In the supersonic regime, flows developing through the same curved channel were
analysed by means of inviscid CFD simulations, since a shock wave is observed in the
inner part of the channel at the end of the curved duct. Upstream of the shock, the flow
evolved isentropically towards the planar radial equilibrium condition predicted by the
theory, eventually exhibiting non-ideal gasdynamic effects for high molecular complexity
fluids.
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Appendix A. Analytical integration of the planar radial equilibrium equation for
ideal gases

The analytical integration of the planar radial equilibrium equation for ideal gases (2.7) is
reported in this appendix for completeness.
The differential equation reads

w_ MOyl (A1)
dar 7 2 '
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A rearrangement of the different terms leads to

dM dr
7 = —— (A2)
M(l n J/—MZ) :
2
and then to
y —1
L M -
dM d

The right-hand side is integrated between the dimensionless radius at the internal wall 7;
and its generic value 7. Analogously, the left-hand side is integrated between the Mach
number at the internal wall M; and its generic value M. Note that, by definition, 7; =
ri/ri = 1. The integration of the three terms yields

y —1 _
M Y TM dM = T (A4)
M; M M; 1+)/;1M2 7 ;7,
y—1 5
/AN L Sk B
In In =—Inr. (AS5)
M) 2\ v

2 1

By exploiting the properties of logarithms and performing additional computations, one
can obtain the expressions

In (A6)
and
-1
M? (1 + VT Mf) .
= =. (A7)
) y—1_, 72
Mi 1+ T M
Finally, rearranging the different terms leads to
-1 -1
P2 M> (1 + VTM?> = M? (1 + VTMz) : (A8)
which can be rewritten as
-1 -1
e [(1 + VTM,.2> 2 VTM?} = M2, (A9)
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yielding the final expression for the Mach number evolution along the non-dimensional
radius,

M(7) = , (A10)

reported in (2.8).
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